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ABSTRACT

This article addresses identification of nonlinear systems repre-
sented by Volterra series. To improve the robustness of some ex-
isting methods, we propose a pre-processing stage that separates
nonlinear homogeneous order contributions from which Volterra
kernels can be identified independently. The proposed separation
method exploits phase relations between test signals rather than
amplitude relations that are usually used. This method is com-
pared with standard separation process. Its contribution to iden-
tification is illustrated on a simulated loudspeaker with nonlinear
suspension.

1. INTRODUCTION

Volterra series are a representation formalism for dynamical sys-
tem with memory and weak nonlinearities. In audio, it has been
widely used in various applications such as simulation of nonlinear
resonators (brass instruments [1], Moog ladder filter [2], etc), dis-
tortion effect [3,4], audio transducer analysis [5]. For any purpose
(analysis, simulation or even system control), the use of Volterra
series has to begin with the computation of the Volterra kernels,
either directly from the system’s dynamical equation [2], or by
identification from inputs/outputs measurement [6].

This paper focuses on the identification problem in blind con-
text, that is, without assuming any particular structures (Hammer-
stein, Wiener-Hammerstein, etc) [7,8] or parametric model [9]. To
this end, we propose a pre-processing stage that separates nonlin-
ear homogeneous order contributions from which Volterra kernels
can be identified independently. Such an approach is commonly
used (see [10–14]), but the separation process relies on amplitude
discrimination, that rapidly leads to ill-conditioned problems. To
improve robustness, a new method is proposed that also exploits
phase relations. This pre-processing method is embedded into a
kernel identification method proposed in [6].

This paper is organized as follows. Section 2 gives an overview
of Volterra Series and standard order separation. In Section 3, the
proposed separation method is presented, and its advantages and
disadvantages are discussed. Finally, in Section 4, simulation of
a loudspeaker with nonlinear suspension is used to compare the
separation methods and their contribution to identification.

2. RECALLS ON VOLTERRA SERIES AND ORDER
SEPARATION

2.1. Overview on Volterra Series

An overview of the Volterra formalism is given here; further and
more thorough explanations can be found in [15, 16], among the
vast literature on Volterra series.

Definition 1 (Volterra series). A nonlinear causal time-invariant
system is described by a Volterra series {hn}n≥N∗ if, for all input
signals u such that ‖u‖∞ < ρ, the output signal y is given by the
following Volterra operator:

y = V [u] =

∞∑
n=1

yn (1)

where, for continuous-time systems:

yn(t) =

∫
Rn+

hn(τ1, . . . , τn)

n∏
i=1

u(t− τi)dτi (2)

and for discrete-time systems:

yn[l] =
∑
Nn

hn[m1, . . . ,mn]

n∏
i=1

u[l −mi] (3)

and with ρ the convergence radius of the characterising function
Φh(x) =

∑+∞
n=1 ‖hn‖1x

n. The terms hn are called the Volterra
kernels of the system, and terms yn the nonlinear homogeneous
order contributions (or more simply the nonlinear orders).

In the following, for sake of notation, continuous-time signals
and systems will be used; if not specified otherwise, results are
also valid for their discrete-time counterparts.

Remark 1 (Convergence). It has been shown in [17,18] that there
exists a large class of well-posed systems for which we know how
to compute the convergence radius of the Volterra series. In this
work, we will always assume that convergence’s conditions are
met.

Remark 2 (Order and memory truncation). In numerical imple-
mentation for simulation or identification, it will be necessary to
truncate both infinite sums (i.e. for nonlinear orders and memory).
Thus, in practice, Volterra series can only be used to approximate
systems with small nonlinearities (limited to the first few nonlinear
orders) and with finite memory [19].

Remark 3 (Non-unicity of kernels). It can easily be seen from (2)
that kernels are not uniquely defined. To circumvent this problem
for identification purpose, uniquely-defined forms can be speci-
fied, such as the triangular or symmetric kernels (where the kernel
is invariant to any permutation of its arguments).

