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REAL SPECTRUM VERSUS /-SPECTRUM
VIA BRUMFIEL SPECTRUM

FRIEDRICH WEHRUNG

ABSTRACT. It is well known that the real spectrum of any commutative unital
ring, and the £-spectrum of any Abelian lattice-ordered group with order-unit,
are all completely normal spectral spaces. We complete the existing list of
containments and non-containments between the associated spectral spaces
and their spectral subspaces, by proving the following results:
(1) Every real spectrum can be embedded, as a spectral subspace, into some
f-spectrum.
(2) Not every real spectrum is an ¢-spectrum.
(3) A spectral subspace of a real spectrum may not be a real spectrum.
(4) Not every f-spectrum can be embedded, as a spectral subspace, into a
real spectrum.
The commutative unital rings and Abelian lattice-ordered groups constructed
in (2), (3), (4) all have cardinality Ry . Moreover, (3) solves a problem stated
in 2012 by Mellor and Tressl.

1. INTRODUCTION

Denote by SX the class of all spectral subspaces of members of a class X of
spectral spaces. Most of this paper is devoted to proving the not yet established
containments and non-containments, between classes of spectral spaces, represented
in Figure 1.1.

CN =SCN

S¢

SBr = SR

\
£ Br=R

FI1GURE 1.1. Classes of completely normal spectral spaces

The classes X in question are the following:

e CN, the class of all completely normal spectral spaces;

e £, the class of f-spectra of all Abelian ¢-groups with order-unit;

e Br, the class of Brumfiel spectra of all commutative unital f-rings;
e R, the class of real spectra of all commutative unital rings.
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2 F. WEHRUNG

The context of our work is the following. The classical construction of the
Zariski spectrum of a commutative unital ring (cf. Subsection 4.1) extends to
many contexts, including distributive lattices, lattice-ordered groups (¢-groups for
short), partially ordered rings, yielding Stone duality, the £-spectrum, and the real
spectrum, respectively. All the topological spaces thus obtained are spectral spaces,
that is, sober spaces in which the compact open subsets are a basis of the topology,
closed under finite intersection. Conversely, every spectral space is the spectrum of
a bounded distributive lattice (Stone [29]) and also of a commutative unital ring
(Hochster [15]).

The paper will focus on the £-spectrum of an Abelian £-group (cf. Subsection 4.2)
and the real spectrum of a commutative unital ring (cf. Subsection 4.4). Those two
frameworks are connected by the Brumfiel spectrum of a commutative f-ring (cf.
Subsection 4.3). All the spectral spaces thus obtained are completely normal, that
is, for all elements z and y in the closure of a singleton {z}, either z belongs to the
closure of {y} or y belongs to the closure of {z}.

Prior to the present paper, part of the picture (Figure 1.1) was already known:

e Delzell and Madden [8] proved that £ G CN and R G CN.

e Delzell and Madden’s result got amplified in Mellor and Tressl [21], who
established that any class of spectral spaces containing R, whose Stone
dual lattices are definable by a class of L x-formulas for some infinite
cardinal X, has a member outside SR. In particular, the class of all Stone
duals of the spaces from R (resp., SR) are not %5 y-definable. Further,
SR & CN.

e Delzell and Madden [9, Proposition 3.3] observed that R C Br.

e It follows easily from Madden and Schwartz [28] and Schwartz [27] that
Br C R. Consequently, Br = R (cf. Corollary 4.17).

e The author proved in [32] that every second countable completely normal
spectral space is in £, and that moreover, the class of all Stone duals of
spaces from £ is not Lu o -definable.

e The author provided an example in [32] showing that £ S SE.

e The present paper’s first version, available on the HAL preprint server
since 2017, established, with a counterexample with N, compact open sub-
sets, that S£ ; CN. In the meantime, the preprint got lost in an editorial
process and the result got superseded by the author’s more recent pa-
per [34], which provided a stronger counterexample. For more details see
Section 7.

The missing pieces, all provided in the present paper, are the following:

e It is not hard to verify that every Brumfiel spectrum, thus also every real
spectrum, can be embedded, as a spectral subspace, into some ¢-spectrum.
This is stated in Corollary 5.7. Hence, SBr C S£.

e Not every real spectrum is an ¢-spectrum. This is established in Theo-
rem 5.4, via the construction of a condensate. Hence, R Z £.

e A spectral subspace of a real spectrum may not be a Brumfiel spectrum
(thus also not a real spectrum). This is stated in Corollary 5.10, via the
construction of a condensate. It follows that SR ¢ Br. This solves a
problem of Mellor and Tressl [21].
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e Not every ¢-spectrum can be embedded, as a spectral subspace, into a
Brumfiel spectrum (thus also not into a real spectrum). Hence, £ € SBr.
This is stated in Corollary 6.8.

We point out that although not every ¢-spectrum is a real spectrum (cf. Corol-
lary 6.8), there is a formally related problem, on the interaction between Abelian
{-groups and commutative rings, with a well known positive solution. Let D be an
integral domain with group of units U and field of fractions K. Denote by K* the
multiplicative group of all nonzero elements of K. The group of divisibility of D (cf.
Mockof [23]) is the quotient group K* /U, endowed with the unique translation-
invariant partial ordering with positive cone D/U. Every Abelian ¢-group is the
group of divisibility of some integral domain, which, in addition, can be taken a
Bezout domain (cf. Anderson [1, page 4], where the result is credited to Krull,
Jaffard, Kaplansky, and Ohm). Thus, Corollary 6.8 illustrates the gap between the
group of divisibility and the real spectrum.

Since Stone duality is more conveniently stated with bounded distributive lat-
tices, our results on spectral spaces are mostly formulated for commutative, unital
rings and Abelian ¢-groups with order-unit. On the other hand, most of our lattice-
theoretical results are valid for lattices without top element, and thus formulated
in that more general context.

Methodology. The underlying counterexamples of Theorems 5.4 and 5.9 are con-
structed with the one-arrow version, originating in the author’s paper [31], of
the general categorical model-theoretical construction of condensates developed in
Gillibert and Wehrung [13]. A condensate of a diagram A is a special kind of di-
rected colimit of finite products of vertices of A. The condensate construction makes
it possible to turn diagram counterexamples, to representation problems with re-
spect to a given functor, to object counterexamples. In the one-arrow case required
here, non-representable arrows are turned to non-representable objects, via the sim-
plified condensate construction described in Definition 5.1 together with Lemma 5.3
(getting non-¢-representable distributive lattices) and its variant Lemma 5.8 (get-
ting non-Brumfiel-representable distributive lattices).

In particular, the proof of Theorem 5.4, obtained by applying the condensate
construction to an embedding A — K of countable real-closed rings, produces a
real-closed ring of cardinality N;. Changing context, the proof of Theorem 5.9,
obtained by applying the condensate construction to a surjective homomorphism
between finite chains, produces a real spectrum, with X; compact open subsets,
with a spectral subspace which is not a real spectrum.

