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Abstract: Bligh and Dyer (B & D) or Folch procedures for the extraction and separation of lipids
from microorganisms and biological tissues using chloroform/methanol/water have been used tens
of thousands of times and are “gold standards” for the analysis of extracted lipids. Based on the
Conductor-like Screening MOdel for realistic Solvatation (COSMO-RS), we select ethanol and ethyl
acetate as being potentially suitable for the substitution of methanol and chloroform. We confirm this
by performing solid–liquid extraction of yeast (Yarrowia lipolytica IFP29) and subsequent liquid–liquid
partition—the two steps of routine extraction. For this purpose, we consider similar points in the
ternary phase diagrams of water/methanol/chloroform and water/ethanol/ethyl acetate, both in the
monophasic mixtures and in the liquid–liquid miscibility gap. Based on high performance thin-layer
chromatography (HPTLC) to obtain the distribution of lipids classes, and gas chromatography
coupled with a flame ionisation detector (GC/FID) to obtain fatty acid profiles, this greener solvents
pair is found to be almost as effective as the classic methanol–chloroform couple in terms of efficiency
and selectivity of lipids and non-lipid material. Moreover, using these bio-sourced solvents as
an alternative system is shown to be as effective as the classical system in terms of the yield of lipids
extracted from microorganism tissues, independently of their apparent hydrophilicity.

Keywords: Bligh and Dyer; Folch; bio-sourced solvent; yeast; lipids

1. Introduction

Lipids from microorganisms’ matrices such as microalgae or yeasts are hydrophobic molecules
which are soluble in many organic solvents. They can be divided according to the polarity of
their head groups: neutral lipids (acylglycerols, free fatty acids, sterols, sterols esters, waxes and
hydrophobic pigments) [1] which are synthetized by the cells to store energy, and polar lipids
(phospholipids, glycolipids, polysaccharides and proteins) which are the matrix of the cellular
membrane. Estimation of the total lipids content in a microorganism sample is crucial for various
kinds of applications such as biodiesel [2], nutritional supplements [3], cosmetic [4], etc.
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The safest and nowadays most popular way to ensure that all of the cellular lipids are extracted is
to employ a ternary solvent composition including a polar as well as a non-polar solvent. The first step
is a solid–liquid extraction from an initial amorphous gel state, followed by a second liquid–liquid
partitioning step. In the second step, the initially extracted mixture of all biomolecules is separated
into two phases: an organic-rich phase (OR) containing the total lipids and a water-rich phase (WR)
containing others compounds (sugars, proteins, etc.).

The standard of these solvent mixtures is chloroform–methanol, described for the first time more
than 50 years ago by Folch [5,6] and Bligh and Dyer [7] (B & D) and cited more than 50,000 times
in the “experimental” section of papers describing the analytics of lipids and proteins extracted and
separated with high efficiency form micro-organisms.

The crucial point in the second step is the partial miscibility of the chloroform in the WR phase
and the water in the OR phase [8]. This ensures that all biomolecules, independent of their volume
and “hydrophilicity”, are solubilized either in the OR or in WR coexisting phases.

The sample of biological origin is mixed with water, methanol and chloroform in solvent ratios
to form a monophasic ternary solvent mixture. In this region of the phase diagram, no structuring
appears and predictions of models based on random phase approximation such as COSMO-RS are
expected to be good. By adding a sufficient amount of water, a biphasic system is then spontaneously
formed leading to the partitioning of proteins [9], carbohydrates [10] and phospholipids [11] into the
WR-rich upper-layer (essentially water–methanol) and non-polar components such as most lipids into
a hydrophobic, chloroform-rich lower layer [12]. These two layers are in equilibrium via exchange
through the meniscus, i.e., water, chloroform as well as ethanol chemical potentials are the same in the
two phases. Both layers are nanostructured close to a critical point. Further, the WR layer requires
less cost in free energy to insert proteins, while the OR layer is an efficient host for all types of lipids
present, independent of their intrinsic hydrophilicity.

These above-mentioned gravimetric methods are still widely used for the estimation of lipids
in hospital, pharmaceutical, food, or biofuel laboratories [13]. However, these methods have serious
disadvantages in terms of safety, especially with chloroform, which is highly toxic and carcinogenic [11],
making it inappropriate for large-scale application.

In order to improve these basic methods of Folch or B & D, many researchers adopted
modifications concerning the substitution of hazardous solvents. Atsushi et al. were the first
to substitute the chloroform–methanol system by hexane–isopropanol mixtures [14]. Despite this
initial breakthrough, the results showed a lower efficiency. Several years later, more studies have
been pursued by several teams such as Molina Grima [15], Lee [16], Sheng [17], Caprioli [18]
and many others, that have shown the effectiveness of many promising solvents to replace the
chloroform–methanol mixture. However, these methods still remain toxic to human health and the
environment. Nowadays, scientific and industrial research laboratories face the challenge of finding
an appropriate extraction method with minimum energy consumption and greener solvents [19] such
as the last work of the research laboratory of Wallenberg using heptane and ethyl acetate as alternative
solvents [20]. Since the Folch as well as the Bligh and Dyer methods for total determination of lipids
were published, a large number of publications appeared showing modifications or intensifications
of both methods. They have been reviewed by Iverson and coworkers [21]. Among them, the use
of ultrasound [1,22–24], microwaves [16,22,23,25,26], heat [25,27], pressure [27,28] or beads [24,27]
were often raised to improve the efficiency of lipid recovery from various tissues such as bacteria [23],
yeasts [29] or microalgae [30] (supplementary material). However, all these methods were using
solvents of fossil origin issued from petrol.

From the point of view of environmental protection and the development of green chemistry,
toxic petroleum solvents will have to be replaced in the future by bio-sourced solvents
(or “bio-solvents”) [31].
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In this paper, we compare the performances of several alternative solvents to substitute
chloroform–methanol mixtures used in the Folch and B & D protocols for the extraction of
Yarrowia lipolytica (Y.L), a well-known oleaginous organism proven to be suitable for many different
industrial processes such as the production of biodiesel fuel, functional fatty acids and carotenoids.
First, the theoretical approach of the conductor-like screening model for realistic solvation (COSMO-RS)
was used to simulate the relative solubility of the solutes (free fatty acids (FFAs), diglycerides (DAGs),
triglycerides (TAGs), phospholipids (PLs), proteins, polysaccharides, glucose, amino acids and sterols
from the microorganism sample) in several selected alternative solvents: 2-methyltetrahydrofuran
(MeTHF), cyclopentyl methyl ether (CPME), ethyl acetate (EtOAc), ethyl lactate, dimethyl carbonate
(DMC), p-cymene, d-limonene and α-pinene as potential substitutes of chloroform; and ethanol (EtOH)
and isopropanol (IPA) to substitute methanol.

In the course of further selection of solvents, we keep the common strategy of Folch and B & D
protocols which are based on two-step solid/liquid and then liquid/liquid extraction methods with
partition of hydrophobic lipids to an organic solvent-rich ternary fluid phase, while unwanted
compounds are partitioned in the water-rich phase. Lipids extracted in both phases are analyzed by
high thin layer chromatography (HPTLC) to obtain quantities of extracted lipids by lipid classes and
by gas chromatography coupled with a flame ionization detector (GC/FID) in order to obtain the fatty
acid profiles. Sugars and proteins are quantified by the UV spectrometry method.