Remark 4 (Frequency domain kernels). As it is common for lin-
ear filters, it is possible to work in the frequency domain by means
of a Laplace or Fourier transform.
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2.2. Volterra operator properties

In the following definition,Lp(E,F) denotes the standard Lebesgue-
space of functions from vector spaces E to F with p-norm.

Definition 2 (Volterra operator of order n). Let hn ∈ L1(Rn+,R)
be a Volterra kernel, for n ∈ N∗. Then we introduce the multi-
linear operator Vn : L∞(R,R)× . . .× L∞(R,R) 7→ L∞(R,R)
such that function Vn[u1, . . . , un] is defined ∀t ∈ R by

Vn[u1, . . . , un](t) =

∫
Rn+

hn(τ1, . . . , τn)

n∏
i=1

ui(t− τi)dτi (4)

If u1 = . . . = un = u, Vn[u, . . . , u] = yn.

Property 1 (Symmetry). Given a symmetric kernel hn, the corre-
sponding Volterra operator Vn is also symmetric, meaning

Vn
[
uπ(1), . . . , uπ(n)

]
(t) = Vn[u1, . . . , un](t) (5)

for any permutations π and ∀t ∈ R.

In the following, symmetry of hn and Vn will be supposed.

Property 2 (Multilinearity and homogeneity). Volterra operator
Vn is multilinear, i.e. for any signals u1, u2, and any scalars λ, µ,

Vn[λu1 + µu2, . . . , λu1 + µu2](t) =

n∑
q=0

(
n

q

)
λn−qµqVn

[
u1, . . . , u1︸ ︷︷ ︸

n−q

u2, . . . , u2︸ ︷︷ ︸
q

]
(t) (6)

This also implies that Vn is a homogeneous operator of degree n,
i.e. for any signal u and scalar α,

Vn[αu, . . . , αu](t) = αnVn
[
u, . . . , u

]
(t) (7)

2.3. State-of-the-art order separation

Nonlinear homogeneous order separation implies the ability to re-
cover signals yn from the output y of a system described by a
Volterra series truncated to order N .

From (7), V [αu](t) =
∑N
n=1 α

nyn(t). Consider a collection
of input signals uk(t) = αku(t), with αk ∈ R∗, k = 1, . . . , N
and note zk(t) = V [uk](t) their corresponding output through the
system; then, for all time t:

z1

z2
...
zN

(t) =


α1 α2

1 . . . αN1

α2 α2
2 . . . αN2

...
...

. . .
...

αN α2
N . . . αNN

 ·

y1

y2
...
yN

(t) , αk ∈ R∗

Z(t) = A · Y (t)
(8)

SinceA is a Vandermonde matrix, it is invertible if and only if all
αk are different; hence it is possible to recover terms yn.

But for real-valued αk, this type of matrix is known for be-
coming rapidly ill-conditioned when its size grows (meaning small
noise in the measured outputs would become a large error in the
estimation); so robustness decreases rapidly when the truncation
order N increases. In order to circumvent that, it is possible to
solve the linear problem Z = AY by using a Newton Recursive
or Lagrange Recursive method [20, Algorithm 4.6.1 and 4.6.2].

But in practice, this approach is still very sensitive to the choice of
amplitude factors αk. Indeed, for small amplitudes, higher orders
will be hidden in measurement noise, while high values of αk will
potentially overload the system, or simply lead it out of its Volterra
convergence radius.

Despite those disadvantages, this separation method has been
used intensively for simplifying identification process [13]; it is
generally used in frequency domain (the previous equations and
remarks remains valid) and jointly with frequency probing meth-
ods [10,11]; recently, a maximum order truncation estimation method
has been constructed from it [14]. In the following, this method
will be referred to as the Amplitude Separation (AS) method.

3. PHASE-BASED HOMOGENEOUS SEPARATION
METHOD

The starting point of the proposed separation method are the fol-
lowing remarks:
• using the AS method with factor 1 and −1, it is possible to

separate odd and even orders by inverting a mixing matrix A
with optimum condition number;

• multiplying a signal by amplitude factor−1 is equivalent to tak-
ing its opposite phase;

• thus, for a system truncated to orderN = 2, there exists a robust
separation method that relies only on phase deconstruction and
reconstruction between tests signals.