On the other hand, Theorem 6.4, producing the /-spectrum of a unital Abelian
{-group of cardinality X; which cannot be embedded as a spectral subspace into any
real spectrum, is established via a direct argument, centered on the lexicographical
product of a restricted Hahn power of the integers by the free Abelian ¢-group on
two positive generators.

2. BASIC CONCEPTS

For ¢-groups and f-rings, we refer the reader to Bigard, Keimel, and Wolfen-
stein [6] or Anderson and Feil [2]. For any partially ordered Abelian group G, we
set G+ {x € G|z > 0} (the positive cone of G) and G+ def {zr e G|z >0}
For a,b € GT, let a < b hold if ka < b for every positive integer k.
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For partially ordered Abelian groups G and H, the lezicographical product of G
by H, denoted G Xjex H, is the product group G x H, endowed with the positive
cone consisting of all pairs (z,y) with either x > 0 or (x =0 and y > 0).

For any chain A, we denote by Z(A) the restricted lexicographical power, of
the chain Z of all integers, by A. Hence the elements of Z(A) have the form
z =Y, kice,, where each k; € Z\ {0} and & < --- < &, in A, and = belongs to
the positive cone of Z{A) iff either n =0 (i.e., z = 0) or k,, > 0. This endows Z(A)
with a structure of a totally ordered Abelian group.

A lattice-ordered group, or £-group for short, is a group endowed with a trans-
lation-invariant lattice ordering. All our ¢-groups will be Abelian and will thus be
denoted additively. Elements x and y, in an ¢-group, are orthogonal if x Ay = 0.

A subset I in an Abelian ¢-group G is an £-ideal if it simultaneously a subgroup
of G and an order-convex sublattice of G.

For any elements a and b in an Abelian /-group G, we will set a™ f v 0,

a- (—a) V0, |al d:efa\/(—a), and a ~ b (a—b)*T=a—(aNb).

A lattice-ordered ring is a ring endowed with a lattice ordering invariant under
additive translations and preserved by multiplicative translations by positive ele-
ments. A lattice-ordered ring A is an f-ring if x Ay = 0 implies that z A yz =
x A zy = 0 whenever x,y,z € AT and 2 Ay = 0. Equivalently, A is a subdirect
product of totally ordered (not necessarily unital) rings (cf. Bigard, Keimel, and
Wolfenstein [6, Théoreme 9.1.2]).

Lemma 2.1 (folklore). Let G be an Abelian {-group and let a,b,c € G. Then
e a~c<(a~b)+ (b~c).
e (a~b)A(b~a)=0.
e [If, in addition, G is the underlying additive (-group of an f-ring A and
c€ AT, then ca~ cb = c(a~b) and ac \ bc = (a \ b)c.

A subset I in an f-ring A is an {-ideal if it is, simultaneously, an ideal of the
underlying ring of A and an order-convex sublattice of A.

Totally ordered rings are particular cases of f-rings. About those, we will need
the following lemma.

Lemma 2.2. Let A be a totally ordered (not necessarily unital) commutative do-
main and let I be a proper order-convex ideal of A. Then for every x € I and every
a € A, the relation |xa| < |a| holds.

Proof. We will use repeatedly the fact that for every ¢ € ATT, the assignment
t — tc defines an order-embedding of A into itself. Since A is totally ordered, we
may assume that a > 0 and 2 > 0. Let n < w and suppose that nza > a (so a > 0).
Then for every b € A*, nzab > ab > 0, thus (as a > 0) nxb > b > 0. Since v € [
and I is an ideal of A, we get nzb € I. Since [ is order-convex, it follows that b € 1.
This holds for every b € AT, whence I = A, a contradiction. Since A is totally
ordered, it follows that nza < a. O

3. STONE DUALITY BETWEEN DISTRIBUTIVE LATTICES WITH ZERO AND
GENERALIZED SPECTRAL SPACES

For lattice theory we refer the reader to Gréatzer [14], Johnstone [17]. For any
elements a and b in a distributive lattice D with zero, a splitting of (a,b) is a
pair (z,y) of elements of D such that aVb=aVy=2xVband 2 Ay=0. Observe
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that in that case, z < a and y < b. We say that D is completely normal if every
pair of elements in D has a splitting.
We denote by P°P the opposite poset of a poset P. For any functions f and g
with common domain X, we set
def

[f #g]l = {zeX| f(z) #g(2)}.

For posets P and @, a map f: P — Q is cofinal if every element of @ lies below
some element of the range of f.

Definition 3.1. For a topological space X, we denote by K(X) the set of all
compact! open subsets of X, ordered under set inclusion. We say that X is

— sober, if every join-irreducible member, of the lattice of all closed subsets
of X, is the closure of a unique singleton? ;

— generalized spectral, if it is sober, K(X) is a basis of the topology of X,
and U NV is compact whenever U and V are compact open subsets of X;
— spectral, if it is simultaneously compact and generalized spectral.

The specialization preorder on X is defined by
r<yifyecx{z}), forallz,ye X.

A map ¢: X — Y, between generalized spectral spaces, is spectral if the inverse
image under ¢, of any compact open subset of Y, is a compact open subset of X.

The spectrum Spec D, of a distributive lattice D with zero, is defined as the set of
all (proper) prime ideals of D, endowed with the closed sets {P € SpecD | I C P},
for subsets (equivalently, ideals) I of D. The specialization order on Spec D is

just set-theoretical inclusion. The assignments D +— Spec D, X +— K(X) can be
naturally extended to morphisms, yielding Stone duality (cf. Stone [29], Johnstone
[17, § I1.3], Grétzer [14, § I1.5], and Rump and Yang [25, page 63] for the general,
non necessarily unital case) between distributive lattices with zero with cofinal
0-lattice homomorphisms and generalized spectral spaces with spectral maps.

Remark 3.2. Let X and Y be generalized spectral spaces, with X contained (in
the set-theoretical sense) in Y, and let ¢: X < Y be the inclusion map. We say
that X is a spectral subspace of Y if the topology of X is the topology induced by the

topology of Y and the map ¢ is spectral. In that case, the dual map X(¢): K(Y) —

K(X), V= XNV is a surjective lattice homomorphism. Conversely, for every
surjective lattice homomorphism f: D — FE, the spectral map Spec f: Spec E —
Spec D is a spectral embedding, that is, it embeds Spec E into Spec D as a spectral
subspace. Hence, spectral subspaces correspond, via Stone duality, to surjective
lattice homomorphisms.

The generalized spectral spaces X that we will consider in this paper will mostly
be completely normal. By Monteiro [22, Théoreme V.3.1], this is equivalent to

saying that the dual lattice K(X) is completely normal (cf. Section 2 for the
definition of completely normal lattices).

1Throughout the paper, “compact” means what some other references call “quasicompact”; in
particular, it does not imply Hausdorff.
2Duye to the uniqueness, every sober space is T (not all references assume this).
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We denote by B(X) the powerset of any set X, ordered under set inclusion. We
denote by wg, or X, according to the context (“ordinal versus cardinal”), the ath
infinite cardinal, and we set w def wo =90,1,2,...}.

Throughout the paper, “countable” means “at most countable”.

