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Abstract
In this article we address the issue of shape estimation using electric sense inspired
by the active electric fish. These fish can perceive their environment by measuring
the perturbations in a self-generated electric field caused by nearby objects. The
approach proceeded in three stages. Firstly the object was detected and its electric
properties (insulator or conductor) identified. Secondly, the object was localized
using the MUSIC (MUltiple SIgnal Classification) algorithm, which was originally
developed to localize a radio wave emitter using a network of antennas. Thirdly, the
shape estimation relied on the concept of generalized polarization tensor (GPT),
which enabled modeling the electric response of an object polarized by an ambient
electric field. We describe the implementation of the approach through numerous
experiments. The system was able to estimate shape with an average error of 16%,
and opened the way toward further improvements. In particular, self aligning the
sensor with the ellipsoid through a reactive feedback makes the shape estimation
errors drop to 10%.
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1 Introduction

Underwater sensing in turbid conditions remains a challenging issue in robotics today.
In muddy waters cluttered with obstacles, neither cameras nor sonar are of use to a
robot in performing the usual tasks of reactive navigation, path planning or shape
recognition Lane (2012). In recent years, the bio-robotics community have been
inspired by the weakly electric-fish, which are able to sense their nearby surroundings
by measuring the perturbations of a self-generated electric field caused by nearby
obstacles Lissmann and Machin (1958). Also termed the active electric fish, these
animals, such as the elephant fish Gnathonemus Petersii, have evolved a specific
electric organ located in their tail, that is polarized with respect to the rest of their
body, and produces a dipolar electric field in their immediate environment. If an
object enters this field, the field is perturbed and these perturbations are measured by
a dense array of electro-receptors covering the fish’s skin von der Emde and Schwarz
(2002). This sixth sense enables electric fish to navigate cluttered environments and
muddy waters with great agility, escape from predators, seek prey, and travel long
distances. Recent biological experiments showed that electric fish can also perform
complex cognitive tasks such as object recognition von der Emde (2006); Hofmann
et al. (2013). In these experiments, after a few days of training, the electric fish were
able, using only their electric sense, to distinguish between objects which varied in
size, electric nature and shape. This is remarkable, since the electric images projected
onto the fish skin are fundamentally blurry and a priori difficult to interpret Caputi
et al. (1998). Moreover the electric response of the polarized objects show that their
position and their intrinsic geometry (shape, size) are intricately linked to each other
in the measure of the transcutaneous currents flowing across the skin Rasnow (1996).

Artificial electric sense has been developed in recent years to address several
issues in underwater robotics including reactive navigation Boyer et al. (2013), object
electrolocation Solberg et al. (2008); Lebastard et al. (2013) and underwater docking
Boyer et al. (2015), but shape recognition has been addressed only recently Bai et al.
(2015). The approach uses a sensor, the SensorPod, first introduced in Bai et al.
(2012). It is an axis-symmetric insulating shell, featuring a set of small electrodes,
arrayed on its surface, with a top-bottom, left-right, and front-rear symmetry. The
electrodes located at the extremities of the sensor are set under voltage, which
generates an electric field in the sensor’s environment. Perturbations in this electric
field are measured through the voltage recorded between left-right symmetric pairs
of floating ground electrodes. Using this device, the authors addressed the issue of
shape, size, orientation, and position estimation of ellipsoidal inert (insulating or
conductive) objects placed within the sensor’s range in its equatorial plane. Exploiting
the symmetries of the sensor with respect to the object, the object is first aligned
and centered with respect to the SensorPod. Secondly, using maps built beforehand
through simulation, its aspect ratio is determined. Finally, the lateral distance and the
object’s size are estimated with an equivalent sphere model and a gaussian process
regression (GPR) model Rasmussen and Williams (2006).
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In the present article, we develop another object estimation strategy based on the
physical models recently presented in Boyer et al. (2012) and Ammari, Boulier, Garnier
and Wang (2014) and apply it experimentally to another artificial electric sensor based
on the measurement of currents Servagent et al. (2013). As in Bai et al. (2015), the
objects are three-dimensional inert ellipsoids made of an insulating or a conductive
material. Beside object estimation, the main aim of the article is three-fold. First, we
want to understand the main physical phenomena involved in shape recognition with
electric sense. Second, by experimenting recent models in the field, we want to assess
their validity and infer the effects that should be modelled in future for improving
shape estimation. Finally, and to a less extent, the approach also contributes to assess
a hierarchical strategy conjectured by biologists von der Emde (2006). According to
this approach, we first detected the presence of an object while identifying its electric
nature (insulator or conductor). Secondly, the object was localized, and thirdly its shape
was estimated by processing the electric currents measured along a given trajectory.
To this end, we used mathematical tools derived from Ammari, Boulier, Garnier and
Wang (2014) as applied to small simulated objects in Lanneau et al. (2016). After a
MUSIC-based localization, the shape estimation begins with a least-square estimation
of the components of the dipolar leading order generalized polarization tensor (GPT)
of the object Ammari, Boulier, Garnier and Wang (2014). This GPT is then inverted
with respect to the shape parameters (volume and aspect ratio). Several extensions
were required to adapt this approach to our experimental context. In particular, to
overcome the low signal/noise ratio of our sensor, the real objects needed to be
large and close enough to the sensor. In these conditions, the localization strategy
needed to be adapted to cope with the non negligible quadripolar response of the object.

The article is structured as follows. Section 2 presents the experimental and theoretical
context of the article as well as a simple detection algorithm which enables the
detection of object and the identification of its electric property (conductor or insulator)
before its localization and shape estimation. In section 3, the MUSIC localization
algorithm is presented and verified empirically on large objects. Section 4 presents
the shape estimation algorithm, which is briefly illustrated in simulation, and then
evaluated experimentally. The experimental results are presented and discussed in
section 5. Based on this discussion, an improved shape estimation is presented in
the same section. The article ends with some concluding remarks and perspectives in
section 6.

2 Experimental and theoretical context, object detection

2.1 Bio-inspired sensor
The sensor we used in the article is termed a slender probe for its high aspect ratio
(length/diameter). It is composed of four metal rings named macro-electrodes, and
denoted Ei=1,2,3,4. These macro-electrodes are connected by cylindrical insulating
plastic parts as illustrated in Figure 1 left. Each macro-electrode can be polarized, i.e.,
set to a controlled electric potential u, with respect to the others which are all grounded.
This polarization of the probe is performed with a wave generator operating at 22 kHz.
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Figure 1. Left: Schematics of the probe with its 4 macro-electrodes divided in left-right
measurement electrodes. Right: Planar view of the basal dipolar electric field produced by
the probe when the tail electrode E1 is polarized with respect to all the other (grounded)
electrodes.

This generates an electrical field, with current flowing through the conductive medium
surrounding the probe. When there is no object nearby the probe, this electric field
is termed ’the basal field’, and denoted E0. Such a basal field is illustrated in figure
1-right, when the tail macro-electrode E1 is polarized. In this case the field clearly
exhibits a dipolar shape mimicking that of the fish. Each macro-electrode Ei is divided
into two symmetric left and right sub-electrodes denoted eli and eri , with Ei = eli ∪ eri
as shown in figure 1-left. These sub-electrodes are electrically isolated, so the flux of
current penetrating them can be measured independently and gathered in the vector of
electric currents I = (I l1, I

r
1 , I

l
2, I

r
2 , ...I

l
n, I

r
n)T , with n the total number of rings (n = 4

for the probe in figure 1) and I li (respectively Iri ), the total current flowing through
the left (respectively, right) half of Ei. From these measured currents it is relevant
for perception and navigation purposes to use an alternative set of measurements
named ’axial’ and ’lateral’ currents, which can be easily deduced (online) from the
2n components of I through the simple combinations

i = 1, 2..n : Iax,i = (I li + Iri )/2 , Ilat,i = (I li − Iri )/2. (1)

