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Precoder
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Abstract—This paper aims at characterizing the energy effi-
ciency - area spectral efficiency (EE-ASE) tradeoff in random
geometry networks with multiple-antenna arrays at base sta-
tions (BSs). In particular, ASE and EE are studied w.r.t. the
transmit power when BSs use a signal-to-leakage-plus-noise ratio
(SLNR) precoder. When the static power consumption cannot
be neglected, EE behaves linearly w.r.t. ASE before a sharp
decreasing of EE due to the interference-limited characteristic of
the network. Our contribution relies on the derivation of a closed-
form expression for ASE with SLNR precoder in the asymptotic
regime, i.e. when the number of antennas and users grows to
infinity, using stochastic geometry. We derive EE from a linear
power consumption model afterwards. Unlike conventional SLNR
precoders, the average signal-to-interference-plus-noise ratio and
the leakage to other cells are considered in a geometry dependent
network. Extensive Monte Carlo simulations show that despite
the asymptotic nature of the theoretical analysis, the closed-form
expressions are tight w.r.t. simulations even for moderate number
of antennas and users. Hence, the analysis can be used for realistic
network performance analysis.

Index Terms—multiple-input multiple-output (MIMO), pre-
coder, signal-to-leakage-plus-noise ratio (SLNR), Poisson point
process (PPP), energy efficiency-area spectral efficiency (EE-
ASE)

I. INTRODUCTION

A. Context

Densification of cellular network appears as a suitable an-
swer to meet the increasing data rate demand of the customers.
Network densification means increasing the number of base
stations (BSs), and number of BS antennas. Although the roll-
out of densification has undoubtedly a positive effect on the
spectral efficiency (SE), the static power consumption is also
increased due to the large amount of infrastructure. Therefore,
it is important to know how SE and energy efficiency (EE)
scale with the system parameters, e.g. number of BS antennas,
BS-user density ratio, to determine the appropriate amount
of infrastructure when static power consumption is taken into
account. Maximizing EE and SE are conflicting objectives and
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a fundamental tradeoff exists between these metrics when only
the BS transmit power is considered [1]. Fundamental EE-SE
tradeoff for several multiplexing technologies, i.e. time divi-
sion multiple access, frequency division multiple access and
superposition coding, has been studied in [2] using Poisson
point processes (PPP). Global network energy consumption
considering macro and small cells deployment with different
densities has been investigated in [3]. The authors found
that the optimal energy consumption is function of the ratio
between the densities of macro and small cells, and small cell
deployment is preferable in conjunction with turn off some
macro BSs when the ratio is lower than a threshold. However,
the static power consumption is not taken into account in
these works. Since the BS static power consumption cannot
be neglected, the tradeoff between EE and SE considering
a practical power consumption model has been a growing
subject of interest in recent years [4]–[8].

Space division multiple access (SDMA) enables the com-
munication between BS and users in the same time-frequency
resources. SDMA can achieve higher rates compared to
communication schemes operating in separate time-frequency
resources, which are not optimal from an information-theoretic
point of view [9]. Serving multiple users in the same time-
frequency resources increases interference, and precoding is
used in downlink to mitigate this interference. Implementing
the capacity achieving precoder based on superposition coding
is complex and therefore linear precoding techniques, e.g.
zero-forcing (ZF), signal-to-leakage-plus-noise ratio (SLNR),
minimum mean square error (MMSE), are preferred. Although
the ZF precoder nulls the intra-cell interference [10]–[12], it
is not designed to limit the inter-cell interference. Moreover,
the ZF precoder imposes a restriction on the minimum number
of transmit antennas at BS [13]. On the other hand, MMSE
performs better than ZF in both high and low signal-to-noise
ratio regime. However, MMSE precoder is generally difficult
to handle theoretically [14].

Authors in [15], [16] have proposed SLNR as an alternative
optimization metric for designing the precoder in multiuser
multiple-input multiple output (MIMO) downlink communica-
tions. Equivalence between MMSE and SLNR precoders under
symmetric scenarios where channels to the users are equally
strong has been shown in [14], [17]. Although the network
geometry is random in our work, we consider the SLNR
precoder for its closed-to-optimal performance and simplicity.
SLNR does not impose any restriction on the number of BS
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antennas in contrast to ZF solution [15] and also considers the
influence of noise.

B. Related Works

Performance of MIMO in a multi-cell environment is quite
different from that in a single cell environment due to inter-
cell interference. The works in [15], [16] did not consider
multi-cell environment and also ignored the network geometry,
i.e. distance dependent path loss, while computing the SLNR
precoder. An equivalent optimization metric, i.e. signal-to-
generating-interference-plus-noise ratio (SGINR), is used by
authors in [18]. The maximization of SLNR or SGINR is
a generalized eigenvalue problem and hence named as the
generalized eigenvalue-based beamformer in [19]. Based on
uplink-downlink duality, virtual SINR maximizing beamform-
ing is considered in [20], which is equivalent to the SLNR
precoder. Although the works in [18]–[20] considered multi-
cell environment, the results were obtained by performing
Monte Carlo simulations. In contrast to the previous works,
the novelty of this paper is to develop a tight approximation
of the expressions of ASE and EE using SLNR precoder
in a multi-cell network when BSs and users are modelled
with homogeneous Poisson point processes. The expressions
provide useful insights on how ASE and EE vary in multi-
antenna random networks and can be calculated much faster
than performing Monte Carlo simulations.

Stochastic geometry has been used for the performance
analysis of cellular networks intensively during the past decade
with the work of Baccelli, Andrews or Haenggi among others
[21], [22]. The authors of [10] have used the stochastic
geometry tool to study the relation between ASE and different
system parameters considering a ZF precoder, which is found
to perform worse than the SLNR precoder in terms of the
energy efficiency-area spectral efficiency (EE-ASE) tradeoff
[23]. Most of the previous works dealing with stochastic ge-
ometry to analyze the network performances, have considered
either a maximal ratio transmission or ZF precoder [10]–[12],
[24]. In our recent work [23], the achievable EE-ASE tradeoff
obtained with ZF and SLNR for a PPP network has been
studied. SLNR reveals to achieve a better EE-ASE tradeoff
than ZF due to the fact that the latter does not deal with the
inter-cell interference and also decreases the received desired
signal power when the channel vectors of the selected user
subset are not orthogonal. However, the results in [23] have
been obtained thanks to extensive Monte Carlo simulations. In
contrast to [23], a theoretical analysis considering the SLNR
precoder for PPP network is proposed in this paper, which has
never been done in literature to the best of our knowledge.

The average signal-to-interference-plus-noise ratio (SINR)
is calculated applying four theorems, which are stated in Sec-
tion V. The expression of the average SINR includes Stieltjes
transform of non-random limit spectral distribution (LSD)
functions, resulted from random empirical spectral distribution
(ESD) functions of random Hermitian matrices with large
dimensions following the theorem provided by Silverstein in
[25], and also the derivative of Stieltjes transform. The result
given in [25] has been first used in [26] to achieve a closed

form expression of the asymptotic mean of the signal-to-
interference ratio at the output of an MMSE receiver in the
uplink of a single cell. The works in [27], [28] provided an
approximation of the SINR distribution for an MMSE receiver
in a MIMO system using the same asymptotic technique.
The authors in [29] applied the Silverstein’s Theorem at the
output of an MMSE receiver in a single-hop ad-hoc wireless
network, and calculated the mean and variance of the SINR.
Although all these prior works follow similar mathematical
approaches based on the Silverstein’s Theorem in [25] to
obtain Stieltjes transform, they have considered different net-
work models compared to this work. Moreover, these works
have considered the uplink that resulted in a simpler SINR
expressions compared to ours since we assume downlink in
our work.

C. Contributions

The main contributions of this paper are summarized as
follows.

• A tight approximation of the expression of the mean
SINR for a user in the downlink of a multi-user (MU)
multiple-input single-output (MISO) cellular network
with random topology is derived when the max-SLNR
precoder is used. The result is achieved by combining
some fundamental results from random matrix theory
(RMT) to PPP. Based on this, ASE and EE are derived af-
terwards. These are observed to be very closed to the ones
obtained from Monte Carlo simulations. The analytical
findings developed in this paper provide useful insights
in addition to saving the time to run extensive Monte
Carlo simulations. Theoretical analysis of ASE and EE
considering the SLNR precoder for a PPP network is the
major contribution of this work.