4. ZARISKI, ¢, BRUMFIEL, REAL: SPECTRA AND LATTICES

In this section we recall some well known facts on the various sorts of spectra
and distributive lattices that will intervene in the paper. We also introduce some
notation and include a few new results, such as Lemma 4.11. For more details and
references, we refer the reader to Delzell and Madden [9], Johnstone [17, Chapter 5],
Keimel [19], Coste and Roy [7], Dickmann [10, Chapter 6].

4.1. Zariski spectrum. The (Zariski) spectrum of a commutative unital ring A is

defined as the set Spec A of all prime ideals of A, endowed with the topology whose

closed sets are exactly the sets Spec(A4,I) dof {P € SpecA|IC P}, for subsets

(equivalently, radical ideals) I of A.

Denote by (ai,...,am,)" the radical ideal of A generated by elements ay, ...,
am of A, and denote® by Id% A the set of all ideals of A of the form (ai,...,amn)"
(finitely generated radical ideals), ordered by set inclusion. Due to the formulas

<a1,...,am>r\/<b1,...,bn>r = <a1,...,am,b1,...,bn>r, (41)
(@1 ey ) O (b1 ba) = (aidy | 1<i<mand1<j<n),  (42)

(where V stands for the join in the lattice of all radical ideals of A), Id} A is a
0-sublattice of the distributive lattice of all radical ideals of A.

Since every radical ideal of A is the intersection of all prime ideals containing it,
Idf A is the Stone dual of Spec A (cf. Delzell and Madden [9, page 115]):

Proposition 4.1. The Zariski spectrum Spec A, of a commutative unital ring A,
is a spectral space, and the assignment I — {P € Spec A | I £ P} defines an iso-

morphism from 1d. A onto the Stone dual f]OC(Spec A) of Spec A.

Due to the following deep result by Hochster [15], there is no need to imagine a
new name for the class of all lattices of the form Id A.

Theorem 4.2 (Hochster). Fvery spectral space is homeomorphic to the Zariski
spectrum of some commutative unital ring. Hence, every bounded distributive lattice
is isomorphic to 1d. A for some commutative unital ring A.

4.2. (-spectrum and /-representable lattices. The (-spectrum of an Abelian
{-group G is defined as the set Specy G of all prime /-ideals of GG, endowed with
the topology whose closed sets are exactly the {P € Spec, G | I C P}, for subsets
(equivalently, ¢-ideals) I of G.

Denote by (aq, ..., amy, or {(ai,..., am>é if G needs to be specified, the ¢-ideal
of G generated by elements a1, ..., a,, of G, and denote by IdﬁG the set of
all f-ideals of G of the form (a1,...,a,)" (finitely generated (-ideals), ordered by

3The subscript “c” stands for “compact”, which is the lattice-theoretical formalization of
“finitely generated”. The superscript “r” stands for “radical”.
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set inclusion. Since (a1, ...,am)" = (a)" where a def S ag], we get 1dEG =
{(ay |ae G+}. Due to the formulas

(@)* v () = (a+b)" and (@) N B) = (aAb)", foralla,be Gt (4.3)

(where V stands for the join in the lattice of all f-ideals of A), Id’ G is a 0-sublattice
of the distributive lattice of all ¢-ideals of G. It has a top element iff G has an order-
unit.

Since every ¢-ideal of G is the intersection of all prime ¢-ideals containing it, IdL G
is the Stone dual of Spec,; G (cf. Proposition 1.19, together with Theorem 1.10 and
Lemma 1.20, in Keimel [18]):

Proposition 4.3. The £-spectrum Specy G, of any Abelian £-group G, is a gen-
eralized spectral space, and the assignment I — {P € SpecG | I € P} defines an
[e]

isomorphism from Idﬁ G onto the Stone dual X(Specy G) of Spec; G.

Following terminology from Iberkleid, Martinez, and McGovern [16] and Weh-
rung [32], we recall the following definition.

Definition 4.4. For distributive lattices A and B, a map f: A — B is closed if
for all ag,a; € A and all b € B, if f(ag) < f(a1) Vb, then there exists € A such
that ag < a1 V2 and f(z) <b.

The following lemma is established in Wehrung [32].

Lemma 4.5. Let A and B be Abelian £-groups and let f: A — B be an £-homo-
morphism. Then the map 1d’ f: 1d° A — 1d’ B, (2)* — (f(x))" is a closed O-lattice
homomorphism.

In particular, the assignments G — Idﬁ G, f— Idﬁ f define a functor, from
the category of all Abelian ¢-groups with ¢-homomorphisms, to the category of
all distributive lattices with zero with closed 0-lattice homomorphisms. It is well
known that this functor preserves nonempty finite direct products and directed
colimits.

Say that a lattice D is £-representable if it is isomorphic to Idﬁ G for some Abelian
{-group G. Equivalently, the spectrum of D is homeomorphic to the /-spectrum of
some Abelian /-group. This terminology is extended to diagrams D of distributive
lattices with zero and 0-lattice homomorphisms, by saying that D Idﬁ G for some
diagram G of Abelian {-groups and /-homomorphisms.

It is well known that every f-representable lattice is completely normal. The
author established the following result in [32].

Theorem 4.6. Every countable completely normal distributive lattice with zero is
{-representable. On the other hand, the class of all {-representable lattices cannot
be defined by a class of L .,-formulas of lattice theory.

The following easy lemma is established in Wehrung [32].

Lemma 4.7. Let G be an Abelian £-group, let S be a distributive lattice with

zero, and let p: IdﬁG — S be a closed surjective 0-lattice homomorphism. Then

1 {;v €G|p((z)) = 0} is an {-ideal of G, and there is a unique isomorphism

¢: 145G /1) — S such that »((z + 1Y) = o((z)") for every = € GT.



8 F. WEHRUNG

4.3. Brumfiel spectrum and Brumfiel-representable lattices. For any com-
mutative f-ring A, we say that a (proper) ¢-ideal P is prime if it is both an ¢-ideal
and prime as a ring ideal. Then P is also prime as an f-ideal of the underlying
additive f-group of A, that is, z Ay € P implies that either z € P or y € P,
whenever z,y € A.

The Brumfiel spectrum of a commutative f-ring A is defined as the set Specg A
of all prime f-ideals of A, endowed with the topology whose closed sets are exactly
the {P € Specg A | I C P}, for subsets (equivalently, radical ¢-ideals) I of A.

Denote by (ai,...,am), or (ai,...,ay)", if A needs to be specified, the radical
l-ideal of A generated by elements a1, ..., a, of A, and denote by Id. A the
set of all ideals of A of the form (ay,...,a,)" (finitely generated radical ideals),*
ordered by set inclusion. Since (a1, ...,am)" = (a)* where a et S lag], we get

Id: A = {(a)" | a € AT}. Due to the formulas
(a)'V(b)" = (Ja| + |b])" and (a)"'N(b)" = (|a| A |b])" = (ab)", for alla,be A (4.4)

(where V stands for the join in the lattice of all radical ¢-ideals of A), Id% A is a
0-sublattice of the distributive lattice of all radical f-ideals of A. If A is unital,
then Id{ A has a top element.