Though (1) theoretically holds true for all Ei, in practice, our acquisition system is such
that for a given polarized macro-electrode Ei, only the Ilat,j and Iax,j of the three other
grounded electrodes (i.e., such that j 6= i) can be measured. However, as the electric
currents are conserved, the current Iax,i flowing across the polarized electrode Ei, can
be easily computed as the opposite of the sum of the axial currents penetrating the
three others. Nevertheless, this reconstruction does not hold for the lateral currents,
since in this case the conservation law involves the currents flowing across the left and
right sub-electrodes of the same Ei Boyer et al. (2012). In this practical context, for the
E1-polarization of figure 1-right, we will consider the two vectors of currents Iax =
(Iax,1, Iax,2, ...Iax,n)T and Ilat = (Ilat,2, Ilat,3, ...Ilat,n)T . Moreover, such a pair of
vectors can be measured for the n possible polarizations of the sensor. In particular,
for the sensor in figure 1, we can take UT = (u, 0, 0, 0), (0, u, 0, 0), (0, 0, u, 0) and
(0, 0, 0, u) and build a set of 2n = 8 such vectors. When there is no object in the scene
surrounding the probe, the bilateral symmetry imposes Ilat = 0 for any polarization,
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while Iax is entirely modelled by the following matrix-equation

I(0)ax = C(0)U, (2)

whereU is the n× 1 vector of potentials imposed by the voltage generator andC(0) is a
n× n matrix modelling the basal (indexed (0)) conductivity of the surroundings. This
matrix, which only depends on the sensor’s geometry and the medium’s conductivity
γ, must be determined at the outset either by numerical computation or in situ through
a preliminary calibration phase but may then be used as a constant. When an object
appears in the sensor’s surroundings, the vectors of measured currents Iax and Ilat are
defined for any polarization, by

Iax = I(0)ax + δIax , Ilat = δIlat, (3)

where δIax and δIlat are some perturbative vector components imaging the presence of
the object. These measurements, obtained for all polarizations, will be used throughout
the article as the support of the information exploited by our shape estimation strategy.
Their model is introduced in the next section.

2.2 Model of the sensor measurements
The model of currents represents the direct electric problem which consists of
determining the electrical currents flowing through the electrodes in any given scene
for any polarization. In contrast, the inverse problem consists of reconstructing the
scene (its geometry and physics) from the knowledge of the polarization and the
measurements of the probe. We have two models at our disposal for the direct problem.
Both are fully described in Boyer et al. (2012), but we will briefly present them in this
section. The first model, the boundaries elements method (BEM), provides a numerical
reference solution of the direct problem, which can be used instead of the measured
currents given by experiments. The second model, the analytical model, describes
the measured currents with simple explicit mathematical expressions deduced from
a reduction process described in Boyer et al. (2012). The methods used for localization
and shape estimation being based upon this analytical model, we will recall it in
subsection 2.2.2. But we must first define more precisely the scenes in which our sensor
is immersed.

2.2.1 Definition of the scenes In all of the following, we will consider the 4-
electrode probe of figure 1 which has a length l = 220mm and a diameter 2R = 20mm.
We will assume that: (1) the conductivity γ of the surrounding medium (water) is
constant over time and space ; (2) there is only one object in the scene surrounding the
sensor ; (3) the object is made of an ideal conductor (e.g. metal) or an ideal insulator
(e.g. plastic) ; (4) that object has the shape of a prolate ellipsoid, i.e. it is axisymmetric
about its major axis, of length 2a, which is assumed to be in the equatorial plane of the
sensor. The objects tested in the subsequent experiments are shown in table 1, where
a and b denote the half-length of the major and minor axis respectively, η = a/b is the
aspect ratio (AR) of the ellipsoid, and V its volume. Under these basic assumptions,
any scene can be parameterized as indicated in figure 2.
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Figure 2. Parametrization of a scene (top view). The coordinates of the geometrical center
of the object are denoted (xo, yo) in the probe’s frame (Oc, ic, jc). Its orientation relative to
the probe’s main axis, or inclination angle, is θo. Vx and Vy are the longitudinal and lateral
vector velocity respectively, and Ωz is the angular velocity vector about the vertical axis.

(a) Object 1 (b) Object 3 (c) Object 5

(d) Object 2 (e) Object 4 (f) Object 6

Figure 3. Experimental objects (1 to 4) and simulated objects (5 & 6) (see also table 1).

Object number Type Material a (cm) b (cm) η V (cm3)

Object 1 Experimental Conductive 3.3 1.6 2 35.39

Object 2 Experimental Insulating 3.3 1.6 2 35.39

Object 3 Experimental Conductive 2.7 1.8 1.5 36.64

Object 4 Experimental Insulating 2.7 1.8 1.5 36.64

Object 5 Simulated Conductive 1 0.4 2.5 0.67

Object 6 Simulated Insulating 1 0.5 2 1.05
Table 1. Characteristics of the objects experimentally and numerically tested in this paper:
material, semi-major axis a, semi-minor axis b, aspect ratio η and volume V .

2.2.2 Analytical model of the sensor response in a scene The derivation of the
analytical model of Boyer et al. (2012) is based on the following simplifications which
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will be assumed to be fulfilled by our scenes, at least in a first step. Firstly, the probe has
a slender shape. Secondly, each object is small enough to consider E0 as being uniform
on the object’s domain. In practice, this is justified when the object is sufficiently far
from the probe (yo ≥ 3R in figure 2) and when the object’s size is at most of the
order of the sensor’s radius (max(a, b) ≤ R). In these conditions, the following linear
relationships between the vector of input voltages U ∈ R4, and the vectors of measured
currents Iax ∈ R4 and Ilat ∈ R3 may be derived

Iax =

(
C(0) +

1

4πγ
C(0)GP cGTC(0)

)
U , Ilat =

(
1

4π
P⊥HP

cGTC(0)

)
U, (4)

in which the 4 × 4 and 3 × 4 real matrices δC = (4πγ)−1C(0) GP cGTC(0) and
(4π)−1P⊥HP

cGTC(0) define the axial and lateral scene conductance variation matrix
caused by the presence of the object. It was shown in Boyer et al. (2012) that G and H
are two transmission matrices of dimension 4× 3 and 3× 3 respectively. They depend
nonlinearly on the object’s coordinates in the sensor frame through the expressions

G =


xo−x1

r31

yo
r31

0

...
...

...
xo−x4

r34

yo
r34

0

 , H =


3yo(xo−x2)

r52

2(yo)
2−(xo−x2)

2

r52
0

3yo(xo−x3)
r53

2(yo)
2−(xo−x3)

2

r53
0

3yo(xo−x4)
r54

2(yo)
2−(xo−x4)

2

r54
0

 , (5)

with rk=1...n =
√

(xo − xk)2 + (yo)2, xk the axial coordinates of Ek in the sensor
frame, and where the zero third columns indicate that the scene is planar. Note that
in (4), the location of the object with respect to the sensor is only contained in G and
H . On the other hand, the matrix P c is a polarization tensor that entirely models the
response of the object. As such, it only depends on the object’s material properties and
orientation as detailed in the next subsection. As with P c, P⊥ = diagi=2,...4(p⊥,i) in
the analytical expression (4) of Ilat is a polarization matrix, here of 3 × 3 dimension,
which depends only on the sensor’s geometry, modeling how the electrodes are laterally
polarized by the reflected field. In practice, a numerical value of the matrix δC =
(4πγ)−1C(0)GP cGTC(0) for any given scene can be easily measured online column
by column. Each macro-electrode is successively set to 1V , the three others to 0V , and
δIax is measured. The same process can be used to construct the extra-diagonal terms
of (4π)−1P⊥HP

cGTC(0). In the following, the model of axial currents along with the
matrix δC will be used for the localization, while the model of Ilat will assist object
detection and shape estimation.