2. Results and Discussion

2.1. Bligh and Dyer: Principle

The B & D method has been considered as the standard method for the determination of total lipids
in biological tissues such as microorganisms. Methanol, chloroform and water are added to the sample
in a two-step extraction and, after phase separation, lipids are quantified in the chloroform phase.

The compounds with a known amount of water (80%) are dissolved in this binary system and
are then separated by transition from the monophasic system to the biphasic system induced by
the addition of water: the final composition is located inside the miscibility gap: two samples with
compositions given by the points at the end of the tie-line coexist [32]. The partition of compounds
between the WR and the OR phases can be estimated in a first approximation by Hansen’s solubility
parameters as a roughly quantitative description of “like dissolves like”; the proteins and sugars
are preferably partitioned into the WR layer and lipids into the OR layer. The adding of potassium
chloride in the separation step can modify the distribution of lipids between the two phases and is
sometimes considered as a substance that favours lipid exchange between the aqueous phase and the
organic phase. This phenomenon is supposed to be due to cations generated by the salts (KCl) which
decreased the dissociation of lipids by a mass action effect, which, therefore, shift lipids to the OR
phase, keeping salts in the WR phase [6]. It can be also considered as a typical salting-out effect.

Nowadays, the use of hazardous and toxic solvents such as chloroform and methanol in the
chemical sector (laboratories and industry) is considered as a very important problem for the health
and safety of workers and environmental concerns. The green chemistry approach aims to substitute
toxic solvents by greener alternatives. In the case of extraction, chlorinated solvents and methanol
are two typical examples of such problematic solvents. Consequently, investigations of alternative
solvents have been done following the same principles as for conventional B & D extraction.

2.2. Strategy for Selection of Bio-Sourced Solvents: COSMO-RS Approach

In the present case, Y.L yeast biomass was used as the lipid matrix. Thus, molecules synthetized
by Y.L IFP29 were determined thanks to a preliminary study [11] performed with the same yeast.
A simulation with this software was conducted to determine the solubility of the synthetized molecules
by yeasts such as free fatty acids (oleic acid, linoleic acid, stearic acid), triglycerides, diglycerides, polar
lipids (phosphatidylethanolamine, phosphatidylcholine) [11], sterols (lanosterol and ergosterol) [13],
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polysaccharides (1,3 bd glucan, 1,4 bd glucan and chitin) [33,34], amino acids (arginine and histidine)
and sugars (glucose), in the collection of solvents considered. Regarding the results given by
COSMO-RS predictions of convenient solvents, two of them were selected: isopropanol and ethanol.
Bio-isopropanol derived from E. coli bacteria via fermentation [35], allows the solubilization of almost
all kinds of model compounds in contrast to ethanol, which is selective only towards polar lipids and
sterols, polysaccharides, glycerol and amino acids. Moreover, ethanol can be obtained from agricultural
resources via fermentation thanks to many bacteria [36–38].

Eight alternative solvents were selected to replace chloroform: ethyl acetate, 2-methyltetrahydrofuran
(MeTHF), cyclopenthylmethylether (CPME), dimethylcarbonate (DMC), ethyl lactate, α-pinene,
d-limonene and p-cymene. A priori, the best candidate should have polarity properties similar
to chloroform. However, several additional properties have to be considered further to solubility, such
as volatility, viscosity, energy required for elimination [39] and ability to form a two-phase system with
water. According to these requirements, ethyl acetate, MeTHF and CPME turned out to be the most
appropriate alternative solvents. However, although CPME can be considered as a “greener” solvent
compared to chloroform, because it is in agreement with green chemistry principles 1, 5 and 12 [40],
it is not bio-sourced [41]. Ethyl acetate and MeTHF forming a ternary system with water, are able to
create a biphasic system under specific conditions and are considered as being bio-sourced solvents.
According to COSMO-RS simulations, shown in Table 1, MeTHF is not selective enough for proteins,
polysaccharides and glucose. So, according to this theoretical work, ethyl acetate was considered to be
the most appropriate solvent to replace chloroform.

2.3. Partition of Macro-Constituents from Y.L Yeast into Pure Solvents

In this part, the solubility of constituents from Y.L yeast such as lipids, proteins and sugars was
studied in each pure solvent of the B & D procedure and bio-sourced solvents as pre-selected based on
the computational study with COSMO-RS: ethyl acetate and ethanol.

According to Figure 1, chloroform and ethyl acetate phases contain mainly lipids (respectively 84%
and 63%) and solubilize, in smaller amounts, proteins (4% and 10%) and sugars (6% and 33%).
These results show that chloroform is more selective towards lipids than ethyl acetate.

Ethanol and methanol are respectively mixed in the aqueous phases; they solubilize sugars
(respectively, 24% and 37%), proteins (44% and 39%) and lipids (32% and 24%) such as polar lipids and
free fatty acids. The solubility of lipids in methanol or ethanol is lower than in chloroform or in ethyl
acetate, but higher for glucose and proteins.

Water extracts about 43% of proteins, 44% of glucose and 13% of lipids (being nonpolar, lipids are
hardly solubilized).

These results are in good agreement with the “like dissolves like” empirical rule. It is based on
the polarity of the systems; polar molecules dissolve in polar solvents (alcohol, water) and non-polar
solvent molecules in non-polar solvents.

As shown in the Table 1, no significant differences exist between the theoretical predictions and
the experimental results. In both cases, ethyl acetate and chloroform have a high solubility power
for lipids. Moreover, ethyl acetate extracts glucose (33%), which was also predicted by COSMO-RS.
According to simulations, ethanol and methanol are less efficient than other solvents (chloroform and
ethyl acetate) to solubilize lipids, which was experimentally confirmed by lower lipid extraction
yields. Concerning water, the experimental results confirm the expected high solubility of proteins and
glucose, which is also consistent with the predicted COSMO-RS values. Furthermore, as also expected
and predicted, water solubilizes 250 times less lipids than the others solvents investigated.
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Table 1. Conductor-like Screening MOdel for realistic Solvatation (COSMO-RS) results; simulation of modeled molecules in several alternative solvents for the
substitution of chloroform and methanol. Green (0), yellow (−0.1 ≤ x ≤ −0.99), red (−1 ≤ x ≤ −5).

Solvents/Molecules TAG
LLL

TAG
LOO

TAG
OOO

DAG
LGL

DAG
LGO

DAG
OGO

FFA18
1n9

FFA18
2n6

FFA
16

PC
LL

PC
OL

PE
LL

PE
OL Lanosterol Ergosterol 1.6 bd

Glucan
1.4 bd

Glucan Chitine Glycerol Histidine Arginine Glucose

Water −23.96 −24.57 −24.55 −15.09 −17.26 −16.23 −8.18 −7.99 −7.67 −7.86 −5.92 −14.56 −14.13 −10.05 −9.19 0.00 −1.01 −0.21 0.00 0.00 0.00 0.00
Methanol −3.97 −4.36 −4.39 0.00 −2.73 −1.98 −0.13 −0.26 −0.30 0.00 0.00 −0.11 −0.08 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Ethanol −2.11 −2.41 −2.40 0.00 −0.99 −0.11 −0.10 −0.13 0.12 0.00 0.00 −0.27 −0.16 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Isopropanol 0.00 0.00 0.00 −0.19 −0.07 −0.20 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Chloroform 0.00 0.00 0.00 0.00 0.00 0.00 −0.39 −0.17 −0.29 0.00 0.00 0.00 0.00 0.00 −0.22 0.00 −3.65 0.00 0.00 0.00 0.00 −4.66
Ethyl acetate 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 −7.86 −5.92 −14.56 −14.13 −17.48 −20.22 0.00

