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Abstract. Research on context management and activity recognition
in smart environments is essential in the development of innovative well
adapted services. This paper presents two main contributions. First, we
present ContertAct@A/H, a new real-life dataset of daily living activities
with rich context data®. It is a high quality dataset collected in a smart
apartment with a dense but non intrusive sensor infrastructure. Second,
we present the experience of using temporal logic and model checking
for activity recognition. Temporal logic allows specifying activities as
complex events of object usage which can be described at different gran-
ularity. It also expresses temporal ordering between events thus palliating
a limitation of ontology based activity recognition. The results on using
the CADP toolbox for activity recognition in the real life collected data
are very good.

Keywords: Smart home, context, activity recognition, temporal logic

1 Introduction

Activity recognition in smart environments is a necessary step for the develop-
ment of innovative services. In the health-care domain, recognizing activities of
daily living (ADL) enables health status monitoring, functional assessments and
smart assistance. Despite the broad efforts made in recent years to improve ac-
tivity recognition, ADL recognition (e.g. cooking, washing dishes, showering) is
still not commercially available as is physical activity recognition (e.g. running,
cycling). ADL recognition is complex and some barriers have hindered its pas-
sage from laboratory settings to real-life. One of these barriers is the difficulty of
evaluating methods in real-life scenarios, which differ widely from the scripted
scenarios that are usually used for testing activity recognition algorithms. Real-
life scenarios are inherently imbalanced, not only because some activities are
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more frequent than others but also because of the different durations of the ac-
tivities. Learning from imbalanced data poses new challenges and can impact
the performance of traditional algorithms [9]. Moreover, in real-life there are
often several ongoing activities, making it challenging to recognize the “interest-
ing” ones [12]. More real-life datasets and shared activity labels are needed to
allow researchers evaluating their proposals and comparing the results of their
recognition methods [2].

Activity recognition methods are broadly classified into data-based and
knowledge-based [3]. Data based methods use machine learning or data mining
algorithms to learn a model of activities. However, supervised methods require
labeled data which is often hard to acquire. On the other hand, knowledge based
methods specify the semantics of activities to be inferred from sensor measure-
ments. Ontologies that specify both objects used and other characteristics of
an activity (e.g. actor, location, duration) is one of the most used knowledge-
based method for their ability to specify concepts at different granularity and
their reasoning capabilities on uncertain knowledge. Nevertheless, ontologies lack
support for the temporal characterization of activities [19] which is an impor-
tant aspect of activity recognition as they take place during a span of time.
For ADL recognition it is important to consider context information such as
environmental conditions, visitor presence, current location and part of day [14].
Nonetheless, the usefulness of different context variables has not been proven in
real-life scenarios due to the lack of available data in the same dataset.

In this paper we present two main contributions. First, we present a real-life
dataset of daily living activities. This new dataset, named ContextAct@A4H,
will be publicly available with reference to this paper. ContextAct@A/4H includes
sensor raw data reflecting the context as well as standard daily living annotated
activities. Context information can help study how contextual changes affect user
behavior and preferences [14]. To the best of our knowledge it will be the first
public available dataset including such rich real-life data. ContertAct@A4H was
gathered at the Amiqual4Home flat using a large variety of sensors to improve
the potential reuse of the data. Researchers can choose the desired ”configura-
tion” according to their evaluation requirements. We highlight the experience
of collecting the dataset and some lessons learned in the process. The second
contribution of this paper, is the experience of using temporal logic for activity
recognition. Using temporal logic allows specifying activities as complex events
of object usage which can be described at different granularity. It also expresses
temporal order between events thus palliating a limitation of ontology based
activity recognition. The results on using the CADP toolbox [7] for ADL recog-
nition in the real life collected data are very good.

