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REAL SPECTRUM VERSUS ℓ-SPECTRUM

VIA BRUMFIEL SPECTRUM

FRIEDRICH WEHRUNG

Abstract. It is well known that the real spectrum of any commutative unital
ring, and the ℓ-spectrum of any Abelian lattice-ordered group with order-unit,
are all completely normal spectral spaces. We prove the following results:
(1) Every real spectrum can be embedded, as a spectral subspace, into some

ℓ-spectrum.
(2) Not every real spectrum is an ℓ-spectrum.
(3) A spectral subspace of a real spectrum may not be a real spectrum.
(4) Not every ℓ-spectrum can be embedded, as a spectral subspace, into a

real spectrum.
(5) There exists a completely normal spectral space which cannot be embed-

ded, as a spectral subspace, into any ℓ-spectrum.
The commutative unital rings and Abelian lattice-ordered groups in (2), (3),
(4) all have cardinality ℵ1 , while the spectral space of (5) has a basis of
cardinality ℵ2 . Moreover, (3) solves a problem by Mellor and Tressl.

1. Introduction

Denote by SX the class of all spectral subspaces of members of a class X of
spectral spaces. Most of the paper is devoted to proving the containments and
non-containments, between classes of spectral spaces, represented in Figure 1.1.
The classes in question are the following:

CN = SCN

Sℓ

SBr = SR

YYYYYYYYYY

ℓ

jjjjjjjjjjjjjjjj Br = R

XXXXXX

Figure 1.1. Classes of completely normal spectral spaces

• CN, the class of all completely normal spectral spaces;
• ℓ, the class of ℓ-spectra of all Abelian ℓ-groups with order-unit;
• Br, the class of Brumfiel spectra of all commutative unital f -rings;
• R, the class of real spectra of all commutative unital rings.
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2 F. WEHRUNG

The context of our work is the following. The classical construction of the
Zariski spectrum of a commutative unital ring (cf. Subsection 4.1) extends to
many contexts, including distributive lattices, lattice-ordered groups (ℓ-groups for
short), partially ordered rings, yielding Stone duality, the ℓ-spectrum, and the real

spectrum, respectively. All the topological spaces thus obtained are spectral spaces,
that is, sober spaces in which the compact open subsets are a basis of the topology,
closed under finite intersection. Conversely, every spectral space is the spectrum of
some bounded distributive lattice (Stone [30]) and also of some commutative unital
ring (Hochster [16]).

The paper will focus on the ℓ-spectrum of an Abelian ℓ-group (cf. Subsection 4.2)
and the real spectrum of a commutative unital ring (cf. Subsection 4.4). Those two
frameworks are connected by the Brumfiel spectrum of a commutative f -ring (cf.
Subsection 4.3). All the spectral spaces thus obtained are completely normal, that
is, for all elements x and y in the closure of a singleton {z}, either x belongs to the
closure of {y} or y belongs to the closure of {x}.

Prior to the present paper, part of the picture (Figure 1.1) was already known:

• Delzell and Madden [8] proved that ℓ $ CN and R $ CN.
• Delzell and Madden’s result got amplified in Mellor and Tressl [22], who
established that any class of spectral spaces containing R, whose Stone

dual lattices are definable by a class of L∞,λ-formulas for some infinite

cardinal λ, has a member outside SR. In particular, the class of all Stone
duals of the spaces from R (resp., SR) are not L∞,λ-definable. Further,
SR $ CN.

• Delzell and Madden [9, Proposition 3.3] observed that R ⊆ Br.
• It follows easily from Madden and Schwartz [29] and Schwartz [28] that
Br ⊆ R. Consequently, Br = R (cf. Corollary 4.17).

• The author proved in [33] that every second countable completely normal

spectral space is in ℓ, and that moreover, the class of all Stone duals of

spaces from ℓ is not L∞,ω-definable.
• The author provided an example in [33, § 5] showing that ℓ $ Sℓ.

The missing pieces provided in the present paper are the following:

• Every Brumfiel spectrum, thus also every real spectrum, can be embed-
ded, as a spectral subspace, into some ℓ-spectrum. This is stated in Corol-
lary 5.7. Hence, SBr ⊆ Sℓ.

• Not every real spectrum is an ℓ-spectrum. This is established in Theo-
rem 5.4, via the construction of a condensate. Hence, R 6⊆ ℓ.

• A spectral subspace of a real spectrum may not be a Brumfiel spectrum
(thus also not a real spectrum). This is stated in Corollary 5.10, via the
construction of a condensate. It follows that SR 6⊆ Br. This solves a
problem of Mellor and Tressl [22].

• Not every ℓ-spectrum can be embedded, as a spectral subspace, into a
Brumfiel spectrum (thus also not into a real spectrum). Hence, ℓ 6⊆ SBr.
This is stated in Corollary 6.8.

• There exists a completely normal spectral space which cannot be embed-
ded, as a spectral subspace, into any ℓ-spectrum. This is stated in Corol-
lary 7.6. Hence, Sℓ $ CN. The spectral space constructed there has ℵ2

compact open members. The proof begins by coining a class of infinitary
statements satisfied by all homomorphic images of ℓ-representable lattices



REAL SPECTRUM, ℓ-SPECTRUM, BRUMFIEL SPECTRUM 3

(Lemma 7.1). Then the proof technique loosely follows the one introduced
by the author in [31] for solving representation problems of congruence
lattices of lattices and nonstable K-theory of von Neumann regular rings.

We point out that although not every ℓ-spectrum is a real spectrum (cf. Corol-
lary 6.8), there is a formally related problem, on the interaction between Abelian
ℓ-groups and commutative rings, with a well known positive solution. Let D be an
integral domain with group of units U and field of fractions K. Denote by K× the
multiplicative group of all nonzero elements of K. The group of divisibility of D (cf.
Močkoř [24]) is the quotient group K×/U , endowed with the unique translation-
invariant partial ordering with positive cone D/U . Every Abelian ℓ-group is the
group of divisibility of some integral domain, which, in addition, can be taken a
Bezout domain (cf. Anderson [1, page 4], where the result is credited to Krull,
Jaffard, Kaplansky, and Ohm). Thus, Corollary 6.8 illustrates the gap between the
group of divisibility and the real spectrum.

Since Stone duality is more conveniently stated with bounded distributive lat-
tices, our results on spectral spaces are mostly formulated for commutative, unital
rings and Abelian ℓ-groups with order-unit. On the other hand, most of our lattice-
theoretical results are valid for lattices without top element, and thus formulated
in that more general context.

2. Basic concepts

For ℓ-groups and f -rings, we refer the reader to Bigard, Keimel, and Wolfen-
stein [6] or Anderson and Feil [2]. For any partially ordered Abelian group G, we
set G+ =

def
{x ∈ G | x ≥ 0} (the positive cone of G) and G++ =

def
{x ∈ G | x > 0}.

For a, b ∈ G+, let a≪ b hold if ka ≤ b for every positive integer k.
For partially ordered Abelian groups G and H , the lexicographical product of G

by H , denoted G ×lex H , is the product group G ×H , endowed with the positive
cone consisting of all pairs (x, y) with either x > 0 or (x = 0 and y ≥ 0).

For any chain Λ, we denote by Z〈Λ〉 the lexicographical power, of the chain Z
of all integers, by Λ. Hence the elements of Z〈Λ〉 have the form x =

∑n
i=1 kicξi ,

where each ki ∈ Z \ {0} and ξ1 < · · · < ξn in Λ, and x belongs to the positive cone
of Z〈Λ〉 iff either n = 0 (i.e., x = 0) or kn > 0. This endows Z〈Λ〉 with a structure
of a totally ordered Abelian group.

A lattice-ordered group, or ℓ-group for short, is a group endowed with a trans-
lation-invariant lattice ordering. All our ℓ-groups will be Abelian and will thus be
denoted additively. Elements x and y, in an ℓ-group, are orthogonal if x ∧ y = 0.

A subset I in an Abelian ℓ-group G is an ℓ-ideal if it simultaneously a subgroup
of G and an order-convex sublattice of G.

For any elements a and b in an Abelian ℓ-group G, we will set a+ =
def

a ∨ 0,

a− =
def

(−a) ∨ 0, |a| =
def

a ∨ (−a), and ar b =
def

(a− b)+ = a− (a ∧ b).

A lattice-ordered ring is a ring endowed with a lattice ordering invariant under
additive translations and preserved by multiplicative translations by positive ele-
ments. A lattice-ordered ring A is an f-ring if x ∧ y = 0 implies that x ∧ yz =
x ∧ zy = 0 whenever x, y, z ∈ A+ and x ∧ y = 0. Equivalently, A is a subdirect
product of totally ordered (not necessarily unital) rings (cf. Bigard, Keimel, and
Wolfenstein [6, Théorème 9.1.2]).

Lemma 2.1 (folklore). Let G be an Abelian ℓ-group and let a, b, c ∈ G. Then
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• ar c ≤ (ar b) + (b r c).
• (ar b) ∧ (br a) = 0.
• If, in addition, G is the underlying additive ℓ-group of an f-ring A and

c ∈ A+, then car cb = c(ar b) and acr bc = (ar b)c.