The main idea of this paper is to generalize the use of phase for ro-
bust separation method to Volterra systems with truncationN > 2.

3.1. Method for complex-valued input

This section proposes a theoretical separation method relying on
the use of complex signals u(t) ∈ C as system inputs.

3.1.1. Principle

Using complex signals, factors αk in the AS method are not lim-
ited to real scalar. So it would be possible to choose values which
only differs by their phase (e.g. are on the unit circle instead of
the real axis). Noticing that 1 and −1 are the two square root of
unity, a natural extension of the toy-method proposed for order-2
systems would be to take the N -th roots of unity as factors αk.
Choosing αk = wkN with wN = ej

2π
N , (8) becomes, for all time t:

z1

z2
...
zN

(t) =


wN w2

N . . . wNN

w2
N w4

N . . . w2N
N

...
...

. . .
...

wNN w2N
N . . . wN

2

N

 ·

y1

y2
...
yN

(t) , wN = ej
2π
N

Z(t) = WN · Y (t)
(9)

whereWN is the Discrete Fourier Transform (DFT) matrix of or-
der N (after a column and row permutation1). It is important to
note that here the DFT does not apply on time but on the homoge-
neous nonlinear orders.

Since the DFT is invertible, order separation is possible. Fur-
thermore, the DFT matrix is well-conditioned2, and the solution

1It suffices to consider vectors Ẑ(t) = [zN , z1, . . . , zN−1]
T and

Ŷ = [yN , y1, . . . , yN−1]
T to recover the usual DFT matrix.

2Its condition number is even optimum, since it is 1 for any order N .
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can be computed using the Fast Fourier Transform algorithm3. In
the following, this method will be referred to as the Phase Separa-
tion (PS) method.

3.1.2. Nonlinear order aliasing and rejection factor

Given the N -periodicity of N -th root of unity wn, the ouptut of a
Volterra system with no order truncation is:

V [wNu](t) =

N∑
n=1

wnN

∞∑
r=0

yn+rN (t) (10)

By applying the PS method, estimation Ỹ of nonlinear orders 1 to
N yields:

Ỹ (t) =


y1 +

∑
r=1 y1+rN

y2 +
∑
r=1 y2+rN
...

yN +
∑
r=1 yN+rN

(t) (11)

Equation (11) reveals that estimation ỹn is perturbed by a resid-
ual term

∑
r=1 yn+rN , which is structured as an aliasing with

respect to the nonlinear order: we4 call this effect the nonlinear
order aliasing.

For a band-limited input signal, presence of term yn+k in the
estimated signal ỹn means presence of higher-frequency compo-
nents than expected; therefore, this artefact can help detect a wrong
truncation order N . But moreover, (11) permits to create higher-
order rejection by using amplitude as a contrast factor. Taking
αk = ρwkN , where ρ is a positive real number less than 1, estima-
tion Ỹ using PS method becomes

Ỹ (t) =


ρ

0ρ2

0
. . .

ρN



y1 +

∑
r=1 ρ

rNy1+rN
y2 +

∑
r=1 ρ

rNy2+rN
...

yN +
∑
r=1 ρ

rNyN+rN

(t), (12)

creating a ρN ratio between desired signal yn(t) and the first per-
turbation yn+N (t). Thus parameters N and ρ enables to reach a
required Signal-to-Noise Ratio (SNR).

However, the need of complex input (and output) signals pre-
vents the use of PS method in practice.

3.2. Application to real-valued input

Consider the real signal v(t) constructed as follows:

v(t) = wu(t) + wu(t) = 2 Re[wu(t)] (13)

where w is a complex scalar on the unit circle (such that w =
w−1) and u(t) a complex signal. Therefore, using property (6),
and assuming symmetry for the operator Vn (meaning symmetry

3Even if the gain in time computation is not significant since generally
N is not a power of 2 and is not very high.