• EE is shown to increase first linearly w.r.t. ASE, i.e.
when the transmit power increases, until an optimal point
before decreasing sharply due to the interference-limited
regime. Moreover, we show that although ASE always
increases with BS density and number of BS antennas,
this is not always the case for EE which depends on the
increase in ASE w.r.t. the increase on the static circuit
power consumption. Besides, SLNR precoder is shown
to have a significant performance gain compared to ZF
precoder, typically used in a PPP cellular network, in
terms of achievable EE and ASE.

The remaining of the paper is organised as follows. Sec-
tion II presents the system model, Section III revisits the
SLNR and ZF precoder in the random network geometry
environment. Section IV describes the network performance
metrics, i.e. ASE and EE, Section V presents the calculation
of mean SINR and Section VI provides the numerical and
simulation results. Finally, conclusions and further works are
drawn in Section VII.

Notations: (·)H denotes the Hermitian (transpose-
conjugate) operation while (·)T simply the transposition,
diag (x1, · · · , xn) is a square diagonal matrix filled by the
elements {xi}i=1,··· ,n.
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II. SYSTEM MODEL

A downlink MU-MISO cellular network is considered
where BSs are equipped with M transmit antennas and users
have a single receive antenna. BSs and users are modeled by
two independent PPPs with density λb and λu respectively
and users are connected to the nearest BS. Some BSs do not
transmit any signal, and are called inactive, since they do not
have any user to serve due to the independent locations of BSs
and users. All BSs have the same transmit power, which is
equally divided among the active users in the cell. The whole
system bandwidth is allocated to each user, and hence users
experience both intra and inter-cell interferences. A widely
used linear power consumption model is considered for BSs
[30], [31]:

PBS =
1

η
Pt +MPc + P0, (1)

where η ∈ (0, 1] is the power amplifier efficiency, Pt is
the transmit power, Pc is the circuit power corresponding to
one RF chain, P0 represents the non-transmission power for
baseband processing, battery backup, cooling, etc. and PBS is
the total BS power consumption.

Rayleigh flat fading channels between BS and users are
considered and perfect channel state information is assumed
to be available at each BS. The signal received by the k-th
user from the typical 0-th BS is given by

yk=

√
Ptr
−α
0k

u0
hH0kw0kx0k+

∑
(i,j)∈A

√
Ptr
−α
ik

ui
hHikwijxij+nk, (2)

where A =
{
{i, j} ∈ N2|i = 0∧j 6= k∨ i 6= 0,∀j

}
, rik is the

distance from the i-th BS to the k-th user, {i, k} ∈ N2, α is
the path loss exponent, Pt the transmit power, ui is the number
of users in the i-th cell and nk the additive white Gaussian
noise (AWGN) with zero mean and variance σ2 for user k.
Moreover, hik ∼ CN (0, IM ) is an M × 1 vector representing
the complex Gaussian distributed channel between the i-th BS
and the k-th user where IM is an M ×M identity matrix. In
addition, wij ∈ CM×1, xij are the precoding vector and the
transmitted symbol respectively for the j-th user in the i-th
cell with E[|xij |2] = 1.

Following the approach in [10], BSs are divided into subsets
denoted as Φu, with u ∈ [0, umax], and each BS in the subset
Φu serves u users. The maximum number of users served
simultaneously in a cell is set to umax in order to control
the interference. The number of users in different cells is
assumed to be independent, and each BS group Φu follows an
homogeneous PPP distribution with density λbpN (u), where
pN (u) is the probability mass function (PMF) of the number
of active users in a cell. The calculation of pN (u) requires
the exact size distribution of the Poisson-Voronoi typical cell,
which has been given in [32]. However, since the expression
is challenging to compute numerically, a curve-fitted equation

has been proposed in [33]. Using this equation, PMF of the
number of active users in a cell can be expressed as in [10]:

pN (u) =


µµΓ(u+µ)ρ−u

Γ(µ)u!( 1
ρ+µ)

u+µ 0 ≤ u ≤ umax − 1

∞∑
n=umax

µµΓ(n+µ)ρ−n

Γ(µ)n!( 1
ρ+µ)

n+µ u = umax

(3)

where n is the number of users available in a cell, µ = 3.5
is a constant obtained through data fitting [33], ρ = λb

λu
is the

BS-user density ratio, and Γ(·) is the gamma function. When
n ≤ umax, n users are served by BS, while BS randomly
chooses umax users to serve when n > umax. Due to the
limitation of active users to umax, their locations become
correlated, which is very challenging to handle. In order to
make the problem tractable, the simplifying assumption that
the set of active users is the sum of independent PPPs with
density λbupN (u) with u ∈ [1, umax] is made. Since the sum
of independent PPPs is another PPP, the set of active users is
considered as a PPP with density λau =

∑umax
u=1 λbuPN (u).

The network is considered to be a circular disc of radius
R, and total number of active users in this network is K
which is a random variable in a given area. However we
have lim

R→∞
K(R) = λauπR

2 when the network size grows
to infinity. By grouping the interfering BSs into subsets, the
SINR of the k-th user can be written as

γ(u0)=

Ptr
−α
0k

u0

∣∣hH0kw0k

∣∣2∑
j 6=k

Ptr
−α
0k

u0

∣∣hH0kw0j

∣∣2+umax∑
u=1

∑
i∈Φu\{0}

u∑
j=1

Ptr
−α
ik

u

∣∣hHikwij

∣∣2+σ2

.

(4)

At denominator, the first and second terms refer to the intra
and inter-cell interferences respectively.

III. SLNR AND ZF PRECODING SCHEMES

A. SLNR Precoder
The SLNR is defined as the ratio of the received signal

power at the desired user to the interference created by the
desired signal on the other terminals, also known as leakage,
plus the noise power of the desired user. For user k, SLNR
can be expressed as

SLNR =

Ptr
−α
0k

u0
wH

0kh0kh
H
0kw0k∑

j 6=k

Ptr
−α
0j

u0
wH

0kh0jhH0jw0k + σ2

=
r−α0k wH

0kh0kh
H
0kw0k

wH
0kH̄0kD̄0kH̄H

0kw0k + σ2u0

Pt

, (5)

where H̄0k =
[
h01, · · · ,h0(k−1),h0(k+1), · · · ,h0K

]
and

D̄0k = diag
(
r−α01 ,· · ·, r

−α
0(k−1), r

−α
0(k+1),· · ·, r

−α
0K

)
represent the

concatenated fading channels and a square diagonal matrix
filled by the path losses from the 0-th BS to the active users
in the network, except the k-th user. With average power
constraint, the SLNR maximization for user k is:

w0k=arg max
w0k∈CM×1

wH
0kh0kh

H
0kw0k

wH
0k

(
H̄0kD̄0kH̄H

0k+
σ2u0

Pt‖w0k‖2
IM

)
w0k

(6)

subject to E
[
‖w0k‖2

]
= 1
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where ‖·‖ represents the L2 vector norm. When M →∞, the
optimization problem in (6) can be proved to be equivalent to

w0k=arg max
w0k∈CM×1

wH
0kh0kh

H
0kw0k

wH
0k

(
H̄0kD̄0kH̄H

0k+
σ2u0

Pt
IM

)
w0k

(7)

subject to E
[
‖w0k‖2

]
= 1.

