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Power domination in maximal planar graphs

Paul Dorbec∗, Antonio González† and Claire Pennarun‡

October 13, 2019

Abstract

Power domination in graphs emerged from the problem of monitoring
an electrical system by placing as few measurement devices in the system
as possible. It corresponds to a variant of domination that includes the
possibility of propagation. For measurement devices placed on a set S
of vertices of a graph G, the set of monitored vertices is initially the
set S together with all its neighbors. Then iteratively, whenever some
monitored vertex v has a single neighbor u not yet monitored, u gets
monitored. A set S is said to be a power dominating set of the graph G if
all vertices of G eventually are monitored. The power domination number
of a graph is the minimum size of a power dominating set. In this paper,
we prove that any maximal planar graph of order n ≥ 6 admits a power
dominating set of size at most n−2

4
.

1 Introduction

The notion of power domination arose in the context of monitoring an electrical
network [1, 14, 15], i.e., knowing the state of each component (e.g. the voltage
magnitude at loads) by measuring some variables such as currents and voltages.
The measurements are done by placing Phasor Measurement Units (PMUs) at
selected locations. PMUs monitor the state of the adjacent components, then
with the use of electrical laws (such as Ohm’s and Kirschoff’s Laws), it is possible
to determine the state of components further away in the network. Since PMUs
are costly, it is important to monitor a graph with as few PMU as possible. In
this paper, we consider the problem of monitoring maximal planar graphs with
few PMUs. Before getting further into technical details, we need the following
graph definitions.

Let G = (V (G), E(G)) be a finite, simple, and undirected graph of order
n = |V (G)|. The open neighborhood of a vertex u ∈ V (G) is NG(u) = {v ∈
V (G) | uv ∈ E(G)}, and its closed neighborhood is NG[u] = NG(u) ∪ {u}; the
open and closed neighborhood of a subset of vertices S is NG(S) =

⋃
v∈S NG(v)

and NG[S] = S ∪ NG(S), respectively. The subgraph of G induced by S is
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written G[S] (the subscript G is dropped from the notations when no confusion
may arise).

The electrical network monitoring problem was transposed into graph-theore-
tical terms by Haynes et al. [9]. Originally, the definition of power domination
ensured the monitoring of the edges as well as of the vertices, and contained
many propagation rules. Here, we consider an equivalent definition from [3] that
only requires monitoring the vertices. Given a graph G and a set S ⊆ V (G), we
build a set MG(S) (or simply M(S) when the graph G is clear from the context)
as follows: at first, MG(S) = N [S], and then iteratively a vertex u is added to
MG(S) if u has a neighbor v in MG(S) such that u is the only neighbor of v not
in MG(S) (we say that v propagates to u). At the end of the process, we say
that MG(S) is the set of vertices monitored by S; the non-monitored vertices
are those of the set V (G) \MG(S). We say that G is monitored by S when
MG(S) = V (G) and, in that case, S is said to be a power dominating set of G.
The minimum cardinality of such a set is the power domination number of G,
denoted by γP(G).

The decision problem Power Dominating Set naturally associated to
power domination (i.e., “Given a graph G and an integer k, does G have a
power dominating set of order at most k?”) was proven NP-complete, by a re-
duction from the 3-SAT problem [9, 11] (giving NP-completeness of the problem
on bipartite graphs, chordal graphs and split graphs). A reduction from Dom-
inating Set was also given [8, 10], that implies the NP-completeness when
restricted to planar graphs or circle graphs. However, polynomial algorithms
were proposed to compute the power domination number of trees [9, 8], block
graphs [16], interval graphs [11], and circular-arc graphs [11, 12].

Concerning the parameter γP(G), tight upper bounds are also known for
particular classes: γP(G) ≤ n

3 if G is connected [18] or a tree [9], whereas cubic
graphs satisfy γP(G) ≤ n

4 [4]. Furthermore, the exact value of γP(G) has been
determined for regular grids and their generalizations: square grid [6] and other
products of paths [5], hexagonal grids [7], as well as cylinders and tori [2]. The
only known results for general planar graphs concern graphs with diameter two
or three [17].