The rest of this paper is organized as follows: Section 2 presents the experi-
ence and the setting up of our experience to collect ContextAct@A/H, a real life
dataset of ADL and context data. Section 3 presents the formalism of temporal
logic used for ADL recognition in real life settings. Section 4 presents the re-
sults of using temporal logic in the recognition of ADL in the ContertAct@A4H
dataset. In Section 5 we present a summary of related work in activity recognition



methods and real-life datasets. Finally, in Section 6 we present the conclusions
of this work and research perspectives.

2 Amiqual4dHome System Architecture and Experience
Setup

Amiqual4dHome is an experimental platform consisting of a smart apartment, a
rapid prototyping platform and tools for observing human activity. For collecting
the ContextAct@A4H dataset of activities of daily living, a 28 years old woman
lived in the apartment during one week in July 2016 and three weeks in November
2016. The woman is a part of the research group designing the experiment.

In the following we first describe the sensing infrastructure at the apartment
and then present the activity annotation process and the dataset itself.

2.1 Sensing infrastructure at the smart home

The Amiqual4dHome apartment is equipped with 219 sensors and actuators. To
make activity monitoring non-intrusive, in our experience all sensors are ambient
sensors. No wearable sensors nor cameras were used for this experiment. Sensors
allow observing both object usage and context conditions of each room and the
exterior. Measuring context conditions is one of the new contributions of the
ContextAct@A4H dataset with respect to other publicly available datasets.

We measured the following context variables: temperature, CO2, noise, hu-
midity, presence and music information for each room and weather information
for the exterior. Appliance and object usage are measured through electric/water
consumption sensors, contact sensors and state change sensors (for lamps, cur-
tains and switches). These measurements are precise indicators of object usage.
Other sensors are indirect measures of object usage such as pressure sensor in
the bed. The main advantage of the sensing methods we used is that sensors do
not interfere with the normal use of objects (no RFID tags that need to be taken
care of for example). Table 1 presents a summary of the sensing infrastructure.
Some sensors, as those related with energy consumption, are integrated in a
single device.

Amiqual4Home uses the OpenHab 6 integration platform for all the sensors
and actuators installed. Sensors use different communication protocols such as
KNX, MQQT or UPnP to send measurements to the central server. To preserve
privacy, only local network access is permitted to the sensing infrastructure, no
cloud platforms are used. The general architecture of the platform is shown in
Fig. 1.

2.2 Activity annotation

The choice of activities to be annotated was motivated by two main concerns:
being in concordance with available datasets and with the classification of basic

5 http://www.openhab.org/



Sensing Devices (#
variables)

Measured Property

Locations

Interaction Sensors

Water consumption|Hot or Cold water faucet|Handwasher, Shower, Toilet, Sink
meters (15) usage

Power consumption|Appliance usage (direct|Stove, fridge, exhaust fan, washing ma-
meters (11) measure) chine, electric dishwasher and heating

systems (5)

Voltage consumption
meters (11)

Appliance
measure)

usage (direct

Stove, fridge, exhaust fan, washing ma-
chine, electric dishwasher and heating
systems (5)

Current consumption

Appliance usage (direct

Stove, fridge, exhaust fan, washing ma-

meters (11) measure) chine, electric dishwasher and heating
systems (5)

Other electric-related|Appliance usage (direct|Stove, fridge, exhaust fan, washing ma-

meters (Energy, fre-|measure) chine, electric dishwasher and heating

quency, power factor,
counter status) (44)

systems (5)

Pressure Sensors (1)

Presence on furniture

Bed

Contact sensor (21)

Door/Window State
(open — closed)

Kitchen gabinets (5), fridge, Draw-
ers (2), Bedroom Door, Studio Door,
Bathroom Door, Main Entrance Door,
Closet Door, Terrace Door, All Win-
dows (8)

Curtain Aperture

Sensor (8)

Curtain State
(open—close and aper-
ture percentage)

All curtains

Lamp State Sensor
(17)

Lamp state (on—off and
luminosity percentage)

Living room (4), Bedroom (4), Studio
(1), Kitchen (2), Floor Hall (2), Main
Entrance Hall (2), Bathroom (2)