2.2.3 A model for the object’s electrical response According to Ammari and Kang
(2007), the electric response of an ellipsoidal object to a uniform electric field E0 is
characterized by its first order generalized polarization tensor P, or Polya-Szego tensor,
which, in the object’s principal basis (Oo,b1,b2,b3), can be expressed as a 3 × 3
diagonal matrix denoted P . This tensor acts on E0, to give the electric field reflected
by the object according to the usual relation E1(r) = (P.E0).r/(4πγ‖r‖3), with r the
position vector with respect to the object’s center, and p = P.E0, the dipole induced on
the object by its polarization by E0 (see figure 2). For ellipsoids with high conductivity
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(conductive) or low conductivity (insulating) with respect to water, P depends only on
the object’s volume V and the aspect ratio η = a/b through the expression∗:

P =


λ1 0 0

0 λ2 0

0 0 λ2

 = V


f(η) 0 0

0 g(η) 0

0 0 g(η)

 , (6)

where (f, g) = (1/A, 1/B), or (f, g) = (1/(A− 1), 1/(B − 1)) depending whether
upon the object is conductive or insulating, while the two functionsA andB, are elliptic
integrals defined as 

A(η) = η−2
∫ +∞

1

1

t2 (t2 − 1 + η−2)
dt,

B(η) = η−2
∫ +∞

1

1

(t2 − 1 + η−2)
2 dt.

(7)

The ellipsoid major axis is rotated by an angle θo about the vertical axis relatively to
the sensor main axis. Thus, in the sensor frame, the matrix of the components of P,
denoted P c is defined as

P c = R(θo)PR(θo)
T ⇒


pc11

pc12

pc22

 =


λ1 cos2(θo) + λ2 sin2(θo)

(λ1 − λ2) cos(θo) sin(θo)

λ1 sin2(θo) + λ2 cos2(θo)

 , (8)

where pcij denotes the (i, j) component of P c, while R(θo) is the 3× 3 rotation matrix
of angle θo about the vertical axis. Note that (8) naturally appears in the expressions
(4) of the sensor response to the presence of a polarized object.

2.3 Preliminary basic experiment
To introduce the experimental conditions of all the tests reported in the article, we
will here consider a simple preliminary experiment named ’fly-by’ test in Bai et al.
(2012). This simple test allows us to assess the accuracy of our models and to reproduce
some concepts that were recently introduced in the biological literature Hofmann et al.
(2013). These concepts will be used later (section 3.3) to assist the localization process.

2.3.1 Experimental setup The probe described in section 2.1 is immersed in a
cubical tank of side 1m and attached to one end of a rigid epoxy fiber tube. The other
end of this tube is attached to a Cartesian robot, or ’gantry’, fixed on the top of the tank.
The gantry allows the center probe’s position to be controlled along the horizontal
x and y axes, and to rotate about the vertical z axis (see figure 4). Motion control
is performed with a DSpace R© system running a custom program. For a complete

∗Note that beyond a sphere and an ellipsoid, the exact expression of this tensor has not been derived.

Prepared using sagej.cls



9

Figure 4. The gantry above the water tank. The probe’s motion through a scene composed
of objects lying in the probe’s equatorial plane is controlled from above.

description of the robot (electronics schematics, noise level, positioning precision,
sensitivity to temperature) we refer the reader to Servagent et al. (2013). The various
scenes described in section 2.2, are composed by placing objects of varying shape, size
and material at various locations in the tank.

2.3.2 Preliminary ’fly-by’ test We first consider the probe when it moves forward in
straight line along its main axis, to sweep past an insulating ellipsoid (object 2 in table
1). A constant polarization vector U = (1, 0, 0, 0)T is set, while the axial and lateral
currents δIax and Ilat are measured throughout the trajectory. The object is located at a
lateral distance of 80mm and rotated by 30◦ with respect to the probe’s axis. The water
conductivity is 0.04S/m. Figures 5 and 6 show the plots of Ilat and δIax measured
experimentally (with a 1mm spatial resolution), and as computed by the BEM and
analytical models, as a function of the longitudinal position of the probe’s center with
respect to the object’s center. Note that according to (3), to compute δIax, we need
to remove the effect of the insulating tank’s walls. To that end, the axial currents are
measured along the same path that the sensor took during the fly by, but without the
object, and then subtracted to those measured when the object is present. This example
is illustrative of many similar tests performed with the objects described in table 1. Note
that, except for some amplitude differences, the analytical and BEM models faithfully
describe the measured currents.

2.3.3 Peak position and t-images Biologists have recently studied temporal images
(t-images) in electric fish, which are similar to the fly-by plots of lateral currents
illustrated in figure 5. In their conclusions, they conjectured that while moving past an
object, fish could detect the maximum of the transcutaneous currents flowing across one
receptor, or peak-position (PP), to infer the object position along the rostrocaudal axis
Hofmann et al. (2013). In the following, we will exploit the same idea by remarking
that when the lateral current of a given electrode reaches its maximum, one can infer
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Figure 5. Currents Ilat for the probe motion of Figure 2 (fly-by test in conditions detailed in
the text), versus the longitudinal position of the probe’s center w.r.t. the object’s center. Solid
lines: measured currents. Solid lines with crosses: BEM currents. Dashed lines: currents
calculated with the analytical model.

Figure 6. Same as Figure 5, but for the 4 axial currents of δIax.

that a perturbative object faces this electrode. The plots of figure 5 will be termed t-
images, and a maximum of a lateral current will be termed a peak-position (PP). These
concepts along with the analysis of fly-by plots will be used to assist localization in
section 3.3.2 and to identify the object material as this is detailed in the next section.

2.4 Detection algorithm
In Boyer et al. (2013), an analysis of the fly-by plots with the polarization of figure 1-b
showed that δIax can be used to infer whether a perturbative object is an insulator or a
conductor, while δIlat can be used to infer whether it is on the left or the right side of
the probe. In detail, noting ΣIlat =

∑4
i=2 Ilat,i, and ΣδIax =

∑4
i=2 δIax,i = −δIax,1,

we have the following rules on axial currents:

1. If ΣδIax = 0, there is no object in the scene;
2. If ΣδIax > 0, then the object is a conductor;
3. If ΣδIax < 0, then the object is an insulator.

For lateral currents we have:
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1. If ΣIlat = 0, there is no object or there is one facing the head electrode;
2. If ΣIlat > 0, a conductor is on the left or an insulator is on the right;
3. If ΣIlat < 0, an insulator is on the left or a conductor is on the right.

These simple rules can be easily combined and implemented in a preliminary
’detection algorithm’ before object localization. This algorithm informs the global
shape estimation strategy, by identifying the presence of an object in the scene, its
electric nature (insulator/conductor) and on which side of the probe it is located. In
practice, the zero value of currents must be replaced by a threshold fixed by the noise
level of the sensor Servagent et al. (2013).

3 Object localization using MUSIC
After detection, the next step before shape estimation consists of the localization of the
object independently of its intrinsic properties and orientation. To that end, we use the
MUSIC algorithm which has been applied in simulation to a dense array of receptors
in Ammari, Boulier, Garnier and Wang (2014). This section details the implementation
of the same algorithm, but in our experimental setting which deploys a physical sensor
with a much sparser array of receptors.