MeTHF 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
CPME 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 −0.95 −0.21 0.00 0.00 0.00 0.00 −2.25 0.00 0.00 0.00 0.00 −3.08 0.00
DMC −0.17 −0.10 −0.10 −0.10 −0.24 −0.19 −0.10 0.00 −0.20 0.00 0.00 −0.65 −0.21 −0.09 −0.06 −0.17 0.00 0.00 0.00 −0.28 −0.20 0.00

Ethyl lactate −2.71 −3.24 −3.24 0.00 −1.60 −0.09 −0.15 −0.04 −0.14 0.00 0.00 −0.07 −0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
α−Pinene 0.00 0.00 0.00 0.00 −0.19 −0.17 0.00 0.00 0.00 −3.52 −4.56 0.00 0.00 0.00 0.00 −9.94 0.00 0.00 0.00 0.00 0.00 0.00

d−Limonene 0.00 0.00 0.00 −0.20 −0.10 −0.37 0.00 0.00 0.00 −2.93 −3.97 0.00 0.00 −0.07 0.00 −9.29 −8.71 −7.64 −5.11 −4.85 −7.25 −7.55
p−Cymene 0.00 0.00 0.00 −0.17 −0.14 −0.14 0.00 0.00 0.00 −2.21 −3.40 0.00 0.00 −0.04 0.00 −8.92 −8.42 −7.31 −4.96 −4.56 −6.96 −7.37

Triglycerides: TAG LLL (R1: C18:2n-6, R2: C18:2n6, R3: C18:2n-6), TAG LOO (R1: C18:2n-6, R2: C18:1n9, R3: C18:1), TAG OOO (R1: C18:1n9, R2: C18:1n9, R3: C18:1n9); Diglycerides: DAG LGL
(R1: C18:2n6, R2: C18:2n6), DAG LGO (R1: C18:2n6, R2: C18:1n9), DAG OGO (R1: C18:1n9, R2: C18:1n9); Free Fatty Acids: FFA 18:1n9, FFA 18 2n6 (R1: C18:2n6), FFA 16 (R1: C18:2n6);
Phosphatidylethanolamine: PE LL (R1: C18:2n-6, R2: C18:2n6), PE LO (R1: C18:1n9, R2: C18:2n-6); Phosphatidylcholine: PC LL (R1: C18:2n-6, R2: C18:2n6), PC LO (R1: C18:1n9, R2: C18:2n-6);
Sterols:Lanosterol, Ergosterol. Polysacharides: 1,6 bd, glucan, 1,4 bd, glucan, chitine. Glycerol. Amined acids: Histidine, Arginine. Sugar: Glucose.
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Figure 1. Initial test of solubilities in pure solvents. Relative distribution (weight) of different extracted
compounds (lipids, proteins and sugars) in the pure solvents.

2.4. Evaluation of Lipids Extraction from Y.L with B & D Solvent Pair versus the Alternative Solvent Pair

Yarrowia lipolytica yeast was extracted in two different ways: with chloroform–methanol–water
which is the classical B & D method, and with ethyl acetate/ethanol/water which is the alternative
mixture with different compositions (shown in ternary diagram with blue points).

The purpose of this part is to define the best proportion of mixtures which can extract all lipids.
Therefore, three types of extractions were carried out. The first type of extraction was done with wet
yeast from the first stage, the second one was performed with dried yeast and the third extraction
was performed directly with compositions located in the miscibility gap of the ternary diagram
(12′, 13′ and 14′ for the classical system and L, M and N for the alternative system).

2.4.1. Evaluation of Total Lipid Contents

The results obtained by gas chromatography give the lipid content in only the OR phase, while the
gravimetric method gives the overall content of the extract (proteins, lipids, sugars . . . ). The results
obtained by the two methods can be compared to define the purity (only lipids) of the extract.
According to our results, the amounts detected by the gravimetric method and gas chromatography
are equivalent. As a consequence, the organic extracts found in the OR phase are almost pure lipids,
therefore both ethyl acetate and chloroform are sufficiently selective to ensure reliable analytics.

The effect on Yarrowia lipolytica lipid extraction is shown in Figure 2 and Tables 2 and 3. The highest
yield was 14.85%, as obtained with the classical method of B & D with a ratio 2:1 methanol:chloroform
(v:v), although other compositions (points 8, 9, G, H, J, K) show comparable yields. When the percentage
of water increases, yields decrease (see points 4–7). The highest yield is for the composition of point
7 (14.12%) with a ratio of chloroform/methanol/water of 56.25/37.5/6.25. For the extraction with dry
yeast (point 8–11), the yields are similar; the best ratio was 62.5% of chloroform to extract almost all
lipids present in the biomass.

On the other hand, biphasic systems are not efficient; this may be explained by the heterogeneity
of the mixture, which obviously has a low extraction power of molecules.

Regarding the experimental results with the greener system, the yield for the composition
of point G was 14.35% with a ratio of 67/30/3 in ethyl acetate/ethanol/water (2/1/0.08 v/v/v).
Similar to the classical system, the yields for points I to J were almost similar, so a ratio of
75/20/0 of ethyl acetate/ethanol/water was enough to extract 83% of all lipids. Biphasic systems
extract only a maximum of 59% of total lipids. These biphasic systems are not optimized for
a solid–liquid extraction.
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The fatty acids profiles obtained with both systems are similar. Oleic acid (C18:1), linoleic acid
(C18:2n6) and palmitic acid (C16) were mainly present in microbial oil and represented at least 90% of
the total extract (respectively 50% of C18:1, 30% of C18:2n6 and 10% of C16:0). Palmitoleic acid (C16:1)
and stearic acids were present in minor amounts. The detailed composition for each extract is reported
in Tables 2 and 3.

Diphasic systems are inefficient in the solid–liquid solubilization step while they are more efficient
in the second step for liquid–liquid partition. This basic principle is common to Bligh and Dyer and to
the alternative safe solvent mixtures of ethanol/ethyl and acetate/water that we propose here.
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Figure 2. Extraction yields (g for 100 g of dry matter (DM)): Results of different extractions realized with
the chloroform–methanol–water system and with the ethyl acetate–ethanol–water system, given by the
gravimetric method and gas chromatography compared to the Bligh and Dyer reference method (1959).
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Table 2. Crude lipids, distribution of lipid classes, fatty acids, proteins and glucose compositions of extracts (organic and aqueous phases) obtained by extractions with
different ratios of classical solvents. Lipid yields and gravimetric yields (g per 100 g of dry matter), lipid classes and fatty acids compositions (relative percentages).
Proteins and sugars yields in g per 100 g of dry matter.