Smart Electric Outlet

3)

Appliance On — Off sta-
tus

TV, Coffee Machine, Blender

Hue Lamp State (5)

Hue Lamp State (on —
off), Color, Intensity

Living Room (3), Bedroom, Studio

Switches (54)

Change of
lamp/curtain/music

state

Throughout the apartment

Thermostat (5 )

Thermostat Temperature

Living room, Dining room, Bedroom,
Studio, Bathroom

Context feature sensors

Microphone (7)

Noise Levels

Kitchen, Living room, Dining room,
Floor Hall, Main Entrance Hall, Bed-
room, Studio

Infrared Sensor (6)

Movement in Room

Kitchen, Living room, Dining room,
Bedroom, Studio, Bathroom

Luminosity =~ Sensor

(6)

Luminosity level in Room

Kitchen, Living room, Dining room,
Bedroom, Studio, Bathroom

CHT device (12) CO2, Temperature and|Kitchen, Living room, Bedroom, Bath-
Relative  Humidity of|room
room
OpenWeather Infor-|Exterior weather vari-|Exterior
mation (14) ables
Music  Information|Speaker Status, Music|Kitchen, Bedroom, Studio, Living
(25) Volume, Song title, Song|Room, Bathroom
Artist, Song Genre
Indoor  Positioning|Inhabitant Position Wearable device

System (1)®

Table 1: Sensing devices deployed at the Amiqual4dHome apartment
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Fig. 1: General architecture of the data collection system

and instrumental ADL that can be measured at home. Some activities can
be measured at different granularity levels. For example eating is annotated
as eating breakfast in the ARAS dataset [1]. We chose high level labels to
reduce the number of different activities preserving the desired semantics while
considering time of day as part of context. Some activities were not annotated
(like doing laundry) but the event using washing machine fully corresponds
with this activity (same for watching tv). The following is the list of annotated
and measured activities.

Activities of Daily Living
— Bathing/Showering (Annotated)
— Toileting (Annotated)
— Feeding/Fating (Annotated)
Mobility (Unannotated but measured by bspoon sensor)
— Dressing (Unannotated but recognized by opening of dressing drawers)

Instrumental Activities of Daily Living
— Preparing meals (Annotated as Cook)

— Housework. Two finer activities are found: wash dishes (Annotated) and do
laundry (Unannotated but measured through washing machine use).
— Other instrumental activities not included

Other Annotated Activities (for correspondence with other datasets)
— Sleeping
— Going out

Other Unannotated but Measurable Activities

— Watching TV
— Use of handwasher (for handwashing, brushing teeth and general grooming)

Activities were annotated by self-reporting in place at the moment of starting
and ending each activity. For this, three different interfaces were available: a web
and mobile app, a remote control and a button interface placed strategically
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Fig. 2: Interfaces used to annotate the ContertAct@A4H dataset.

(see Fig. 2). The combination of annotation methods allowed the inhabitant
to remember easily to do the annotations and minimized interruptions of the
activities. The inhabitant annotated the beginning and end of each activity. The
inhabitant reported missing some annotations, specially at the end of the second
period when there was more familiarity with the environment. This confirms
the fact that sensing technology “dissapears” when it truly blends with our
environments.

2.3 ContextAct@A/H dataset

We collected a dataset for one week during summer and three weeks during fall
in the same apartment configuration. Having data of different months of the
year enables both the analysis of the generalization of a model of activities and
the analysis of changing behavior throughout the year. As mentioned before, 219
properties were measured during the whole experiment. For the duration of the
experiment, all sensors logged their measurements successfully. The accuracy of
the measurements was not verified and filtering methods were not used. The
properties represent either object interactions or context features. Most object
interactions are measured redundantly. For example, opening the fridge is mea-
sured by the electric consumption and the door state of the fridge. In this way,
the dataset enables many different forms of detecting activities. Context features
are measured per room. They include: temperature, carbon dioxide level, noise
level, relative humidity, luminosity level and presence in the room. Each context
feature is measured at a constant rate, but a change point representation is avail-
able. A change is considered when the value varies more than 2% with respect to
the last measurement. Additionally, weather information from OpenWeather” is
logged every hour and visitor presence is self-reported by the user.