3.1 Principle of the algorithm
MUSIC is a model-based sensor array signal processing algorithm Krim and Viberg
(1996). It was developed in the 1980s to estimate the direction of arrival of
electromagnetic or sound waves by a passive antenna network Schmidt (1986). In the
new millennium, Devaney showed that the algorithm’s principle could be extended
to a network of active antennas, in order to localize scatterers in an homogeneous
medium Devaney (2000). By sequentially emitting a polarization wave from each
antenna of the network, and by measuring the polarized scatterers’ responses using
the other receivers, a data matrix named multi-static response matrix, or MSRM, was
recorded. The matrices which relate U to δIax and Ilat in (4), may potentially define
such a MSR matrix, at least in theory. However, since in practise we cannot measure
the lateral current on the emitting electrode, the MSR matrix will be defined as the
4×4 conductance variation matrix δC, which can be measured on line as described
in section 2.2.2. As developed in Devaney (2000), the analytic expression of δC in
(4) defines a set of vector fields, called steering vectors corresponding to the Green
function vectors of the background medium. In our particular case, these steering
vectors are simply the two 4-dimensional vector fields in the (x, y) plane of the scene

Sx(x, y) = C(0)
[
x−x1

r31

x−x2

r32

x−x3

r33

x−x4

r34

]T
,

Sy(x, y) = C(0)
[
y
r31

y
r32

y
r33

y
r34

]T
,

(9)

where (xi, yi), i = 1, 2, 3, 4 denote the coordinates of Ei (its center), in the sensor
frame (Oc, ic, jc), while ri is here defined as ri =

√
(x− xi)2 + y2. The steering

vector fields have two important properties. Firstly, they do not depend on the intrinsic
properties of the object (shape, material, size) nor on its orientation. Secondly, when
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evaluated in the object’s location, i.e., when (x, y) = (xo, yo), they lie in the signal
subspace S, or equivalently, their projection onto the noise subspace N , obtained with
the operator PN , is zero, and the following imaging function

F (x, y) =
1

‖PNSx(x, y)‖+ ‖PNSy(x, y)‖ , (10)

is infinite Devaney (2000). Defining a grid attached to the sensor frame in which each
node is a candidate object location, and using the fact that the projection matrix PN of
(10) can be directly deduced from the 2 singular vectors of lowest singular values of
the measured δC, one can state the following localization algorithm:

1. measure the MSR matrix δC by activating the polarized macro-electrodes in
sequence, as described in section 2.2.2;

2. compute the SVD of the matrix δC;
3. select the singular vectors associated with the lowest singular values in order to

form a basis of the noise subspace N ;
4. in each node of a grid attached to the sensor frame, evaluate the steering vectors

(9), and compute the imaging function F of (10);
5. once all nodes have been treated, select the node for which F is the highest, and

consider this node to represent the object’s location.

This algorithm represents our variant of the MUSIC algorithm and its implementation
is described below. As it is based on the object’s dipolar response model, this algorithm
can be considered to be a localizer of the center of a dipole independent of its
orientation and intensity.

3.2 Simulation of the MUSIC algorithm
The MUSIC localization algorithm was applied to a broad set of simulated small
objects with the BEM currents as inputs in Lanneau et al. (2016). Figure 7 shows
one representative example of the numerical results obtained for the small insulating
ellipsoidal object (simulated object number 6 in table 2). In all cases, MUSIC
underestimated the lateral distance between the sensor and the object. This probably
arises from the analytical model outlined in section 2.2, which estimates the electrical
response of an object by its leading order dipolar component. In reality, such responses
are an infinite multipolar expansion Landau and Lifshitz (1984); Ammari, Garnier,
Kang, Lim and Yu (2014). In particular, the non-uniformity of the basal electric field
E0 causes further components of the multipolar response of the object that we neglect in
our present model. Intuitively, because E0 strongly decreases with lateral sensor-object
distance, MUSIC tends to overweight the part of the object closest to the probe as this
is illustrated in figure 8-top, which shows how the location error made by MUSIC
increases with object volume. Another source of further multipolar components is
introduced by the asphericity of the object. This is illustrated by figure 8-bottom, which
shows how the localization error (here along the rostrocaudal axis) increases with the
aspect ratio for a big ellipsoid of fixed volume. Finally, figure 9 shows a map of the
localization error for a small test conductive sphere of diameter equal to that of the
sensor, the error (in %), being related to sensor length. This map shows the theoretical
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Figure 7. Representative example of the application of MUSIC to the small insulating object
of table 2, with BEM currents as input. On the left, the red cross represents the estimated
localization. On the right, focused view of the object with the peak of the (normalized) imaging
function.
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Figure 8. (Top left) MUSIC localizations for several object’s volumes with the BEM (fixed
aspect ratio: 2.5). (Top right) Localization error as function of the object’s volume. (Bottom
left) MUSIC localizations for several object’s aspect ratio with the BEM (fixed volume: 5 cm3).
(Bottom right) Localization error as function of the object’s aspect ratio.

efficiency of the algorithm even for a sparse array of receptors aligned on the same
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Figure 9. MUSIC error map for a small (same diameter as that of the probe) conductive
sphere in BEM.
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Figure 10. MUSIC error map for a conductive ellipsoid (object 1 in table 1).

straight line†. Nevertheless, this arrangement restricts the localization to the region that
laterally bounds the probe and does not work in its front or rear sides.

3.3 Experimental application of the MUSIC algorithm
3.3.1 From small to large objects In the experimental conditions presented in
section 2.3, the signal-to-noise ratio (SNR) when testing the small objects of Lanneau
et al. (2016) dramatically restricted the range of detection, which falls to only a few
centimeters. To increase the range of our experimental measurements, we will now
consider the large objects 1,2,3,4 of table 1, even if they do not respect a priori the
hypothesis of our analytical model, and see if we can overcome this limit. As we shall
see, this will require a new localization strategy for large objects to be derived.

3.3.2 New localization strategy for large objects Although large objects can be
detected by the probe, applying the MUSIC algorithm to them considerably decreases

†In optimal conditions, MUSIC is applied to a network arranged in a circle surrounding the scene
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Figure 11. From the dipolar to the quadripolar response of an object. When the object is
large compared with the space-variations of the basal field, or when the sensor is sufficiently
close to the object, the dipolar response along each of its principal axes, changes to a
quadripolar response. Each monopole of the dipoles aligned with the principal axis (green,
blue, purple and red colored lumped electric charges in the figure) splits into a dipole
centered on the corresponding monopole. In these conditions, MUSIC localizes the center
of each of these sub-dipoles.

the precision of the localization. This is illustrated in figure 10, which displays the map
of the localization error, calculated in the same conditions as those of figure 9, but with
ellipsoid 1 of table 1, i.e. with a large physical object, instead of a small simulated one.
As we discussed in section 3.2, the fall off in MUSIC performance may be explained
by the fact that due to the object’s size, the basal field is far from uniform over the entire
volume, and the objects response reveals further multipolar terms that are not present
in the model in section 2.2, nor in the steering vectors in section 3.1. Although pushing
the multipolar expansion beyond the leading order contribution of the Polya-Szego
tensor is quite involved, especially for a three-dimensional object Ammari, Garnier,
Kang, Lim and Yu (2014), one can intuitively approximate the quadripolar response
by four dipolar responses, each of them modeling the local response of the four top
surfaces of the ellipsoid as schematized in figure 11. Based on this simplified model,
we propose to apply MUSIC to each of these sub-dipoles, as we did in section ?? for
the single dipolar response of a small object, and to estimate the object’s location as
the barycenter of location of these 4 dipoles. To recover the conditions of section ??
while performing this strategy, the probe is motion-controlled along a square trajectory
as schematized in figure 12, and MUSIC is applied once to each side of this square. To
automate the approach and optimize the efficacy of MUSIC, we use the bio-inspired
concepts of t-image and peak position introduced in section 2.3.3. To that end, let us
first remark that, in figure 10, the experimental resolution of MUSIC for large objects
is maximal when the object faces the neck electrode E3. Then, using the conclusions
of section 4, the MUSIC algorithm has to be applied along each side of the square at
the peak position of Ilat,3 for the tail-polarization of figure 1-b. Practically, that means
that the probe must stop at the PP, start the multi-polarization of the probe to compute
the MSRM δC, and this is then fed into the MUSIC algorithm described in section
??. At the edges of the square, the probe is rotated by π/2, the rotation being started
after the probe has been translated half of its axial length, ensuring that the tail has
passed the object. This principle is summarized in the following algorithm which can
be performed autonomously:
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D

A

B

C

Figure 12. Localization strategy for large objects. The coloured lines represent the
rectilinear path followed by the probe. The t-images (of Ilat,3) are superimposed along
these four paths. When the PP of the t-image is reached, the probe stops and MUSIC
computes the object localization, represented by a cross of same colour as the path on
which the localization is performed. Taking the barycenter of these four localizations gives
an estimation of the object’s center localization.