Indeed, defining w0k = [w0k1, w0k2, · · · , w0kM ]
T , we can

write

E
[
‖w0k‖2

]
=E

[
M∑
i

w2
0ki

]
=
M∑
i

E
[
w2

0ki

]
=ME

[
w2

0ki

]
=1, (8)

where the final step in (8) is obtained considering that w0ki

are iid with the same second order moment. Let the random
variable xi = Mw2

0ki with the mean value independent of M
and equal to 1, i.e. the mean value of w2

0ki decreases with M .
Then, according to the law of large numbers (LLN),

‖w0k‖2 =
1

M

M∑
i

xi
LLN−→ E [xi] = 1. (9)

For (9) be true, the variance of xi should be finite, which is
assumed to be true and seems a reasonable assumption. From
(8) and (9), we can write lim

M→∞
‖w0k‖2 = E[‖w0k‖2] and

hence replace the problem in (6) by the problem in (7).
Using the generalized Rayleigh quotient theorem, the solu-

tion of (7) is the eigenvector corresponding to the maximum
eigenvalue [34]:

w0k∝max eigenvect

(̄
H0kD̄0kH̄

H
0k+

σ2u0

Pt
IM

)−1

h0kh
H
0k. (10)

The resulting SLNR is equal to the maximum eigenvalue
λmax [17]. Any vector g0k, which is in the eigenspace corre-
sponding to λmax, satisfies the following eigenvector equation:(

H̄0kD̄0kH̄
H
0k +

σ2u0

Pt
IM

)−1

h0kh
H
0kg0k = λmaxg0k. (11)

Inserting a nonzero complex scalar δ0k = hH0kg0k into (11),
g0k can be written as

g0k =
δ0k
λmax

(
H̄0kD̄0kH̄

H
0k +

σ2u0

Pt
IM

)−1

h0k. (12)

Imposing the power constraint, solution to (7) is

w0k=

(
H̄0kD̄0kH̄

H
0k + σ2u0

Pt
IM

)−1

h0k√√√√EH̄0k,D̄0k,h0k

[∥∥∥∥(H̄0kD̄0kH̄H
0k+ σ2u0

Pt
IM

)−1

h0k

∥∥∥∥2
] .(13)

Monte Carlo simulations have been performed on the CDF
of SLNR when the precoding vector w0k is as in (13),
and when it is obtained by solving (7) and imposing an
instantaneous power constraint, i.e. ‖w0k‖2 = 1 which is
equivalent to remove the expectation in the denominator of
(13). Simulations have been conducted considering several
PPP network realizations and channel fading, and the CDF of
SLNR is evaluated for a typical user located at center of the
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Figure 1: CDF of the SLNR at M = 10

network. Parameters for the plots are set to M = 10, α = 4,
σ2 = −97.5 dBm, λu = 5 ·10−4 m−2, ρ = 0.0077. A perfect
match of the CDFs with the instantaneous and the average
power constraint is observed in Fig. 1. This suggests that
E[‖w0k‖2] can be used as a good approximation of ‖w0k‖2
even for M as small as 10.

B. ZF Precoder

ZF precoder is defined such that HH
0 G0 = Iu0 [35], where

H0 = [h01, · · · ,h0k, · · · ,h0u0
] ∈ CM×u0 and G0 ∈ CM×u0

respectively represent the concatenated channels and non-
normalized precoding vectors for the users in cell 0. Non-
normalized precoding matrix G0 can be chosen as the pseudo-
inverse of H0, which for u0 ≤M can be written as [23]

G0 = H0

[
HH

0 H0

]−1
. (14)

Normalized precoding vector for the k-th user is given by

w0k =
[G0]k
‖[G0]k‖

, (15)

where [G0]k is the k-th column of G0.

IV. PERFORMANCE METRICS

A. Area Spectral Efficiency

ASE is defined as the average sum of the ergodic rate of
users per unit area (u.a.). Ergodic throughput of a cell with u0

active users is given by

RBS(u0) = u0Ru(u0), (16)

where Ru(u0) is the ergodic rate of a typical user when there
are u0 active users in the cell. The ergodic throughput of a
typical BS averaged over the number of active users can be
written as

RBS = Eu0
[u0Ru(u0)] =

umax∑
u0=1

u0Ru(u0)pN (u0). (17)
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Using (17), ASE in b/s/Hz/u.a. can be written as

ηASE = λb

umax∑
u0=1

u0Ru(u0)pN (u0). (18)

Three different random processes, i.e. two independent PPPs
governing users and BSs locations, and fading channels are
taken into account in the system model. To calculate the
ergodic rate of the k-th user, we first average the rate over the
SINR conditioned on distance to the connected BS and then
average over this random quantity. Therefore, the ergodic SE
of the k-th user with u0 users in the cell is

Ru(u0) = Er0k

[
Eγ

[
log2

(
1 + γ(u0)

)
|r0k

]]
, (19)

where Eγ and Er0k denote the expectations over the SINR,
and the distance of the k-th user from the connected BS
respectively. Note that (19) holds only when xij are Gaussian
and when transmitters have the knowledge of CSI of active
users in the network, which is assumed in order to implement
the SLNR precoder. The authors in [36] assumed the aggre-
gated interference-plus-noise to be Gaussian distributed, but
without the strain of receiver’s knowledge about the fading
of each individual interference term. This enabled the authors
to express the ergodic SE as a function of the local-average
SINR and involving the expectation over the intended fading
channel only. However, this is a lower bound of the ergodic
SE that could be achieved if the receiver had the knowledge
about each individual interference term. The authors are then
able to perform the spatial average of the function of the local
SINR if this latter is known. In this work, SLNR precoder is
used and then the channel state information of active users in
the network are required at transmitters in order to realize the
benefits of SLNR precoding in MU-MISO system. Therefore,
the approach followed in [36] is not applicable to our case.

Now, (19) can be calculated using coverage probability
[21] or moment generating function approaches [37]. Both
these methods necessitate finding the distribution of the terms∣∣hH0kw0k

∣∣2,
∣∣hH0kw0j

∣∣2 and
∣∣hHikwij

∣∣2, which are difficult to
obtain. Using the Jensen’s inequality, we first search for an
upper bound of Ru(u0),

Ru(u0)≤Er0k

[
log2

(
1+Eγ

[
γ(u0)|r0k

])]
=R̂u(u0). (20)

Secondly, Eγ
[
γ(u0)|r0k

]
is assumed to be close to the ratio

of the average quantities in (4) as it has been done in [38] and
is given in (21) at the top of the next page.

While the numerator in (21) represents the average desired
power, the first and second terms at denominator refer to the
average intra and inter-cell interference powers respectively.
Note that all these average powers are calculated conditioned
on r0k. An upper bound of Ru(u0) can be written as

R̂u(u0)=

∫ ∞
r0k≥0

log2

(
1+Eγ

[
γ(u0)|r0k

])
fr0k(r0k)dr0k, (22)

where fr0k(r0k) is the probability density function (PDF) of
the distance of the k-th user from its connected BS, and is
given by [21]

fr0k(r0k) = e−λbπr
2
0k2πλbr0k. (23)

With (18), an upper bound of ASE can be written as

η̂ASE = λb

umax∑
u0=1

u0R̂u(u0)pN (u0). (24)

B. Energy Efficiency

EE is another important performance metric for cellular
networks, which is defined as the ratio of ASE to the average
power consumption per u.a. To determine the average power
consumption per u.a., only non-transmission power consump-
tion is considered for inactive BSs. Therefore, the average
power consumption per u.a. can be written as

PA = λb

(
1− pN (0)

)(1

η
Pt +MPc

)
+ λbP0 (25)

and hence an upper bound of EE is

η̂EE =
η̂ASE

PA
, (26)

which is obtained using (24) and (25). The computation
of ASE and EE requires to calculate an approximation of
Eγ
[
γ(u0)|r0k

]
as suggested in (21). The simulation results

in Section VI will validate the approximation done on the
average SINR.

V. CALCULATION OF Eγ
[
γ(u0)|r0k

]
A. Average Desired Power Conditioned on r0k

Using (13), we can write∣∣hH0kw0k

∣∣2 =∣∣∣∣hH0k (H̄0kD̄0kH̄
H
0k + σ2u0

Pt
IM

)−1

h0k

∣∣∣∣2
EH̄0k,D̄0k,h0k

[∥∥∥∥(H̄0kD̄0kH̄H
0k+ σ2u0

Pt
IM

)−1

h0k

∥∥∥∥2
] . (27)

We manipulate (27) in order to apply Theorem 1.1 in [25] and
obtain∣∣hH0kw0k

∣∣2= (28)∣∣∣∣hH0k( 1
M H̄0kM

α
2 D̄0kH̄

H
0k+M

α
2
−1σ2u0

Pt
IM

)−1

h0k

∣∣∣∣2
EH̄0k,D̄0k,h0k

[∥∥∥∥(1
M H̄0kM

α
2D̄0kH̄H

0k+M
α
2
−1σ2u0

Pt
IM

)−1

h0k

∥∥∥∥2
] .