The dataset with changepoint representation of features contains a total of 1
473 011 tuples (364394 in july and 1108617 in november) of sensor measurements.
A tuple consists of a timestamp, a sensor id and a measurement value. Of those
397 correspond to activity records (157 in july and 240 in november). Figure 3
shows the distribution of time in each activity.

" https://openweathermap.org/
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Fig. 3: Distribution of activities during summer (left) and fall (right).

Other data logged that can be exploited for different applications is the music
information (title, artist, genre and timestamp) corresponding to the music the
inhabitant listened while in the apartment.

3 Using the MCL Temporal Logic to Monitor Activities
in Logs of Events

An alternative to self-reporting of activity annotations is automatic detection of
activities by analysing the sensor raw data present in the dataset. In this section,
we report on our use of model checking techniques to do so.

Model checking [4] is a formal verification technique that consists in explor-
ing a user-written formal model of a system in order to check the satisfaction
of properties describing its proper functioning. The formal model generally has
the form of an automaton obtained from a description in a language with math-
ematically defined semantics. The most general way of defining properties is to
use temporal logics [17], which combine the standard connectors of logic with
modalities and fixpoint operators that enable to reason about the necessity or
possibility to reach certain states of the model.

In this work, we consider so-called action-based temporal logics, which are
appropriate to reason about the actions which involve a state change in the
model (e.g., the communication actions in a distributed/concurrent system),
rather than the contents of states (e.g., the state variables).

In cases where there is no formal model of a system, it turns out that action-
based temporal logics can also be used to analyze sequences of actions generated
by a concrete, running system (e.g., logs of events). Indeed, such sequences can
be (trivially) seen as particular cases of automata. The model can be simply
replaced by the log, which becomes the object on which checks are performed.
In this work, we thus naturally consider ContextAct@A/H as log of events.

In practice, we use the CADP toolbox [7], which is equipped for such a task.
Among the (more than) 50 tools and code libraries present in CADP, we use in
particular the following ones:



— SEQ.OPEN (8] is a tool that can parse a sequence of actions in the SEQ
format of CADP and provide an application programming interface with the
CADP verification tools, following the principles of OPEN/CAESAR [6].

— EVALUATOR 4.0 [16] is a model checker that evaluates temporal logic
formulas written in the language MCL, an alternation-free modal mu-
calculus [11] extended with data handling, regular expressions, and fairness
operators. EVALUATOR 4.0 can be used to verify formulas on any system
connected to the OPEN/CAESAR interface, thus including action sequences
in the SEQ format.

In the framework our experiment, each event constitutes a line in the log, in
CSV format. Each line contains first the event occurrence date (including day
time), the sensor id, and the sensor value, separated by semicolons. The first
step is to translate this log into the SEQ textual format of CADP, which is
done using a simple Unix sed script. The transformation principally consists in
turning lines of the form “date; sensor_id; sensor_value” into the form “A
!date !sensor_id !sensor_value” accepted as input by SEQ.OPEN, where A
is a dummy symbol added here for technical (and unimportant) reasons, and
where “!” is the symbol used to delimit action fields in CADP.

MCL macro definitions can then be defined to interpret log lines as more
abstract events. Each macro definition can be understood as an action pattern
that recognizes certain fields in log lines. For instance, the following macro defi-
nition recognizes that the light of the office is on, sensor L14 corresponding to a
light dimmer located in the office of the Smart apartment:

macro Office_Light_On () =
{ A ... '"L14" ?value:Nat where value > 0 }
end_macro

Note how the “...” symbol (wildcard) allows the date field to be ignored
and how the “?” symbol allows some typed field to be captured in a variable,
whose value can be constrained by a Boolean condition (guard) specified by the
“where” clause.

