
HAL Id: hal-01551452
https://hal.science/hal-01551452v1

Submitted on 6 Nov 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Towards ontology based BPMN Implementation.
Sophea Chhun, Néjib Moalla, Yacine Ouzrout

To cite this version:
Sophea Chhun, Néjib Moalla, Yacine Ouzrout. Towards ontology based BPMN Implementation..
SKIMA, 6th Conference on Software Knowledge Information Management and Applications., Jan
2012, Chengdu, China. 8 p. �hal-01551452�

https://hal.science/hal-01551452v1
https://hal.archives-ouvertes.fr

 1

Towards ontology based BPMN implementation

CHHUN Sophea, MOALLA Néjib and OUZROUT Yacine

University of Lumiere Lyon2, laboratory DISP, France

Natural language is understandable by human and not machine. None technical persons can only use natural language to specify

their business requirements. However, the current version of Business process management and notation (BPMN) tools do not allow
business analysts to implement their business processes without having technical skills. BPMN tool is a tool that allows users to design
and implement the business processes by connecting different business tasks and rules together. The tools do not provide automatic
implementation of business tasks from users’ specifications in natural language (NL). Therefore, this research aims to propose a
framework to automatically implement the business processes that are expressed in NL requirements. Ontology is used as a
mechanism to solve this problem by comparing between users’ requirements and web services’ descriptions. Web service is a software
module that performs a specific task and ontology is a concept that defines the relationships between different terms.

Index Terms—Ontology, Semantic Web, Web Service, Service Composition, Keywords Extraction, Process re-engineering

I. INTRODUCTION
his research focuses on the companies that use service
oriented architecture (SOA) to deploy their business

applications. SOA is an approach that provides guideline and
technologies to build the applications in service-oriented
world [18]. It provides the interoperability ability (platform
independent) between different applications by using web
services to exchange the resources. “Web service is a software
system designed to support interoperable machine-to-machine
interaction over a network” (W3C). Moreover, web service is
described by using WSDL (Web Service Description
Language) [13] in XML (eXtensible Markup Language)
format. The SOA architecture allows the integration between
web service applications and non web service applications
without modifying the non web service applications. However,
the programmers have to create an XML communication
interface between the two applications.

Usually, the companies change their business requirements,
and adopt new software applications, to react to the market
evolutions and customers’ needs. That causes the amount of
web services increase and as well as the complexity of web
services maintenance and management. Therefore, this
research aims to propose the framework to reuse the existing
web services when creating new business applications or re-
engineering the existing business processes. Reusing the
existing web services helps companies to save not only money
but also time. However, it is possible that the existing web
services cannot answer all users’ needs. Therefore, this
research has to propose the services composition or the service
extension capability method to create a new web service that
can answer the user’s requirement.

Moreover, the business processes are implemented by using
BPMN tools such as websphere or jdeveloper (oracle BPM
suite). There are 2 steps to implement business process with
BPMN tools, design and implementation. First, the business
analyst designs the business processes by connecting different
business tasks and rules together by using different connector
types. Then, the programmer codes each task of the process
and after that the users can deploy their business applications.
So, it requires technical knowledge to implement the business

processes that is not the case for business analysts. For this
reason, this research aims to remove this technical constraint
by creating a framework which can implement the business
process automatically. The analysts design the business
process and specify the description of each task. The
framework will implement the process for them. In order to do
this, we face some challenges problems to solve. First, the
format to represent user’s requirements: it should be simple
and easy to express for non-technical person. Second, the
matching between user’s requirements and service
functionalities to select the suitable service to perform the
task. Third, the method to compose different web services
together to create new services. The last one is the
reconstruction of the business process with the implementation
code.

This research will use ontology to define the relation
between different terms in the same domain in a hierarchical
way. It allows us to know the semantic meaning between
different terms. In addition, there are 2 standards proposed by
W3C to represent ontology, Resource Description Framework
(RDF) [4] and Ontology Web Language (OWL) [5]. The
detail is described in the next sections of this paper.

II. RELATED WORKS
In SOA, there are 3 main components, service requesters,

service providers and services registry [1]. The name of each
component identifies clearly their functionalities. Service
requesters are software modules that require some services to
answer to their requirements. The service providers propose
solutions or resources to the service requesters. All services in
the company are stored in a services registry for future use.
One example of service registries is universal description,
discovery and integration (UDDI) [3].