Considering the eigen decomposition: 1
M H̄0kM

α
2 D̄0kH̄

H
0k =

Ū0kΛ̄0kŪ
H
0k where Ū0k ∈ CM×M is a unitary matrix and

Λ̄0k∈RM×M+ is a diagonal matrix containing the eigenvalues,
and writing t0k = ŪH

0kh0k, (28) can be expressed as

∣∣hH0kw0k

∣∣2=
∣∣∣∣tH0k (Λ̄0k + M

α
2
−1σ2u0

Pt
IM

)−1

t0k

∣∣∣∣2
Et0k,Λ̄0k

[
tH0k

(
Λ̄0k+M

α
2
−1σ2u0

Pt
IM

)−2

t0k

] . (29)
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Eγ
[
γ(u0)|r0k

]
'

Eh0k,w0k

[
Ptr
−α
0k

u0

∣∣hH0kw0k

∣∣2|r0k]
Eh0k,w0j

[ ∑
j 6=k

Ptr
−α
0k

u0

∣∣hH0kw0j

∣∣2 |r0k]+ Ehik,wij ,rik

[
umax∑
u=1

∑
i∈Φu\{0}

Ptr
−α
ik

u

u∑
j=1

∣∣hHikwij

∣∣2 |r0k]+ σ2

. (21)

With t0k = [t0k1, t0k2, t0k3, · · · , t0kM ]
T and Λ̄0k =

diag
(
λ̄0k1, λ̄0k2, λ̄0k3, · · · , λ̄0kM

)
, (29) can be written as

∣∣hH0kw0k

∣∣2 =

(
M∑
l=1

|t0kl|2

λ̄0kl+
M
α
2
−1

σ2u0
Pt

)2

Et0k,Λ̄0k

[
M∑
l=1

|t0kl|2(
λ̄0kl+

M
α
2
−1

σ2u0
Pt

)2

] . (30)

Since w0k does not include r0k, the expectation of
∣∣hH0kw0k

∣∣2
conditioned on r0k is the same as its unconditional expecta-
tion. Therefore, using (30), we can write

Eh0k,w0k

[∣∣hH0kw0k

∣∣2|r0k] =

Et0k,Λ̄0k

[(
M∑
l=1

|t0kl|2

λ̄0kl+
M
α
2
−1

σ2u0
Pt

)2
]

Et0k,Λ̄0k

[
M∑
l=1

|t0kl|2(̄
λ0kl+

M
α
2
−1

σ2u0
Pt

)2
] . (31)

The constraint E[‖w0k‖2] = 1 allows us to write (31) since
the expectation of denominator is already present in (28).
Numerator of (31) can be written as

Et0k,Λ̄0k

[( M∑
l=1

|t0kl|2

λ̄0kl + M
α
2
−1σ2u0

Pt

)2
]

=

(
Et0k,Λ̄0k

[ M∑
l=1

|t0kl|2

λ̄0kl + M
α
2
−1σ2u0

Pt

])2

+

vart0k,Λ̄0k

[ M∑
l=1

|t0kl|2

λ̄0kl + M
α
2
−1σ2u0

Pt

]
. (32)

We introduce two theorems to calculate (31). While Theorem 1
is used to calculate the first term in the right hand side (RHS)
of (32), Theorem 2 is used to calculate the second term in the
RHS of (32) and the denominator in (31). Let us start with a
definition:

Definition 1. (Asymptotic regime) Let R be the radius of the
circular area centered at BS of interest and γau ∈ R+ a
constant. The asymptotic regime (a.r.) refers to the condition
limK,M→+∞

K
M = γau with limR→+∞

K(R)
λauπR2 = 1 and will

be referred as a.r.−→ in the rest of the paper.

Theorem 1. Considering the 0-th BS,

Et0k,Λ̄0k

[
1

M

M∑
l=1

|t0kl|2

λ̄0kl − z

]
a.r.−→ m̄0k(z) (33)

with m̄0k(z) is the unique, non-negative real solution of the
following equation:

πcsc
(

2π
α

)
m̄
− 2
α

0k (z)α
− zm̄0k(z)

2πλau
− m̄0k(z)

α−2

((
πλau
γau

)−α2
+ m̄0k(z)

)2
α−1

×

2F1

(
1− 2

α
, 1− 2

α
, 2− 2

α
,

(
πλau
γau

)α
2

m̄0k(z)

1+
(
πλau
γau

)α
2

m̄0k(z)

)
=

1

2πλau
, (34)

where z = −M
α
2
−1σ2u0

Pt
, csc

(
2π
α

)
is the cosecant function of

2π
α , and 2F1(a, b, c, z) is the Gauss hypergeometric function

[39].

Proof. See Appendix VIII-A.

Theorem 2. Considering the 0-th BS,

vart0k,Λ̄0k

[
1√
M

M∑
l=1

|t0kl|2

λ̄0kl− z

]
a.r.−→Et0k,Λ̄0k

[
1

M

M∑
l=1

|t0kl|2(
λ̄0kl− z

)2
]
a.r.−→m′0k(z),

where m′0k(z) is the differentiation of m̄0k(z) w.r.t. z and
expressed as

m′0k(z) = m̄0k(z)

(
4π2λaucsc

(
2π
α

)
m̄

1− 2
α

0k (z)α2
− z +Q

)−1

, (35)

with z = −M
α
2
−1σ2u0

Pt
and

Q=
2πλaum̄0k(z)

(
πλau
γau

)α−1

2α− 2

(
1+m̄0k(z)

(
πλau
γau

)α
2
)2
α−2

×

2F1

2− 2

α
, 1− 2

α
, 3− 2

α
,

(
πλau
γau

)α
2

m̄0k(z)

1+
(
πλau
γau

)α
2

m̄0k(z)

− 2πλau

(
πλau
γau

)α
2−1

α− 2
×

(
1+m̄0k(z)

(
πλau
γau

)α
2
)2
α−1

2F1

1− 2

α
,1− 2

α
, 2− 2

α
,

(
πλau
γau

)α
2

m̄0k(z)

1+
(
πλau
γau

)α
2

m̄0k(z)

 .

Proof. See Appendix VIII-B.

Using (31), (32), and Theorems 1 and 2, the average desired
signal power conditioned on r0k can be expressed as

Eh0k,w0k

[
Ptr
−α
0k

u0

∣∣hH0kw0k

∣∣2 |r0k]
a.r.−→

Ptr
−α
0k

u0

(
1 +

Mm̄2
0k(z)

m′0k(z)

)
. (36)
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B. Average Inter-cell Interference Power Conditioned on r0k

We introduce Theorem 3 to calculate the average inter-cell
interference power conditioned on r0k.

Theorem 3. Considering the i-th interfering BS,

Ehik,wij

[∣∣hHikwij

∣∣2|rik,r0k]a.r.−→ 1(
1+M

α
2 r−αik m̄ijk(z)

)2 , (37)

where m̄ijk(z) is the unique, non-negative real solution of the
following equation:

πcsc
(

2π
α

)
m̄
− 2
α

ijk (z)α
− zm̄ijk(z)

2πλau
− m̄ijk(z)

α−2

((
πλau
γau

)−α2
+m̄ijk(z)

)2
α−1

×

2F1

1− 2

α
, 1− 2

α
, 2− 2

α
,

(
πλau
γau

)α
2

m̄ijk(z)

1+
(
πλau
γau

)α
2

m̄ijk(z)

=
1

2πλau
(38)

with z = −M
α
2
−1σ2ui
Pt

.

Proof. See Appendix VIII-C.

From Theorem 3 and by averaging over rik, we state

Theorem 4. The average inter-cell interference power condi-
tioned on r0k is

Ehik,wij ,rik

[ umax∑
u=1

∑
i∈Φu\{0}

Ptr
−α
ik

u

u∑
j=1

∣∣hHikwij

∣∣2 |r0k]
a.r.−→

umax∑
u=1

(
f1(u)− f2(u, r0k)

)
. (39)

where

f1(u) =
2πλbpN (u)PtM

1−α2 m̄
α+2
α

ijk (z)2F1

(
2
α ,

α+2
α ; 2 + 2

α ; 1
)

(α+ 2)m̄2
ijk(z)

and

f2(u, r0k)=
2πλbpN (u)Pt2F1

(
2
α ,

α+2
α ; 2+ 2

α ; 1

m̄ijk(z)M
α
2r−α0k +1

)
M

α
2−1

(
1

m̄ijk(z) +M
α
2 r−α0k

)α+2
α

(α+2)m̄2
ijk(z)

.