Since every radical ¢-ideal of A is the intersection of all prime ¢-ideals containing
it, Id% A is the Stone dual of Specg A (cf. Delzell and Madden [9, Proposition 4.2]):

Proposition 4.8. The Brumfiel spectrum Specg A, of a commutative f-ring A, is a
generalized spectral space, and the assignment I — {P € Specg A | I € P} defines
[e]

an isomorphism from IdL A onto the Stone dual X(Specg A) of Specp A.

Say that a lattice D is Brumfiel-representable if it is isomorphic to Id} A for
some commutative f-ring A. Equivalently, the spectrum of D is homeomorphic
to the Brumfiel spectrum of some commutative f-ring. As in Subsection 4.2, this
terminology is extended to diagrams of lattices, in a standard fashion.

It is well known that every Brumfiel-representable lattice is completely nor-
mal. We will see, with Corollary 6.8 in the present paper, that not every ¢-repre-
sentable lattice (thus, a fortiori, not every completely normal distributive lattice)
is Brumfiel-representable.

The following result is an analogue of Lemma 4.7 for f-rings. Its proof is similar
and we omit it.

Lemma 4.9. Let A be a commutative f-ring, let S be a distributive lattice with zero,

and let ¢: 1IdL A — S be a closed surjective 0-lattice homomorphism. Then I ef

{x € A| p((z)") =0} is a radical {-ideal of A, and there is a unique isomorphism
i IdL(A/T) = S such that ({(z + I)") = o((x)") for every z € AT.

Definition 4.10. Let A and B be distributive lattices with zero. A 0-lattice
homomorphism f: A — B is convez if for all P € Spec A and all Qg, Q1 € Spec B,
if Qo € Q1 and f~1[Qo] € P C f~'[Q1], then there exists @Q € Spec B such that
QoCQCQand P=f1Q].

Equivalently, the Stone dual map Spec f: Spec B — Spec A is convex in the
sense of Dickmann, Schwartz, and Tressl [12, Definition 13.3.10].

4Although we are using, for radical ¢-ideals, the same notation as the one in Subsection 4.1 for
radical ideals, the context will always make it clear which concept is used.
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The following result extends to the Brumfiel spectrum functor a result originally
established for the real spectrum functor in Korollar 4, pages 133-134 of Knebusch
and Scheiderer [20]. Our proof is a straightforward modification of its analogue
for real spectra, stated in the monograph Dickmann, Schwartz, and Tressl [12,
Theorem 13.3.12]. We include it for convenience.

Lemma 4.11. Let A and B be commutative f-rings and let f: A — B be a homo-
morphism of f-rings. Then the map 1d f: IdL A — Id% B is convez.

Proof. By Stone duality, it is sufficient to prove that for all P € Specg A and all
Qo,Q1 € Specg B, if Qo C Q1 and f~1[Qo] € P C f~1[Q1], then there exists
Q € Specg B such that Qp € Q@ C @Q; and P = f~1[Q]. We may replace A
by A/f~Qo], B by B/Qo, Q1 by Q1/Qo, and f by the canonical embedding
A/f71Qo] — B/Qo. Hence, we may assume that A is an ordered subring of a
totally ordered (not necessarily unital) commutative domain B, Q¢ = {0}, f is the
inclusion map from A into B, P € Specg A, Q1 € Specg B, and P C Q1. We must
find @ € Specg B such that P=Q N A and Q C Q1. We set

Q= {yeQi@new\{0)@EreP)(y" <a)} .

We claim that @ is a prime (-ideal of B. It is obvious that ) is an order-convex
{-subgroup of B. Now let y € @ and b € B. We must prove that yb € (). Since B
is totally ordered, we may assume that {y,b} C BT. Since @ is an ideal of B,
yb € Q1. By assumption, there are n € w \ {0} and = € P such that y" < z.
It follows that y™ € @1, thus, since Q)7 is a radical ideal of B, y € @1, and thus
yb" Tl € Q. Since Q; is a proper f-ideal of B, it follows, using Lemma 2.2, that
(yb)" ! = yn(yb" 1) < y™ < x, whence yb € Q. This completes the proof that Q
is an f-ideal of B.

Let z,y € B such that zy € @, we must prove that z € @ or y € ). Since B
is totally ordered, we may assume that 0 < z < y. There are n € w \ {0} and
p € P such that (zy)" < p. It follows that 22" < (xy)" < p, whence x € Q, thus
completing the proof that @ is prime.

Now it is obvious that Q@ C Q1 and P = Q N A. O

4.4. Real spectrum and real-representable lattices. Let A be a commutative
unital ring. A subset C of A is a cone if it is both an additive and a multiplicative
submonoid of A, containing all squares in A. A cone P of A is prime if A =
P U (—P) and the support P N (—P) is a prime ideal of A. For a prime cone P,
—1 ¢ P (otherwise 1 € PN (—P), thus PN (—P) = A, a contradiction). We denote
by Spec; A the set of all prime cones of A, endowed with the topology generated by
all subsets of the form {P € Spec; A | a ¢ P}, for a € A, and we call Spec, A the
real spectrum of A.

It is not so straightforward to describe directly the Stone dual of Spec, A. How-
ever, it is possible to reduce it to the Brumfiel spectrum, as follows. The universal
f-ring F(A) of A is a commutative unital f-ring. The first statement in the follow-
ing result is established in Delzell and Madden [9, Proposition 3.3]. The second
statement follows by using Proposition 4.8.

Theorem 4.12 (Delzell and Madden). Let A be a commutative unital ring. The
canonical homomorphism A — F(A) induces a homeomorphism between the real
spectrum of A and the Brumfiel spectrum of F(A). Hence, the Stone dual of Spec, A
is IALF(A).
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Say that a lattice is real-representable if it is isomorphic to the Stone dual of
the real spectrum of some commutative unital ring. As in Subsection 4.2, this
terminology is extended to diagrams of lattices, in a standard fashion. It follows
from Theorem 4.12 that every real-representable lattice is isomorphic to Idy A for
some commutative unital f-ring A (thus it is Brumfiel-representable). We will see
shortly that the converse holds (cf. Corollary 4.17).

Every real-representable lattice is completely normal. By Delzell and Madden [§],
not every completely normal bounded distributive lattice can be represented in this
way. In fact, Mellor and Tressl established in [21] the following result.

Theorem 4.13 (Mellor and Tressl). For every infinite cardinal X\, the class of all
real-representable lattices cannot be defined by any class of Lo x-formulas of lattice
theory.

The real spectrum can also be reduced to the Zariski spectrum, as follows.
A commutative unital ring A is real-closed (cf. Schwartz [26, 27], Prestel and
Schwartz [24]) if it has no nonzero nilpotent elements, the squares in A form the
positive cone of a structure of f-ring on A4, 0 < a < b implies that a? € Ab, and for
every prime ideal P of A, the quotient field A(P) of A/P is real closed, and A/P is
integrally closed in A(P). Every commutative unital ring has a “real closure” C,(4),
which is a real-closed ring together with a unital ring homomorphism A — C,(A4).
The following result is contained in Theorem 1.3.10, Propositions 1.3.19 and 1.3.23,
and the top of page 27, in Schwartz [27].