1. while Ilat,3 does not reach a PP, move the probe forward;
2. when Ilat,3 reaches a PP, stop the probe and apply MUSIC;
3. translate the probe half its axial length, and then rotate it by π/2;
4. go to step 1.

Note that in all steps the probe is moved in straight line with U = (1, 0, 0, 0)T , except
in step 2 where the probe is stopped and the measure of δC requires that each of the
electrodes be polarized with respect to all of the others. This strategy is summarized
in Figure 12, where the t-images of Ilat,3 and their PP are schematized along the sides
of the square trajectory. Finally, the barycenter of the four localizations provided by
MUSIC is computed and considered as the object’s center estimation.

3.3.3 Experimental localization for large objects In this section, we report some
representative experimental results provided by the above localization strategy. We
considered the large (AR = 2) conductive ellipsoid and the large (AR = 1.5) insulating
one (object 1 and 4 of table 1). Each of the two objects was positioned in the tank’s
center, and the algorithm of section 3.3.2 was applied with the probe starting at a
lateral distance of 52mm for object 1, and 63mm for object 2, with object 1 rotated by
−30◦, and object 2 rotated by 90◦. From these initial conditions, the algorithm, which
is applied manually, closes the square trajectory while performing the four MUSIC
estimations as soon as E3 faces the object. These four particular scenes (with the
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Figure 13. Snapshots of the scene in the probe’s frame when MUSIC is performed, i.e.
when the PP of Ilat,3 is reached for the object 1 of table 1. The cross indicates the estimated
localization, the triangle stands for the real position of the object’s center. The letters A, B,
C, D correspond to the time at which MUSIC is performed as represented in figure 12.

corresponding estimated localization provided by MUSIC) are displayed in figure 13
when the strategy is applied to the conductive object (object 1 of table 1). In figure
14, we have drawn the boundaries of the two tested ellipsoids as well as the four
localizations estimated by MUSIC along with their barycenter. In the two cases, which
are representative of all the cases we tested, the approach estimates the true object’s
center position with an error of 2.6mm and 1.6mm respectively. Note also that on the
right panel of figure 14, instead of locating the tops of the ellipsoid, MUSIC tends to
localize its closest points to the probe. This can be explained by the fact that when the
object is inclined, the two sub-dipoles of figure 11 closest to the probe are excited, and
their response is mixed to produce that of an apparent dipole between the two ellipsoid
axes. Thus, since MUSIC localizes one dipole at a time, this is this apparent dipole
which is localized by the algorithm.

4 Object shape estimation

Throughout this section, we will assume that the object material (conductor or
insulator) and the probe’s side on which it is located have been determined using
the detection algorithm outlined in section 2.4, while the location of the object in
the sensor frame has been estimated using the localization algorithm in section 3.3.2.
Shape estimation for ellipsoidal objects requires three parameters to be handled. The
first two are strictly related to shape and can be either the semi-axis length (a,b), or
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Figure 14. Real boundaries of the ellipsoidal conductive (left) and insulating (right) object
with its four localization (indicated by crosses). Each of them is erroneous but their
barycenter (circle) gives a good estimation of the object’s center (here indicated by a
triangle).

equivalently the volume V and the aspect ratio η. The third parameter is the angle
of the ellipsoid θo with respect to the probe axis (see figure 2). Though extrinsically
related to the object (this is a parameter of the pose), this further angle is estimated in
parallel with the shape. Based on this parametrization, the shape estimation algorithm
is performed in two steps. First, the components of the polarization tensor in the sensor
frame pc11, pc12 and pc22 are estimated with an optimization algorithm. Secondly, the
object’s parameters (V, η, θo) or (a, b, θo) are computed by inverting the analytical
expressions of the components of the tensor (6-8).

4.0.4 Step one: Estimation of the polarization tensor Let us first remark that,
according to the model presented in section 2.2, the lateral and axial currents
measured on each of the macro-electrodes can be written as linear combinations of
the components of P c, i.e. for k = 1, 2, 3, 4 and m = 2, 3, 4

Ilat,m = ϕ1,mp
c
11 + ϕ2,mp

c
12 + ϕ3,mp

c
22,

δIax,k = ψ1,kp
c
11 + ψ2,kp

c
12 + ψ3,kp

c
22, (11)

ϕ1,m, ϕ2,m, ϕ3,m, and ψ1,k, ψ2,k, ψ3,k being functions of (xo, yo) deduced from (4)
and (5) and the particular value of C(0). Now, since the position of the object (xo, yo)
is at each instant known in the sensor frame, these functions are computed at sampling
instants ti along the controlled trajectory of the probe and paired with the Ilat,m(ti) and
δIax,k(ti) measurements. Repeating this acquisition process for i = 1, 2...N allows
the 7N measured currents to be collected along the trajectory to inform the following
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Figure 15. Functions f/g, g/f , 1/f and 1/g for conductive (left column) and insulating
(right column) objects.

system of 7N equations with respect to the three unknowns pc11, pc12 and pc22

Ilat,m(t1) = ϕ1,m(t1)pc11 + ϕ2,m(t1)pc12 + ϕ3,m(t1)pc22,

δIax,k(t1) = ψ1,k(t1)pc11 + ψ2,k(t1)pc12 + ψ3,k(t1)pc22,

...
Ilat,m(tN ) = ϕ1,m(tN )pc11 + ϕ2,m(tN )pc12 + ϕ3,m(tN )pc22,

δIax,k(tN ) = ψ1,k(tN )pc11 + ψ2,k(tN )pc12 + ψ3,k(tN )pc22,

(12)

where k and m run from 1 to 4 and 2 to 4 respectively. On a straight line trajectory,
the angle θo is constant, as are the components of P c. Thus (12) is a linear system of
7N equations in the three unknown components of P c that we can solve with the least
squares method. After this first step, we have only to recover the geometric parameters
of the object to determine the object’s shape.

4.0.5 Step two: Shape parameters estimation To recover the object geometry from
the polarization tensor in the sensor frame, we invert the analytical model (8) of section
2.2. This is practically done by remarking that adding and subtracting the first and third
line of (8) gives the equivalent alternative system of equations:

pc11 + pc22

pc11 − pc22
2pc12

 =


λ1 + λ2

(λ1 − λ2) cos(2θo)

(λ1 − λ2) sin(2θo)

 . (13)
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Considering the two last lines of this system for θo yields: If pc12 = pc11 − pc22 = 0, the object is a sphere and θo is arbitrary.

Else, the object is ellipsoidal and θo =
1

2
ATAN2(2pc12, p

c
11 − pc22).

(14)

Moreover, adding the square of the two last lines of (13), and combining the result with
its first line, gives for λ1 and λ2

λ1 =
1

2

[
(pc11 + pc22)±

√
(pc11 − pc22)2 + 4(pc12)2

]
,

λ2 =
1

2

[
(pc11 + pc22)∓

√
(pc11 − pc22)2 + 4(pc12)2

]
,

(15)

where the upper and lower signs of± and∓ correspond to the cases of a conductor and
an insulator respectively. Once the inclination angle θo and the intrinsic polarization
tensor P = diag(λ1, λ2, λ2) are known, the geometry of the ellipsoid may be inferred.
To this end, we exploit the model in (6), which shows that the ratio λ1/λ2 depends only
on the aspect ratio η, through the function f/g whose graph is plotted in figure 15 for
conductive and insulating objects. In both cases, these functions have only one solution
over the range [1, 2.5] and η can be estimated unambiguously by simply reading the
plots of figure 15. Finally, as a third step, still using (6), V can be estimated using
V = λ1/f(η).