Proof. See Appendix VIII-D.

C. Average Intra-cell Interference Power Conditioned on r0k

Since hH0kw0j has the same distribution as hHikwij ,
Eh0k,w0j

[ ∣∣hH0kw0j

∣∣2 |r0k] can be computed with (37) sub-
stituting rik and m̄ijk(z) by r0k and m̄0jk(z) respec-
tively. According to Lemma 5 in [40], m̄0jk(z) is equal
to m̄0k(z) for large M , which is the unique, non-negative
real solution of (34). Since Eh0k,w0j

[ ∣∣hH0kw0j

∣∣2 |r0k] =

Eh0k,w0j′

[ ∣∣hH0kw0j′
∣∣2 |r0k] ∀j 6= j′ except k, inserting

m̄0jk(z) = m̄0k(z) and using Theorem 3, the average intra-
cell interference power conditioned on r0k can be written as

Eh0k,w0j

[∑
j 6=k

Ptr
−α
0k

u0

∣∣hH0kw0j

∣∣2|r0k]
a.r.−→

Ptr
−α
0k

(u0−1)
u0(

1 +M
α
2 r−α0k m̄0k(z)

)2 . (40)

Using (36), Theorem 4 and (40), (21) can be written as

Eγ
[
γ(u0)|r0k

]
(41)

a.r.−→

Ptr
−α
0k

u0

(
1 +

Mm̄2
0k(z)

m′0k(z)

)
Ptr
−α
0k

(u0−1)
u0(

1+M
α
2 r−α0k m̄0k(z)

)2 +
umax∑
u=1

(
f1(u)−f2(u, r0k)

)
+σ2

.

Despite that Theorems presented above are derived in
asymptotic regime, i.e. large K and M , they provide accurate
predictions on ASE and EE even for moderate values of M
as it will be discussed in the next section.

VI. NUMERICAL AND SIMULATION RESULTS

Monte Carlo simulations are performed to verify the tight-
ness of the expressions of ASE and EE, i.e. (24) and (26)
respectively, when SLNR precoder is used for a system with
finite dimensions. A circular area, whose radius is such that the
average number of users in the network is Nu, is considered
for simulations. Throughout this section, Nu = 5000 except
for the case ρ = 0.1, where Nu = 2500 was used to reduce
the simulation time. The users are positioned uniformly in
the area, and the typical user is considered to be located at
center of the network. Moreover, umax = M , α = 4 and
σ2 = −97.5 dBm will be used throughout this section unless
otherwise mentioned. Finally, Pc, P0 and η are set to 35 W,
34 W and 0.32 respectively [31].

Figs. 2a and 2b draw ASE vs. Pt labelled on BS-user
density ratios and number of BS antennas respectively. It is
observed that ASE is increasing and converging towards a
limit when Pt exceeds 20 dBm. This is because the network is
homogeneous (same transmit power) and interference limited,
hence ASE saturates when noise power becomes negligible
w.r.t. to the interference power. The results also demonstrate
that increasing the BS-user density ratio keeping user density
constant, i.e. λu = 5 · 10−4 m−2, which is equivalent to
increase the BS density, or increasing the number of BS
antennas always increase ASE.

EE vs. Pt is drawn on Figs. 3a and 3b for different BS-user
density ratios and number of BS antennas respectively. It is
observed that EE is first increasing when Pt is increased. How-
ever since ASE converges towards a limit for Pt = 20 dBm,
EE decreases for further increase of Pt. Fig. 3b suggests that
increasing the number of antennas slightly improves EE over
a wide range of transmit power. Although higher number of
antennas induces more RF circuit power, i.e. Pc, this is not
dominant over the increase of ASE over the range of Pt taken
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Figure 2: ASE vs. BS transmit power
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Figure 3: EE vs. BS transmit power

into account. However, this is not always true for arbitrary
number of antennas. Deploying more BS antennas increases
ASE, but the gain depends on the number of active users
per cell and the number of antennas, since they affect the
spatial multiplexing gain, the aggregated interference, and the
beamforming gain. EE increases only when the increase in
ASE dominates the increase of PA. On the other hand, it is
not energy-efficient to deploy more BSs at Pt around 20 dBm,
Fig. 3a. Indeed, a high roll-out density e.g. ρ = 0.1, induces a
loss in EE compared to a lower BS density, i.e. ρ = 0.016 and
ρ = 0.0077. ASE increases with BS density, but also the non-
transmission power, i.e. λbP0, which finally becomes dominant
over the increase of ASE for ρ = 0.1 and then causing the EE
decrease.

Figs. 4a and 4b plot the EE-ASE tradeoff for both SLNR and
ZF precoder labelled on the BS-user density ratios and number
of antennas respectively. We perform Monte Carlo simulations
to obtain the EE-ASE tradeoff for the well-known ZF precoder
with the same parameters considered for the SLNR precoder,
and compare the results with the SLNR precoder. The EE-ASE
tradeoff has a large linear part before a sharp decrease when
ASE is increased. The linear behavior is due to the significant
consumption of the RF circuit and non-transmission powers,
i.e. Pc and P0 respectively. Moreover, since ASE converges
towards a limit while EE decreases when Pt is increased, a
sharp decrease of EE is observed for a slight improvement
of ASE, as it has been also observed in regular hexagonal
networks [41]. The results also demonstrate that at optimal
transmit power, ρ = 0.1 allows to achieve the best ASE for
the SLNR precoder without loosing too much EE compared
to other values of ρ. In a same way, operating at the optimal
transmit power, M = 30 achieves the best EE-ASE tradeoff
compared to M = 10 or 20 for the SLNR precoder.
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Figure 4: EE vs. ASE

It can also be seen that SLNR precoder has a significant
performance gain compared to ZF precoder in terms of achiev-
able EE and ASE. Higher ASE implies a better SINR for the
SLNR precoder compared to ZF. This is due to the fact that
although ZF precoder nulls the intra-cell interference, it does
not account the leakage to other-cell users. Moreover, the total
cancellation of the intra-cell interference by ZF precoding is
done at the price of a decrease in the received desired signal
power when the channel vectors of the selected user subset are
not orthogonal [42]. On the other hand, the multi-cell SLNR
precoder achieves a tradeoff between maximizing the received
desired signal power of the intended user and minimizing the
interference leakage to all other users in order to maximize
the SLNR.

Last but not least, our theoretical findings are very tight
compared to the simulations results, which suggests that the
analytical expressions of ASE and EE, when SLNR precoder is
used, can be used as a good approximation of exact values even
for M and K as small as 10 and 2500 respectively. Moreover
and despite the fact that the analytical expressions for ASE
and EE developed from Theorem 1 to 4 are relatively heavy,
they are easily computable numerically which is, by far, faster
than performing Monte Carlo simulations. Moreover, there is
a performance gain over ZF precoder in terms of EE-ASE
tradeoff when SLNR precoder is used.

VII. CONCLUSIONS AND FURTHER WORKS

This paper has introduced a theoretical framework for
approaching the upper bound of ASE in asymptotic regime
for PPP networks when SLNR precoder is used by means
of random matrix theory. The theoretical expression of the
EE-ASE tradeoff has been found to be tight with the results
obtained through Monte Carlo simulations, even for moderate
values of the number of antennas and users in the network,
and for a wide range of system parameters. The results have
shown that EE increases linearly as a function of ASE due
to the important amount of power wasted in static circuitry.
A sharp decrease of EE is observed when transmit power is
increased beyond a certain level because of the saturation of
ASE at this power. Moreover, although ASE always increases
with the BS density and number of antennas, EE depends on
the amount of the static power consumption wasted into BS
compared to the amount of useful transmit power.
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In further works, the impact of a turn-off strategy on the
EE-ASE tradeoff could be studied in conjunction with other
precoding techniques, like MMSE precoder.
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VIII. APPENDIX

A. Proof of Theorem 1

Let us first derive the CDF of M
α
2 r−α0j , where r0j denotes

the distance from BS 0 to the j-th user. Note that M
α
2 r−α0j ,

∀j 6= k are the diagonal components and also the eigenvalues
of M

α
2 D̄0k. Considering that BS 0 is positioned at the center

of the network, the PDF of r0j is [28]

fr0j (x) =
2x

R2
. (42)