Compositions 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Lipids yieds by GC 14.55 ± 0.12 11.94 ± 0.52 6.25 ± 0.12 4.32 ± 0.15 5.31 ± 0.23 11.08 ± 0.24 14.12 ± 0.89 13.77 ± 0.56 13.45 ± 0.26 13.62 ± 0.27 13.39 ± 0.85 6.51± 0.07 9.51 ± 0.23 18.50 ± 0.75
Lipids yields by gravimetry 14.85 ± 0.10 9.12 ± 0.35 3.5 ± 0.20 4.85 ± 0.12 5.42 ± 0.17 12.25 ± 0.18 14.83 ± 0.42 14.25 ± 0.21 13.89 ± 0.14 14.63 ± 0.17 13.95 ± 0.15 7.02 ± 0.16 10.52 ± 0.24 9.25 ± 0.36

Lipid classes composition (%)
FFA: Free fatty acid 58.69 ± 0.98 57.89 ± 2.75 57.07 ± 0.40 58.96 ± 0.49 58.69 ± 2.13 57.23 ± 1.07 58.93 ± 2.11 58.45 ± 1.04 57.36 ± 1.21 61.23 ± 1.27 58.23 ± 1.40 58.52 ± 1.25 57.85 ± 1.74 58.63 ± 2.36
TAG: Triacylglycerol 20.03 ± 0.52 21.23 ± 1.02 20.96 ± 2.3 22.36 ± 1.02 23.78 ± 1.58 22.45 ± 1.82 21.36 ± 1.02 19.87 ± 0.95 18.65 ± 1.24 16.20 ± 1.52 18.25 ± 1.75 22.52 ± 1.36 20.60 ± 1.95 17.81 ± 1.52
DAG: Diacylglycerol 15.45 ± 0.23 15.26 ± 0.82 15.36 ± 0.47 14.56 ± 1.18 12.58 ± 0.40 14.25 ± 1.11 13.69 ± 1.36 14.25 ± 1.12 14.74 ± 1.23 14.10 ± 1.45 15.24 ± 1.91 13.63 ± 1.14 15.25 ± 1.02 14.63 ± 1.41
PE: Phosphatdylethanolamine 2.58 ± 0.25 2.58 ± 0.80 2.85 ± 0.40 2.47 ± 0.18 4.16 ± 0.42 3.81 ± 0.05 4.76 ± 0.05 3.69 ± 0.12 4.43 ± 0.14 3.69 ± 0.31 3.62 ± 0.25 3.56 ± 0.32 3.58 ± 012 4.52 ± 0.36
PC: Phosphatydylcholine 0.15 ± 0.003 0.23 ± 0.008 0.24 ± 0.003 0.54 ± 0.006 0.24 ± 0.008 0.21 ± 0.007 0.29 ± 0.002 0.17 ± 0.007 0.01 ± 0.001 0.2 ± 0.02 0.14 ± 0.01 0.25 ± 0.01 0.14 ± 0.10 0.96 ± 0.01
PI: Phosphatydylinositol 3.10 ± 0.01 2.81 ± 0.94 3.52 ± 0.05 1.11 ± 0.08 0.55 ± 0.001 2.05 ± 0.008 0.97 ± 0.004 3.57 ± 0.004 4.81 ± 0.20 4.58 ± 0.041 4.52 ± 0.43 1.52 ± 0.04 2.58 ± 0.21 3.45 ± 0.02

Fatty acids composition (%)
C16 10.26 ± 0.02 10.20 ± 0.02 10.49 ± 0.08 11.18 ± 0.07 10.00 ± 0.06 9.89 ± 0.05 10.84 ± 0.04 9.69 ± 0.12 10.62 ± 0.19 11.79 ± 0.03 9.60 ± 0.03 10.03 ± 0.01 9.37 ± 0.06 10.50 ± 0.06
C18 3.25 ± 0.085 3.49 ± 0.005 3.52 ± 0.027 3.76 ± 0.023 3.59 ± 0.018 3.53 ± 0.02 3.91 ± 0.021 3.55 ± 0.05 3.33 ± 0.21 4.11 ± 0.013 3.36 ± 0.014 2.94 ± 0.004 3.55 ± 0.023 3.33 ± 0.019
C16:1n9 4.28 ± 0.005 5.84 ± 0.009 3.98 ± 0.11 5.47 ± 0.009 5.36 ± 0.008 5.42 ± 0.03 5.48 ± 0.096 5.35 ± 0.07 5.57 ± 0.050 4.11 ± 0.041 5.32 ± 0.013 6.20 ± 0.007 5.40 ± 0.036 5.63 ± 0.023
C18:1n9 50.36 ± 0.07 49.81 ± 0.07 50.92 ± 0.39 50.78 ± 0.81 51.39 ± 0.11 51.20 ± 0.30 52.91 ± 0.72 51.26 ± 0.65 51.23 ± 0.10 52.67 ± 0.25 48.37 ± 0.17 49.16 ± 0.062 51.61 ± 0.32 49.79 ± 0.29
C18:2n6 28.39 ± 0.036 29.29 ± 0.04 29.80 ± 0.22 27.44 ± 0.76 28.44 ± 0.07 28.71 ± 0.18 25.76 ± 1.16 28.82 ± 0.35 27.52 ± 0.40 24.85 ± 0.57 28.12 ± 0.093 30.18± 0.0038 28.80 ± 0.17 29.38 ± 0.14
C18:3n6 3.46 ± 0.036 1.35 ± 0.002 1.25 ± 0.008 1.34 ± 0.01 1.19 ± 0.007 1.21 ± 0.007 1.07 ± 0.054 1.31 ± 0.027 1.52 ± 0.014 1.00 ± 0.028 5.20 ± 0.029 1.47 ± 0.001 1.24 ± 0.008 1.33 ± 0.013

Proteins yields (%)
Aqueous phases 0.038 ± 0.001 0.328 ± 0.020 0.327 ± 0.030 0.158 ± 0.002 0.175 ± 0.015 0.25 ± 0.023 0.296 ± 0.021 0.314 ± 0.020 0.294 ± 0.025 0.290 ± 0.021 0.284 ± 0.021 0.0195 ± 0.001 0.012 ± 0.001 0.041 ± 0.001

Organic phases 0.0036 ±
1.10 × 10−4

0.0058 ±
1.10 × 10−4

0.0048 ±
1.10 × 10−4

0.0087 ±
1.10 × 10−4

0.0084 ±
1.10 × 10−4

0.0053 ±
1.10 × 10−4

0.0039 ±
1.10 × 10−4

0.0021 ±
1.10 × 10−4

0.015 ±
1.10 × 10−4

0.021 ±
1.10 × 10−4

0.0007 ±
1.10 × 10−4

0.0002 ±
1.10 × 10−4

0.00036 ±
1.10 × 10−4

0.00025 ±
1.10 × 10−4

Sugars yields (%)
Aqueous phases 0.17 ± 0.010 2.12 ± 0.17 2.23 ± 0.15 2.02 ± 0.18 2.06 ± 0.14 1.97 ± 0.12 1.85 ± 0.17 2.06 ± 0.10 2.04 ± 0.11 2.15 ± 0.14 2.08 ± 0.20 1.33 ± 0.04 0.74 ± 0.01 0.32 ± 0.02
Organic phases 0.13 ± 0.01 0.03 ± 0.001 0.025 ± 0.002 0.023 ± 0.002 0.13 ± 0.001 0.23 ± 0.012 0.12 ± 0.014 0.14 ± 0.017 0.19 ± 0.012 0.02 ± 0.001 0.13 ± 0.02 0.28 ± 0.014 0.08 ± 0.001 0.14 ± 0.001
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Table 3. Crude lipids, distribution of lipid classes, fatty acids, proteins and glucose compositions of extracts (organic and aqueous phases) obtained by extractions with
different ratios of alternative solvents. Lipid yields and gravimetric yields (g per 100 g of dry matter), lipid classes and fatty acids compositions (relative percentages).
Proteins and sugars yields in g per 100 g of dry matter.