4We and the anonymous reviewer that proposed this relevant expres-
sion.

for kernel hn), the order n contribution is:

yn(t) = Vn[v, . . . , v](t)

= Vn
[
wu+ wu, . . . , w u+ wu

]
(t)

=

n∑
q=0

(
n

q

)
wn−qwqVn

[
u, . . . , u︸ ︷︷ ︸
(n−q) times

, u, . . . , u︸ ︷︷ ︸
q times

]
(t)

=

n∑
q=0

(
n

q

)
wn−2qMn,q(t) (14)

with Mn,q(t) = Vn
[
u, . . . , u︸ ︷︷ ︸
n−q

, u, . . . , u︸ ︷︷ ︸
q

]
(t) ∈ C. This term rep-

resents the homogeneous contribution of order n for an equivalent
multi-input system excited by combinations of u and u.

Remark 5. By symmetry of Vn, there is Mn,q(t) = Mn,n−q(t)
and term Mn,n/2(t), for even n, is real. Therefore, from sum over
q in (14), realness of yn(t) is recovered.

Remark 6. By their definition, termsMn,0(t) (respectivelyMn,n(t))
are homogeneous contribution of order n of the system excited by
the complex signal u(t) (resp. u(t)).

Equation (14) shows that, in the output term yn, there is more
than one characterising phase factor w. So PS method is not di-
rectly exploitable to separate terms yn.

3.3. Method for real-valued input

Difficulty analysis on an example: Consider a system truncated
to N = 3 with input the real signal described in (13); then, omit-
ting temporal dependency, its nonlinear orders are:

y1 = wM1,0 + w−1M1,1

y2 = w2M2,0 + 2M2,1 + w−2M2,2

y3 =w3M3,0 + 3wM3,1 + 3w−1M3,2 + w−3M3,3

(15)
Only 7 different phase terms appears (from w−3 to w3). Consider
a collection of K = 7 real signals vk(t) = wkK u(t) + wkK u(t),
where wK is the first K-th root of unity, and zk(t) = V [vk](t)
their corresponding output through the system. Then:

z1
z2
z3
z4
z5
z6
z7


(t)=WK ·



M2,1

M1,0 + 3M3,1

M2,0

M3,0

M3,3

M2,2

M1,1 + 3M3,2


(t) , (16)

whereWK is the DFT matrix5 of order K.
Therefore, by application of the PS algorithm (i.e. inversion

ofWK ) on this of signals zk, the right-hand side vector in (16) is
recovered. Further separation could be made using two different
amplitudes to discriminate between M1,0 and M3,1, and thus be
able to reconstruct nonlinear orders yn using (14).

5It is important to notice that the right-hand side vector has hermitian
symmetry, due to its Fourier Transform (the left-hand side) being real.
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Generalization: Using (14), it is possible to generalize phase
grouping shown in (15) as follows (see Appendix 7 for detailed
computation):

y(t) =
∑

−N≤p≤N
p even

wp
∑

1<|p|≤n≤N
n even

(
n
n−p
2

)
M
n,n−p

2
(t)

+
∑

−N≤p≤N
p odd

wp
∑

|p|≤n≤N
n odd

(
n
n−p
2

)
M
n,n−p

2
(t) (17)

So, by applying a PS algorithm of order K = 2N + 1, we can
separate the terms

Qp(t) =
∑

|p|≤n≤N
n≡p mod 2

(
n
n−p
2

)
M
n,n−p

2
(t) (18)

with −N ≤ p ≤ N . Then, application of the AS algorithm on
each Qp (with bN/2c amplitudes) gives all Mn,q terms; terms yn
are reconstructed using (14).

This concatenation of PS and AS algorithm constitutes the
proposed phase-based method, which will be referred to as Phase-
Amplitude Separation (PAS) method. As will be pointed out in
Section 4.3, it can be more interesting to use directly terms Mn,q

for identification, instead of nonlinear orders yn; this alternative
process will be referred to as raw-PAS (rPAS) method.

3.4. Condition number

In numerical analysis, condition number κ measures the method’s
sensibility to noise in the measured data; it only depends on the
solving method itself (the matrix to invert in linear problems), and
not the data it is applied to. In this section, condition number is
used to compare AS and PAS robustness6.