The CDF of M
α
2 r−α0j can be written as

FM
α
2 r−α0j (τ)=Pr

(
M

α
2 r−α0j <τ

)
=Pr

(
r−α0j <τM

−α2
)
. (43)

Since r−α0j is a decreasing function of r0j , using (42), (43) can
be written as

FM
α
2 r−α0j (τ) = 1− Pr

(
r0j <

(
τM−

α
2

)−1
α

)
= 1− τ

−2
α M

R2
. (44)

Since lim
R→∞

K(R) = λauπR
2, using (44), we can write

lim
R→∞

FM
α
2 r−α0j (τ)=

(
1− τ

−2
αM
K

πλau

)
a.r.−→
(

1− πλauτ
−2
α

γau

)
=F

M
α
2 r−α0j

l (τ) (45)

with
(
πλau
γau

)α
2

< τ < ∞. Using (45), the derivative of

F
M

α
2 r−α0j

l (τ) can be written as

dF
M

α
2 r−α0j

l (τ) =
2πλau
αγau

τ−
2
α−1dτ. (46)

The matrix (unitary) of eigenvectors Ū0k and the matrix of
eigenvalues Λ̄0k are obtained from the eigen decomposition of
1
M H̄0kM

α
2 D̄0kH̄

H
0k that does not contain h0k. Since t0k =

ŪH
0kh0k, where h0k ∼ CN (0, IM ) then t0k ∼ CN (0, IM )

and hence t0k is independent of Ū0k and Λ̄0k. Since |t0kl|2
is exponentially distributed with mean 1, we have

Et0k,Λ̄0k

[
1

M

M∑
l=1

|t0kl|2

λ̄0kl + M
α
2
−1σ2u0

Pt

]

=
1

M

M∑
l=1

E

[
|t0kl|2

]
Eλ̄0kl

[
1

λ̄0kl + M
α
2
−1σ2u0

Pt

]

= Eλ̄0kl

[
1

M

M∑
l=1

1

λ̄0kl + M
α
2
−1σ2u0

Pt

]
. (47)

The ESD of 1
M H̄0kM

α
2 D̄0kH̄

H
0k is the proportion of the

values of λ̄0kl less than or equal to x which can be expressed
as [25]

F Λ̄0k(x) =
1

M

M∑
l=1

1λ̄0kl≤x(x). (48)

The Stieltjes transform of F Λ̄0k(x) on C\R+ is [29], [39]

mF Λ̄0k (z) =

∫ ∞
0

1

x− z
dF Λ̄0k(x). (49)

F Λ̄0k is random and depends on H̄0k ∈ CM×(K−1) and
D̄0k ∈ R+

(K−1)×(K−1). The latter is independent of H̄0k.

Moreover, E
[
H̄0k11 − E

[
H̄0k11

]]2
= 1 where H̄0k11 denotes

the element of the first column and first row of the matrix
H̄0k and FM

α
2 D̄0k

a.r.−→ F
M

α
2 r−α0j

l provided in (45). Hence
according to Silverstein [25], F Λ̄0k converges in distribution
to a non-random function F Λ̄0k

l . Moreover, Stieltjes transform
of F Λ̄0k

l denoted by m
F

Λ̄0k
l

(z) satisfies [25]

zm
F

Λ̄0k
l

(z) + 1 = m
F

Λ̄0k
l

(z)γau

∫ ∞
0

τdF
M

α
2 r−α0j

l (τ)

1 + τm
F

Λ̄0k
l

(z)
. (50)

Since the elements of Λ̄0k are positive, the integrand in (49) is
bounded and positive for negative values of z hence F Λ̄0k →
F Λ̄0k

l implies mF Λ̄0k (z) → m
F

Λ̄0k
l

(z) which is also non-
random [26]. Therefore, the term inside the expectation in the
RHS of (47) is m

F
Λ̄0k
l

(z) evaluated at z = −M
α
2
−1σ2u0

Pt
in

the asymptotic regime. Therefore, (47) can be written as

Et0k,Λ̄0k

[
1

M

M∑
l=1

|t0kl|2

λ̄0kl + M
α
2
−1σ2u0

Pt

]
a.r.−→ m

F
Λ̄0k
l

(z). (51)

Writing m
F

Λ̄0k
l

= m̄0k for notational simplicity, and using
(46), RHS of (50) can be written as

m̄0k(z)γau

∫ ∞
0

τdF
M

α
2 r−α0j

l (τ)

1 + τm̄0k(z)

= m̄0k(z)γau

∫ ∞
(πλauγau

)
α
2

2πλauτ
−2
α

αγau

1 + τm̄0k(z)
dτ

=
m̄0k(z)

α
2πλau

∫ ∞
(πλauγau

)
α
2

τ
−2
α

1 + τm̄0k(z)
dτ. (52)
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Applying lemma 1 from [29], (52) can be written as

m̄0k(z)γau

∫ ∞
0

τdF
M

α
2 r−α0j

l (τ)

1 + τm̄0k(z)

=
2π2λaucsc

(
2π
α

)
m̄
− 2
α

0k (z)α
−

2πλaum̄0k(z)
(
πλau
γau

)α
2−1

α−2
×

(
1 + m̄0k(z)

(
πλau
γau

)α
2

) 2
α−1

×

2F1

1− 2

α
, 1− 2

α
, 2− 2

α
,

(
πλau
γau

)α
2

m̄0k(z)

1+
(
πλau
γau

)α
2

m̄0k(z)

 . (53)

Substituting (53) into (50) and after tedious but straightforward
manipulations, (34) is obtained and the proof is complete.

B. Proof of Theorem 2

Using the law of total variance [27], [29], we can write

vart0k,Λ̄0k

[
1√
M

M∑
l=1

|t0kl|2

λ̄0kl + M
α
2
−1σ2u0

Pt

]
(54)

= EΛ̄0k

[
vart0k

[
1√
M

M∑
l=1

|t0kl|2

λ̄0kl+
M

α
2
−1σ2u0

Pt

|Λ̄0k

]]

+varΛ̄0k

[
Et0k

[
1√
M

M∑
l=1

|t0kl|2

λ̄0kl+
M
α
2
−1σ2u0

Pt

|Λ̄0k

]]
.

Since |t0kl|2 are iid with mean and variance 1, (54) can be
proved to be

vart0k,Λ̄0k

[
1√
M

M∑
l=1

|t0kl|2

λ̄0kl + M
α
2
−1σ2u0

Pt

]

= EΛ̄0k

 1

M

M∑
l=1

 1

λ̄0kl + M
α
2
−1σ2u0

Pt

2


+MvarΛ̄0k

[
1

M

M∑
l=1

1

λ̄0kl + M
α
2
−1σ2u0

Pt

]
. (55)

The variance term in RHS in (55) can be expressed
as in (56) at the top of the next page. Let note

Λ̃0k =
(
Λ̄0k + M

α
2
−1σ2u0

Pt

)−1

, D̃0k = M
α
2 D̄0k =

diag
(
d̃01, · · · , d̃0(k−1), d̃0(k+1), d̃0K

)
and following the same

steps as in [27], [29] and applying Corollary 1.8 in [43], the
probability in (56) can be upper bounded by

Pr

[∣∣∣∣∣ 1

M
tr
(
Λ̃0k

)
− E

[
1

M
tr
(
Λ̃0k

)]∣∣∣∣∣
> x

∣∣∣∣∣d̃01, · · · , d̃0(k−1), d̃0(k+1), d̃0K

]
≤ 2e−

M2x2

2δ1δ2δ3 , (57)

where δ1 > 0 is the Sobolev inequality constant for the
distribution of the entries of H̄0k, δ2 = 27

64

(
M
α
2
−1

σ2u0
Pt

)3 is

the square of the Lipschitz constant for the function f(x) =
1

M
α
2
−1

σ2u0
Pt

+x2

and δ3 is the largest d̃0i which is M
α
2 ε−α

considering that ε is the close-in reference distance. Therefore,

1
2δ1δ2δ3

≥
64

(
σ2u0
Pt

)3

Mα−3

54δ1ε−α
and (57) can be written as

Pr

[∣∣∣∣∣ 1

M
tr
(
Λ̃0k

)
− E

[
1

M
tr
(
Λ̃0k

)]∣∣∣∣∣ (58)

>x

∣∣∣∣∣d̃01, · · · , d̃0(k−1), d̃0(k+1), d̃0K

]
≤2e

−64

(
σ2u0
Pt

)3
Mα−1x2

54δ1ε
−α .