T

 2

Fig. 1. Basic web service architecture [1]

There are two choices for implementing web services
applications, orchestration and choreography [1-2]. In
orchestration, an orchestra (a software module) manages the
system process and tells to the service about which service
that it has to communicate it. However, in choreography there
is no leader, every services are equal and they know which
service they should work with. Furthermore, there are
dynamic orchestration, static orchestration and semi-dynamic
orchestration. In dynamic orchestration, the suitable web
services are assigned to each task of the process at the run
time. It is opposite to the static orchestration that it is done at
the design time; web services are attached manually to each
task by the programmer. Semi-dynamic orchestration
combines the two ways together. This research study focuses
on dynamic orchestration of web services when implementing
business processes.

Fig. 2. Orchestration approach [2]

Fig. 3. Choreography approach [2]

The web service is described in XML (eXtensible Markup
Language) format, XML is chosen to support interoperability
between different parties who participate in the global system.
Furthermore, the web service is described by using WSDL
(Web Service Description Language) [13] and SOAP (Service
Oriented Architecture Protocol) is used as a communication
protocol between web services. Each web service has
description and can be represented in ontology for the purpose
of semantic matching when performing service selection. So,

the ontology is built from WS (Web Service) description to
store all concepts about web services including its domain.
Then from users’ requirements, the keywords are extracted to
compare with ontology tree to obtain a suitable web service. In
addition, the capabilities representation of WS in the ontology
can be done in explicit, implicit and hybrid way [14]. In
explicit representation, a pre-defined ontology is created to
represent the concepts of all web services. However in implicit
representation, the ontology is created in real time from the
WS description and Hybrid is combined between explicit and
implicit representation. Different ontology languages have
been proposed to support machine readable and semantic
matching such as OWL-S (Web Ontology Language-
Semantic), WSMO (Web Service Modeling Ontology)
[21],[23], CoOL (Context Ontology Language) and
DAML+OIL (DARPA Agent Markup Language + Ontology
Interchange Language). OWL-S is actually the supersede of
DAML+OIL and has top level concept as service and contains
three subontologies, service profile, service model and service
grounding.

Fig. 4. OWL-S concept model [20] (p.120)

 DAML-S is proposed by [19], it is not only the ontology
representation but it is also a language to describe a WS, it
provides semantic matching capability. Moreover, the authors
propose DAML-S/UDDI matchmaker module that is used as
an intermediate interface between users’ requirements and the
concepts that are stored in the ontology.

Fig. 5. DAML/UDDI matchmaker

WSMO [23] is created by using WSML (Web Service
Modeling Language) and defined in four concepts, web
services, goals, ontologies and mediators. Web service is
specified by web service’s capabilities and a set of interfaces
that describe how to interact with web service. Goal is
described by postcondition and effect, it describes the user’s
desire when requesting the web service. Ontology stores the
terminologies accepted by web service and specifies the
domain concept. The last one is mediator that specifies the
mechanisms to allow web services to work together.

In addition, to represent the description of business
processes, a specification is proposed in [8] called semantic of
business vocabularies and business rules (SBVR). This

 3

specification is created for the machine readable purpose.
Different languages (RuleSpeak, English structured language,
Rabbit) and tools (ROO [16], ACEview) are created to
manipulate this business process specification and build
ontologies. However, this representation requires users to
learn a new language that is opposite to this research
objective, non technical persons can deploy business
processes. Therefore, this research will use text to represent
users’ requirements.

[6] Propose a method to build ontology from the text
description of a web service that is defined in javadoc but not
from the WSDL file. Moreover, the authors make a
comparison of two keywords extraction methods, POS and
Deeper dependency linguistic analysis. These two methods are
used to define the part of speech of each word in a sentence.
Then, the JAPE rule is used to extract the keywords, for
example only verb and noun phrase are extracted. Finally, they
found that Deeper Dependency Linguistic Analysis provides
better output ontology. On the other hand, [12] are not only
propose a solution of the automatic building business process
but they also use QoS (quality of service) to select the best
web services in case many services are returned.