A subset I in an f -ring A is an ℓ-ideal if it is, simultaneously, an ideal of the
underlying ring of A and an order-convex sublattice of A.

Totally ordered rings are particular cases of f -rings. About those, we will need
the following lemma.

Lemma 2.2. Let A be a totally ordered (not necessarily unital) commutative do-

main and let I be a proper order-convex ideal of A. Then for every x ∈ I and every

a ∈ A, the relation |xa| ≪ |a| holds.

Proof. We will use repeatedly the fact that for every c ∈ A++, the assignment
t 7→ tc defines an order-embedding of A into itself. Since A is totally ordered, we
may assume that a ≥ 0 and x ≥ 0. Let n < ω and suppose that nxa > a (so a > 0).
Then for every b ∈ A+, nxab ≥ ab ≥ 0, thus (as a > 0) nxb ≥ b ≥ 0. Since x ∈ I
and I is an ideal of A, we get nxb ∈ I. Since I is order-convex, it follows that b ∈ I.
This holds for every b ∈ A+, whence I = A, a contradiction. Since A is totally
ordered, it follows that nxa ≤ a. �

For lattice theory we refer the reader to Grätzer [15], Johnstone [18]. For any
elements a and b in a distributive lattice D with zero, a splitting of (a, b) is a
pair (x, y) of elements of D such that a ∨ b = a ∨ y = x ∨ b and x ∧ y = 0. Observe
that in that case, x ≤ a and y ≤ b. We say that D is completely normal if every
pair of elements in D has a splitting.

We denote by P op the opposite poset of a poset P . For any functions f and g
with common domain X , we set

[[f 6= g]] =
def

{x ∈ X | f(x) 6= g(x)} .

We denote by P(X) the powerset of any set X , ordered under set inclusion. We
denote by ωα, or ℵα according to the context (“ordinal versus cardinal”), the αth
infinite cardinal, and we set ω =

def
ω0 = {0, 1, 2, . . .}.

Throughout the paper, “countable” means “at most countable”.

3. Stone duality between distributive lattices with zero and

generalized spectral spaces

In this section we recall a few well known facts on Stone duality for bounded
distributive lattices. For references and more details, see Johnstone [18, § II.3],
Grätzer [15, § II.5].

Definition 3.1. For a topological space X , we denote by
◦

K(X) the set of all
compact1 open subsets of X , ordered under set inclusion. We say that X is

— sober, if every join-irreducible member, of the lattice of all closed subsets
of X , is the closure of a unique singleton2 ;

1Throughout the paper, “compact” means what some other references call “quasicompact”; in
particular, it does not imply Hausdorff.

2Due to the uniqueness, every sober space is T0 (not all references assume this).
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— generalized spectral, if it is sober,
◦

K(X) is a basis of the topology of X ,
and U ∩ V is compact whenever U and V are compact open subsets of X ;

— spectral, if it is simultaneously compact and generalized spectral.

The specialization preorder on X is defined by

x 6 y if y ∈ clX({x}) , for all x, y ∈ X .

The spectrum SpecD, of a distributive lattice D with zero, is defined as the set of
all (proper) prime ideals of D, endowed with the closed sets {P ∈ SpecD | I ⊆ P},
for subsets (equivalently, ideals) I of D. The specialization order on SpecD is just
set-theoretical inclusion. The correspondence between distributive lattices with
zero and generalized spectral spaces is spelled out in the following result, originating
in Stone [30].

Theorem 3.2 (Stone).

• For every distributive lattice D with zero, the space SpecD is generalized

spectral and the assignment a 7→ {P ∈ SpecD | a /∈ P} defines an isomor-

phism αD : D →
◦

K(SpecD).

• For every generalized spectral space X,
◦

K(X) is a distributive lattice with

zero and the assignment x 7→

{

U ∈
◦

K(X) | x /∈ U

}

defines a homeomor-

phism ξX : X → Spec
◦

K(X).

For distributive lattices D and E, a 0-lattice homomorphism f : D → E, and
Q ∈ SpecE, the inverse image f−1[Q] may be the whole of D, in which case it
does not belong to SpecD (prime ideals are assumed to be proper). This does not
happen if we assume the map f to be cofinal, that is, every element of E is bounded
above by some element of the range of f .

Say that a map ϕ : X → Y , between topological spaces, is spectral if the inverse
image under ϕ, of any compact open subset of Y , is a compact open subset of X .

If X and Y are both generalized spectral, then the map
◦

K(ϕ) :
◦

K(Y ) →
◦

K(X),
V 7→ ϕ−1[V ] is a cofinal 0-lattice homomorphism. Hence we obtain the following
statement of Stone’s duality (spelled out in Rump and Yang [26, page 63]), which
extends the classical Stone duality between bounded distributive lattices and spec-
tral spaces.

Theorem 3.3 (Stone). The category of all distributive lattices with zero, with

cofinal 0-lattice homomorphisms, and the category of all generalized spectral spaces,

with spectral maps, are dual, with respect to the natural transformations α and ξ
given in Theorem 3.2 and the functors given as follows:

• The dual of a distributive lattice D with zero is its spectrum SpecD. The

dual of a 0-lattice homomorphism f : D → E is the map

Spec f : SpecE → SpecD, Q 7→ f−1[Q].

• The dual of a generalized spectral space X is the lattice
◦

K(X). The dual of

a spectral map ϕ : X → Y is the map
◦

K(ϕ) :
◦

K(Y ) →
◦

K(X), V 7→ ϕ−1[V ].

Remark 3.4. The case where ϕ is the inclusion map from a generalized spectral
space X into a generalized spectral space Y is interesting. We say that X is a
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spectral subspace of Y if the topology of X is the topology induced by the topol-
ogy of Y and the inclusion map from X into Y is spectral. In that case, the

dual map
◦

K(Y ) →
◦

K(X), V 7→ X ∩ V is a surjective lattice homomorphism.
Conversely, for every surjective lattice homomorphism f : D ։ E, the spectral
map Spec f : SpecE → SpecD is a spectral embedding, that is, it embeds SpecE
into SpecD as a spectral subspace. Hence, spectral subspaces correspond, via Stone

duality, to surjective lattice homomorphisms.

The generalized spectral spaces X that we will consider in this paper will mostly
be completely normal. By Monteiro [23, Théorème V.3.1], this is equivalent to

saying that the dual lattice
◦

K(X) is completely normal (cf. Section 2 for the
definition of completely normal lattices).

4. Zariski, ℓ, Brumfiel, real: spectra and lattices

In this section we recall some well known facts on the various sorts of spectra
and distributive lattices that will intervene in the paper. We also include a few new
results, such as Lemma 4.11. For more details and references, we refer the reader to
Delzell and Madden [9], Johnstone [18, Chapter 5], Keimel [19], Coste and Roy [7],
Dickmann [10, Chapter 6].

4.1. Zariski spectrum. The (Zariski) spectrum of a commutative unital ring A is
defined as the set SpecA of all prime ideals of A, endowed with the topology whose
closed sets are exactly the sets Spec(A, I) =

def
{P ∈ SpecA | I ⊆ P}, for subsets

(equivalently, radical ideals) I of A.
Denote by 〈a1, . . . , am〉

r
the radical ideal of A generated by elements a1, . . . ,

am of A, and denote3 by IdrcA the set of all ideals of A of the form 〈a1, . . . , am〉
r

(finitely generated radical ideals), ordered by set inclusion. Due to the formulas

〈a1, . . . , am〉
r
∨ 〈b1, . . . , bn〉

r
= 〈a1, . . . , am, b1, . . . , bn〉

r
, (4.1)

〈a1, . . . , am〉
r
∩ 〈b1, . . . , bn〉

r
= 〈aibj | 1 ≤ i ≤ m and 1 ≤ j ≤ n〉

r
, (4.2)

(where ∨ stands for the join in the lattice of all radical ideals of A), IdrcA is a
0-sublattice of the distributive lattice of all radical ideals of A.

Since every radical ideal of A is the intersection of all prime ideals containing it,
IdrcA is the Stone dual of SpecA (cf. Delzell and Madden [9, page 115]):

Proposition 4.1. The Zariski spectrum SpecA, of a commutative unital ring A,
is a spectral space, and the assignment I 7→ {P ∈ SpecA | I 6⊆ P} defines an iso-

morphism from IdrcA onto the Stone dual
◦

K(SpecA) of SpecA.

Due to the following deep result by Hochster [16], there is no need to give a name
to the class of all lattices of the form IdrcA.

Theorem 4.2 (Hochster). Every spectral space is homeomorphic to the Zariski

spectrum of some commutative unital ring. Hence, every bounded distributive lattice

is isomorphic to IdrcA for some commutative unital ring A.

3The subscript “c” stands for “compact”, which is the lattice-theoretical formalization of
“finitely generated”. The superscript “r” stands for “radical”.
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4.2. ℓ-spectrum and ℓ-representable lattices. The ℓ-spectrum of an Abelian
ℓ-group G is defined as the set SpecℓG of all prime ℓ-ideals of G, endowed with
the topology whose closed sets are exactly the {P ∈ SpecℓG | I ⊆ P}, for subsets
(equivalently, ℓ-ideals) I of G.