Theorem 4.14 (Schwartz). For any commutative, unital ring A, the canonical
homomorphism A — C,(A) induces a homeomorphism Spec, C;(A) — Spec, A.
Moreover, if A is real-closed, then the support map P — P N (—P) induces a
homeomorphism Spec, A — Spec A.

Corollary 4.15. For any commutative, unital ring A, the Stone dual of the real
spectrum of A is isomorphic to the lattice IdL C,(A) of all finitely generated radical
ideals of C,(A4).

Although the two following corollaries are probably well known, we could not
find them explicitly stated anywhere, so we include proofs for convenience.

Corollary 4.16. Every closed subspace of a real spectrum is a real spectrum.

Proof. By Theorem 4.14, every real spectrum has the form Spec A for some real-

closed ring A. By definition, any closed subspace of Spec A has the form Spec(A, I) def

{P € Spec A | I C P}, for a subset I of A, which we may assume to be a radical
ideal of A. Tt follows that the assignment P — P/I defines a homeomorphism from
Spec(A, I) onto Spec(A/T). Now it follows from Schwartz [27, Theorem 1.4.5] that
the ring A/I is real-closed. By the second part of Theorem 4.14, it follows that
Spec(A/I) is homeomorphic to Spec,(A/I). O

Corollary 4.17. The class of real spectra of all commutative unital rings and the
class of Brumfiel spectra of all commutative unital f-rings are identical.

Proof. Tt follows from Theorem 4.12 that every real spectrum is the Brumfiel spec-
trum of some commutative unital f-ring. Conversely, for every commutative unital
f-ring A, the assignment P — AT + P defines a homeomorphism from Specg A

onto Spec, (A4, A™T) def {Q € Spec, A | AT C Q}, with inverse the support map Q —
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Q N (—Q) (cf. Madden and Schwartz [28, page 49]). Since Spec,(A4, A™) is, by
definition, a closed subspace of Spec, A, it follows form Corollary 4.16 that Specg A
is the real spectrum of some commutative unital ring. (I

While real-representability makes sense only for bounded lattices, Brumfiel-rep-
resentability can also be defined for unbounded lattices. According to the following
corollary, the two concepts agree on bounded lattices, so there is no ambiguity.

Corollary 4.18. A bounded distributive lattice is real-representable iff it is Brumfiel-
representable.

Proof. By Stone duality and Corollary 4.17, it suffices to prove that if a bounded
distributive lattice is Brumfiel-representable, then it can be represented by a com-
mutative unital f-ring. Let A be a commutative f-ring such that Id. A has a top
element; that is, A = (u)’, for some u € A™. The localization A[u~'] of A with re-
spect to the multiplicative subset § %< {u™| 0 < n < w}, endowed with the positive
cone Afu~t* ef {z/u" |z € AT, 0 < n <w}, is a commutative unital® f-ring, for
which the canonical homomorphism k: A — A[u~1!], z — zu/u is an f-ring homo-
morphism. Obviously, the induced map x: IdX A — IdL A[u~!] is surjective. We
claim that &k is one-to-one. Let z,y € AT such that k((z)}) C x({(y)}). This
means that (k(2))yp,-1) C (k(y)) -1y, that is, there are z € AT and positive
integers m, n such that k(z)™ < (z/u™)k(y). It follows that there are positive
integers k, [ such that 2™ u* < zyu' within A. Since (u*), = (u)’, = A, we obtain,
using (4.4),

() = @™y = (@) N W)y = (@™ C Gyl € W),
~ 1

")
as required. Therefore, Id- A d: Afu~t], with A[u~!] a commutative unital
f-ring. O

5. COUNTEREXAMPLES CONSTRUCTED FROM CONDENSATES

In the present section we shall apply the construction of a condensate, put to
use in the author’s paper [31] for one arrow and studied in depth in Gillibert and
Wehrung [13] for more complicated diagrams. This construction enables us to con-
struct non-representable objects from non-representable arrows (cf. Theorems 5.4
and 5.9), and it runs as follows.

Definition 5.1. Let A and B be universal algebras (in a given similarity type) and
let I be a set. The I-condensate of a homomorphism ¢: A — B is the following
subalgebra of A x B!:

Cond(p, I) def {(z,y) € Ax B! | y; = ¢(x) for all but finitely many i} .

Lemma 5.2. The condensate Cond(p, I) is a directed union of copies of algebras
of the form A x B’ for finite J C I.

Proof. For each finite J C I, denote by C; the subalgebra of Cond(¢p, I) consisting
of all pairs (z,y) € A x B! such that y is constant on I\ J, with value ¢(z).
Then Cond(ep, I) is the directed union of all Cy. Clearly, C; = A x BY. O

5This also applies to the degenerate case where u is nilpotent, in which case A[u~1] collapses
to {0}.
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In particular, it follows from Lemma 5.2 that if A and B are members of a class C
of algebras, closed under nonempty finite direct products and directed colimits, then
so is the condensate Cond(y, I). For example:

e Whenever A and B are distributive lattices with zero and ¢ is a 0-lattice
homomorphism, the structure Cond (e, I) is a distributive lattice with zero.

e Whenever A and B are Abelian ¢-groups and ¢ is an £-homomorphism,
the structure Cond(ip, I) is an Abelian ¢-group.

e Whenever A and B are real-closed rings and ¢ is a unital ring homomor-
phism, the structure Cond(ip, I) is a real-closed ring.

The proof of the following lemma is an extension of the one of Wehrung [31,
Theorem 9.3]. It is also an instance of a much more general result, called the
Condensate Lifting Lemma (CLL), established in Gillibert and Wehrung [13], that
enables to infer representability of lattice-indexed diagrams from representability of
certain larger objects, called there (for the first time) condensates. In particular, as
we will see shortly, Lemma 5.3 can be extended to (many) other functors than Idﬁ .
The use of CLL requires quite an amount of technical steps and although it may
be unavoidable for complicated diagrams, the case of one arrow can be handled
directly; thus we include here a self-contained proof for convenience.

Lemma 5.3. Let A and B be distributive lattices with zero, with A countable, and
let p: A — B be a 0-lattice homomorphism. Then for any set I, if the lattice
homomorphism ¢ is (-representable, then the distributive lattice Cond(p,I) is £-
representable. If I is uncountable, then the converse holds.

Proof. Suppose first that ¢ is ¢-representable. This means that there are Abelian ¢-
groups G and H, together with an /~-homomorphism f: G — H, such that Idﬁ =
(as arrows). Since the functor IdS commutes with nonempty finite direct products
and with directed colimits, it sends the representation
Cond(f,I) = lim (G x H”Y,
JCI finite
given by Lemma 5.2, to a representation
Id; Cond(f,1) = lim (A x B”)= Cond(p,]).
JCI finite

Hence, Cond(y, I) is f-representable.