For AS method, amplitude factorsαk are chosen equally-spaced
in dB scale, with alternating signs:

α2p = γp−1 and α2p+1 = −α2p (19)

where γ is a chosen spacing gain.
Because the DFT matrix is optimally conditioned, PAS method

overall conditioning only depends on the K applications of AS
method. Amplitude factors are also chosen equally-spaced in dB
scale; the need to separate terms with same order-parity prevents
us from using alternating signs. Only the worst condition number
for all K sub-problems is reported.

Figure 1 presents conditioning for AS and PAS methods. For
all maximum order truncation and gain spacing, an improvement
from amplitude-based to phase-based method is visible. Further-
more, for negative gain spacing, optimum conditioning is divided
by a factor 2 between AS and PAS. But, for both methods, the same
behaviour when truncation order N increases is remarked (which
is unsurprising due to the fact that PAS relies partly on AS).

Those results indicates that PAS robustness to noisy measure-
ments should be better than AS.

6As PAS and rPAS methods share the same steps, their condition num-
ber are equal.

10 5 0 5 10

Gain spacing γ (dB)

101

102

103

C
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r 

Figure 1: Condition number κ = ‖A‖‖A−1‖ (Frobenius norm):
evolution w.r.t gain spacing γ and truncation orderN (3 to 6, from
bottom to top) for AS (solid line, × indicating minima) and PAS
(dashed line, • indicating minima) methods.

4. APPLICATIONS

In order to test and compare the different separation method, data
from simulation of a nonlinear device were used.

4.1. Simulation of a loudspeaker with nonlinear suspension

The simulated system was a loudspeaker with nonlinear suspen-
sion described by the modified Thiele & Small following equa-
tions:

u(t) = Rei(t) + L
di(t)

dt
+Bl

d`(t)

dt
(20a)

M
d2`(t)

dt2
= Bl i(t)−Rm

d`(t)

dt
−

3∑
n=1

kn`
n(t) (20b)

where u is the voltage at the loudspeakers terminals, i the current
flowing through it and ` the position of the diaphragm. The term∑3
n=1 kn`

n(t) corresponds to the nonlinear force that the suspen-
sion applies on the diaphragm.

Consider the state vector x =
[
i ` d(`)/dt

]T . Then, using
state-space formalism, the system of input u(t) and output i(t) is
written:{

ẋ = Ax+Bu+K2(x,x) +K3(x,x,x)
i = Cx

(21)

where ẋ indicates the temporal derivative of x, and:

A =


−Re

L
0 −Bl

L
0 0 1
Bl

M
− k1
M
−Rm

M

,B =

 1

L
0
0

,C =
[
1 0 0

]

and whereK2 etK3 are multilinear functions of x such that:

K2(a, b) =

 0
0

− k2
M
a2b2

 , and K3(a, b, c) =

 0
0

− k3
M
a2b2c2
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Re 5, 7 Ω Rm 4, 06 · 10−1 Nm−1s
L 1, 1 · 10−1 H k1 912, 3 kg · s−2

Bl 2, 99 NA−1 k2 611.5 kg ·m−1s−2

M 1, 9 · 10−3 kg k3 8, 0 · 107 kg ·m−2s−2

Table 1: Thiele & Small parameters of SICA loudspeaker model
Z000900, given by constructor [21] (apart from Bl and the kn,
which were measured experimentally).
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Figure 2: Total output and first three nonlinear orders yn of
the simulated loudspeaker for a cosinusoidal input of frequency
100 Hz and amplitude 10 V.

Simulations were made using numerical methods described in
Appendix 8, with parameters given in Table 1.

4.2. Error separation

Order separation method are compared using the relative error εn
of each order n for noisy measurements of system outputs, where

εn =
RMS(ỹn[k]− yn[k])

RMS(yn[k])
(22)

with yn the true nonlinear homogeneous contribution, ỹn their es-
timation, and RMS the standard Root-Mean Square measure.

Simulation were made at a sampling frequency of 20000 Hz,
and with a truncation order N = 5. All signals were 1 second
long.