There are three ways to perform web service composition,
static web services composition, dynamic web services
composition and semi-dynamic web services composition.
Some languages have proposed to perform a static service
composition such as BPEL4WS (business process execution
language for web service) [10], WSCI (Web Service
Composition Interface) [11] and WS-BPEL (Web Service-
Business Process Execution Language) [1]-[2]. Dynamic web
service composition proposed by [9] and [12]. In [9], the
authors use directed graph to perform the dynamic web service
composition. It is done by comparing the output of one web
service to the input of another web service. Moreover, the
users provide the input and output values that are used as
constraints to validate in service selection process. The authors
also use the shortest path dynamic algorithm (Bellman Ford’s
algorithm) to select the best service composition path. [12]
propose a goal oriented to perform dynamic services
composition by extracting keywords from the goal description;
then compare the keywords with ontology concept to create
the final business process. In addition, [15] propose a semantic
framework called OWL-T, T means task and OWL means
ontology web language. This work uses different ontologies
such as task, domain, process and service ontology to create
business process. They propose an interesting task structure
and as well as task type’s hierarchy.

In [5], the authors propose BPMN 2.0 ontology which can
be used as a knowledge base to understand about BPMN and
as a syntax checker to validate concrete BPMN models. It is
also used to identify the contradictions defined in BPMN
specification models.

III. PROPOSED SOLUTION

A. Architecture of the Framework
This research framework takes the BPMN design

specification that is generated by BPMN tool as an input. This

design specification does not contain the implementation code
and it is specified in the XML document. It contains all the
information about business tasks, their descriptions and the
information of different connectors that are used to connect
each task together. The framework outputs the implementation
version of the input design specification of business process
which is also specified in XML format. Moreover, this output
can be imported to BPMN tool for the deployment purpose.

To reach the research objectives, different modules of the
framework are created.

1. Orchestra module: it reads the XML input document and
then it uses xml parser to extract the content in the XML
document. Then, it uses GetTaskPurpose to extract the
description of each task. Its task is not only read the input
XML document but it also responsible for reconstructing the
process.

2. GetTaskPurpose module: it extracts the description of
each task of the processes and passes it to KeywordExtraction
module.

3. KeywordExtraction module: it separates each word of the
input text from each other and identifies the part of speech of
them. After that, it applies the pre-defined rules to get the
keywords. Then, it passes the keywords into
SemanticMatching module.

4. SemanticMatching module: after getting the keywords, it
takes the keywords to search in service ontology tree to find
the compatible web services. Then, it passes the found
services to ServiceSelection module.

5. ServiceSelection module: after receiving the input
services list, if it is just one web service it will return to
orchestra module. If not, it will calculate the QoS of all web
services and select the one with the higher value of QoS; then
returns the result to orchestra module. In case, none of web
service is found in the process, it will notify to orchestration to
call to ServiceComposition module.

6. ServiceComposition module: it performs the services
composition to create a new web service that can answer to the
requirement. If it cannot create a new web service, it will
generate a message to notify to the users. Its input is a list of
keywords that describe a business task.

The whole construction process can be described by the
algorithm below:

For each process task {
 get the task description;

 extract the keywords;
 select a suitable WS;
 if a WS is found
 return WS;

else if many WS are found
compare QoS value;
select the best WS;
return WS;

 else {no WS is found}
 compose different WS together;
 if a new WS is created
 return newWS; else
 return messageError; }

 4

The figure below describes the proposed framework
architecture.

Fig. 6. Architecture of the framework

This framework is implemented using Jdeveloper and
Oracle BPM suite.

B. Input of the Framework
The input of the framework is an XML document which

specifies the business process design by bpmn tool. This input
is parsed to JDOM (Java XML Parser) parser and the parser
will generate DOM tree. Then, a software module will be used
to read the tasks’ description from the tree.

Fig. 7. Reading input XML file

C. Keywords Extraction
This part extends an existing work of [6]. The framework

uses POS tagger (Part Of Speech) that contains of Tokenizer,
sentence splitter and POS tagger itself to analyze the linguistic
of each word in a sentence. Tokenizer and sentence splitter
modules are used to separate each keyword in a sentence from
each others before passing to POS tagger to analyze part of
speech of the work. Then, the framework uses JAPE rules [7]
to extract keywords according to user’s defined rules. This
research extracts only the verb and noun phrase.