Suppose, conversely, that I is uncountable and the distributive lattice E def

Cond(¢p, I) is ¢-representable. This means that there are an Abelian ¢-group G and
an isomorphism e¢: IdﬁG — FE. Denote by p: E - A and ¢;: E — B, fori € I,

the canonical projections from E. The set U of {:v eG|(po 5)(<x>é) = 0} is an

¢-ideal of G; denote by u: G — G /U the canonical projection. Since p is easily seen
to be a closed map (cf. Definition 4.4), it follows from Lemma 4.7 that there is a
unique isomorphism «: Id%(G/U) — A such that

poe=ao (Idiu). (5.1)
Likewise, for every i € I, the set V; < {x €G|(go 5)(<x>é) = 0} is an f-ideal

of G; denote by v;: G — G/V; the canonical projection. As above for U and a,
there is a unique isomorphism 3;: Id%(G/V;) — B such that

gioe=pio(Id;v). (5.2)
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Since A is countable, there exists a countable £-subgroup H of G such that a induces

an isomorphism o : 1d%(H/U) — A (where we set H/U def {z+U|zec H}). We

are going to argue that for every index 7 outside a certain countable subset of I, the
¢-homomorphism f: H/U — G/V; , x+U — x+V; is well-defined and represents the
lattice homomorphism ¢: A — B. Our argument is partly illustrated in Figure 5.1.
The diagram of Figure 5.1 is not commutative, because ¢ o p # ¢; as a rule.

Id. G N E
Idf u P
1d(G/U) A a

R

Wl H/u) T ¢
Idﬁf\)
1d;(G/Vi) Z B

FIGURE 5.1. Tllustrating the proof of Lemma 5.3

For each x € H, the element 5(<x>é) belongs to F, that is, (¢ o p) (5(<x>é)) =

qi (5((1:}2)) for all but finitely many 4. Since H is countable, there exists a countable
subset J of I such that

(pop)(c((2)g) = ai(e((a)g)) forall 2 € H and all i € I\ J . (5.3)
Pick i € I\ J. We claim that HNU C V;. Every x € HNU satisfies the equations
(15 u) ({2)6) = (@ + U)gu =0,

thus, using (5.1), p(a((@é)) = (aold! u)((x)é) = 0. By (5.3), it follows that
ql(a(@)é)) = 0. By (5.2), this means that §;((z + Vi)é/vi) = 0, that is, since §;
is an isomorphism, = € V;, thus completing the proof of our claim.

It follows that there exists a unique £-homomorphism f: H/U — G/V; such that
flx+U)=a+V, for every z € H. For every z € H,

(poo) (o +U)g) =(poa)((z+U)g )
= (poaoldiu)((z)g)

(¢ opog)((:v)G) (use (5.1))
= (gi o) ((x)g) (use (5.3))
= (B o 1db ) ((2)5,) (use (5.2))
=iz + Vi)e v,
= (B; o 1 ) (& + T gy0) »

so @oa = f; old’ f. Therefore, f represents . d



14 F. WEHRUNG

Theorem 5.4. There exists a real-closed ring, of cardinality N1, whose real spec-
trum is not homeomorphic to the £-spectrum of any Abelian £-group.

Proof. Let K be any countable, non-Archimedean real-closed field. The subset

Adéf{:EEK| (Gn<w)(-n-1x <z <n-lg)}
is an order-convex unital subring of K, thus it is a real-closed ring. Hence, denoting

by e: A — K the inclusion map, it follows from Lemma 5.2 that the condensate

R Cond(e,w1) is a real-closed ring. Observe that the cardinality of R is Nj.

Suppose that the real spectrum of R is homeomorphic to the ¢-spectrum of
an Abelian f-group G. By Stone duality, it follows that Id} R = Idﬁ G. Since the
functor IdY commutes with nonempty finite direct products and directed colimits, it
follows from Lemma 5.2 that Id% R = Cond(1d} &, w;). In particular, the distributive
lattice Cond(Idf &,wq) is ¢-representable. By Lemma 5.3, it follows that the lattice
homomorphism Idf ¢ is f-representable. By Lemma 4.5, it follows that the map
el Id; € is closed.

However, Id{ A is a chain with more than two elements, Id} K is the two-element
chain, and e is the unique zero-separating map Id. A — Id}, K. In particular, if
0 <wu < 1inIdf A, then e(1) = e(u) V 0 but there is no z € Id A such that
1 <wuVzand e(x) <0. Hence, € is not closed. O

Remark 5.5. By (the proof of) Dickmann, Gluschankof, and Lucas [11, Proposi-
tion 1.1], the field K and the ring A, of the proof of Theorem 5.4, can be constructed
in such a way that Id}, A is the three-element chain. By a simple Lowenheim-Skolem
type argument, K may be taken countable. Then the lattice Cond(Id% &, w;) is iso-
morphic to the lattice D, introduced in Wehrung [32]. As observed in the final
example of Wehrung [32], D, is a homomorphic image of an {-representable dis-
tributive lattice, without being itself /-representable. By Stone duality, this means
that the spectrum of D, can be embedded, as a spectral subspace, into the /¢-
spectrum of an Abelian ¢-group, without being itself an ¢-spectrum.

The negative property satisfied by the counterexample R of Theorem 5.4 cannot
be strengthened further by replacing “/-spectrum” by “spectral subspace of an /-
spectrum”. The reason for this is the following easy observation, which ought to
be well known but for which we could not locate a reference.

Proposition 5.6. For every commutative f-ring A, there are an Abelian £-group G,
which can be taken with order-unit if A is unital, together with a surjective lattice
homomorphism p: Idﬁ G — Id. A. Hence, every Brumfiel-representable lattice is a
homomorphic image of some £-representable lattice.

Proof. Denote by G the underlying additive ¢-group of A. It is easy to verify
that the map Id° G — Id% A, (z)° — ()" is a well defined lattice homomorphism
(use (4.3) and (4.4)). Tt is, of course, surjective.

Now suppose that A is unital. Since the multiplicative unit 1 of A may not be
an order-unit of A, the construction of G above must be modified. To this end,
define G as the underlying ¢-group of {xr € A| (In < w)(—n-1<x<n-1)}, and
define again pu: <x>é — (z)". We need to prove that p is surjective. For every
x € A, the relations z = (z V1) - (z A1) and 0 < 2 A1 < z imply that z and z A 1
generate the same f-ideal, and thus, a fortiori, (z)" = (x A1) = p((z A 1)), O



REAL SPECTRUM, ¢-SPECTRUM, BRUMFIEL SPECTRUM 15

By applying Stone duality to Proposition 5.6, we thus get

Corollary 5.7. The Brumfiel spectrum of any commutative unital f-ring (thus also
every real spectrum) is a spectral subspace of the £-spectrum of some Abelian £-group
with order-unit.

Moving to f-rings, a mutatis mutandis modification of the proof of Lemma 5.3,
using Lemma 4.9 instead of Lemma 4.7, leads to the following result.