Figure 2 shows the total output and first three nonlinear orders
of the system. Its linear behaviour is predominant: y1 is one (re-
spectively four) magnitude order above y3 (resp. y2). This large
difference of amplitude between signals y (or equivalently y1) and
y2 means that the quadratic order could be hidden by noise in rel-
atively high SNR.
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Figure 3: Relative error εn (in dB) of separation w.r.t. nonlinear
order n and SNR (80 dB, 60 dB and 40 dB from bottom to top)
for AS (solid line with ×) and PAS (dashed line with •) methods.
Input signals are linear sweep of amplitude 10 V going from 30 Hz
to 200 Hz.

Figure 3 compares the separation measure εn for both AS and
PAS methods applied to noisy output data with different SNR. Es-
timation on clean data output is not shown here; in this case, both
methods perform similarly and give the true homogeneous contri-
bution yn (within machine accuracy). The high values of relative
errors ε2 and ε4 is due to the smaller amplitude of signals y2 and y4
in respect to the other orders, which makes their estimation more
sensitive to measurement noise.

Furthermore, Figure 3 shows that PAS outperforms AS method
in presence of noise. For same order n and SNR, the gain in εn is
around 6 dB.

4.3. Kernel identification using order separation

4.3.1. Identification algorithms

The standard Volterra identification method used in this paper is
the Korenberg’s algorithm for Least-Squares problem (KLS) as de-
scribed in [6].

It consists of solving the following linear-in-the-parameters
problem:

y = Φf (23)

where:
• vector y = [y[0], . . . , y[L− 1]]T is the concatenation of all

output samples, with L the signal length (in samples);
• Φ = [φ[0], . . . ,φ[L− 1]]T is the input combinatorial matrix,

where vectorφ[k] regroups all cross-product u[k−k1] . . . u[k−
kn] of the input signal at time k (for all orders n);

• vector f is the concatenation of all kernels values (for all orders
n).

Using order separation (AS or PAS method), (23) is separated
into N smaller problems:

yn = Φnfn (24)

Identification is then carried on separately for each kernel; this
leads to AS-KLS and PAS-KLS algorithm.
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Figure 4: First and second-order kernels computed from (30) and (31) in Appendix 8.2.

Furthermore, using rPAS method, (23) is separated into the
following problems

Mn,q = Φn,qfn (25)

for n = 1, . . . , N and q = 1, . . . , bn/2c7. Identification is then
carried on separately for each couple (n, q); kernels coefficients
are taken as the mean of the bn/2c estimations. This gives the
proposed rPAS-KLS identification algorithm.

4.3.2. Identification results

The aforementioned identification methods were tested on the non-
linear loudspeaker, truncated to order N = 3.

Simulation were made at a sampling frequency of 1500 Hz.
Gaussian noise signals of amplitude 10 V and 2 second length
were used for input test signals. Kernel memory length was sup-
posed to be equal to M = 22 samples (equivalent to 14 ms mem-
ory).

First two kernels of the nonlinear loudspeaker are given in Fig-
ure 4. Both linear and quadratic kernels shows exponential-like
decay; the chosen memory length proves to be adequate at this
sampling rate.

For all algorithms, relative identification error (computed as
ξn = RMS

(
h̃n − hn

)
/RMS

(
hn
)

) are given in Figure 5.
When using clean output data, the addition of a prior order

separation stage before identification improves greatly overall es-
timation process: error is reduced of more than 30 dB for the first
order and 50 dB for the second. In this case, AS-KLS and PAS-
KLS performs similarly; this is due to the similar separation results
of AS and PAS methods with clean data.

Likewise, the better separation robustness of PAS over AS
(around 6 dB gain) induces PAS-KSL to be more robust to noise
than AS-KLS (around 2 dB gain).

7We consider only one case for the complex conjugates couples (n, q)
and (n, n− q).
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Figure 5: Relative error ξn (in dB) of identification w.r.t. or-
der n for all identification methods using clean and noisy data
(SNR = 80 dB)

Furthermore, for second and third-order, rPAS-KLS algorithm
offers a little improvement over PAS-KLS. This amelioration is
the direct consequence of using terms Mn,q rather than nonlinear
orders yn directly; indeed, averaging over all estimated fn,q for
identification of kernel hn can be seen as a way to artificially in-
crease the data size used for identification, thus leading to better
estimates.