Denote by 〈a1, . . . , am〉
ℓ
, or 〈a1, . . . , am〉

ℓ
G if G needs to be specified, the ℓ-ideal

of G generated by elements a1, . . . , am of G, and denote by IdℓcG the set of
all ℓ-ideals of G of the form 〈a1, . . . , am〉r (finitely generated ℓ-ideals), ordered by

set inclusion. Since 〈a1, . . . , am〉
ℓ
= 〈a〉

ℓ
where a =

def

∑m
i=1 |ai|, we get IdℓcG =

{

〈a〉
ℓ
| a ∈ G+

}

. Due to the formulas

〈a〉
ℓ
∨ 〈b〉

ℓ
= 〈a+ b〉

ℓ
and 〈a〉

ℓ
∩ 〈b〉

ℓ
= 〈a ∧ b〉

ℓ
, for all a, b ∈ G+ (4.3)

(where ∨ stands for the join in the lattice of all ℓ-ideals of A), IdℓcG is a 0-sublattice
of the distributive lattice of all ℓ-ideals of G. It has a top element iff G has an order-
unit.

Since every ℓ-ideal of G is the intersection of all prime ℓ-ideals containing it,
IdrcG is the Stone dual of SpecℓG:

Proposition 4.3. The ℓ-spectrum SpecℓG, of any Abelian ℓ-group G, is a gen-

eralized spectral space, and the assignment I 7→ {P ∈ SpecG | I 6⊆ P} defines an

isomorphism from IdℓcG onto the Stone dual
◦

K(SpecℓG) of SpecℓG.

Following terminology from Iberkleid, Mart́ınez, and McGovern [17] and Weh-
rung [33], we recall the following definition.

Definition 4.4. For distributive lattices A and B, a map f : A → B is closed if
for all a0, a1 ∈ A and all b ∈ B, if f(a0) ≤ f(a1) ∨ b, then there exists x ∈ A such
that a0 ≤ a1 ∨ x and f(x) ≤ b.

The following lemma is established in Wehrung [33, § 3].

Lemma 4.5. Let A and B be Abelian ℓ-groups and let f : A → B be an ℓ-homo-

morphism. Then the map Idℓc f : IdℓcA→ IdℓcB, 〈x〉
ℓ
7→ 〈f(x)〉

ℓ
is a closed 0-lattice

homomorphism.

In particular, the assignments G 7→ IdℓcG, f 7→ Idℓc f define a functor, from
the category of all Abelian ℓ-groups with ℓ-homomorphisms, to the category of
all distributive lattices with zero with closed 0-lattice homomorphisms. It is well
known that this functor preserves nonempty finite direct products and directed
colimits.

Say that a latticeD is ℓ-representable if it is isomorphic to Idℓ
cG for some Abelian

ℓ-group G. Equivalently, the spectrum of D is homeomorphic to the ℓ-spectrum of

some Abelian ℓ-group. This terminology is extended to diagrams ~D of distributive

lattices with zero and 0-lattice homomorphisms, by saying that ~D ∼= Idℓc ~G for some

diagram ~G of Abelian ℓ-groups and ℓ-homomorphisms.
It is well known that every ℓ-representable lattice is completely normal. The

author established the following result in [33].

Theorem 4.6. Every countable completely normal distributive lattice with zero is

ℓ-representable. On the other hand, the class of all ℓ-representable lattices cannot

be defined by a class of L∞,ω-formulas of lattice theory.
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The following easy lemma is established in Wehrung [33, § 3].

Lemma 4.7. Let G be an Abelian ℓ-group, let S be a distributive lattice with

zero, and let ϕ : IdℓcG ։ S be a closed surjective 0-lattice homomorphism. Then

I =
def

{

x ∈ G | ϕ(〈x〉
ℓ
) = 0

}

is an ℓ-ideal of G, and there is a unique isomorphism

ψ : Idℓ
c(G/I) → S such that ψ(〈x+ I〉

ℓ
) = ϕ(〈x〉

ℓ
) for every x ∈ G+.

4.3. Brumfiel spectrum and Brumfiel-representable lattices. For any com-
mutative f -ring A, we say that a (proper) ℓ-ideal P is prime if it is both an ℓ-ideal
and prime as a ring ideal. Then P is also prime as an ℓ-ideal of the underlying
additive ℓ-group of A, that is, x ∧ y ∈ P implies that either x ∈ P or y ∈ P ,
whenever x, y ∈ A.

The Brumfiel spectrum of a commutative f -ring A is defined as the set SpecBA
of all prime ℓ-ideals of A, endowed with the topology whose closed sets are exactly
the {P ∈ SpecBA | I ⊆ P}, for subsets (equivalently, radical ℓ-ideals) I of A.

Denote by 〈a1, . . . , am〉r, or 〈a1, . . . , am〉rA if A needs to be specified, the radical
ℓ-ideal of A generated by elements a1, . . . , am of A, and denote by IdrcA the
set of all ideals of A of the form 〈a1, . . . , am〉

r
(finitely generated radical ideals),4

ordered by set inclusion. Since 〈a1, . . . , am〉
r
= 〈a〉

ℓ
where a =

def

∑m
i=1 |ai|, we get

IdrcA = {〈a〉r | a ∈ A+}. Due to the formulas

〈a〉
r
∨〈b〉

r
= 〈|a|+ |b|〉

r
and 〈a〉

r
∩〈b〉

r
= 〈|a| ∧ |b|〉

r
= 〈ab〉

r
, for all a, b ∈ A (4.4)

(where ∨ stands for the join in the lattice of all radical ℓ-ideals of A), IdrcA is a
0-sublattice of the distributive lattice of all radical ℓ-ideals of A. If A is unital,
then IdrcA has a top element.

Since every radical ℓ-ideal of A is the intersection of all prime ℓ-ideals containing
it, IdrcA is the Stone dual of SpecBA (cf. Delzell and Madden [9, Proposition 4.2]):

Proposition 4.8. The Brumfiel spectrum SpecBA, of a commutative f-ring A, is a
generalized spectral space, and the assignment I 7→ {P ∈ SpecBA | I 6⊆ P} defines

an isomorphism from IdrcA onto the Stone dual
◦

K(SpecBA) of SpecBA.

Say that a lattice D is Brumfiel-representable if it is isomorphic to IdrcA for
some commutative f -ring A. Equivalently, the spectrum of D is homeomorphic
to the Brumfiel spectrum of some commutative f -ring. As in Subsection 4.2, this
terminology is extended to diagrams of lattices, in a standard fashion.

It is well known that every Brumfiel-representable lattice is completely nor-
mal. We will see, with Corollary 6.8 in the present paper, that not every ℓ-repre-
sentable lattice (thus, a fortiori, not every completely normal distributive lattice)
is Brumfiel-representable.

The following result is an analogue of Lemma 4.7 for f -rings. Its proof is similar
and we omit it.

Lemma 4.9. Let A be a commutative f-ring, let S be a distributive lattice with zero,

and let ϕ : IdrcA ։ S be a closed surjective 0-lattice homomorphism. Then I =
def

{x ∈ A | ϕ(〈x〉
r
) = 0} is a radical ℓ-ideal of A, and there is a unique isomorphism

ψ : Idrc(A/I) → S such that ψ(〈x+ I〉r) = ϕ(〈x〉r) for every x ∈ A+.

4Although we are using, for radical ℓ-ideals, the same notation as the one in Subsection 4.1 for
radical ideals, the context will always make it clear which concept is used.
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Definition 4.10. Let A and B be distributive lattices with zero. A 0-lattice
homomorphism f : A → B is convex if for all P ∈ SpecA, all Q0 ∈ SpecB, and
every proper ideal J of B, if Q0 ⊆ J and f−1[Q0] ⊆ P ⊆ f−1[J ], then there exists
Q ∈ SpecB such that Q0 ⊆ Q ⊆ J and P = f−1[Q].

The following result extends to the Brumfiel spectrum functor a result originally
established for the real spectrum functor in Korollar 4, pages 133–134 of Knebusch
and Scheiderer [20]. Our proof is a straightforward modification of its analogue for
real spectra, stated in the forthcoming monograph Dickmann, Schwartz, and Tressl
[12, Theorem 12.3.12].

Lemma 4.11. Let A and B be commutative f-rings and let f : A→ B be a homo-

morphism of f-rings. Then the map Idrc f : IdrcA→ IdrcB is convex.

Proof. We must prove that for every P ∈ SpecBA, all Q0 ∈ SpecBB, every proper
radical ℓ-ideal J of B, if Q0 ⊆ J and f−1[Q0] ⊆ P ⊆ f−1[J ], then there exists Q ∈
SpecBB such that Q0 ⊆ Q ⊆ J and P = f−1[Q]. We may replace A by A/f−1[Q0],
B by B/Q0, J by J/Q0, and f by the canonical embedding A/f−1[Q0] → B/Q0.
Hence, we may assume that A is an ordered subring of a totally ordered (not
necessarily unital) commutative domain B, Q0 = {0}, f is the inclusion map from A
into B, P ∈ SpecBA, J is a proper radical ℓ-ideal of B, and P ⊆ J . We must find
Q ∈ SpecBB such that P = Q ∩ A and Q ⊆ J . We set

Q =
def

{

y ∈ J | (∃n < ω)(∃x ∈ P )
(

|y|n ≤ x
)}

.