Compositions A B C D E F G H I J K L M N

Lipids yieds by GC 13.51 ± 0.09 11.44 ± 0.13 4.52 ± 0.17 6.78 ± 0.52 11.45 ± 0.12 13.53 ± 0.36 14.35 ± 0.63 14.38 ± 12 14.15 ± 0.15 14.24 ± 0.19 14.18 ± 0.13 5.63 ± 0.25 7.58 ± 0.36 8.69 ± 0.50
Lipids yields by gravimetry 14.03 ± 0.15 9.53 ± 0.48 5.03 ± 0.38 7.25 ± 0.12 11.97 ± 0.21 14.25 ± 0.46 14.75 ± 0.13 14.65 ± 0.23 14.28 ± 0.60 14.86 ± 0.64 14.52 ± 0.42 6.96 ± 0.31 7.86 ± 0.52 9.19 ± 0.07

Lipid classes composition (%)
FFA: Free fatty acid 59.84 ± 1.52 57.23 ± 2.8 58.62 ± 1.58 58.69 ± 2.53 57.85 ± 1.69 57.37 ± 1.52 58.06 ± 2.12 59.36 ± 1.58 57.38 ± 3.69 57.89 ± 1.88 57.43 ± 1.76 59.56 ± 1.97 59.63 ± 1.45 58.67 ± 1.47
TAG: Triacylglycerol 18.26 ± 0.85 19.20 ± 1.96 20.52 ± 1.02 20.41 ± 1.32 20.33 ± 2.47 19.78 ± 1.75 19.43 ± 1.19 19.85 ± 0.74 21.03 ± 2.12 18.55 ± 1.23 21.81 ± 2.15 18.56+ ± 1.41 16.57 ± 1.41 17.85 ± 1.20
DAG: Diacylglycerol 12.30 ± 1.07 14.85 ± 0.89 15.69 ± 0.47 12.64 ± 1.21 13.67 ± 0.21 14.16 ± 1.03 16.20 ± 1.24 13.60 ± 1.23 12.76 ± 1.12 15.23 ± 1.45 12.87 ± 1.17 13.65 ± 0.55 14.78 ± 0.51 14.52 ± 0.57
PE: Phosphatdylethanolamine 4.58 ± 0.35 3.96 ± 0.32 3.56 ± 0.21 3.30 ± 0.15 3.54 ± 0.12 3.59 ± 0.07 4.01 ± 0.40 3.12 ± 0.21 3.55 ± 0.12 2.63 ± 0.23 4.25 ± 0.12 4.58 ± 0.12 3.65 ± 0.14 4.25 ± 0.12
PC: Phosphatydylcholine 0.33 ± 0.01 0.32 ± 0.01 0.07 ± 0.001 0.05 ± 0.001 0.03 ± 0.001 0.12 ± 0.011 0.45 ± 0.010 0.49 ± 0.041 0.23 ± 2.58 0.14 ± 0.012 0.12 ± 0.013 0.02 ± 0.0018 0.5 ± 0.04 0.08 ± 0.007
PI: Phosphatydylinositol 4.69 ± 0.32 4.44 ± 0.12 1.54 ± 0.05 4.91 ± 0.31 4.58 ± 0.40 4.98 ± 0.48 1.85 ± 0.12 3.58 ± 0.21 5.05 ± 0.54 5.56 ± 0.52 3.52 ± 0.24 3.63 ± 0.21 4.87 ± 0.31 4.63 ± 0.41

Fatty acids composition (%)
C16 9.44 ± 0.48 10.72 ± 0.03 12.20 ± 0.14 7.37 ± 0.77 9.60 ± 0.091 9.42 ± 0.033 10.32 ± 0.005 9.16 ± 0.05 9.70 ± 0.093 8.58 ± 0.092 9.02 ± 0.003 10.80 ± 0.45 9.85 ± 0.065 9.85 ± 0.003
C18 2.92 ± 0.17 3.33 ± 0.01 3.27 ± 0.006 3.43 ± 0.032 3.47 ± 0.028 3.49 ± 0.010 3.96 ± 0.008 3.52 ± 0.023 3.01 ± 0.036 3.52 ± 0.066 3.49 ± 0.001 4.04+ ± 0.13 3.43 ± 0.024 3.43 ± 0.001
C16:1n9 4.77 ± 0.33 5.96 ± 0.020 6.24 ± 0.078 6.16 ± 0.042 5.46 ± 0.047 5.42 ± 0.013 5.43 ± 0.096 5.36 ± 0.035 5.62 ± 0.024 4.67 ± 0.035 5.31 ± 0.002 5.60 ± 0.26 5.26 ± 0.024 5.26 ± 0.002
C18:1n9 47.84 ± 2.01 50.08 ± 0.16 48.45 ± 0.15 61.65 ± 0.43 51.45 ± 0.44 51.64 ± 0.16 53.61 ± 0.62 51.78 ± 0.35 51.02 ± 0.54 56.08 ± 1.99 53.61 ± 0.11 47.89+ ± 0.60 51.36 ± 0.30 51.36 ± 0.119
C18:2n6 32.95 ± 0.59 28.67 ± 0.089 28.53 ± 0.12 30.08 ± 0.19 28.76 ± 0.23 29.78 ± 0.06 25.42 ± 1.06 28.90 ± 0.22 28.66 ± 0.30 26.07 ± 0.23 27.45 ± 0.039 30.38 ± 1.51 28.85 ± 0.16 28.85 ± 0.039
C18:3n6 2.06 ± 0.031 1.21 ± 0.003 1.29 ± 0.007 1.29 ± 0.007 1.23 ± 0.009 1.23 ± 0.002 1.24 ± 0.025 1.25 ± 0.014 1.99 ± 0.074 1.05 ± 0.003 1.09 ± 0.005 1.27 ± 0.069 1.23 ± 0.005 1.23 ± 0.006

Proteins yields (%)
Aqueous phases 0.052 ± 0.001 0.28 ± 0.012 0.326 ± 0.013 0.10 ± 0.009 0.175 ± 0.015 0.205 ± 0.015 0.325 ± 0.012 0.321 ± 0.014 0.324 ± 0.020 0.314 ± 0.012 0.359 ± 0.034 0.211 ± 0.020 0.183 ± 0.012 0.103 ± 0.001

Organic phases 0.0021±
1.10 × 10−4

0.0014 ±
10 × 10−4

0.0026 ±
2.10 × 10−4

0.002 ±
1.10 × 10−4

0.015 ±
7.10 × 10−4

0.0048 ±
1.10 × 10−4

0.0015 ±
1.10 × 10−4

0.003 ±
1.10 × 10−4

0.0058 ±
1.10 × 10−4

0.004 ±
1.10 × 10−4

0.0042 ±
1.10 × 10−4

0.0036 ±
1.10 × 10−4

0.02 ±
1.10 × 10−4

0.00025 ±
1.10 × 10−4

Sugars yields (%)
Aqueous phases 1.13 ± 0.014 1.10 ± 0.09 2.15 ± 0.15 2.02 ± 0.20 1.95 ± 0.14 2.05 ± 0.12 2.03 ± 0.10 2.12 ± 0.18 1.93 ± 0.21 1.97 ± 0.16 2.04 ± 0.17 0.87 ± 0.074 1.61 ± 0.01 1.69 ± 0.012
Organic phases 0.20 ± 0.001 0.10 ± 0.001 0.20 ± 0.002 0.042 ± 0.001 0.023 ± 0.003 0.021 ± 0.001 0.052 ± 0.001 0.045 ± 0.004 0.036 ± 0.001 0.025 ± 0.001 0.021 ± 0.001 0.085 ± 0.001 0.023 ± 0.002 0.20 ± 0.001
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2.4.2. Lipid Classes of Y.L Yeast