Lemma 5.8. Let A and B be distributive lattices with zero, with A countable, let
w: A — B be a 0-lattice homomorphism, and let I be a set. If ¢ is Brumfiel-repre-
sentable, then the distributive lattice Cond(p, I) is Brumfiel-representable. If I is
uncountable, then the converse holds.

Theorem 5.9. There exists a real-representable distributive lattice E, of cardinal-
ity Ny, with a non-Brumfiel-representable (thus non-real-representable) homomor-
phic image.

Proof. Tt follows from Dickmann, Gluschankof, and Lucas [11, Proposition 1.1] that
there exists a real-closed domain A with exactly three prime ideals {0} C P; C Ps.

Hence, Id{ A is isomorphic to the four-element chain 4 def {0,1,2,3}. By an easy
Lowenheim-Skolem type argument, A may be taken countable. Denote by R the
ring of all almost constant families (x¢ | € < wy) of elements of A. Then the lattice E
of all almost constant wi-sequences of elements in 4 is isomorphic to Id; R, thus it
is real-representable.

Now consider the chain 3 % {0,1,2}. The map {1,2} — {1,2,3}, sending 1
to 1 and 2 to 3, is not convex in the sense of [12, Definition 13.3.10], which means
that its Stone dual ¢: 4 — 3 is not convex in the sense of Definition 4.10. By
Lemma 4.11, ¢ is not Brumfiel-representable. By Lemma 5.8, it follows that the
lattice Cond(y, wy) is not Brumfiel-representable.

On the other hand, the assignment (z¢ | £ < w1) = (Too, (@(xe) | £ <w1)) de-
fines a surjective lattice homomorphism from E onto Cond(p, w1 ). O

By Stone duality, it follows that the spectrum of the bounded distributive lattice
Cond(p, w1 ) witnesses the following corollary.

Corollary 5.10. There ezxists a real spectrum with a spectral subspace which is not
a Brumfiel spectrum (thus also not a real spectrum).

6. AN K—REPRESENTABLE7 NON-BRUMFIEL REPRESENTABLE LATTICE

Although the proof of the present section’s main negative result, Theorem 6.4,
arises from a lattice-theoretical investigation of the argument of Delzell and Madden
[8, Lemma 2|, the construction of its counterexample, which is the ¢-group that we
will denote by Gwﬁp , is somehow simpler. Moreover, the constructions of Delzell
and Madden [8], Mellor and Tressl [21] yield lattices with 2% elements a priori,
while our construction yields the smaller size X;.

Notation 6.1. We denote by F' the free Abelian ¢-group defined by generators a

and b, subjected to the relations ¢ > 0 and b > 0. Moreover, we set Gj def

Z{A) X1ex F' (lexicographical product), for any chain A.
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Since Z(A) is a totally ordered group and F' is an Abelian ¢/-group, G, is also
an Abelian /-group. It has an order-unit iff A has a largest element. We will
occasionally identify F with the ¢-ideal {0} x F of Gj.

Lemma 6.2. The {-ideal (a + b>l 1s directly indecomposable in the lattice Idf; Gh.
That s, there are mo nmonzero T,y &€ Idﬁ G such that <a+b>€ = xVy and
x Ny = {0}.

Proof. Since a,b € F and F is an ideal of G, it suffices to prove that (a + b)é is
directly indecomposable in the lattice Idﬁ F'. The right closed upper quadrant

Q %f (z,y) €eR* |z >0and y > 0}

is a convex subset of R2. Further, by the Baker-Beynon duality (cf. Baker [3],
Beynon [4, 5]), F is isomorphic to the /-subgroup of R generated by the canon-
ical projections a: (z,y) — x and b: (z,y) — y, and there exists a unique lattice
embedding ¢ from Idﬁ F to the lattice of all relative open subsets of €2 such that
() = [x # 0] whenever = € F. Hence, in order to prove that (a + b)" is inde-
composable in Id, ', it suffices to prove that [a 4 b # 0] is a connected subset of R2.
This, in turn, follows from the relation Ja + b # 0] = {(x,y) € Q@ | * +y > 0}, which
implies that [a + b # 0] is a convex, thus connected, subset of R2. (]

Lemma 6.3. Let A be a chain. Then every pairwise orthogonal subset of Gj\ﬁL 18
countable.

Proof. Since Z(A) is a chain, every pairwise orthogonal subset X of G}, with more
than one element, is a subset of F. The latter being countable, X is countable. [

Theorem 6.4. There are no commutative f-ring A and no surjective lattice homo-
morphism p: Id5 A — Idﬁ G

Until the end of the proof of Theorem 6.4, we shall assume, by way of contradic-
tion, that there are a commutative f-ring A and a surjective lattice homomorphism
pr 1A — Td{ G en.

Pick z,y € At such that (a)" = p(z)" and (b)° = u(y)". Moreover, for cach
& < wr, pick z¢ € AT such that

‘
(ce)” = plze)" - (6.1)
In particular,
(a+ )" C plze)", whenever £ <w . (6.2)
Let £ <1 < wi. Since ze < 2y, + (z¢ \ 2y), with z¢, z,, and z¢ \ 2, all in A1, we get
(26)" C (2n)" V (2 N 29)"
whence, applying the lattice homomorphism p and by (6.1),
¢
ce € ()" V plze N 2y)"
Since ¢, < c¢ (within G,e»), it follows that
ce € plze N zy)" .
Hence we obtain, a fortiori, that

(a+b)" C plze ~ z,)", whenever £ <1 <w. (6.3)
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Lemma 6.5. For all £ <1 < wy, the relation (a + b)* N p(zn ~ z¢)" = {0} holds.
Proof. The conclusion is trivial if £ = 7. Now suppose that £ < n. We compute:
(@ +b)" N pu(zy ~ 2e)" C e~ 2) N pdzg N 2¢)" (use (6.3))

= pu((ze ~ 20)" N (2 N 2¢)")
= u({0}) (use (4.4) and Lemma 2.1)
={0} . O

For each ¢ < w1, we set

d

ze  (z+ 1) A (z20 ~ (T +Y)ze41)
def

ye = (@+y) A ((z+y)ze ~ 220)
def T

xe = plxe)
def T

Ye = u(ye) -

Lemma 6.6. The following relations hold, whenever £ < n < wy:

(1) w5C< )

2)y <>Z

(3) <a+b> =T VY
(4) e Ny, = {0}.

Proof. Ad (1). From = +y > 0 and z¢ > 0 it follows that 0 < z¢ < xz9, whence
(ze)' C (w20)" C (x)". Apply the homomorphism p.
Ad (2). From (6.3) it follows that (a + b) C pu(zo \ z¢)". Hence,

(a4 b) N plzze < x20)" C (@ +b) N plze \ z0)" (6.4)
= {0} by Lemma 6.5. (6.5)
Using Lemma 2.1, we get (x + y)ze \ x20 < yze + (z2¢ \ 220), thus
ye < (z+y) A (yze + (w2 \ 220))
and thus, applying the homomorphism p together with (6.4)—(6.5),
e = lue)” € il +9) Ay’ V ({0 +5) 1l < a20)") € )’ = ).
Ad (3). We compute:
(a+0)" = p((z + )" N (2 2e41)")
= (@ +y)(ze \ 2e41))’
= p{(@ +y)ze ~ (@ +y)zes)’
C (@ + )7 ~ 220)" V im0 ~ (2 + Y)7esn)’

apply (6.3))
use (4.4))

use Lemma 2.1)

~ o~ o~ o~

use Lemma 2.1).