We claim that Q is a prime ℓ-ideal of B. It is obvious that Q is an order-convex
ℓ-subgroup of B. Now let y ∈ Q and b ∈ B. We must prove that yb ∈ Q. Since B is
totally ordered, we may assume that y, b ∈ B+. Since J is an ideal of B, yb ∈ J . By
assumption, there are n < ω and x ∈ P such that yn ≤ x. It follows that yn ∈ J ,
thus, since J is a radical ideal of B, y ∈ J , and thus ybn+1 ∈ J . Since J is a proper
ℓ-ideal of B, it follows, using Lemma 2.2, that (yb)n+1 = yn(ybn+1) ≤ yn ≤ x,
whence yb ∈ Q. This completes the proof that Q is an ℓ-ideal of B.

Let x, y ∈ B such that xy ∈ Q, we must prove that x ∈ Q or y ∈ Q. Since B is
totally ordered, we may assume that 0 ≤ x ≤ y. There are n < ω and p ∈ P such
that (xy)n ≤ p. It follows that x2n ≤ (xy)n ≤ p, whence x ∈ Q, thus completing
the proof that Q is prime.

Now it is obvious that Q ⊆ J and P = Q ∩ A. �

4.4. Real spectrum and real-representable lattices. Let A be a commutative
unital ring. A subset C of A is a cone if it is both an additive and a multiplicative
submonoid of A, containing all squares in A. A cone P of A is prime if A =
P ∪ (−P ) and the support P ∩ (−P ) is a prime ideal of A. For a prime cone P ,
−1 /∈ P (otherwise 1 ∈ P ∩ (−P ), thus P ∩ (−P ) = A, a contradiction). We denote
by Specr A the set of all prime cones of A, endowed with the topology generated by
all subsets of the form {P ∈ SpecrA | a /∈ P}, for a ∈ A, and we call SpecrA the
real spectrum of A.

It is not so straightforward to describe directly the Stone dual of Specr A. How-
ever, it is possible to reduce it to the Brumfiel spectrum, as follows. The universal

f-ring F(A) of A is a commutative unital f -ring. The first statement in the follow-
ing result is established in Delzell and Madden [9, Proposition 3.3]. The second
statement follows by using Proposition 4.8.
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Theorem 4.12 (Delzell and Madden). Let A be a commutative unital ring. The

canonical homomorphism A → F(A) induces a homeomorphism between the real

spectrum of A and the Brumfiel spectrum of F(A). Hence, the Stone dual of SpecrA
is Idrc F(A).

Say that a lattice is real-representable if it is isomorphic to the Stone dual of
the real spectrum of some commutative unital ring. As in Subsection 4.2, this
terminology is extended to diagrams of lattices, in a standard fashion. It follows
from Theorem 4.12 that every real-representable lattice is isomorphic to IdrcA for
some commutative unital f -ring A (thus it is Brumfiel-representable). We will see
shortly that the converse holds (cf. Corollary 4.17).

Every real-representable lattice is completely normal. By Delzell and Madden [8],
not every completely normal bounded distributive lattice can be represented in this
way. In fact, Mellor and Tressl established in [22] the following result.

Theorem 4.13 (Mellor and Tressl). For every infinite cardinal λ, the class of all

real-representable lattices cannot be defined by any class of L∞,λ-formulas of lattice

theory.

The real spectrum can also be reduced to the Zariski spectrum, as follows.
A commutative unital ring A is real-closed (cf. Schwartz [27, 28], Prestel and
Schwartz [25]) if it has no nonzero nilpotent elements, the squares in A form the
positive cone of a structure of f -ring on A, 0 ≤ a ≤ b implies that a2 ∈ Ab, and for
every prime ideal P of A, the quotient field A(P ) of A/P is real closed, and A/P is
integrally closed in A(P ). Every commutative unital ring has a “real closure” Cr(A),
which is a real-closed ring together with a unital ring homomorphism A→ Cr(A).
The following result is contained in Theorem I.3.10, Propositions I.3.19 and I.3.23,
and the top of page 27, in Schwartz [28].

Theorem 4.14 (Schwartz). For any commutative, unital ring A, the canonical

homomorphism A → Cr(A) induces a homeomorphism Specr Cr(A) → Specr A.
Moreover, if A is real-closed, then the support map P 7→ P ∩ (−P ) induces a

homeomorphism SpecrA→ SpecA.

Corollary 4.15. For any commutative, unital ring A, the Stone dual of the real

spectrum of A is isomorphic to the lattice IdrcCr(A) of all finitely generated radical

ideals of Cr(A).

Although the two following corollaries are probably well known, we could not
find them explicitly stated anywhere, so we include proofs for convenience.

Corollary 4.16. Every closed subspace of a real spectrum is a real spectrum.

Proof. By Theorem 4.14, every real spectrum has the form SpecA for some real-
closed ringA. By definition, any closed subspace of SpecA has the form Spec(A, I) =

def

{P ∈ SpecA | I ⊆ P}, for a subset I of A, which we may assume to be a radical
ideal of A. It follows that the assignment P 7→ P/I defines a homeomorphism from
Spec(A, I) onto Spec(A/I). Now it follows from Schwartz [28, Theorem I.4.5] that
the ring A/I is real-closed. By the second part of Theorem 4.14, it follows that
Spec(A/I) is homeomorphic to Specr(A/I). �

Corollary 4.17. The class of real spectra of all commutative unital rings and the

class of Brumfiel spectra of all commutative unital f-rings are identical.
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Proof. It follows from Theorem 4.12 that every real spectrum is the Brumfiel spec-
trum of some commutative unital f -ring. Conversely, for every commutative unital
f -ring A, the assignment P 7→ A+ + P defines a homeomorphism from SpecBA
onto Specr(A,A

+) =
def

{Q ∈ SpecrA | A+ ⊆ Q}, with inverse the support map Q 7→

Q ∩ (−Q) (cf. Madden and Schwartz [29, page 49]). Since Specr(A,A
+) is, by

definition, a closed subspace of SpecrA, it follows form Corollary 4.16 that SpecBA
is the real spectrum of some commutative unital ring. �

While real-representability makes sense only for bounded lattices, Brumfiel-rep-
resentability can also be defined for unbounded lattices. According to the following
corollary, the two concepts agree on bounded lattices.

Corollary 4.18. A bounded distributive lattice is real-representable iff it is Brumfiel-

representable.

Proof. By Stone duality and Corollary 4.17, it suffices to prove that if a bounded

distributive lattice is Brumfiel-representable, then it can be represented by a com-
mutative unital f -ring. Let A be a commutative f -ring such that IdrcA has a top
element. Thus, A = 〈u〉

r
A for some u ∈ A+. The localization A[u−1] of A with re-

spect to the multiplicative subset S =
def

{un | 0 < n < ω}, endowed with the positive

cone A[u−1]+ =
def

{x/un | x ∈ A+ , 0 < n < ω}, is a commutative unital5 f -ring, for

which the canonical homomorphism κ : A→ A[u−1], x 7→ xu/u is an f -ring homo-
morphism. Obviously, the induced map κ : IdrcA → IdrcA[u

−1] is surjective. We
claim that κ is one-to-one. Let x, y ∈ A+ such that κ

(

〈x〉
r
A

)

⊆ κ
(

〈y〉
r
A

)

. This

means that 〈κ(x)〉
r
A[u−1] ⊆ 〈κ(y)〉

r
A[u−1] , that is, there are z ∈ A+ and positive

integers m, n such that κ(x)m ≤ (z/un)κ(y). It follows that there are positive

integers k, l such that xmuk ≤ zyul within A. Since 〈uk〉
r

A = 〈u〉
r
A = A, we obtain,

using (4.4),

〈x〉rA = 〈xm〉rA = 〈xm〉rA ∩ 〈uk〉
r

A = 〈xmuk〉
r

A ⊆ 〈zyul〉
r

A ⊆ 〈y〉rA ,

as required. Therefore, IdrcA
∼= IdrcA[u

−1], with A[u−1] a commutative unital
f -ring. �

5. Counterexamples constructed from condensates

In the present section we shall apply the construction of a condensate, put to
use in the author’s paper [32] for one arrow and studied in depth in Gillibert and
Wehrung [14] for more complicated diagrams. This construction enables us to con-
struct non-representable objects from non-representable arrows (cf. Theorems 5.4
and 5.9), and it runs as follows.

Definition 5.1. Let A and B be universal algebras (in a given similarity type) and
let I be a set. The I-condensate of a homomorphism ϕ : A → B is the following
subalgebra of A×BI :

Cond(ϕ, I) =
def

{

(x, y) ∈ A×BI | yi = ϕ(x) for all but finitely many i
}

.