With the HPTLC technique, lipids can be detected qualitatively and quantitatively in each
phase. From HPTLC plates in Figures 3 and 4 and Tables 2 and 3, we deduced the main classes
of lipids generated by the yeast: triglycerides (about 20%), diglycerides (about 15%), free fatty
acids (about 58%), phosphatidylcholine (about 0.2%), phosphatidylethanolamine (about 3.8%) and
phosphatidylinositol (3%).
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Figure 3. High performance thin-layer chromatography (HPTLC) plates of classical and alternative
systems; validation of methods by the presence of lipids in organic phases. (PI: phosphatidylinositol,
PE: phosphatidylethanolamine, PC: phosphatitylcholine, Lyso: lysophosphatidylcholine, FFA: Free
Fatty Acids, DAG: diacylglycerol, TAG: Triacylglycerol, MAG: monoacylglycerol).
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chloroform and ethyl acetate, show that both these solvents have low extraction powers for proteins. 
Yields are higher for the points 4, 5, 6 and 7 for the chloroform–methanol–water system and D, E, F 
and G for the ethyl acetate–ethanol–water system. The restructuring of cell walls is greater when the 
amount of chloroform or ethyl acetate increases. Regarding both systems, it is noted that results of 
extraction yields follow the same trend: extractions made directly in the biphasic area of the diagram 
are ineffective and the extraction of proteins is total from point 8 to 11 for the classical system and G 
to K for the alternative system. 

Figure 4. Relative profiles of fatty acids and lipid classes given by gas chromatography and
HPTLC. The aim was to determine whether there was selectivity of different lipid classes
(PI: phosphatydilinositol, PE: phosphatidylchoine, PC: phosphatitylcholine, FFA: Free Fatty Acids,
DAG: diacylglycerol, TAG: Triacylglycerol) and fatty acids (C16: palmitic acid, C16:1: hexadecanoic
acid, C18: stearic acid, C18:1n9: oleic acid, C18:2n6: linoleic acid, C18:3n6 : linolenic acid) between
the different extraction compositions of points 1 to 13 in a classical diagram and A to N in
an alternative diagram.

For the classical system with chloroform–methanol–water, all classes of lipids (neutral and polar)
are visible on the plates. Moreover, a significant amount of sterols, not quantified by this method,
was present. Conversely, in aqueous phases, lipids were not or not clearly observable in Figure 4;
this means that the aqueous phases do not significantly solubilize lipids.

Similarly, in the greener system with ethyl acetate–ethanol–water, lipids are extracted by the OR
phase and found only in negligible amounts in the WR phase.

To conclude, with this analytical method, it was shown that both ternary solvent mixtures are
effective to extract lipids, and have a high selectivity when the monophasic system is converted to
biphasic systems. Even if there are traces in the aqueous phase, the two systems are appropriate for
the recovery of lipids.

2.4.3. Determination of Proteins and Sugars in Both Systems

In terms of selectivity, water-soluble proteins possess a great affinity to the aqueous phase
(points 2 and 3 or B and C in Figure 5). Points 1 and A, representing extractions exclusively with
chloroform and ethyl acetate, show that both these solvents have low extraction powers for proteins.
Yields are higher for the points 4, 5, 6 and 7 for the chloroform–methanol–water system and D, E, F
and G for the ethyl acetate–ethanol–water system. The restructuring of cell walls is greater when the
amount of chloroform or ethyl acetate increases. Regarding both systems, it is noted that results of
extraction yields follow the same trend: extractions made directly in the biphasic area of the diagram
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are ineffective and the extraction of proteins is total from point 8 to 11 for the classical system and G to
K for the alternative system.

The glucose extraction yields of various mixtures are presented in Tables 2 and 3 and Figure 6.
It can be noted that glucose yields are almost similar for points 4–11 for the classical system and
D to K for the new greener system. Hypothetically, that means that the glucose was a component
mainly present in the substrate, which the yeast did not entirely consume during the cultivation
time. It can also be noticed that the amount of glucose contained in the organic phase is minimal.
On the other hand, the amount of sugars in the aqueous phase is significant. Its solubility in water
and methanol/ethanol is higher than in the organic phase composed of chloroform or ethyl acetate.
Points 12, 13 and 14 or L, M and N show that extractions performed in the biphasic area of the phase
diagram were not effective, probably because of the heterogeneity of the system.Int. J. Mol. Sci. 2017, 18, 708  12 of 21 
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Figure 5. Extraction yields of proteins in both systems. Yields obtained by UV spectrometry in aqueous
and organic phases. Points 1 to 13 are in the diagram with the classical solvents and points A to N are
in the diagram with the green alternative solvents. The orange part is the organic phase and the blue
part is the aqueous phase.
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Figure 6. Extraction yields of glucose in both systems. Yields obtained by UV spectrometry in aqueous
and organic phases.

2.5. COSMO-RS Calculations: Comparison of Experimental and Theoretical Approach

Using data shown in Table 1, we can now compare experimentally determined yields with
COSMO-RS calculations of the ethyl acetate–ethanol–water system used in the previous study.
All compositions tested in the experimental part (with or without water and the biphasic system) were
modelled with COSMO-RS.

The aim of this study is to find the most efficient monophasic mixture for solubilizing all
compounds from yeast. According to experiments of monophasic mixtures containing water, the
composition denoted with G in Figure 3 is the best system to extract lipids with a yield of 14.35%,
i.e., 96% of total lipids. Regarding the COSMO-RS results (Table 4), the system D is also the best for
the solubilization of all the compounds synthesized by the yeast. The theory is consistent with the
experiment: monophasic system G is selected as being the best combination of solvents. This system is
effective because the amount of ethyl acetate present is more important than in other mixtures (67%).

Regarding greener systems which do not contain water (Table 4), systems H, I, J, and K are
equivalent in terms of solubility of various compounds. Considering these theoretical and experimental
approaches, the combination of solvent H (70/30 in ethyl acetate/ethanol) would be as efficient as
mixtures I, J or K.
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Table 4. Results given by COSMO-RS: simulation of modeled molecules in different systems of extractions realized in the experimental part. Green (0), yellow
(−0.1 ≤ x ≤ −0.99), red (−1 ≤ x ≤ −5).