Hence, the variance term in RHS of (55) can be upper bounded
by

MvarΛ̄0k

 1

M

M∑
l=1

1

λ̄0kl + M
α
2
−1σ2u0

Pt

 (59)

≤M
∫ ∞

0

4xe

−64

(
σ2u0
Pt

)3

Mα−1x2

54δ1ε
−α dx =

27δ1ε
−αM2−α

16
(
σ2u0

Pt

)3 .

Since the RHS of (59) goes to zero for α > 2 when M →∞,
(55) reduces to

vart0k,Λ̄0k

[
1√
M

M∑
l=1

|t0kl|2

λ̄0kl + M
α
2
−1σ2u0

Pt

]
(60)

a.r.−→ EΛ̄0k

[
1

M

M∑
l=1

(
1

λ̄0kl + M
α
2
−1σ2u0

Pt

)2
]
.

Differentiation of m
F

Λ̄0k
l

(z) w.r.t. z is

m′
F

Λ̄0k
l

(z) =
d

dz

∫ ∞
0

dF Λ̄0k

l (x)

x− z
=

∫ ∞
0

dF Λ̄0k

l (x)

(x− z)2
. (61)

Using (61), we can write

EΛ̄0k

[
1

M

M∑
l=1

(
1

λ̄0kl + M
α
2
−1σ2u0

Pt

)2
]
a.r.−→ m′0k

(
z
)
, (62)

where z = −M
α
2
−1σ2u0

Pt
, and m′

F
Λ̄0k
l

is denoted by m′0k

for notational simplicity, which can be obtained as expressed
in (35). On the other hand, using the fact that |t0kl|2 is
independent of 1(

λ̄0kl+
M
α
2
−1

σ2u0
Pt

)2 , and E[|t0kl|2] = 1, we

have

Et0k,Λ̄0k

[
1

M

M∑
l=1

|t0kl|2(
λ̄0kl + M

α
2
−1σ2u0

Pt

)2

]
(63)

=
1

M

M∑
l=1

E
[
|t0kl|2

]
EΛ̄0k

[
1(

λ̄0kl + M
α
2
−1σ2u0

Pt

)2

]

= EΛ̄0k

[
1

M

M∑
l=1

1(
λ̄0kl + M

α
2
−1σ2u0

Pt

)2

]
.

Combining (60), (62) and (63) completes the proof.
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varΛ̄0k

 1

M

M∑
l=1

1

λ̄0kl+
M

α
2
−1σ2u0

Pt

=

∫ ∞
0

2xPr

[∣∣∣∣∣ 1

M
tr

((
Λ̄0k+

M
α
2−1σ2u0

Pt

)−1
)
−E

[
1

M
tr

((
Λ̄0k+

M
α
2−1σ2u0

Pt

)−1
)]∣∣∣∣∣>x

]
dx. (56)

C. Proof of Theorem 3

We can write the precoder for the j-th user in the i-th cell
as

wij=

(
H̄ijD̄ijH̄

H
ij + σ2ui

Pt
IM

)−1

hij√
EH̄ij ,D̄ij ,hij

[ ∥∥∥∥(H̄ijD̄ijH̄H
ij+ σ2ui

Pt
IM

)−1

hij

∥∥∥∥2] , (64)

where H̄ij =
[
hi1, · · · ,hi(j−1),hi(j+1), · · · ,hiK

]
and D̄ij =

diag
(
r−αi1 , · · · , r−αi(j−1), r

−α
i(j+1), · · · , r

−α
iK

)
respectively repre-

sent the concatenated fading channels and path losses from
the i-th BS to all active users in the network, except the jth
user. Using (64), we can write

∣∣hHikwij

∣∣2=
∣∣∣∣hHik (H̄ijD̄ijH̄

H
ij + σ2ui

Pt
IM

)−1

hij

∣∣∣∣2
EH̄ij ,D̄ij ,hij

[ ∥∥∥∥(H̄ijD̄ijH̄H
ij+ σ2ui

Pt
IM

)−1

hij

∥∥∥∥2 ]

=

∣∣∣∣hHik(1
M H̄ijkM

α
2D̄ijkH̄

H
ijk+

M
α
2
−1

rαik
hikh

H
ik−zIM

)−1

hij

∣∣∣∣2
EH̄ij ,D̄ij ,hij

[∥∥∥∥( 1
M H̄ijM

α
2 D̄ijH̄H

ij−zIM
)−1

hij

∥∥∥∥2 ] ,(65)

where z = −M
α
2
−1σ2ui
Pt

, channel matrix H̄ijk =[
hi1, · · · ,hi(j−1),hi(j+1), · · · ,hi(k−1),hi(k+1), · · · ,hiK

]
and moreover the diagonal matrix D̄ijk =

diag
(
r−αi1 , · · · , r−αi(j−1), r

−α
i(j+1), · · · , r

−α
i(k−1), r

−α
i(k+1), · · · , r

−α
iK

)
.

Applying lemma 2.5 in [44], (65) can be written as∣∣hHikwij

∣∣2

=

∣∣∣∣∣ hHik

(
1
M H̄ijkM

α
2 D̄ijkH̄H

ijk−zIM
)−1

hij

1+M
α
2
−1

rα
ik

hHik

(
1
M H̄ijkM

α
2 D̄ijkH̄H

ijk−zIM
)−1

hik

∣∣∣∣∣
2

EH̄ij ,D̄ij ,hij

[∥∥∥∥( 1
M H̄ijM

α
2 D̄ijH̄H

ij−zIM
)−1

hij

∥∥∥∥2 ] . (66)

Since the elements of hik are iid complex Gaussian with vari-
ance 1 and

(
1
M H̄ijkM

α
2 D̄ijkH̄

H
ijk − zIM

)−1
is independent

of hik, applying lemma 7 in [40] and using (66), we can write

lim
M→∞

∣∣hHikwij

∣∣2 (67)

=

∣∣∣∣∣∣∣∣
hHik

(
1
M H̄ijkM

α
2 D̄ijkH̄H

ijk−zIM
)−1

hij

1+M
α
2
−1

rα
ik

tr

((
1
M H̄ijkM

α
2 D̄ijkH̄H

ijk−zIM

)−1
)
∣∣∣∣∣∣∣∣
2

EH̄ij ,D̄ij ,hij

[∥∥∥∥( 1
M H̄ijM

α
2 D̄ijH̄H

ij − zIM
)−1

hij

∥∥∥∥2 ] .
Applying the eigen decomposition: 1

M H̄ijkM
α
2 D̄ijkH̄

H
ijk =

ŪijkΛ̄ijkŪ
H
ijk and 1

M H̄ijM
α
2 D̄ijH̄

H
ij = ŪijΛ̄ijŪ

H
ij , and

inserting ŪH
ijkhik = tik, ŪH

ijkhij = tNij , ŪH
ijhij = tDij ,

(67) can be written as

lim
M→∞

∣∣hHikwij

∣∣2 =

∣∣∣∣∣∣∣∣
M−

α
2 tHik(Λ̄ijk−zIM)

−1
tNij

M−
α
2 +

r
−α
ik
M tr

((
Λ̄ijk−zIM

)−1
)
∣∣∣∣∣∣∣∣
2

EtDij ,Λ̄ij

[
tHDij

(
Λ̄ij − zIM

)−2

tDij

]

=

∣∣∣∣∣M −α2 tHik

(
Λ̄ijk−zIM

)−1

tNij

∣∣∣∣∣
2

(
M−

α
2 +

r
−α
ik
M tr

((
Λ̄ijk−zIM

)−1
))2

EtDij ,Λ̄ij

[∑M
l=1

|tDijl|2

(λ̄ijl−z)
2

] , (68)

where tDij = [tDij1, tDij2, tDij3, · · · , tDijM ] and Λ̄ij =

[λ̄ij1, λ̄ij2, · · · , λ̄ijM ]. Now, 1
M tr
((

Λ̄ijk − zIM
)−1

)
can be

represented by the Stieltjes transform m
F Λ̄ijk (z) for large M .