Lemma 5.2. The condensate Cond(ϕ, I) is a directed union of copies of algebras

of the form A×BJ for finite J ⊆ I.

5This also applies to the degenerate case where u is nilpotent, in which case A[u−1] collapses
to the zero element.
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Proof. For each finite J ⊆ I, denote by CJ the subalgebra of Cond(ϕ, I) consisting
of all pairs (x, y) ∈ A × BI such that y is constant on I \ J , with value ϕ(x).
Then Cond(ϕ, I) is the directed union of all CJ . Clearly, CJ

∼= A×BJ . �

In particular, it follows from Lemma 5.2 that if A and B are members of a class C
of algebras, closed under nonempty finite direct products and directed colimits, then
so is the condensate Cond(ϕ, I). For example:

• Whenever A and B are distributive lattices with zero and ϕ is a 0-lattice
homomorphism, then Cond(ϕ, I) is a distributive lattice with zero.

• Whenever A and B are Abelian ℓ-groups and ϕ is an ℓ-homomorphism,
then Cond(ϕ, I) is an Abelian ℓ-group.

• Whenever A and B are real-closed rings and ϕ is a unital ring homomor-
phism, then Cond(ϕ, I) is a real-closed ring.

The proof of the following lemma is an extension of the one of Wehrung [32, The-
orem 9.3]. It is also an instance of a much more general result, called the Condensate
Lifting Lemma (CLL), established in Gillibert and Wehrung [14], that enables to
infer representability of lattice-indexed diagrams from representability of certain
larger objects, also called there condensates. In particular, as we will see shortly,
Lemma 5.3 can be extended to (many) other functors than Idℓc . The use of CLL
requires quite an amount of technical steps and although it may be unavoidable
for complicated diagrams, the case of one arrow can be handled directly; thus we
include here a self-contained proof for convenience.

Lemma 5.3. Let A and B be distributive lattices with zero, with A countable,

and let ϕ : A → B be a non-ℓ-representable 0-lattice homomorphism. Then for

any set I, if the lattice homomorphism ϕ is ℓ-representable, then the distributive

lattice Cond(ϕ, I) is ℓ-representable. If I is uncountable, then the converse holds.

Proof. Suppose first that ϕ is ℓ-representable. This means that there are Abelian ℓ-
groupsG andH , together with an ℓ-homomorphism f : G→ H , such that Idℓc f

∼= ϕ

(as arrows). Since the functor Idℓc commutes with nonempty finite direct products
and with directed colimits, it sends the representation

Cond(f, I) = lim
−→

J⊂I finite

(G×HJ) ,

given by Lemma 5.2, to a representation

IdℓcCond(f, I)
∼= lim

−→
J⊂I finite

(A×BJ ) ∼= Cond(ϕ, I) .

Hence, Cond(ϕ, I) is ℓ-representable.
Suppose, conversely, that I is uncountable and the distributive lattice E =

def

Cond(ϕ, I) is ℓ-representable. This means that there are an Abelian ℓ-group G and

an isomorphism ε : IdℓcG → E. Denote by p : E ։ A and qi : E ։ B, for i ∈ I,

the canonical projections from E. The set U =
def

{

x ∈ G | (p ◦ ε)(〈x〉
ℓ
G) = 0

}

is an

ℓ-ideal of G; denote by u : G։ G/U the canonical projection. Since p is easily seen
to be a closed map (cf. Definition 4.4), it follows from Lemma 4.7 that there is a

unique isomorphism α : Idℓc(G/U) → A such that

p ◦ ε = α ◦ (Idℓ
c u) . (5.1)
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Likewise, for every i ∈ I, the set Vi =
def

{

x ∈ G | (qi ◦ ε)(〈x〉
ℓ
G) = 0

}

is an ℓ-ideal

of G; denote by vi : G։ G/Vi the canonical projection. As for U and α, there is a

unique isomorphism βi : Idℓc(G/Vi) → B such that

qi ◦ ε = βi ◦ (Id
ℓ
c vi) . (5.2)

Since A is countable, a standard Löwenheim-Skolem type argument shows that
there exists a countable ℓ-subgroup H of G such that α induces an isomorphism
α′ : Idℓc(H/U) → A (where we set H/U =

def
{x+ U | x ∈ H}). We are going to

argue that for every index i outside a certain countable subset of I, the ℓ-homo-
morphism f : H/U → G/Vi , x + U 7→ x + Vi is well-defined and represents the
lattice homomorphism ϕ : A→ B. Our argument is partly illustrated in Figure 5.1.
The diagram of Figure 5.1 is not commutative, because ϕ ◦ p 6= qi as a rule.

IdℓcG
ε
∼=

//

Idℓc u ����
Idℓ

c vi

��;
;
;;

;
;;

;
;;

;
;;

;;
;;

;
E

p
����

qi

��.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

Idℓc(H/U) //

Idℓc f
//

I
K
M
P
R T V X Z [ ] _

α′

∼=

55Idℓc(G/U)
∼=
α

// A

ϕ
��<

<<
<<

<<
<

Idℓc(G/Vi)
∼=

βi
// B

Figure 5.1. Illustrating the proof of Lemma 5.3

For each x ∈ H , the element ε(〈x〉
ℓ
G) belongs to E, that is, (ϕ ◦ p)

(

ε(〈x〉
ℓ
G)

)

=

qi
(

ε(〈x〉
ℓ
G)

)

for all but finitely many i. SinceH is countable, there exists a countable
subset J of I such that

(ϕ ◦ p)
(

ε(〈x〉
ℓ
G)

)

= qi
(

ε(〈x〉
ℓ
G)

)

for all x ∈ H and all i ∈ I \ J . (5.3)

Pick i ∈ I \ J . We claim that H ∩U ⊆ Vi. Every x ∈ H ∩U satisfies the equations

(Idℓc u)
(

〈x〉
ℓ
G

)

= 〈x + U〉
ℓ
G/U = 0 ,

thus, using (5.1), p
(

ε(〈x〉
ℓ
G)

)

= (α ◦ Idℓc u)
(

〈x〉
ℓ
G

)

= 0. By (5.3), it follows that

qi
(

ε(〈x〉
ℓ
G)

)

= 0. By (5.2), this means that βi
(

〈x+ Vi〉
ℓ
G/Vi

)

= 0, that is, since βi
is an isomorphism, x ∈ Vi, thus completing the proof of our claim.
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It follows that there exists a unique ℓ-homomorphism f : H/U → G/Vi such that
f(x+ U) = x+ Vi for every x ∈ H . For every x ∈ H ,

(ϕ ◦ α′)
(

〈x + U〉
ℓ
H/U

)

= (ϕ ◦ α)
(

〈x+ U〉
ℓ
G/U

)

= (ϕ ◦ α ◦ Idℓc u)
(

〈x〉ℓG
)

= (ϕ ◦ p ◦ ε)
(

〈x〉
ℓ
G

)

(use (5.1))

= (qi ◦ ε)
(

〈x〉
ℓ
G

)

(use (5.3))

= (βi ◦ Id
ℓ
c vi)

(

〈x〉ℓG
)

(use (5.2))

= βi(〈x+ Vi〉
ℓ
G/Vi

)

= (βi ◦ Id
ℓ
c f)

(

〈x+ U〉ℓH/U

)

,

so ϕ ◦ α′ = βi ◦ Id
ℓ
c f . Therefore, f represents ϕ. �

Theorem 5.4. There exists a real-closed ring, of cardinality ℵ1, whose real spec-

trum is not homeomorphic to the ℓ-spectrum of any Abelian ℓ-group.

Proof. Let K be any countable, non-Archimedean real-closed field. The subset

A =
def

{x ∈ K | (∃n < ω)(−n · 1K ≤ x ≤ n · 1K)}

is an order-convex unital subring of K, thus it is a real-closed ring. Hence, denoting
by ε : A →֒ K the inclusion map, it follows from Lemma 5.2 that the condensate
R =

def
Cond(ε, ω1) is a real-closed ring. Observe that the cardinality of R is ℵ1.

Suppose that the real spectrum of R is homeomorphic to the ℓ-spectrum of an
Abelian ℓ-group G. By Proposition 3.2, it follows that IdrcR

∼= IdℓcG. Since the
functor Idrc commutes with nonempty finite direct products and directed colimits, it
follows from Lemma 5.2 that IdrcR

∼= Cond(Idrc ε, ω1). In particular, the distributive
lattice Cond(Idrc ε, ω1) is ℓ-representable. By Lemma 5.3, it follows that the lattice
homomorphism Idrc ε is ℓ-representable. By Lemma 4.5, it follows that the map
ε =

def
Idrc ε is closed.