The first two estimated kernels using rPAS-KLS on clean data
are shown in Figure 6. We can see that the second-order kernel,
which has a relative error ξ2 = −46 dB, is well-identified using
this method.
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Figure 6: First and second-order kernels estimated with rPAS-KLS.

5. CONCLUSIONS

In this paper, a new method of nonlinear homogeneous order sepa-
ration for Volterra series was proposed, based on phase dissimilar-
ity. This method has been shown to be better conditioned, and thus
more robust to noise, than amplitude-based separation algorithm.

Furthermore, two Volterra kernels identification methods were
constructed combining the proposed separation process and a Least
Squares-based identification algorithm from literature. Those meth-
ods have been shown to greatly improves kernel estimation.

Future works will be on the reproduction, with real signals, of
the product’s complex behaviour that enables usage of the theo-
retical PS method. An other interest would be to derive another
identification method from Korenberg’s algorithm that could be
used directly on the phase-grouped terms Qp, without needing to
use AS method for further separation.
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7. APPENDIX: DETAILED COMPUTATION OF (17)

Consider a system truncated to N = 3 with real input signal de-
scribed in (13). From (17), we have:

yn(t) =

n∑
q=0

(
n

q

)
wn−2qMn,q(t) (26)

So, using (1), the overall output of the system is:

y(t) =

N∑
n=1

yn(t)

=

N∑
n=1

n∑
q=0

(
n

q

)
wn−2qMn,q(t)

=
∑

1≤n≤N
n even

n∑
q=0

(
n

q

)
wn−2qMn,q(t)

+
∑

1≤n≤N
n odd

n∑
q=0

(
n

q

)
wn−2qMn,q(t)

=
∑

1≤n≤N
n even

∑
−n≤p≤n
p even

(
n

(n− p)/2

)
wpMn,(n−p)/2(t)

+
∑

1≤n≤N
n odd

∑
−n≤p≤n
p odd

(
n

(n− p)/2

)
wpMn,(n−p)/2(t)

by posing p = n− 2q. Taking into account the fact that both sum
are finite, it is possible to inverse their orders, and thus:

y(t) =
∑

−N≤p≤N
p even

wp

 ∑
1<|p|≤n≤N

n even

(
n

(n− p)/2

)
Mn,(n−p)/2(t)



+
∑

−N≤p≤N
p odd

wp

 ∑
|p|≤n≤N
n odd

(
n

(n− p)/2

)
Mn,(n−p)/2(t)


(27)

8. APPENDIX: SYSTEM NUMERICAL
APPROXIMATION

8.1. Numerical simulation

The input signal u(t) is approximated at sampling rate fs with a
zero-order holder; then, following the state-space representation in
(21), output current i at sample time l is given by:

i[l] =

N∑
n=1

Cxn[l] (28)

where xn are the states of nonlinear homogeneous order n; first
three orders are given by the following recursive equations:

x1[l + 1] = eATsx1[l] + ∆0Bu[l] (29a)

x2[l + 1] = eATsx2[l] + ∆0K2(x1[l],x1[l]) (29b)

x3[l + 1] = eATsx3[l] + ∆0K3(x1[l],x1[l],x1[l])

+ 2∆0K2(x1[l],x2[l])
(29c)

where Ts = 1/fs is the sampling time and ∆0 = A−1
(
eATs − I

)
is a bias term due to sampling.

8.2. Discrete-time kernel computation

Discrete-time kernels hn corresponding to the loudspeaker simu-
lation using (28) and (29) are given by:

hn[m1, . . . ,mn] =

N∑
n=1

Cgn[m1, . . . ,mn] (30)

where gn are the input-to-states kernels of order n; first three or-
ders are given by:

g1[m] = (1− δm,0)eATe(m−1)∆0 (31a)

g2[m1,m2] =

max{m1,m2}∑
l=0

eATel∆0K2(g1[m1 − l], g1[m2 − l])

(31b)

g3[m1,m2,m3] =

max{m1,m2,m3}∑
l=0

eATel∆0

(
K3(g1[m1 − l], g1[m2 − l], g1[m3 − l])

+ 2K2(g1[m1 − l], g2[m2 − l,m3 − l])

)
(31c)

with δm,n the Kronecker delta.
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