Macro definitions can be parameterized as the following one, which matches
log lines indicating that a light button in the bathroom (whose sensor_id starts
with I7_ or 111_) has the value SWITCH passed as parameter:

macro Bathroom_Button (SWITCH) =
{ A ... 7?snsr:String SWITCH where
(prefix (smsr, 3) = "I7_") or (prefix (smsr, 4) = "I11_") }
end_macro

Other, more complex macro definitions can be defined by combining simpler
ones using Boolean connectors. For instance, the macro definition below detects
the fact that either the oven or the cooktop is switched on, where Cooktop_On
and Oven_On are already defined macro definitions:

macro Cooking_Appliance_On () = (Cooktop_On or Oven_On) end_macro



In our experiment, we wrote 125 macro definitions.

Once macros have been defined to give simple meanings to complex log
events, thus facilitating the log analysis, they can be used in temporal logic
formulas to detect activities in the log. We give two examples.

The first example below is a formula that detects the beginning of a shower
activity, which is defined as follows: the door of the shower is open then closed,
and then the water flows. Angles denote the existence of a sequence of events,
defined by a regular expression. The symbol “.” denotes sequential composition,
“x” denotes repetition (0 or more times), true matches any log event, and not
and or have their usual meaning. This formula evaluates to true if their exists a
sequence in the log that matches this regular expression.

< truex . Shower_Door (!"OPEN")
(not Shower_Door (!"CLOSED"))* . Shower_Door (!"CLOSED")
(not Shower_Door (!"OPEN"))* . Shower_Water_0On > true

Note how the “!” symbol allows a field to be matched against the value of a
data expression (here, a character string constant).

The second example, defined in Figure 4, is slightly more complex. It detects
the start of a cooking activity, defined as follows: a food container (the fridge or
a drawer) was opened and at least one cooking appliance is on.

This formula is defined as a least fixpoint (mu) which, evaluated on a sequence
(as opposed to a general automaton), can be seen as a recursive function on the
events of the log. It has two parameters, namely a Boolean Fd_Cntnr_Opn, which
is initially false and becomes true once an event corresponding to the opening
of a food container is detected, and a natural number N_Ckng_Appl_On, which
counts the number of cooking appliances that are currently on (initially 0). When
Fd_Cntnr_Opn is true and N_Ckng_Appl_On is greater than 0, then the start of a
cooking activity was detected. Otherwise, the property is applied recursively
depending on the next event that is found in the sequence, parameters being
updated accordingly.

CADP detects the time the activity starts as the time when all conditions
defined by the model are met. It creates a file with all sensor measurements up
to this time as an output. To detect all occurrences of an activity we find the
difference between the original dataset and the output file using the grep utility
on Linux, and then use this new file as the input log file. This process is repeated
until the output file is empty.

4 Experimental Evaluation

We evaluated the model checking approach for activity start and/or end recog-
nition using ContertAct@A4H taking annotation as ground truth. We defined
models to recognize the start of the sleeping, cooking and washing dishes activ-
ities and the end of the showering and using toilet activities. When the model
infers the start or end of the same activity within 3 minutes, we take the smaller
time (greater time) as the start time of the activity (end time of the activity). We



mu Ckng_Act (
Fd_Cntnr_Opn: Bool := false, (* true if fridge or drawer was opened *)
N_Ckng_Appl_On: Nat := O (* nb of cooking appliances that are on *)

if Fd_Cntnr_Opn and (N_Ckng_Appl_On > 0) then
true (* cooking activity detected *)

else
< Food_Container_Door (!"OPEN") > Ckng_Act (true, N_Ckng_Appl_On)
or
< Cooking_Appliance_0On > Ckng_Act (Fd_Cntnr_Opn, N_Ckng_Appl_On+1)
or