However, IdrcA is a chain with more than two elements, IdrcK is the two-element
chain, and ε is the unique zero-separating map IdrcA → IdrcK. In particular, if
0 < u < 1 in IdrcA, then ε(1) = ε(u) ∨ 0 but there is no x ∈ IdrcA such that
1 ≤ u ∨ x and ε(x) ≤ 0. Hence, ε is not closed. �

Remark 5.5. By (the proof of) Dickmann, Gluschankof, and Lucas [11, Proposi-
tion 1.1], the fieldK and the ring A, of the proof of Theorem 5.4, can be constructed
in such a way that IdrcA is the three-element chain. By a simple Löwenheim-Skolem
type argument, K may be taken countable. Then the lattice Cond(Idrc ε, ω1) is iso-
morphic to the lattice Dω1

introduced in Wehrung [33, § 5]. As observed in the
final example of Wehrung [33, § 5], Dω1

is a homomorphic image of an ℓ-repre-
sentable distributive lattice, without being ℓ-representable itself. By Theorem 3.3,
this means that the spectrum of Dω1

can be embedded, as a spectral subspace, into
the ℓ-spectrum of an Abelian ℓ-group, without being an ℓ-spectrum itself.

The negative property satisfied by the counterexample R of Theorem 5.4 cannot
be strengthened further by replacing “ℓ-spectrum” by “spectral subspace of an ℓ-
spectrum”. The reason for this is the following easy observation, which ought to
be well known but for which we could not locate a reference.



REAL SPECTRUM, ℓ-SPECTRUM, BRUMFIEL SPECTRUM 15

Proposition 5.6. For every commutative f-ring A, there are an Abelian ℓ-group G,
which can be taken with order-unit if A is unital, together with a surjective lattice

homomorphism µ : Idℓ
cG։ IdrcA. Hence, every Brumfiel-representable lattice is a

homomorphic image of some ℓ-representable lattice.

Proof. Denote by G the underlying additive ℓ-group of A. It is easy to verify

that the map IdℓcG ։ IdrcA, 〈x〉
ℓ
7→ 〈x〉

r
is a well defined lattice homomorphism

(use (4.3) and (4.4)). It is, of course, surjective.
Now suppose that A is unital. Since the multiplicative unit 1 of A may not be

an order-unit of A, the construction above of G must be modified. To this end,
define G as the underlying ℓ-group of {x ∈ A | (∃n < ω)(−n · 1 ≤ x ≤ n · 1)}, and

define again µ : 〈x〉
ℓ
7→ 〈x〉

r
. We need to prove that µ is surjective. For every

x ∈ A+, the relations x = (x∨ 1) · (x∧ 1) and 0 ≤ x∧ 1 ≤ x imply that x and x∧ 1

generate the same ℓ-ideal, and thus, a fortiori, 〈x〉
r
= 〈x ∧ 1〉

r
= µ(〈x ∧ 1〉

ℓ
). �

By applying Theorem 3.3 and Remark 3.4 to Proposition 5.6, we thus get

Corollary 5.7. The Brumfiel spectrum of any commutative unital f-ring (thus also
every real spectrum) is a spectral subspace of the ℓ-spectrum of some Abelian ℓ-group
with order-unit.

Moving to f -rings, a mutatis mutandis modification of the proof of Lemma 5.3,
using Lemma 4.9 instead of Lemma 4.7, leads to the following result.

Lemma 5.8. Let A and B be distributive lattices with zero, with A countable,

and let ϕ : A→ B be a non-Brumfiel-representable 0-lattice homomorphism. Then

for any set I, if the lattice homomorphism ϕ is Brumfiel-representable, then the

distributive lattice Cond(ϕ, I) is Brumfiel-representable. If I is uncountable, then

the converse holds.

Theorem 5.9. There exists a real-representable distributive lattice E, of cardinal-

ity ℵ1, with a non-Brumfiel-representable (thus non-real-representable) homomor-

phic image.

Proof. It follows from Dickmann, Gluschankof, and Lucas [11, Proposition 1.1] that
there exists a real-closed domain A with exactly three prime ideals P1 ⊂ P2 ⊂ P3.
Hence, IdrcA is isomorphic to the four-element chain 4 =

def
{0, 1, 2, 3}. By a simple

Löwenheim-Skolem type argument, A may be taken countable. Denote by R the
ring of all almost constant families (xξ | ξ < ω1) of elements of A. Then the lattice E
of all almost constant ω1-sequences of elements in 4 is isomorphic to IdrcR, thus it
is real-representable.

Consider the chains 3 =
def

{0, 1, 2} and 4 =
def

{0, 1, 2, 3}. The (surjective) dual

homomorphism ϕ : 4 ։ 3, of the map {1, 2} → {1, 2, 3} sending 1 to 1 and 2 to 3,
is not convex, thus, by Lemma 4.11, not Brumfiel-representable. By Lemma 5.8, it
follows that the lattice Cond(ϕ, ω1) is not Brumfiel-representable.

On the other hand, the assignment (xξ | ξ < ω1) 7→ (x∞, (ϕ(xξ) | ξ < ω1)) de-
fines a surjective lattice homomorphism from E onto Cond(ϕ, ω1). �

By Stone duality (cf. Theorem 3.3 and Remark 3.4), it follows that the spectrum
of the bounded distributive lattice Cond(ϕ, ω1) witnesses the following corollary.

Corollary 5.10. There exists a real spectrum with a spectral subspace which is not

a Brumfiel spectrum (thus also not a real spectrum).
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6. An ℓ-representable, non-Brumfiel representable lattice

Although the proof of the present section’s main negative result, Theorem 6.4,
arises from a lattice-theoretical investigation of the argument of Delzell and Madden
[8, Lemma 2], the construction of its counterexample, which is the ℓ-group that we
will denote by Gωop

1
, is somehow simpler. Moreover, the constructions of Delzell

and Madden [8], Mellor and Tressl [22] yield lattices with 2ℵ1 elements a priori,
while our construction yields the smaller size ℵ1.

Notation 6.1. We denote by F the free Abelian ℓ-group defined by generators a
and b, subjected to the relations a ≥ 0 and b ≥ 0. Moreover, we set GΛ =

def

Z〈Λ〉 ×lex F , for any chain Λ.

Since Z〈Λ〉 is a totally ordered group and F is an Abelian ℓ-group, GΛ is also
an Abelian ℓ-group. It has an order-unit iff Λ has a largest element. We shall
occasionally identify F with the ℓ-ideal {0} × F of GΛ.

Lemma 6.2. The ℓ-ideal 〈a+ b〉
ℓ
is directly indecomposable in the lattice Idℓ

cGΛ.

That is, there are no nonzero x,y ∈ IdℓcGΛ such that 〈a+ b〉
ℓ
= x∨y and x∩y =

{0}.

Proof. Since a, b ∈ F and F is an ideal of GΛ, it suffices to prove that 〈a+ b〉
ℓ
is

directly indecomposable in the lattice Idℓc F . The right closed upper quadrant

Ω =
def

{

(x, y) ∈ R2 | x ≥ 0 and y ≥ 0
}

is a convex subset of R2. Further, by the Baker-Beynon duality (cf. Baker [3],
Beynon [4, 5]), F is isomorphic to the ℓ-subgroup of RΩ generated by the canon-
ical projections a : (x, y) 7→ x and b : (x, y) 7→ y, and there exists a unique lattice

embedding ι from Idℓc F to the lattice of all relative open subsets of Ω such that

ι(〈x〉
ℓ
) = [[x 6= 0]] whenever x ∈ F . Hence, in order to prove that 〈a+ b〉

ℓ
is inde-

composable in Idℓc F , it suffices to prove that [[a+ b 6= 0]] is a connected subset of R2.
This, in turn, follows from the relation [[a+ b 6= 0]] = {(x, y) ∈ Ω | x+ y > 0}, which
implies that [[a+ b 6= 0]] is a convex (thus connected) subset of Ω, thus of R2. �

Lemma 6.3. Let Λ be a chain. Then every pairwise orthogonal subset of G++
Λ is

countable.

Proof. Since Z〈Λ〉 is a chain, every pairwise orthogonal subset X of G++
Λ , with more

than one element, is a subset of F . The latter being countable, X is countable. �

Theorem 6.4. There are no commutative f-ring A and no surjective lattice homo-

morphism µ : IdrcA։ IdℓcGωop

1
.

Until the end of the proof of Theorem 6.4, we shall assume, by way of contradic-
tion, that there are a commutative f -ring A and a surjective lattice homomorphism
µ : IdrcA։ Idℓ

cGωop

1
.

Pick x, y ∈ A+ such that 〈a〉
ℓ
= µ〈x〉

r
and 〈b〉

ℓ
= µ〈y〉

r
. Moreover, for each

ξ < ω1, pick zξ ∈ A+ such that

〈cξ〉
ℓ
= µ〈zξ〉

r
. (6.1)

In particular,

〈a+ b〉
ℓ
⊆ µ〈zξ〉

r
, whenever ξ < ω1 . (6.2)
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Let ξ < η < ω1. Since zξ ≤ zη +(zξ r zη), with zξ, zη, and zξ r zη all in A+, we get

〈zξ〉
r
⊆ 〈zη〉

r
∨ 〈zξ r zη〉

r
,

whence, applying the lattice homomorphism µ and by (6.1),

cξ ∈ 〈cη〉
ℓ
∨ µ〈zξ r zη〉

r
.

Since cη ≪ cξ (within Gωop

1
), it follows that

cξ ∈ µ〈zξ r zη〉
r
.