Fig. 8. Keywords extraction method

On the other hand, the process ontology is built from the
previous successful implementation of service composition. It
is created in order to avoid performing service composition
process for the same requirements many times. So, if a service
composition is needed, the framework will check in process
repository. If the solution is exist, then take it. If not, perform
services composition.

D. Ontology Building
Web service and domain ontology are built by using the

web service description of all web services that are stored in
the repository. The noun phrase from WS description can be
used to express the domain concept of the application. From
the WS description, the keywords are extracted by the same
method as described in session C. After getting the keywords,
an algorithm is used to build domain and web service
ontology. Some keywords might not necessarily to keep;
therefore, the ontology pruning method is used to remove less
frequency keywords compare to average value from the
ontology trees. For the first time of ontology building, the
domain experts will validate the ontology. Then Baseline
method is used for automatic ontology pruning. This method
assumes that the most frequent words dominate the domain of
concepts and it removes low frequency keywords compare to
total average of a keyword.

Fig. 9. WS and domain Ontology building

After studying different ontology language, DAML+OIL is
selected because it is compatible with existing standards XML
and RDFS (it inherits from RDFS) and easy to learn.
Moreover, it is created to describe the structure of domain and
it is object oriented (concepts as classes and roles as
properties). DAML + OIL is also known as DAML-S and it
combines the features of DAML and OIL.

E. Web Service Selection
After performing service selection by comparing user’s

requirement and service description that performed by
DAML-S/UDDI matchmaker, many matched web services
might returns. Therefore, the QoS (Quality of Service) value is
used to select the best suitable web service.

For the QoS’s attributes, we decided to store the number of
times a web service is available when a request is sent and its
response time (the average response time value). The final
attribute is the number of times a service has been called that
expresses the service’s popularity. These values are gotten
from the log file that is generated by the weblogic when
deploying the applications. In addition, the availability value
of a web service stores the number of successful execution
times of its. By comparing the value of the number of calls
and the availability value, we know how good or bad a service
is. The average execution duration of a web service is also
used as a criteria for selecting a web service.

In short, a QoS express by availability value (a), average
response time (b) and total number of called (n).

So, QoS is defined by

Task description

Tokenizer

 Sentence
Splitter

POS Tagger

JAPE rule

XML JDOM

 5

𝑄𝑜𝑆 = 𝑎 − 𝑛 (1)

In case, many services are returned, the algorithm below

will be used:
For each WSi
 ArrayA[i] = calculateQoS(WSi);
ArrayB = selectWSwithMaxQoSvalue(ArrayA);
// only one WS that has maximum number of QoS
If numberOfelement(ArrayB)==1 then
 Return bestService;
Else
 Return WSwithMinAVGresponseTime;

F. Web Service Structure
The web service structure is composed of 2 parts, general

description and functional description. The general description
is used to describe the general information about a web
service.

In general description part of web service contains:
1). Publisher: to store the information of the WS’s owner

since in big companies, their applications might interconnect
with other companies’ applications (request services from
other companies).

2). Component type: store the type of BPMN component
that a service is created for. For example: human task, BPMN
process, call service task.

3). LastUseDate: store the date when the web service is
called.

4). URL: store the location of the web service.
5). QoS: to store some attributes that can be used to

calculate the value of QoS. Those attributes are availability of
service, its response time and number of calls (popularity).

6). Description: store description of a web service.
The functional description of web service contains:
1). OperationName: is the name of web service
2). Input: store the input object value of a web service
3). Output: store the output object value of a web service
The figure below shows the structure of the web service.

Fig. 10. Web service structure

IV. CONCLUSION AND FUTURE WORK
This research study proposed a framework to automatically

implement the business processes by reusing existing web
services in the service repository. However, it still has many
things to discover and improve. The current version of this

framework can choose services to perform automatic
implementation of business processes. However, if the
existing web services cannot answer to users’ requirements,
we still don’t know the best solution to perform dynamic web
services composition yet. Web service composition method is
in the process of discovering. We are also thinking about
proposing the solution to extend the existing web service. If
we compare web service to a class in object oriented
programming, then it can be extended.

In addition, this research uses DAML+OIL to represent
ontology of web services and QoS is used to select the most
suitable web service to perform user’s task.

Another future work is to use BPMN 2.0 ontology [9] to
validate the output generated by the framework in order to
make sure that all syntaxes are correct. We have to make sure
also that the output can be exported to deploy in any BPMN
tools.