< Cooking_Appliance_0ff >
if N_Ckng_Appl_On > 1 then
Ckng_Act (Fd_Cntnr_Opn, N_Ckng_Appl_On-1)
else (* was not a cooking activity *)
Ckng_Act (Fd_Cntnr_Opn, 0)
end if
or
< not Food_Container_Door (!"OPEN") and
not Cooking_Appliance_On and not Cooking_Appliance_0ff >
Ckng_Act (Fd_Cntnr_Opn, N_Ckng_Appl_0On)
end if

Fig.4: MCL formula for detecting the start of a cooking activity

calculate the difference between the inferred time and the actual time annotated
by the inhabitant. Table 2 shows the results obtained.

|Activity |Precision|Recall| Avg. time diff (minutes)|
Sleep (start) 78 % | 95% 4,42

Toilet use (end) 98 % |78 % 0,71

Cooking (start) 81 % | 88% 1,5

Taking a shower (end) 70 % |89 % 3

Washing dishes (start) 14% | 97% 12,45

Table 2: Activity recognition results with model checking approach

To evaluate the performance of the activity recognition approach we calculate
its precision and recall considering that the annotated activities are the relevant
ones that should be recognized. A recognized activity is considered ”relevant” if
it corresponds effectively to an annotated activity. Precision is the fraction of the
recognized activities that are relevant wrt the number of recognized activities.
Recall is the fraction of annotated activities that are successfully recognized wrt
the number of annotated activities.



Most of the activities have high precision and recall measures, similar to re-
sults reported with hidden markov models or support vector machines in other
datasets. To provide a comparison, the highest average f-measure (a weighted
average of the precision and recall ) reported by Krishnan et al. [12] was 0.61
while our average f-measure is 0.72. This depends on many factors such as sen-
sors used, features selected and the number of activities making the comparison
non-depending on just the recognition method. In our case, the high precision
is due to the precise object usage measurements that we gathered thanks to the
sensing devices installed. We can see that the average time difference between
the inferred start or end of the activity and the time the inhabitant annotated
is rather small. The activity washing dishes has a low precision due to a high
number of false positives. The false positives are due to the fact that the only de-
tectable event corresponding to this activity is the sink faucet being opened. Yet,
the sink faucet can also be opened for many other activities including washing
fruits and vegetables, washing hands, and washing few pieces of tableware while
cooking, which were not annotated as washing dishes. Possible ways to increase
precision could be to take into account both a minimal proportion of hot water
flowing through the sink faucet (taking into account that vegetables and fruits
are usually washed with cold water whereas dish washing requires hotter water)
and the time during which the sink faucet has been opened (thus requiring to
define a minimum time that dish washing usually takes and that hand washing
or tableware washing usually do not exceed).

5 Related Work

In this section we briefly discuss related work on activity recognition and current
available datasets of daily living in smart homes.

5.1 Daily Living Activity Recognition in Real Life Scenarios

Activity recognition refers to inferring an activity label from observations made
through sensing devices. These sensing devices can be either vision-based, wear-
able sensing or ambient sensing. Vision based sensing is often seen as a privacy
invasion and its use is not accepted by many elders. Wearable sensing is better
for physical activity such as running or walking and is now commercially avail-
able for this. For daily living activities however, wearables can be forgotten by
the user and have been used for fined-grained activities such as grabbing a glass
or turning the lights on [15]. Ambient sensing allows inferring object use and
coarsed-grained activities. Since activities are often performed with the same
objects this is better for daily living monitoring. Also, it is less intrusive as sens-
ing capabilities merge with the environment and do not interfere with normal
activity performance.

Sensor-based activity recognition in smart homes methods can be classified
in knowledge based and data based [3]. Knowledge based methods use semantic
descriptions of activities based on object usage and context features such as



location or time of day. The most common methods include ontologies [20],
situational models and event calculus. Data-based methods, on the other hand,
use sensor features to build machine-learned models. The models can be learned
with supervised or unsupervised methods. Supervised methods, such as Hidden
Markov Models [22], Bayes Networks and Support Vector Machines [12] have
shown promising results but need ground truth data to be learned. Unsupervised
methods such as clustering, topic models and frequent sequences do not need
ground truth data and have been used as methods for activity discovery [18].