The CDF of the entries of M
α
2 D̄ijk can be proved to converge

almost surely to (45) in the asymptotic regime considering
that the infinite network is centered around the i-th BS.
Furthermore, H̄ijk ∈CM×(K−2) contains iid complex entries

with E
[
H̄ijk11−E

[
H̄ijk11

]]2
= 1. Therefore, according to the

theorem of Silverstein in [25], ESD of 1
M H̄ijkM

α
2 D̄ijkH̄

H
ijk,

denoted as F Λ̄ijk converges in distribution to a non-random
function F

Λ̄ijk
l . This implies that the Stieltjes transform

m
F Λ̄ijk also converges to a non-random function m

F
Λ̄ijk
l

,

which can be shown following the proof of Theorem 1
to be the unique, non-negative real solution of (38) where
z = −M

α
2
−1σ2ui
Pt

and m̄ijk is used instead of m
F

Λ̄ijk
l

for

notational simplicity. Therefore, (68) can be written as

∣∣hHikwij

∣∣2 a.r.−→

∣∣∣∣M −α2 tHik(Λ̄ijk−zIM)
−1

tNij

∣∣∣∣2(
M−

α
2 +r−αik m̄ijk(z)

)2

EtDij ,Λ̄ij

[∑M
l=1

|tDijl|2

(λ̄ijl−z)
2

] . (69)
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Moreover∣∣∣M −α
2 tHik

(
Λ̄ijk − zIM

)−1
tNij

∣∣∣2 (70)

= M−αtHik
(
Λ̄ijk − zIM

)−1
tNijt

H
Nij

(
Λ̄ijk − zIM

)−1
tik

= M−α
M∑
m=1

M∑
n=1
n6=m

tHikmtNijmt
H
Nijntikn(

λ̄ijkm − z
)(

λ̄ijkn − z
)

+M−α
M∑
l=1

|tikl|2|tNijl|2(
λ̄ijkl − z

)2 ,

where tik = [tik1, · · · , tikM ], tNij = [tNij1, · · · , tNijM ] and
Λ̄ijk =

[
λ̄ijk1, · · · , λ̄ijkM

]
. Both tik and tNij are complex

Gaussian vectors with mean 0 and covariance matrix IM .
Moreover, they are independent of ŪH

ijk and Λ̄ijk. Since hik
and hij are independent, and tik = ŪH

ijkhik, tNij = ŪH
ijkhij ,

tNij and tik are also independent. Furthermore, the entries of
tNij and tik are iid with mean 0. Therefore, we can write

M∑
m=1

M∑
n=1
n6=m

Et,λ

[
M−αtHikmtNijmt

H
Nijntikn(

λ̄ijkm − z
)(

λ̄ijkn − z
)] (71)

=

M∑
m=1

M∑
n=1
n6=m

Et,λ

[
M−αtHikmtNijmt

H
Nijn(̄

λijkm−z
)(̄
λijkn−z

)]E [tikn]

= 0.

Using (71) and (70), we can write

Etik,tNij ,Λ̄ijk

[∣∣∣∣M−α2 tHik
(
Λ̄ijk − zIM

)−1
tNij

∣∣∣∣2
]

(72)

= Etik,tNij ,Λ̄ijk

[
M∑
l=1

M−α|tikl|2|tNijl|2(
λ̄ijkl − z

)2

]
.

Using (72) and (69), mean of
∣∣hHikwij

∣∣2 conditioned on r0k

and rik can be written as

Ehik,wij

[ ∣∣hHikwij

∣∣2 |r0k,rik] (73)

a.r.−→
Etik,tNij ,Λ̄ijk

[
M∑
l=1

M−α|tikl|2|tNijl|2

(λ̄ijkl−z)2

]
(
M−

α
2 + r−αik m̄ijk(z)

)2

EtDij ,Λ̄ij

[
M∑
l=1

|tDijl|2

(λ̄ijl−z)
2

] .
Note that |tikl|2, |tNijl|2, (λ̄ijkl − z)−2 are independent to
each other with E

[
|tikl|2

]
= E

[
|tNijl|2

]
= 1. Moreover,

|tDijl|2 and (λ̄ijl − z)−2 are independent to each other with
E
[
|tDijl|2

]
= 1. Therefore, (73) can be written as

Ehik,wij

[ ∣∣hHikwij

∣∣2 |r0k,rik] (74)

a.r.−→
EΛ̄ijk

[
M−α

∑M
l=1

1
(λ̄ijkl−z)2

]
(
M−

α
2 + r−αik m̄ijk(z)

)2

EΛ̄ij

[∑M
l=1

1

(λ̄ijl−z)
2

] .

λ̄ijl are the eigenvalues of 1
M H̄ijM

α
2 D̄ijH̄

H
ij , while λ̄ijkl are

the eigenvalues of 1
M H̄ijkM

α
2 D̄ijkH̄

H
ijk, which is the rank-

1 perturbation
(
−M α

2−1r−αik hikh
H
ik

)
of 1

M H̄ijM
α
2 D̄ijH̄

H
ij .

According to lemma 5 in [40], rank-1 perturbation does not
affect the trace in the denominator in (74) for large M.
Therefore we have

lim
M→∞

M∑
l=1

(
λ̄ijl − z

)−2
= lim
M→∞

M∑
l=1

(
λ̄ijkl − z

)−2
. (75)

Using (75), (74) can be expressed as

Ehik,wij

[∣∣hHikwij

∣∣2|r0k,rik]a.r.−→ 1(
1+M

α
2 r−αik m̄ijk(z)

)2 . (76)

This completes the proof.

D. Proof of Theorem 4

The mean inter-cell interference power conditioned on r0k

can be written as

Ehik,wij ,rik

[ umax∑
u=1

∑
i∈Φu\{0}

Ptr
−α
ik

u

u∑
j=1

∣∣hHikwij

∣∣2 |r0k] (77)

=

umax∑
u=1

Erik

[ ∑
i∈Φu\{0}

Ptr
−α
ik

u

u∑
j=1

Ehik,wij

[∣∣hHikwij

∣∣2 |rik,r0k]
]
.

Ehik,wij

[ ∣∣hHikwij

∣∣2 |rik,r0k] = Ehik,wij′

[ ∣∣hHikwij′
∣∣2 |rik,r0k]

∀i, ∀j 6= j′, and hence (77) can be written using Theorem 3
as

Ehik,wij ,rik

[ umax∑
u=1

∑
i∈Φu\{0}

Ptr
−α
ik

u

u∑
j=1

∣∣hHikwij

∣∣2|r0k] (78)

a.r.−→
umax∑
u=1

Erik

[ ∑
i∈Φu\{0}

Ptr
−α
ik(

1+M
α
2 r−αik m̄ijk(z)

)2

]
.

Using the Campbell’s theorem for the PPP Φu [22], we can
write

Erik

[ ∑
i∈Φu\{0}

Ptr
−α
ik(

1 +M
α
2 r−αik m̄ijk(z)

)2

]
(79)

= 2πλbpN (u)

∫ ∞
r0k

Ptr
1−α
ik(

1 +M
α
2 r−αik m̄ijk(z)

)2
drik.



0090-6778 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCOMM.2017.2699192, IEEE
Transactions on Communications

TO APPEAR IN IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. XX, NO. XX, XXX 2017 13

Using τ = M
α
2 r−αik , (79) can be written as

Erik

[ ∑
i∈Φu\{0}

Ptr
−α
ik(

1 +M
α
2 r−αik m̄ijk(z)

)2

]
(80)

= 2πλbpN (u)

∫ 0

M
α
2 r−α0k

Pt(τ
− 1
αM

1
2 )(1−α)−1

α τ
− 1
α−1M

1
2(

1 + τm̄ijk(z)

)2 dτ

=−2πλbpN (u)PtM
1−α2

α

∫ 0

M
α
2 r−α0k

τ−
2
α(

1 + τm̄ijk(z)

)2 dτ

= f1(u)− f2(u, r0k),

with f1(u) and f2(u, r0k) as in Theorem 4. Using (80), (78)
can be written as,

Ehik,wij ,rik

[ umax∑
u=1

∑
i∈Φu\{0}

Ptr
−α
ik

u

u∑
j=1

∣∣hHikwij

∣∣2 |r0k]
a.r.−→

umax∑
u=1

(
f1(u)− f2(u, r0k)

)
(81)

and the proof is complete.
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