Hence we obtain, a fortiori, that

〈a+ b〉
ℓ
⊆ µ〈zξ r zη〉

r
, whenever ξ < η < ω1 . (6.3)

Lemma 6.5. For all ξ ≤ η < ω1, the relation 〈a+ b〉
ℓ
∩ µ〈zη r zξ〉

r
= {0} holds.

Proof. The conclusion is trivial if ξ = η. Now suppose that ξ < η. We compute:

〈a+ b〉ℓ ∩ µ〈zη r zξ〉
r ⊆ µ〈zξ r zη〉

r ∩ µ〈zη r zξ〉
r (use (6.3))

= µ
(

〈zξ r zη〉
r
∩ 〈zη r zξ〉

r)

= µ({0}) (use (4.4) and Lemma 2.1)

= {0} . �

For each ξ < ω1, we set

xξ =
def

(x+ y) ∧
(

xz0 r (x+ y)zξ+1

)

,

yξ =
def

(x+ y) ∧
(

(x+ y)zξ r xz0
)

,

xξ =
def

µ〈xξ〉
r
,

yξ =
def

µ〈yξ〉
r .

Lemma 6.6. The following relations hold, whenever ξ < η < ω1:

(1) xξ ⊆ 〈a〉ℓ;

(2) yξ ⊆ 〈b〉
ℓ
;

(3) 〈a+ b〉
ℓ
= xξ ∨ yξ;

(4) xξ ∩ yη = {0}.

Proof. Ad (1). From x + y ≥ 0 and zξ ≥ 0 it follows that 0 ≤ xξ ≤ xz0, whence
〈xξ〉

r ⊆ 〈xz0〉
r ⊆ 〈x〉r. Apply the homomorphism µ.

Ad (2). From (6.3) it follows that 〈a+ b〉 ⊆ µ〈z0 r zξ〉
r
. Hence,

〈a+ b〉 ∩ µ〈xzξ r xz0〉
r
⊆ 〈a+ b〉 ∩ µ〈zξ r z0〉

r
(6.4)

= {0} by Lemma 6.5 . (6.5)

Using Lemma 2.1, we get (x+ y)zξ r xz0 ≤ yzξ + (xzξ r xz0), thus

yξ ≤ (x+ y) ∧
(

yzξ + (xzξ r xz0)
)

,

and thus, applying the homomorphism µ together with (6.4)–(6.5),

yξ = µ〈yξ〉
r
⊆ µ〈(x + y) ∧ yzξ〉

r
∨
(

〈a+ b〉
ℓ
∩ µ〈xzξ r xz0〉

r
)

⊆ µ〈y〉
r
= 〈b〉

ℓ
.
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Ad (3). We compute:

〈a+ b〉
ℓ
= µ

(

〈x + y〉
r
∩ 〈zξ r zξ+1〉

r)
(apply (6.3))

= µ〈(x + y)(zξ r zξ+1)〉
r

(use (4.4))

= µ〈(x + y)zξ r (x+ y)zξ+1〉
r

(use Lemma 2.1)

⊆ µ〈(x + y)zξ r xz0〉
r
∨ µ〈xz0 r (x+ y)zξ+1〉

r
(use Lemma 2.1) .

Since 〈a+ b〉
ℓ
= µ〈x+ y〉

r
, the desired conclusion follows from the distributivity of

the lattice IdℓcGωop

1
.

Ad (4). It follows from Lemma 6.5 that 〈a+ b〉∩µ〈zη r zξ+1〉
r
= {0} and hence,

a fortiori, that

〈a+ b〉 ∩ µ〈(x+ y)zη r (x+ y)zξ+1〉
r
= {0} . (6.6)

Hence, using Lemma 2.1,

yη = 〈a+ b〉 ∩ µ〈(x+ y)zη r xz0〉
r

⊆ 〈a+ b〉 ∩
(

µ〈(x + y)zη r (x+ y)zξ+1〉
r
∨ µ〈(x + y)zξ+1 r xz0〉

r
)

= 〈a+ b〉 ∩ µ〈(x+ y)zξ+1 r xz0〉
r

(use (6.6)) .

It follows that

xξ ∩ yη ⊆ µ〈xz0 r (x+ y)zξ+1〉
r ∩ µ〈(x + y)zξ+1 r xz0〉

r

= µ({0}) (use (4.4) and Lemma 2.1)

= {0} . �

Set uξ =
def

xξ ∧ yξ and uξ =
def

µ〈uξ〉
r
, for all ξ < ω1.

Lemma 6.7. The principal ℓ-ideals uξ of Gωop

1
, for ξ < ω1, are all nonzero and

pairwise orthogonal.

Proof. The statement of pairwise orthogonality follows from Lemma 6.6(4). If
uξ = {0}, then xξ ∩ yξ = {0}, thus, by Lemmas 6.2 and 6.6(3), either xξ = {0}

or yξ = {0}, thus either xξ = 〈a+ b〉
ℓ
or yξ = 〈a+ b〉

ℓ
, and thus, by items (1)

and (2) of Lemma 6.6, either a+ b ∈ 〈a〉
ℓ
or a+ b ∈ 〈b〉

ℓ
, a contradiction. �

End of the proof of Theorem 6.4. By Lemma 6.7, IdℓcGωop

1
has an uncountable, pair-

wise orthogonal set of nonzero ideals. Picking positive generators of the uξ, we get
an uncountable, pairwise orthogonal set of nonzero elements in Gωop

1
, in contradic-

tion with Lemma 6.3. �

As mentioned before, the real spectrum of any commutative unital ring A is
homeomorphic to the Brumfiel spectrum of the universal f -ring of A (cf. Theo-
rem 4.12). By applying Theorem 3.3, we get the following corollary.

Corollary 6.8. The ℓ-spectrum of the unital Abelian ℓ-group Gωop

1
cannot be embed-

ded, as a spectral subspace, into the Brumfiel spectrum of any commutative f-ring.

Hence, it also cannot be embedded, as a spectral subspace, into the real spectrum of

any commutative unital ring.
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7. Omitting homomorphic images of ℓ-representable lattices

Although it is well known, since Delzell and Madden [8], that there are non-ℓ-
representable completely normal bounded distributive lattices, the corresponding
result for homomorphic images of ℓ-representable lattices was not known. In this
section, we shall fill that gap by constructing a completely normal bounded dis-
tributive lattice, of cardinality ℵ2, which is not a homomorphic image of any ℓ-rep-
resentable lattice. The method used, in particular the part involving Kuratowski’s
Free Set Theorem, originates in the author’s paper [31]. A crucial step consists of
coining a property satisfied by all homomorphic images of ℓ-representable lattices.

Lemma 7.1. For every set I, every homomorphic image of an ℓ-representable
lattice satisfies the following infinitary statement:

For every family (ai | i ∈ I) , there exists a family (ci,j | (i, j) ∈ I × I) such that

each ai = (ai ∧ aj) ∨ ci,j , each ci,j ∧ cj,i = 0 , and each ci,k ≤ ci,j ∨ cj,k .

(7.1)

Proof. Since (7.1) is obviously preserved under homomorphic images, it suffices to

prove that IdℓcG satisfies (7.1), whenever G is an Abelian ℓ-group. Write ai = 〈ai〉
ℓ
,

where ai ∈ G+, for all i ∈ I. The principal ℓ-ideals ci,j =
def

〈ai r aj〉
ℓ
, for i, j ∈ I,

satisfy the required conditions. �

As usual, we set 2 =
def

{0, 1} and 3 =
def

{0, 1, 2}. We set 0 = 0, 1 = 2 = 2, we

denote by e : 2 →֒ 3 the map sending 0 to 0 and 1 to 2, and we denote by r : 3 ։ 2

the map sending 0 to 0 and any nonzero element to 1. Let f , g : 3 →֒ 32 and
a, b, c : 32 →֒ 33 × 2 be the maps defined by

f(x) = (x, x) ,

g(x) = (x, x) ,

for all x ∈ 3, and

a(x, y) = (x, x, y, r(y)) ,

b(x, y) = (x, x, y, r(x)) ,

c(x, y) = (x, y, y, r(y)) ,

for all (x, y) ∈ 32. The mappings e, f , g, a, b, c form a commutative diagram of
finite distributive lattices with 0, 1-lattice embeddings, represented in Figure 7.1 as
indexed by the cube

(

P({1, 2, 3}),⊆
)

. Observe that none of the maps f , g, a, b, c
is closed.

We leave to the reader the straightforward verification of the following lemma.

Lemma 7.2. Every square as on Figure 7.2, between three consecutive levels in the

cube of Figure 7.1, is a strong amalgam, that is, setting h =
def

g1 ◦ f1 = g2 ◦ f2,

the relation g1[E1] ∩ g2[E2] = h[E0] holds.