Most proposed activity recognition methods have been tested in scripted
datasets showing promising results. Nevertheless, passing from laboratory set-
tings to real life settings is not as transparent since there are crucial differences
in both settings. Activity recognition in real-life datasets differs in the following
aspects from activity recognition in scripted datasets:

— Class imbalance: real-life scenarios are inherently imbalanced due to the
different frequencies and durations of each activity [15].

— Intra-class variability: the same activity can be performed in different ways,
using different objects, at different locations, etc. [14,15].

— The Other activity: scripted datasets only represent activities of interest,
while in real-life scenarios most of the time it is other activity is being per-
formed [12]. This ’other’ activity is a highly variable class since it represents
many activities.

5.2 Datasets of daily living in smart homes

Testing activity recognition and behavior modeling algorithms in real life is
difficult due to the lack of real data. Real-life scenarios are difficult to gather
both for the costs of equipping a real home and the availability of subjects willing
to live in such homes. Therefore, making these datasets public helps advance
research and is of great interest for the community. Some equipped apartments
over the world, notably: The Aware Home [10] at Georgia Tech, Domus at France,
Van Kasteren [22], CASAS at Washington University [5], PlaceLab [21] at MIT,
ARAS [1] at Istanbul, Turkey. Most publicly available datasets feature scripted
and acted daily life activities, lack ground truth annotations or feature office or
other scenario activities that do not correspond to daily living activities.

Nonetheless, the Placelab, CASAS and ARAS projects have publicly avail-
able datasets of real life daily activities with ground truth annotations. Common
activities in these datasets include sleeping, toilet use, taking a shower or bath,
eating, leaving home, cooking or preparing meals, washing dishes, working or
using computer and leisure activities (relax, watching tv, reading). These are
daily living activities that can be measured through available sensors. Eating
and fine-grained activities are usually the most complex to recognize [12,21].
Context features are often not measured, being the ones measured temperature
at some locations and presence in rooms. Nonetheless, rich context information
can not only improve activity recognition but also it can help to better under-
stand behavior patterns and user triggers (for example, loud noises may trigger
anxiety) [13].



6 Conclusions and research perspectives

In this paper we have detailed our approach of using temporal logic for ADL
recognition in real-life settings showing promising results. We use the CADP tool
to describe each activity as a temporal logic property that is checked repeatedly
in the log of sensor measurements until all occurrences of the activity have been
found. The property is described based on object usage by an expert (in our
case the inhabitant). One of the main advantages of this approach over other
techniques is the ability to recognize start and end of the activity, thus not
requiring to segment sensor data. The model checking approach using CADP
also enables to specify durations and gaps between events, by capturing the date
fields present in events and storing them as parameters of fixpoint operators.
We plan to exploit this feature in the future for carrying out timed analyses of
activities. We believe model checking is an interesting alternative for activity
recognition in real life settings.

We have also presented the ContertAct@A4H dataset, an annotated real-life
dataset of activities and context of daily living covering four weeks of data. One
drawback in public datasets for ADL recognition is that there is no correspon-
dence between the activities nor the sensors used, which makes it difficult to
compare results from one dataset to the other. This is since available sensors
change through time. Data in terms of semantic measured properties can be
more stable and we propose to focus on these to compare results and for future
datasets. Still, the need of creating shared knowledge and agree on a taxonomy of
activities [2] continues, although some common activities emerge. Most datasets
include other activities so more data is available but these are not common with
other datasets. We have presented a dataset with these common activities and
some others as well. The dataset is described with both the sensor measurements
and with semantic measured properties.

ContextAct@A/H is the first daily living dataset featuring rich context infor-
mation. It features six context variables per room in the apartment plus weather,
music and number of visitor information. This information is of high interest for
applications such as content recommendation, domotics and behavior analysis
among others.
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