4.1 Numerical shape estimation
In all the following, es = [((a− â)2 + (b− b̂)2)/(a2 + b2)]1/2 with (â, b̂) the
estimated shape, denotes the relative error (in %) on the estimated shape vector,
and eθ = |θo − θ̂o|, θ̂o being the estimated inclination angle, is the absolute error (in
degrees) on the inclination angle. We have shown in Lanneau et al. (2016) that the
above shape estimation approach works well on simulated BEM measurements carried
out on small objects. Figure 16 shows the estimated shape of small objects 5 (figure
16-left) and 6 (figure 16-right) (see also table 1), at a lateral distance of 50mm and
90mm and an inclination angle of 35◦ and 110◦ with respect to the probe’s axis. For the
conductive object, we found es = 3.8% and eθ = 0.9◦ while for the insulating object,
we obtained values of es = 10.5% and eθ = 2.8◦.

4.2 Experimental shape estimation
We assess the same approach this time for the four large objects of table 1 in our
experimental test-bed. The shape estimation algorithm will first be applied to objects
localized with the gantry proprioception (i.e., by using the angular encoders of the
gantry when the probe slighthy touches the object). In a second step we will assess the
robustness of shape estimation to the localization errors. In contrast to the algorithm
used in the simulation-based context of Lanneau et al. (2016), average filtering with
a window of 31 samples (for a total sample amount of 420) was first applied to the
input measurements in order to reduce noise. The standard least square algorithm of
Lanneau et al. (2016) has also been replaced by its weighted version Ljung (1999),
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Figure 16. Estimated shapes of the conductive (left) and insulating (right) ellipsoid (objects
5 and 6 in table 1), with no localization error and using the BEM simulator as a direct electric
model.
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Figure 17. Shape error and angle error distribution over the 137 experiments of table 2.

where the weights of the quadratic residual are defined by the norm ‖E0‖, computed
at the corresponding estimated localizations of the object in the sensor’s frame. This
gives more weight to the measurements in (12) which represent the conditions in which
the object is most illuminated by the sensor.

4.2.1 Evaluation of shape estimation results with a priori knowledge of localization
The tested objects were placed in our tank, close to its center, with five different
orientations ranging from −30◦ to 90◦ (in steps of 30◦). All localizations and
orientations were measured in a preliminary step using the proprioception of our
motion-controlled gantry. Once the pose of the object had been measured, all the
electric currents were recorded along a straight line path of 2l = 440mm length, whose
lateral distance ranged from 50mm to 110mm in step of 10mm (see figure 2). This
varying lateral distance allowed assessment of the range of our shape estimation. The
processing of the data was performed off line in Matlab, on a desktop equipped with
an Intel core i7 processor, running at 2.8Ghz, with 8Gb of RAM. The processing times
ranged from 2.02 to 2.40s for each of the 137 experiments presented in table 2.
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Lat. dist. 
(mm)

Shape 
error (%)

Angle 
error (°)

Shape 
error (%)

Angle 
error (°)

Shape 
error (%)

Angle 
error (°)

Shape 
error (%)

Angle 
error (°)

Shape 
error (%)

Angle 
error (°)

Conducting 50 18,10 9,25 9,07 2,07 4,35 2,63 35,79 9,30 - -
a 60 8,69 6,27 10,27 0,89 6,96 3,25 12,05 3,47 34,71 11,32

0,033 70 4,02 4,23 12,65 0,27 9,02 3,29 7,89 3,15 25,28 10,06
b 80 1,98 1,69 16,81 7,03 11,66 3,04 3,63 1,45 15,16 8,91

0,016 90 2,27 2,12 17,42 8,21 9,92 6,61 1,35 3,01 16,13 8,57

Object 1 100 5,16 3,51 16,20 9,27 23,34 4,11 3,38 4,34 19,62 10,19
110 2,62 1,35 21,24 0,80 37,52 67,58 11,69 10,60 12,82 12,24

Insulating 50 17,44 84,01 27,25 24,40 52,09 49,88 47,74 65,48 21,12 82,24
a 60 22,25 61,15 24,78 7,54 8,80 40,03 31,87 64,22 15,22 80,14

0,033 70 29,70 0,49 22,95 10,98 8,62 31,50 15,35 48,63 23,92 68,28
b 80 33,96 26,35 19,42 1,18 13,27 22,08 19,13 26,19 27,34 8,99

0,016 90 27,31 10,94 21,31 10,14 19,22 13,37 21,11 20,93 18,02 10,30

Object 2 100 17,51 58,33 23,43 48,02 24,03 24,50 15,17 15,93 14,54 0,25
110 9,91 27,44 13,76 38,54 24,14 44,43 16,68 22,24 28,83 5,52

Conducting 50 5,20 5,60 16,09 37,50 14,74 10,16 28,66 12,58 18,07 31,50
a 60 11,80 2,78 17,70 21,75 14,65 0,35 15,75 9,07 3,95 33,09

0,027 70 16,52 11,93 17,82 86,83 17,85 16,81 11,77 9,91 2,74 28,86
b 80 17,08 39,57 14,50 75,96 16,88 32,69 9,49 20,26 5,61 31,36

0,018 90 13,11 36,64 14,03 73,61 17,35 79,31 8,08 30,84 7,04 31,26

Object 3 100 15,06 42,68 9,07 72,22 11,97 82,52 2,77 44,64 5,86 29,97
110 31,03 36,67 9,90 65,26 12,64 88,84 3,26 38,88 14,37 29,59

Insulating 50 24,71 77,63 12,92 76,16 13,19 40,02 18,28 30,60 37,15 39,62
a 60 11,33 72,60 9,84 80,38 11,53 40,62 16,03 7,47 17,89 25,64

0,027 70 11,35 56,41 9,72 78,23 10,02 31,95 21,84 12,16 32,14 12,68
b 80 12,59 54,18 10,79 80,67 8,74 37,99 20,29 19,15 57,71 1,42

0,018 90 10,83 40,86 15,08 60,05 28,87 62,39 27,38 28,60 24,95 8,27

Object 4 100 35,49 42,14 17,80 70,65 10,96 48,26 13,90 1,08 32,09 1,59
110 32,02 45,60 36,49 65,59 14,83 41,23 - - - -

16,04 30,80 16,73 39,79 16,33 33,19 16,31 20,90 20,47 23,92

Shape 
error (%)

Angle 
error (°)

Lat. dist. 
(mm)

Shape 
error (%)

Angle 
error (°)

Object 1 13,20 7,18 50 22,21 36,35

Object 2 22,21 32,99 60 15,30 28,60

Object 3 12,93 37,19 70 15,56 26,33

Object 4 20,26 42,18 80 16,80 25,01
90 16,04 27,30

100 15,87 30,71
110 18,54 35,69

Shape (%) Angle (°) Shape (%) Angle (°) Shape (%) Angle (°) Shape (%) Angle (°)

11,88 21,46 19,95 33,72 16,28 16,77 15,55 38,41
6,73 24,72 9,25 25,49 8,59 20,40 9,49 26,13

Mean error
Standard deviation

Table D
Conducting Insulating η = 2 η = 1,5

Table A

Table B Table C

Mean error

-30 0 30 60 90

Mean shape: 15,9% 
 

Mean angle: 27,6° 

Table 2. Results of the experiments: table A: Errors of shape (pink) and angle (green) for
137 different experiments: 4 objects, 5 angles (-30◦, 0◦, 30◦, 60◦, 90◦), 7 distances (50, 60,
70, 80, 90, 100, 110)mm. The last line shows the mean of each column. table B: Mean errors
of shape and angle for each object. table C: Mean errors of shape and angle for all objects
at each distance. table D. Mean errors of shape and angle for conductive objects, insulating
objects, and aspect ratio 2 and 1.5 in the distance interval [60− 100] (100 experiments).