Notation 7.3. We denote by L the similarity type (∨,∧,r, 0, 1), where ∨, ∧,
and r are binary operation symbols and 0, 1 are constant symbols. Moreover, we
denote by V0 the variety of L-structures obtained by stating the identities defining
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D1,2,3 = 33 × 2

D1,2 = 32

a
77nnnnnnnnnnn
D1,3 = 32

b

OO

D2,3 = 32

c
ggPPPPPPPPPPP

D1 = 3

f

OO f 66nnnnnnnnnnnn
D2 = 3

g

hhPPPPPPPPPPPP f

66nnnnnnnnnnnn
D3 = 3

g
OOghhPPPPPPPPPPPP

D∅ = 2

e

hhPPPPPPPPPPPP
e

OO

e

66nnnnnnnnnnnn

Figure 7.1. A cube of 0, 1-lattice embeddings

E1,2

E1

g1
=={{{{{{{{

E2

g2
aaCCCCCCCC

E0

f1

aaDDDDDDDD f2

==zzzzzzzz

Figure 7.2. A commutative square for Lemma 7.2

bounded distributive lattices on (∨,∧, 0, 1), together with the identities

(x ∧ y) ∨ (xr y) = x , (7.2)

(xr y) ∧ (y r x) = 0 . (7.3)

Evidently, (the lattice reduct of) any member of V0 is a completely normal
bounded distributive lattice.

Lemma 7.4. The commutative diagram, of bounded lattice embeddings, represented

in Figure 7.1, can be expanded to a commutative diagram of embeddings in V0.

Proof. Represent the diagram by lattices Dp and arrows fq
p : Dp → Dq, where p ⊆

q ⊆ {1, 2, 3} (cf. Figure 7.1). We define inductively the “difference operation” rDp

on Dp, assuming that it has already been defined on all Dq, for q $ p. Let x1, x2 ∈
Dp. If x1 and x2 belong to the range of fp

q for some q $ p, then due to Lemma 7.2,
there is a smallest such q; then let y1, y2 ∈ Dq such that each xi = fp

q(yi), and
define x1 rDp

x2 =
def

fp
q(y1 rDq

y2). If x1 and x2 do not belong to the range of

any fp
q where q $ p, then pick any splitting (u, v) of (x1, x2) in Dp , then define

x1 rDp
x2 =

def
u and x2 rDp

x1 =
def

v. By construction, Dp is thus expanded to a

member of V0, and each f
p
q is an L-embedding. �

For the remainder of Section 7, we shall denote by ~D =
(

Dp,f
q
p | p ⊆ q ⊆ {1, 2, 3}

)

the cube of V0 obtained from Lemma 7.4, and byD =
def

D1,2,3 = (33×2,∨,∧,r, 0, 1)
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its top member. We also pick any variety V of L-algebras such that D ∈ V and
V ⊆ V0, and we denote by FV(X) the free V-algebra on X , for any set X . We will
identify FV(X) with its canonical copy in FV(Y ), whenever X ⊆ Y .

Theorem 7.5. For every set I, the underlying lattice of FV(I) is a completely

normal bounded distributive lattice. Moreover, if card I ≥ ℵ2, then FV(I) is not a

homomorphic image of any ℓ-representable lattice.

Proof. The first statement, that FV(I) is completely normal, is obvious. Suppose,
from now on, that card I ≥ ℵ2, and denote by ai, for i ∈ I, the canonical gen-
erators of FV(I). By Lemma 7.1, it suffices to prove that FV(I) does not satisfy
the infinitary statement (7.1). Suppose otherwise. Then there exists a family
(ci,j | (i, j) ∈ I × I), of elements in FV(I), satisfying the conditions stated in (7.1).

For all i, j ∈ I, there exists a finite subset Φ({i, j}) of I such that {ci,j , cj,i} ⊆
FV

(

Φ({i, j})
)

. Since card I ≥ ℵ2 and by Kuratowski’s Free Set Theorem (cf. Ku-
ratowski [21], Erdős et al. [13, Theorem 46.1]), there are distinct elements in I,
that we may denote by 1, 2, 3, such that

1 /∈ Φ({2, 3}) , 2 /∈ Φ({1, 3}) , and 3 /∈ Φ({1, 2}) . (7.4)

Then J =
def

{1, 2, 3} is a subset of I. We shall now define maps ρX : FV(X) → DX ,

for X ⊆ J , as follows:

• Denote by ρ∅ : FV(∅) → D∅ = 2 the unique isomorphism.
• For i ∈ J , denote by ρi : FV({i}) → Di = 3 the unique L-homomorphism
sending ai to 1.

• For 1 ≤ i < j ≤ 3, denote by ρi,j = ρj,i : FV({i, j}) → Di,j = 32 the
unique L-homomorphism sending ai to (2, 1) and aj to (1, 2).

• Finally, denote by ρ1,2,3 : FV(J) → D1,2,3 = 33 × 2 the unique L-homo-
morphism sending a1 to (2, 2, 1, 1), a2 to (2, 1, 2, 1), and a3 to (1, 2, 2, 1).

It is straightforward to verify that ~ρ =
def

(ρX | X ⊆ J) is a natural transformation

from the diagram ~F of all FV(X), for X ⊆ J , to ~D (it is sufficient to check the

required equations on the generators ai). The diagrams ~F and ~D, together with
the natural transformation ~ρ, are represented in Figure 7.3.

FV({1, 2, 3}) ρ = ρ1,2,3 // 33 × 2

FV({1, 2})

88qqqqqqqqqqq
ρ1,2

++FV({1, 3})

OO

ρ1,3

44FV({2, 3})

ffMMMMMMMMMMM ρ2,3
))

32

a
>>}}}}}}}}
32

b

OO

32

c
``AAAAAAAA

FV({1})

OO 88qqqqqqqqqqq
ρ1

**FV({2})

ffMMMMMMMMMMM

88qqqqqqqqqqq

ρ2

44FV({3})

OOffMMMMMMMMMMM ρ3
))

3

f

OO
f

>>}}}}}}}}}
3

g

``AAAAAAAAA

f

>>}}}}}}}}}
3

g
OO

g

``AAAAAAAAA

FV(∅) ρ∅ //

ffNNNNNNNNNNN

OO 88ppppppppppp
2

e

``AAAAAAAAA
e

OO

e

>>}}}}}}}}}

Figure 7.3. The natural transformation ~ρ
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Setting ρ =
def

ρ1,2,3, we obtain, in particular, the equations

a ◦ ρ1,2 = ρ↾FV({1,2}) , b ◦ ρ1,3 = ρ↾FV({1,3}) , c ◦ ρ2,3 = ρ ↾FV({2,3}) . (7.5)

Denote by π : FV(I) ։ FV(J) the unique L-homomorphism such that

π(ai) =
def

{

ai , if i ∈ J ,

0 , otherwise,
for every i ∈ I . (7.6)

The element di,j =
def

π(ci,j), for i, j ∈ J , belongs to FV(J). Moreover, it follows

from (7.6), together with the assumptions on the ci,j , that the di,j satisfy the
following relations:

ai = (ai ∧ aj) ∨ di,j , whenever i, j ∈ J ; (7.7)

di,j ∧ dj,i = 0 , whenever i, j ∈ J ; (7.8)

di,k ≤ di,j ∨ dj,k , whenever i, j, k ∈ J . (7.9)

Moreover, for distinct i, j ∈ J , the element ci,j belongs to FV

(

Φ({i, j})
)

, that
is, ci,j = t (ak | k ∈ Φ({i, j})) for an L-term t. Since π is an L-homomorphism,
di,j = t (π(ak) | k ∈ Φ({i, j})). By (7.4) and (7.6), each π(ak) is either 0 (if k /∈ J)
or belongs to {ai, aj} (if k ∈ J). It follows that di,j ∈ FV({i, j}).

Let 1 ≤ i < j ≤ 3. Since ρi,j(ai) = (2, 1) and ρi,j(aj) = (1, 2), it follows
from (7.7) and (7.8) that

(2, 1) = (1, 1) ∨ ρi,j(di,j) ,

(1, 2) = (1, 1) ∨ ρi,j(dj,i) ,

(0, 0) = ρi,j(di,j) ∧ ρi,j(dj,i) ,

which leaves the only possibility

ρi,j(di,j) = (2, 0) and ρi,j(dj,i) = (0, 2) . (7.10)

By applying the homomorphisms a, b, c, respectively, to the instances (i, j) = (1, 2),
(i, j) = (1, 3), (i, j) = (2, 3), respectively, of (7.10), we obtain, using (7.5),

ρ(d1,2) = (2, 2, 0, 0) , ρ(d1,3) = (2, 2, 0, 1) , ρ(d2,3) = (2, 0, 0, 0) ,

whence (projecting on the last coordinate) ρ(d1,3) � ρ(d1,2) ∨ ρ(d2,3). On the
other hand, by applying the homomorphism ρ to the inequality (7.9), we obtain
ρ(d1,3) ≤ ρ(d1,2) ∨ ρ(d2,3); a contradiction. �

By applying Stone duality, we thus obtain the following result.

Corollary 7.6. For every set I, the spectrum ΩI of the underlying distributive

lattice of FV(I) is a completely normal spectral space. Moreover, if card I ≥ ℵ2,

then ΩI cannot be embedded, as a spectral subspace, into any ℓ-spectrum.
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