Since (a + b)é = u(z +y)", the desired conclusion follows from the distributivity of
the lattice Idﬁ Ger .

Ad (4). Tt follows from Lemma 6.5 that (a + b) Npu(z,; \ ze41)" = {0} and hence,
a fortiori, that

(a+b) N (@ +9)zn ~ (@ + y)zer)” = {0} . (6.6)
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Hence, using Lemma 2.1,
Y, = (a+0) N p{(z +y)zy \ z20)"
Cla+b)yN (,u((x +y)zy (@ +y)zer1) V(T +y)zer1 N xz())r)
= {a+b) Nu((z +y)zer1 \ z20)" (use (6.6)) .
It follows that

xe Ny, € p(rzo ~ (24 y)zer1) N pl(@ +y)zer \ 220)
= u({0}) (use (4.4) and Lemma 2.1)
={0}. O

Set ug def ze A ye and uge def plug)’, for all € < wy.

Lemma 6.7. The principal £-ideals ue of Gyer, for & <wn, are all nonzero. More-
over, they are pairwise orthogonal.

Proof. The statement of pairwise orthogonality follows from Lemma 6.6(4). If
ug = {0}, then ¢ Ny, = {0}, thus, by Lemmas 6.2 and 6.6(3), either x¢ = {0}
or y, = {0}, thus either ¢ = (a + b)* or Ye = (a+ b)*, and thus, by items (1)
and (2) of Lemma 6.6, either a+ b € (a) or a + b € (b)’, a contradiction. O

End of the proof of Theorem 6.4. By Lemma 6.7, Idﬁ G, or has an uncountable, pair-
wise orthogonal set of nonzero ideals. Picking positive generators of the u¢, we get
an uncountable, pairwise orthogonal set of nonzero elements in Gw;)p, in contradic-
tion with Lemma 6.3. O

As mentioned before, the real spectrum of any commutative unital ring A is
homeomorphic to the Brumfiel spectrum of the universal f-ring of A (cf. Theo-
rem 4.12). By Stone duality, we obtain the following corollary.

Corollary 6.8. The (-spectrum of the unital Abelian (-group G ov cannot be embed-
ded, as a spectral subspace, into the Brumfiel spectrum of any commutative f-ring.
Hence, it also cannot be embedded, as a spectral subspace, into the real spectrum of
any commutative unital ring.

7. OMITTING HOMOMORPHIC IMAGES OF {-REPRESENTABLE LATTICES

Although it is well known, since Delzell and Madden [8], that there are non-
{-representable completely normal bounded distributive lattices, the correspond-
ing result for homomorphic images of {-representable lattices was not known un-
til June 2017, where we posted online the first version of the present paper. In
that preprint, we solved the problem negatively, by constructing a counterexam-
ple: namely, a completely normal bounded distributive lattice D, of cardinality No,
which is not a homomorphic image of any ¢-representable lattice. That structure D
was defined there as the lattice reduct of the free object on Ny generators, within
the variety of all bounded distributive lattices (in the language (V, A,0,1)) with an
additional binary operation \ subjected to the identities

(xAY)V(x~Ny)=x; (xXNy)A(y~x)=0. (7.1)

The method used there, in particular the part involving infinite combinatorics (more
specifically, Kuratowski’s Free Set Theorem), originates in the author’s paper [30]
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(living in the world of the nonstable K-theory of von Neumann regular rings). The

algebraic core of that construction was contained in the commutative diagram D,

of bounded distributive lattices, represented in Figure 7.1, where 2 ef {0,1}, 3 ef

{0,1,2},0=0,1=2=2,€(0) =0, e(1) =2, 7(0) = 0, »(1) = r(2) = 1, and for
all z,y € 3,

33 x2
a bT c
32 P 32 9 32
(RS
\i /

FIGURE 7.1. A cube of 0, 1-lattice embeddings

Roughly speaking, the key property of the diagram D was that it could not
be represented as the image of a cube of ¢-groups and ¢-homomorphisms under a
natural transformation all of whose components are surjective ~-homomorphisms.

In the meantime, the paper got lost for years in an editorial process and the
above-summarized result got superseded by the author’s following result, contained
in [34, Corollary 7.3].

Theorem 7.1. There exists a bounded completely normal distributive lattice B, of
cardinality Na, with no binary operation \ satisfying the identities x <y V (x \y),
(xX\Y)A(y~x) =0, and x~z < (x\y)V(y~z) (in [34] we call such lattices Cevian). In
particular, B is not a homomorphic image of Idﬁ G for any representable® (-group G.

The lattice B constructed in the proof of Theorem 7.1 satisfies one more property
than the lattice D above, called countably based differences and enabling the author
to establish in [33], via more general variants of the condensates introduced in [13],
that the class of all £-representable lattices is not closed under ZLsox-elementary
equivalence, for any infinite cardinal \ (thus extending, via a completely different
method, Mellor and Tressl’s Theorem 4.13 to f-spectra of Abelian ¢-groups). This
improvement forces the argument leading to the negative property of B, in Theo-
rem 7.1, to be far more elaborate than the one leading to the negative property of
the original D, in particular involving a noticeably more sophisticated variant of
the diagram D of Figure 7.1 where, unlike a, b, ¢ above, all the transition maps
are closed homomorphisms (cf. Definition 4.4).

6Recall that an £-group is representable if it is a subdirect product of totally ordered ¢-groups.
In particular, every Abelian £-group is representable.
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By Stone duality, Theorem 7.1 contains the following result.

Corollary 7.2. The spectrum 2 of B is a completely normal spectral space, which
cannot be embedded, as a spectral subspace, into any £-spectrum.

Final note: the countable case and the N; case. While all containments
represented in Figure 1.1 are valid for arbitrary cardinalities, the counterexam-
ples underlying the non-containments all have cardinality ¥, except for the proper

containment S£ ; CN discussed above in this section, which involves a bounded

distributive lattice of cardinality No. This raises the obvious question about what
happens for countable structures (i.e., second countable spectral spaces). The an-
swer, provided by the author’s papers [32] (for Abelian ¢-groups) and [35] (for real
spectra), is that in the countable case the diagram collapses: that is, every second
countable, completely normal spectral space is both an ¢-spectrum [32] and a real
spectrum [35].

This leaves the following problem open:

Problem. Is every completely normal spectral space, with ®; compact open mem-
bers, a spectral subspace of the f-spectrum of some Abelian ¢-group?

Equivalently, is every completely normal bounded distributive lattice of cardi-
nality N; a homomorphic image of the principal ¢-ideal lattice of some Abelian
{-group?
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