The shape estimation results are reported in the four tables of table 2. In table 2A,
each horizontal block reports the errors computed for each object. In each block, each
row records the lateral distance (between the object’s center and the probe’s straight
path), and the columns represent the different inclination angles of the object with
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Figure 18. Estimated shapes of a large conductive ellipsoid (object 1 in table 1), for different
lateral distances (60, 80, 100)mm and inclination angles: −30◦, 0◦, 30◦, 60◦, 90◦.

Figure 19. Estimated shapes of a large insulating ellipsoid (object 4 in table 1), for different
lateral distances (60, 80, 100)mm and inclination angles: −30◦, 0◦, 30◦, 60◦, 90◦.

respect to the probe path. Note that 3 error values are missing in this table. For the
object 1, at 50mm and 90◦, since in this case the robot was colliding with the object,
and for object 4, at 110mm, 90◦ and 60◦, since in this case, the data were too noisy
to be exploited. Looking at the results of table 2A object by object, one can see that
the shape estimation error ranges from 1% to 57% with an average of 17%. More than
82% of the shape errors are lower than 25%, as is apparent in the distribution of shape
errors displayed in figure 17-left. The mean of each shape estimation error for each
object orientation is presented in the last line of the table 2A, which shows that these
averages are all close to 16% except when the inclination angle is 90◦ where it is more
than 20%. Table 2A also shows that the angle is not estimated well as confirmed by the
wide distribution of angle errors in figure 17-right. Better accuracy was obtained for
the first object, but significant errors (up to 90◦ in some cases) for the 3 others were
obtained, whatever their initial orientation and lateral distance. Remarkably, the poor
performance of inclination angle estimation does not much affect our shape estimation
results, as confirmed by table 2B which shows the mean of the shape and angle errors
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for each object.

In table 2C we report the shape errors (respectively angle errors) computed as the sum
of the shape error for all objects at each distance. This shows that the interval of reliable
distances using our method is [60-100]mm. This is easily explained by the fact that the
identification approach is based on the model of the dipolar response of the object. This
assumption is justified when the object is not too close to the sensor, while increasing
the sensor-object distance reduces the signal/noise ratio, and algorithm performance
decreases. In this reliable interval, the model of the estimator is more justified and
the mean shape error falls to 15.9%. This value quantifies the global performance of
the approach, customized for these conditions. Table 2D shows the shape and angle
errors obtained with objects of same electric nature (insulator or conductor), and with
the same aspect ratio in this optimal range. The mean shape error for the conductors
falls to 12% while that of insulators is 20%. Note that a shape error of 20% can be
quite acceptable as illustrated in figures 18 and 19, where we have drawn the real
and estimated shapes of objects 1 and 4. The shape of conductive objects is globally
better estimated than that of insulators. Similarly, the ellipsoids of smaller aspect
ratio are better estimated than those with a larger aspect ratio. However, table 2D also
shows that the inclination angle of objects with small aspect ratio is difficult to estimate.

4.2.2 Evaluation of the influence of the localization uncertainty on shape
estimation To illustrate the influence of localization error on shape estimation we here
report some shape estimation results obtained with a conductive ellipsoid positioned
at 60mm and rotated in 30◦-steps from −30◦ to 90◦ with respect to the probe main
axis. The shape estimation algorithm has been repeated with different errors on the
object localization systematically sampled along the polar grid of figure 20-bottom-
right, centered on the object position. In the following, this object position which is
measured using the robot gantry before each experiment is called ’ground truth’. Note
that the maximal tested localization error (6mm) is quite large compared to the errors
reported in section 3.3, which do not exceed 3mm. The top row of figure 20 shows the
estimated ellipses for each dot of the grid in figure 20-bottom-right. Figure 20-bottom-
left shows the shape errors averaged along a circle of the polar grid, and denoted es, as
a function of the localization error eρ. These results show how the accuracy of shape
and angle estimation rapidly decreases as localization error increases. In table 3, the
shape error is compared for two objects: (1) with the ground truth localization, (2) with
the experimental localization based on the multi-MUSIC strategy of section 5, and (3)
with the 50 erroneous localizations of figure 20-bottom-right. The average shape error
calculated over the 6mm error circle for the conductive object was below 14%, and
around 35% for the insulating object.

5 Discussion
In the reliable range for which the shape estimation algorithm has been developed, the
overall shape error is around 16%, while it did not exceed 10% on BEM simulations
carried out with small simulated objects Lanneau et al. (2016). The differences between
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Figure 20. Shape estimation of object 1 in table 1 at 60mm for 5 orientations (from left
to right: −30◦, 0◦, 30◦, 60◦, 90◦). The additional error eρ (of the localization) have been
introduced as inputs of shape estimation, as illustrated in the polar grid of the bottom right
panel. (Top) Estimated ellipsoid for the 3× 50 erroneous localization (pale blue); real shape
(blue); estimated shape when the localization is perfect (pink dashed lines). (Bottom left)
Mean averaged shape error es over 50 experiments, as a function of the localization error eρ.
(Bottom right) Grid of the erroneous localizations centered on the ground truth localization
represented by the blue triangle. It is defined by 3 circles of {2, 4, 6}mm radius and by
50 equidistant angles from 0◦ to 360◦. The two red dots represent the two experimental
localizations as estimated in section 3.3.

Ground truth localization

(no error)

MUSIC localization

(' 2mm error)

Ground truth localization

+ 6mm additional error

Shape error Object 1 8.7% 10.3%
13.7%

(average over 50 points)

Shape error Object 4 17.9% 18.7%
35.1%

(average over 50 points)

Table 3. Shape errors examples with different localization errors for a conductive (AR 2,
−30◦, 60mm) and an insulating ellipse (AR 1.5, 90◦, 60mm).

the numerical and experimental results have two major origins. One is related to
unavoidable experimental defects, the second is due to the approximation introduced
by the model of objects on which the estimator is based. The former effects can
be observed in the plots of axial and lateral currents in figures 5 and 6, which are
representative of all our observations. They are due to the unavoidable noise on the
emitted and measured signals, the geometric errors introduced by the gantry and the
mechanical devices carrying the probe and supporting the objects, or time and space
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variations of the conductivity while performing experiments. In this regard, note that
the analytical model (on which the estimation algorithm is based), needs to be informed
by a constant conductivity which is measured at the beginning of the experiment with
a conductivity meter (WTW Cond 197i) which provides a measurement with of about
0.5% precision. Beyond these experimental flaws, for any given object volume, the
experimental results show the following trends:

• Trend 1: The shape estimation is better for conductors than insulators;
• Trend 2: The inclination angle estimation is fragile;
• Trend 3: The shape estimation performance decreases when the object aspect

ratio increases and the probe gets closer to the object.

Trend 1, which is also observed on BEM simulations (see figure 16), can be explained
by the fact that a conductive ellipsoid produces an electric response with an amplitude
around twice that of an insulating object of same geometry. This basic fact of
electrokinetics was first observed for spherical objects and then for ellipsoids in
Rasnow (1996). In our experimental context, it implies that the signal/noise ratio of
measurements is higher for conductive objects than insulating ones.

Trend 2 is due to two different reasons. First, when the aspect ratio increases, the
quadripolar response is more and more excited and generates an apparent dipole
rotated with respect to that of the expected dipolar response. As a result, the estimator,
which is only based on a dipolar model of the response, interprets the object as an
ellipsoid with axes shifted from their real to their apparent inclination. In short, the
unmodeled quadripolar response strongly perturbs the dipolar model-based angle
estimation. This is confirmed by remarking that for high aspect ratio, the error on angle
estimation is maximal when the ellipsoidal object’s major axis is perpendicular to the
probe’s axis. Referring to figure 11, in this pathological case, the sub-dipole parallel
to the probe axis and closest to it, is strongly excited and the estimator interprets the
object as an ellipsoid with a major axis aligned with the probe axis, i.e., the error on
θo reaches π/2. This phenomenon increases with the aspect ratio. On the other hand,
when the aspect ratio decreases, referring to (14), the angle calculation is less and less
well conditioned and the performance of the angle estimation drops too. In the limit
case, where it is equal to 1, the object is spherical and the calculation of θo is fully
undetermined.