Extractions/Molecules TAG
LLL

TAG
LOO

TAG
OOO

DAG
LGL

DAG
LGO

DAG
OGO

FFA18
1n9

FFA18
2n6

FFA
16

PC
LL

PC
OL

PE
LL

PE
OL Lanosterol Ergosterol 1.6 bd

Glucan
1.4 bd

Glucan Chitine Glycerol Histidine Arginine Glucose

D −9.80 −10.11 −10.10 −5.69 −7.11 −6.31 −2.92 −2.80 −2.70 0.00 0.00 −4.78 −4.64 −4.05 −3.55 0.00 0.00 0.00 0.00 0.00 0.00 0.00
E −5.99 −6.28 −6.28 −3.14 −4.33 −3.66 −0.14 −0.45 −0.23 0.00 0.00 0.00 −0.28 −2.30 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
F −3.44 −3.77 −3.78 −0.09 −2.32 −0.23 −0.59 −0.25 −0.28 0.00 0.00 −0.16 −0.18 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
G 0.00 0.00 0.00 0.00 −0.38 −0.05 0.00 0.00 0.00 0.00 0.00 0.00 0.00 −0.21 −0.27 0.00 0.00 0.00 0.00 0.00 0.00 0.00
H −0.04 −0.05 −0.05 0.00 −0.07 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 −0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
I 0.00 0.00 −0.09 −0.08 0.00 0.00 −0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
J 0.00 −0.25 −0.14 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
K 0.00 −0.09 −0.06 0.00 −0.07 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 −0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
L −6.97 −6.97 −6.63 −3.59 −4.83 −4.15 −0.43 −0.19 −0.27 0.00 0.00 −2.51 −2.34 −2.65 −2.13 0.00 0.00 0.00 0.00 0.00 0.00 0.00
M −4.88 −4.87 −4.51 −0.12 −3.26 −2.58 −0.46 −0.28 −0.39 0.00 0.00 −0.18 −0.15 0.00 0.00 0.00 0.00 0.00 −0.08 0.00 0.00
N −0.03 0.00 −0.02 −0.40 −0.03 −0.21 −0.01 0.00 −0.01 0.00 0.00 0.00 0.00 −0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Water −23.96 −24.57 −24.55 −15.09 −17.26 −16.23 −8.18 −7.99 −7.67 −7.86 −5.92 −14.56 −14.13 −10.05 −9.19 0.00 −1.01 −0.21 0.00 0.00 0.00 0.00
Ethanol −2.41 −2.40 −2.26 0.00 −0.03 −0.08 0.00 0.00 0.00 0.00 −0.27 −0.16 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Ethyl acetate 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 −7.86 −5.92 −14.56 −14.13 −17.48 −20.22 0.00
Water −23.96 −24.57 −24.55 −15.09 −17.26 −16.23 −8.18 −7.99 −7.67 −7.86 −5.92 −14.56 −14.13 −10.05 −9.19 0.00 −1.01 −0.21 0.00 0.00 0.00 0.00

Triglycerides: TAG LLL (R1: C18:2n-6, R2: C18:2n6, R3: C18:2n-6), TAG LOO (R1: C18:2n-6, R2: C18:1n9, R3: C18:1), TAG OOO (R1: C18:1n9, R2: C18:1n9, R3: C18:1n9); Diglycerides: DAG LGL
(R1: C18:2n6, R2: C18:2n6), DAG LGO (R1: C18:2n6, R2: C18:1n9), DAG OGO (R1: C18:1n9, R2: C18:1n9); Free Fatty Acids: FFA 18:1n9, FFA 18 2n6 (R1: C18:2n6), FFA 16 (R1: C18:2n6);
Phosphatidylethanolamine: PE LL (R1: C18:2n-6, R2: C18:2n6), PE LO (R1: C18:1n9, R2: C18:2n-6); Phosphatidylcholine: PC LL (R1: C18:2n-6, R2: C18:2n6), PC LO (R1: C18:1n9, R2: C18:2n-6);
Sterols:Lanosterol, Ergosterol. Polysacharides: 1,6 bd, glucan, 1,4 bd, glucan, chitine. Glycerol. Amined acids: Histidine, Arginine. Sugar: Glucose.
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Concerning the simulations of extraction realized directly in the biphasic area of the diagram, the
compositions given by the points L and M are less efficient than that given by point N. The latter is
considered to be the best system compared to others from the viewpoint of solvation.

From a practical point of view, solid–liquid extractions with biphasic mixtures are not appropriate
because they do not form a homogeneous mixture when they are in contact with the tissue. If the polar
solvent (in this case ethanol) is more in contact with the biomass than the apolar solvent (ethyl acetate),
extraction of lipids would not be effective.

3. Material and Methods

3.1. Computational Method: Theoretical Prediction with COSMO-RS

The principle of the theoretical procedure using COSMO-RS for solvent–solute interactions has
been explained and detailed in our previous publication: Breil et al. [11].

In this work, we use the COSMO-RS approach to derive the chemical potential of a substance
in the liquid solvent [42]. Calculations of the relative solubility of typical proteins and sugars, but
also TAGs, DAGs, MAGs, fatty acids FFAs and PLs of microbial oil in various solvents were done
by implementing this COSMO-RS model on COSMOtherm software (C30 1401, CosmothermX14,
COSMOlogic GmbH & Co, KG, Cosmologic, Leverkusen, Germany). Relative solubility is calculated
from COSMOlogic (GmbH & Co, KG, 2013, Cosmologic, Leverkusen, Germany) with the help of the
following equation:

log10(xj) = log10

exp
(
µ

pure
j − µsolvent

j − ∆Gj.fusion

)
RT

. (1)

µ
pure
j : chemical potential of pure compound j (Joule/mol)

µsolvent
j : chemical potential of j at infinite dilution (Joule/mol)

∆Gj.fusion : free energy of fusion of j (Joule/mol)

xj : solubility j (g/g solvent)

Relative solubility is always calculated in infinite dilution. The logarithm of the best sobility is set
to 0, and all other solvents are given relatively to the best solvent. A solvent with a log10(xj) value of
−1.00 yields a solubility that is lower by a factor of 10 compared to the best solvents [39,43].

3.2. Strain, Culture and Harvesting Conditions

The strain, culture and harvesting conditions of Yarrowia lipolitica IFP29 have been detailed in our
previous work: Meullemiestre et al. [29].

3.3. Chemicals

Hexane, ethanol >99.99%, ethyl acetate, all analytical grade, were obtained from VWR
International (Darmstadt, Germany). Methanol, chloroform, methyl acetate, diethyl ether, n-hexane,
potassium chloride, sodium chloride, sulfuric acid, acetic acid and water were of analytical grade and
were sourced from VWR International (Darmstadt, Germany). Primuline and acetone were of analytical
grade and purchased from Sigma Aldrich. Analytical standard such as triolein (TAG), glyceryl
dipalmitate (DAG) and stearic acid (FFA), (PC) phosphatidylcholine, (PE) phosphatidylethanolamine,
(Lyso) lysophosphatidylcholine, (PI) phosphatitylinositol, mixture of FAMEs (Fatty Acids Methyl
Esters), BSA and glucose were purchased from Sigma Aldrich (Saint-Louis, MO, USA).
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3.4. Procedure for Construction of the Demixing Curve

The following protocol was followed for the construction of demixing curves: 15 mL glass
equipment, a magnetic stirrer plate, thermostat bath, glass buret (30 mL), and a thermometer were
used. For example, 0.3192 g ± 0.0001 mg of ethanol (absolute) was mixed with 2.6945 g of water
(demineralized) in glass equipment (15 mL) and thermostatted to 20 ◦C for the construction of the first
point of the demixing curve in Figure 1.

Then, with the buret, ethyl acetate was added dropwise to the ethanol–water mixture.
When 0.73 mL of ethyl acetate was added, a biphasic system formed as a milky spontaneous emulsion.
The mass of ethyl acetate was deduced via a known density. The relative mass composition was
established for the given point and indicated in a ternary diagram. The same procedure was realized
to construct each point (in triplicate) on the alternative and classical system curve and compared with
data published in the literature [19].