ACKNOWLEDGMENT
The authors gratefully acknowledge the support provided by

the European Erasmus-Mundus Sustainable eTourism project
2010-2013.

REFERENCES
[1] E. Newcomer, and G. Lomow, Understanding SOA with Web services,

Addison-Wesley Boston, 2004.
[2] B. J. Matjaz, M. Benny, and S. Poornachandra, Business Process

Execution Language for Web Services, Packt publishing Ltd. Second
edition, 2006

[3] T. Bellwood, L. Clément, D. Ehnebuske, A. Hately, M. Hondo, et al.,
"UDDI Version 3.0," Published specification, Oasis, vol. 5, pp. 16-18,
2002.

[4] O. Lassila and R. R. Swick, "Resource description framework (RDF)
model and syntax specification," 1998.

[5] D. L. McGuinness and F. Van Harmelen, "OWL web ontology language
overview," W3C recommendation, vol. 10, pp. 2004-03, 2004.

[6] M. Sabou, C. Wroe, C. Goble, and H. Stuckenschmidt, "Learning
domain ontologies for semantic web service descriptions," Web
Semantics: Science, Services and Agents on the World Wide Web, vol.
3, pp. 340-365, 2005.

[7] H. Cunningham, D. Maynard, and V. Tablan, JAPE: a Java Annotation
Patterns Engine, second ed., Research Memorandum

[8] CS-00-10, Department of Computer Science, University of Sheffield,
November 2000.

[9] C. Natschläger, "Towards a BPMN 2.0 Ontology," Business Process
Model and Notation, pp. 1-15, 2011

[10] I. B. Arpinar, R. Zhang, B. Aleman-Meza, and A. Maduko, "Ontology-
driven web services composition platform," Information Systems and E-
Business Management, vol. 3, pp. 175-199, 2005.

[11] F. Curbera, Y. Goland, J. Klein, F. Leymann, D. Roller, S. Thatte, S.
Weerawarana, BPEL4WS White Paper. Http://www-
3.ibm.com/software/solutions/webservices, 2002.

[12] A. Arkin, S. Askary, S. Fordin, W. Jekeli, K. Kawaguchi, D. Orchard, S.
Pogliani, K. Riemer, S. Struble, P. Takacsi-Nagy, I. Trickovic, S. Zimek,
Web Service Choreography Interface (WSCI) 1.0.
http://www.w3.org/TR/2002/NOTEwsci-20020808, 2002.

[13] H. Xiao, Y. Zou, R. Tang, J. Ng, and L. Nigul, "An automatic approach
for ontology-driven service composition," 2009, pp. 1-8.

[14] E. Christensen, F. Curbera, G. Meredith, and S. Weerawarana, "Web
services description language (WSDL) 1.1," ed, 2001.

[15] K. Sycara, M. Paolucci, A. Ankolekar, and N. Srinivasan, "Automated
discovery, interaction and composition of semantic web services," Web
Semantics: Science, Services and Agents on the World Wide Web, 2003.

[16] V. X. Tran and H. Tsuji, "Owl-t: A task ontology language for automatic
service composition," 2007, pp. 1164-1167.

 6

[17] V. Dimitrova, R. Denaux, G. Hart, C. Dolbear, I. Holt, et al., "Involving
domain experts in authoring OWL ontologies," The Semantic Web-
ISWC 2008, pp. 1-16, 2008.

[18] C. David, “Understanding service oriented architecture”, presentation
slide, 2005

[19] M. Paolucci and K. Sycara, "Autonomous semantic web services,"
Internet Computing, IEEE, vol. 7, pp. 34-41, 2003.

[20] F. Dieter, L. Holger, P. Axel, J. de Jos, S. Michael, R. Dumitru and D.
John, “Enabling Semantic Web Services”, the web service modeling
ontology, Springer Verlag Berlin Heidelberg New York, 2007

[21] ESSI WSMO working group, http://www.wsmo.org
[22] A. Ankolekar, M. Burstein, J. Hobbs, O. Lassila, D. Martin, et al.,

"DAML-S: Web service description for the semantic web," The
Semantic Web—ISWC 2002, pp. 348-363, 2002.

[23] M. Paolucci, N. Srinivasan, and K. Sycara, "Expressing wsmo mediators
in owl-s," 2004.