Trend 3 can be explained by the flaws of the model of the object response. In fact, as
evoked in section 3.3, the electric response E1 = −∇φ1 of an object immersed in a
basal field E0 = −∇φ0, is governed by an infinite multipolar expansion of the general
form Ammari, Garnier, Kang, Lim and Yu (2014):

φ1(r) =
1

4π

+∞∑
|α|,|β|=1

(−1)|β|

α!β!

(
∂α

1

r

)
Pαβ

(
∂βφ0

)
(0), (16)

where we used standard multi-index notations in R3 as well as r = ‖r‖, with
r = xibi the position vector (in the object frame) at which the reflected potential
field φ1 is evaluated. In this expansion Pαβ defines the generalized polarization
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tensors (GPT) which model the multipolar momentums of the distribution of
electric charges on the object boundaries due to its polarization by the basal field
E0(r) = E0(0) +∇E0(0).r + .... In detail, P11 is the matrix of the components of
the leading order GPT denoted P in section 2.2, i.e. P11 = P . This tensor models the
dipolar response of the object immersed in an uniform field, while P2β models its
quadripolar response in the same conditions. Now, let us remark that after the leading
order contribution, the non-uniformity of the basal field excites the further GPT defined
by P12, while when the sensor gets closer to the object the quadripolar response P21

of magnitude ∼ 1/r3 can no longer be neglected in the model of measurements. This
explains why the model on which the shape estimator is based, is more and more
justified when the object size decreases with respect to the probe basal field, and as it
gets further from the probe, a basic fact confirmed in the ideal numerical conditions of
Lanneau et al. (2016). In the present experimental context we were obliged to consider
large objects and to get the probe closer to them, as has already been remarked
in section 3.3, to keep a signal/noise ratio compatible with the exploitation of the
measurements. In these conditions, these further contributions become non-negligible
in the total electric response (16). In particular, for a given volume, when the aspect
ratio increases, the basal field lying along its domain is less and less uniform, and
the P12-terms of (16) become no longer negligible. This probably explains why the
performance of shape estimation, which is based on the object dipolar response model
P11, falls when the aspect ratio increases. This interpretation is reinforced by a further
observation. When the object main axis is perpendicular to the probe, the shape
estimation performance falls too (see figure 18 and 19). In this case, since the basal
field has a stronger gradient in the lateral direction (see figure 1-right), it is strongly
non-uniform, and the P12-response of the object perturbs the shape estimator.

5.1 Improved shape estimation strategy
Based on the above discussion, one can infer an improved strategy for shape estimation.
As remarked before, the estimation of the inclination angle is fragile which decreases
the performance of the shape estimator. However, this difficulty can be circumvented
by adding after the localization step, a further step ensuring the self alignment of the
probe with one of the symmetry axis of the ellipsoidal object. This can be performed
incrementally through a convergent sequence of discreet rigid displacements as in
Bai et al. (2015), or continuously through simple reactive control laws such as those
proposed in Boyer et al. (2013). More precisely, it suffices to apply the feedback control

Vx

Vy

Ωz

 =


k1δIax,2

k2Ilat,1

k2Ilat,2

 , (17)

and to choose a set of gains ki=1,2,3 able to steer the sensor in a stable pose aligned
with the minor axis of the ellipsoid. Once such a reactive phase achieved, the inclination
angle of the sensor is known to be zero, and one can control the sensor in open loop in
order it joins a desired straight path with a desired θo and a desired lateral distance
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Figure 21. Left: Simulated motion of the probe in the improved shape estimation strategy
(the lines AB, BC, CD indicate the path of the probe’s center). The probe starts from a pose
A. Thanks to the control law (17), it is steered to the pose B, in which its body is aligned
with the minor axis of the ellipsoid. The angle θo is then known to be zero and the probe is
steered to pose C from which it starts a straight-line path with a prescribed θo, here equal to
−30o. Right: snapshots of the probe when it is steered from pose A to pose B.
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Figure 22. Left: Shape error distribution over the 137 experiments of table 2 when θo is a
priori known. Right: Shape error vs lateral distance at θo = −30.

d (remind that the localization is known from the previous step). Such a reactive
alignment is illustrated in figure 21 which shows a simulated path obtained with the
law (17) when k1 = 1, k2 = 10 and k3 = 100. Once the robot aligned, one can reapply
the previous algorithm but with θo known. This improves the shape estimation as this
is shown by figure 22-left, which displays the distribution of the shape estimation error
obtained with the previous experiments, but with a priori knowledge of θo. Figure 22-
right, shows that for an inclination angle θo = −30o and a lateral distance d = 70mm,
the shape estimation error drops to 10.3%. This optimal configuration fully agrees with
the above discussion (Trend 3) since in this case the object is at an optimal distance
between noise and model validity criteria, while its major axis is close to be aligned
with the basal field E0 so encouraging the object dipolar response on which the shape
estimator is based.
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6 Conclusion and perspectives for future research

Based on a model of the measurements of a sensor providing the electric currents that
flow across a set of electrodes arranged along a slender body, we have experimentally
implemented a new approach for shape estimation of ellipsoidal objects. Assessed on
140 experiments, when the angle between the probe and the ellipsoid major axis is
unknown, the average shape error is around 16%, with more than 82% of the shape
errors lower than 25%. Moreover, when the angle is known a-priori, the shape error
drops to 10%. The approach is based on physical models of the sensor and the objects’
response. In its improved version, it is hierarchically structured in three stages. The
first stage consists of the detection of the object while identifying its electric nature.
The second consists of localizing the object. The third consists of estimating its shape.
This hierarchical strategy tends to support some of the conjectures in biology von der
Emde (2006). Following Ammari, Boulier, Garnier and Wang (2014), this strategy
has been performed by feeding the MUSIC algorithm with a dipolar model of the
object’s response. In these conditions, the algorithm behaves as a dipole localizer.
Due to the large size of our experimental objects with respect to the basal field, the
MUSIC algorithm has been adapted to localize the center of four sub-dipoles located
on the boundaries of the ellipsoid whose barycenter turned out to be a good estimation
of the object’s center position. To capture the response of the object in the basal field
of the sensor we used the leading-order generalized polarization tensor known as
Polya-Szego tensor, which allows the modeling of the dipolar response of an object
in a uniform electric field of any direction. This model has been here applied to our
elliptic objects for which this tensor has a closed analytical expression. However, it
has a wider generality, since in fact any shaped object responds at the leading order
as an equivalent ellipsoid. As a result, the estimation strategy presented in the article
should identify the equivalent ellipsoid of the leading order response of any object.

In the near future, we will continue this development in two directions. First, using a
feedback controller of the form (17), the localization of the ellipsoidal object will be
replaced by a reactive self positioning of the sensor at a given fixed pose with respect
to the object center, this pose being independent of the object size, electric nature and
aspect ratio. Second, we will advance the model of the object response in order to
capture the contributions produced by the non-uniformity of the basal field, starting
with the component P12. While the closed analytical form of these tensors cannot be
derived, one can tabulate them numerically using BEM and invert their plots with
respect to the geometric parameters. Because of the high dimension of these further
tensors, we will exploit the symmetry properties of the objects and measurements to
get a minimal set of independent parameters describing their shape.

In the longer term, we aim to address the issue of underwater object estimation by
an autonomous robot. Our approach required only boundaries left-right symmetry, a
condition usually respected by our autonomous underwater robots (AUVs). However,
several issues remain to be addressed. Firstly, we will have to derive an analytical
model of the sensor response to the reflected field from the object using a non-slender
bodied AUV. Secondly, the above approach assumes that the motions of the vehicle are
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perfectly known, but this is not the case for an AUV. In this context, electric sense will
need to be combined with further inertial measurements.
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