3.5. Lipid Extractions: Application on Yeast

3.5.1. Bligh and Dyer Extractions: Classical and Alternative Ternary Systems

Extraction: The following procedure was used with wet and dry Yarrowia lipolytica IFP29 containing
about 14.85% of lipids. To get a controlled moisture content by weight (about 80% of water), water
was initially added to the biomass. Then, for all extractions, the three solvents were mixed in such
proportions that, taking into account the water in the biomass, monophasic solvent systems were
formed as shown in the phase diagrams (Figure 1). Each sample was homogenized for 10 min in
different proportions of ethanol–ethyl acetate or methanol–chloroform (ratios for the different points
investigated are shown in Figure 1 (blue points). Each monophasic system was notified as 1 to 14 for
the chloroform/methanol system and A to L for the ethyl acetate–ethanol system. The final volume of
the total mixture was 3 mL.

Separation: A sufficient quantity of water containing 0.58% of KCl and apolar solvents
(chloroform or ethyl acetate) were added to the solvent monophasic system in order to induce
phase separation. Each mixture was homogenized for 10 min. Macroscopically, even three phases
appeared with the middle phase containing visible cell debris. For the chloroform–methanol–water
system, a clear, mostly chloroform-containing phase formed the lower phase part and a clear,
mostly methanol–water mixture (KCl 0.58%) formed the upper phase. Conversely, for the ethyl
acetate–ethanol–water system, a clear phase, rich in ethyl acetate, was observed in the upper layer and
a clear phase, rich in ethanol–water (KCl 0.58%), was obtained in the lower phase. In both systems,
cell debris were present at the interface between the upper and lower phases. The final proportion
of mixtures was given in the ternary diagram: points labelled 1′ to 14′ for the chloroform/methanol
system and points labelled A′ to L′ for the ethyl acetate/ethanol system. “Organic” and “aqueous”
phases were then separated from the middle layer and filtered.

Analysis: Lipids, proteins and sugar were measured for all phases. Total lipid content was
given by the gravimetric method and confirmed with gas chromatography. The fatty acids profile
was obtained by gas chromatography coupled with a flame ionization detector and lipid classes
(TAG, DAG, MAG, FFA, PL) by high performance thin-layer chromatography. Proteins and sugars
were detected by UV spectrometry (Figure 1).

The blue points give the composition of the monophasic mixtures used for the solid–liquid
extraction process (Figure 7). The red and green points denote the compositions used in the second
step for the liquid–liquid separation. The blue crosses are the points of the bimodal curve, the orange
point in the left diagram denotes the extraction realized with the reference method of Bligh and
Dyer (1959).
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biphasic system was then separated into two phases and the lower chloroform phase was collected 
and analysed to determine the total lipid content, proteins and sugars [7]. 
  

Figure 7. Ternary systems of classical Bligh and Dyer (B &D) (Methanol/Chloroform/Water) and
Greener Bligh and Dyer (ethanol–ethyl acetate–water). The black curve separates the monophasic
region (above) from the diphasic region (below).

3.5.2. Classical Bligh and Dyer Procedure

Dried yeast was mixed with distilled water, chloroform and methanol to reach 1:2:0.8 parts
chloroform:methanol:water (v/v/v) and homogenized for 10 min. Then, chloroform and water
containing 0.85% of KCl were added to get a final ratio of 2:2:1.8 chloroform:methanol:water (v/v/v).
The mixture was homogenized for 10 min and finally filtered to remove cell debris. The final biphasic
system was then separated into two phases and the lower chloroform phase was collected and analysed
to determine the total lipid content, proteins and sugars [7].
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3.6. Determination of Lipids, Proteins and Sugars

3.6.1. Qualitative and Quantitative Analysis of Total Lipids

Evaluation of Total Lipids Content in Tissue by Gravimetry

An aliquot of organic phases containing at least 10 mg of lipids was evaporated to dryness
under nitrogen and at 50 ◦C. The dry residue was weighed and yields were determined with the
following equation:

% of lipids =
weight of residue× total volume of organic phase

weight of yeast× evaporated volume
× 100

Analysis by Gas Chromatography Coupled with Flame Ionization Detector

FAMEs (Fatty Acids Methyl Ester) were prepared from the lipid extract using acid-catalyzed
transmethylation as described by Li et al. [44]. All extracts were evaporated under nitrogen and at
50 ◦C. The protocol of transesterification was described in our previous publication: Sicaire et al. [39].

Determination by High Performance Thin-Layer Chromatography

Lipids were quantified by a CAMAG 3 TLC scanning densitometer (CAMAG, Muttenz, Switzerland).
The protocol of quantification of phospholipids and neutral lipids was explained in our previous work:
Breil et al. [11].

3.6.2. Quantitative Analysis of Proteins

Dosage of proteins was realized by Bradford [45] methods. A sample of 100 µL (organic and
aqueous phases) is mixed with 1mL of Bradford reactive. After 15 min, the protein concentrations
in the sample were determined spectrophotometrically (with UV biochrom, libra S22) at 595 nm.
Protein content was calculated with the following equation:

% of proteins =
Concentration× (volume of organic phase or volume of aqueous phase)

weight of yeast
× 100

BSA was used as standard protein.

3.6.3. Quantitative Analysis of Glucose

Dosage of glucose was carried out via enzymatic analysis (“Biosentech” kit glucose). A sample of
100 µL (organic and aqueous phases) is mixed with 1mL of water and 1.9 mL of buffer (pH: 7.5 with
NADP 70 mg and ATP 90 mg). After an UV reading, another buffer solution was added. After 15 min,
sugar concentrations in the sample were determined spectrophotometrically (UV biochrom, libra S22)
with an absorbance at 340 nm. Sugar yields were calculated with the following equation:

% of sugars =
Concentration× (volume of organic phase or volume of aqueous phase)

weight of yeast
× 100

4. Conclusions

B & D or Folch systems using chloroform/methanol/water were most efficient in terms of
selectivity and can be considered as “gold standards” for lipid analysis [17]. Replacement of these
solvents by bio-based solvents from agricultural sources, respecting principles of green chemistry [46],
is a challenge that we have taken up in the present study. Based on the evaluation of the free
energy of solubilization calculated with COSMO-RS and on experimentally determined efficiency
and selectivity results, we could show that the greener solvent pair ethyl acetate/ethanol 1.794/0.784
(w/w) with 0.08 g of wet sample was the most efficient procedure when followed by the addition of
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water (with 0.8% of KCl) and ethyl acetate 1/2 (v/v) for the separation of aqueous and organic phases.
This new system is selective enough in terms of lipid classes or fatty acids and very efficient in terms
of extraction power.

Supplementary Materials: Supplementary materials can be found at www.mdpi.com/1422-0067/18/4/708/s1.
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Abbreviations

COSMO-RS Conductor-like screening model for realistic solvation
HSP Hansen solubility parameters
RED Relative energy difference
HPTLC High performance thin-layer chromatography
GC Gas chromatography
FID Flame ionization detector
CPME Cyclopentyl methyl ether
MeTHF 2-methyltetrahydrofuran
DMC Dimethyl carbonate
IPA Isopropanol
EtOAc Ethyl acetate
TAGs Triglycerides
DAGs Diglycerides
MAGs Monoglycerides
FFAs Free fatty acids
PLs Phospholipids
FAMEs Fatty acid methyl esters
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