A graph G is a planar graph if it admits a crossing-free embedding in the
plane. When the addition to G of any edge would result in a non-planar graph,
G is said to be a maximal planar graph. A planar graph G together with a
crossing-free embedding on the plane is called a plane graph, or a triangulation
when G is a maximal planar graph. For any subset S ⊆ V (G), the graph
G[S] can be viewed as a plane graph with the embedding inherited from the
embedding of G. The only unbounded face is called the outer face of G, and the
vertices of G are called respectively exterior or interior depending on whether
they belong to the outer face or not. We say that a subgraph of a triangulation
G is facial if all of its faces but the outer face are also faces of G. In particular,
we denote by [uvw] a facial triangle formed by vertices u, v and w in G. Note
that power dominating sets are independent of the embedding of the graph as
they only depend on vertex adjacencies. We only make use of the embedding of
the graph in the proofs.

The main result of this paper consists in the following theorem:
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Figure 1: The triakis tetrahedron, having ten vertices and power domi-
nation number two.

Theorem 1.1. If G is a maximal planar graph of order n ≥ 6, then γP(G) ≤
n−2
4 .

The bound of Theorem 1.1 is tight for graphs on six vertices. We also know
of one graph on ten vertices for which this bound is tight, the triakis tetrahedron
drawn in Figure 1. To propose a general family of maximal planar graphs that
have large power domination number, we use the configurations of Figure 2.
Observe that if one of these configurations H is a facial subgraph of G, then
any power dominating set ofG contains one of the vertices ofH. Otherwise, even
if all the exterior vertices are monitored, they can not propagate to any of the
interior vertices of H. Thus γP(G) is at least the number of disjoint facial special
configurations in G. Taking many disjoint copies of the two first configurations
(that have six vertices) and then completing the graph into a triangulation
by arbitrarily adding edges between external vertices of the configurations (see
Figure 3), we obtain a family of graphs that have power domination number n

6 .
Note that this construction is similar to the construction for classical domination
given in [13] reaching the bound γ(G) = n

4 . As a consequence, and thanks to
Theorem 1.1, we also get the following result:

Theorem 1.2. For n ≥ 6, every maximal planar graph with n vertices has a
power dominating set containing at most α(n) vertices, with n

6 ≤ α(n) ≤ n−2
4 .

Determining the best possible value of α(n) remains an open problem.

Figure 2: The good, the bad and the ugly configurations in a triangu-
lation.

The proof of Theorem 1.1 is done in three distinct steps, each of them de-
scribed in a separate algorithm in Section 3. The first algorithm deals with
the special configurations formed by overlapping configurations from Figure 2.
These special configurations are characterized in Section 2. The end of the proof
relies on a final Lemma that is proved in Section 4.
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Figure 3: A class of maximal planar graphs for which γP(G) = n
6 . The

hatched area is triangulated arbitrarily.

2 Identifying bad guys

Our algorithm deals first with some special configurations, that are the possible
intersections of the configurations from Figure 2. We here characterize these
special configurations. Note that a facial octahedron (third configuration of
Figure 2) may only share vertices of its outer face with other configurations.
We thus focus on the other two configurations.

We call 3-vertex a vertex of G with degree 3, and therefore whose neigh-
borhood induces a K4. A b-vertex is any vertex u ∈ V (G) with exactly two
3-neighbors v and v′, and such that N [u] = N [v] ∪N [v′]. Note that b-vertices
have degree at most six and their neighborhood necessarily induces one of the
subgraphs of Figure 4. In all figures of this section, b-vertices are depicted with
blue squares, and 3-vertices are drawn white.

Figure 4: The two possible neighborhoods of a b-vertex v.

Observation 2.1. Any two b-vertices u, u′ ∈ V (G) are adjacent if and only if
there exists a 3-vertex v ∈ N(u) ∩N(u′).

Proof. By definition of b-vertices, if u′ is adjacent to u, it is also adjacent to a
3-vertex v adjacent to u, and so u and u′ have a common neighbor of degree
3. Moreover, if v has degree 3, all its of v are pairwise adjacent, and thus two
b-vertices u and u′ that have v as a common neighbor are adjacent.

Lemma 2.2. If G contains two 3-vertices v1, v2 with two common b-neighbors,
then G is isomorphic to one of the graphs depicted in Figure 5.

Proof. Either v1 and v2 have three common neighbors (inducing the first sub-
graph), or they have distinct third neighbors (inducing the second subgraph). In
the first subgraph, all triangles are incident to a 3-vertex, so they are facial and
there is no possibility for more vertices in the graph. In the second subgraph,
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the only faces not incident to a 3-vertex are incident to a b-vertex, which can
not have other neighbors. Again, all triangles must then be facial.

v1

v2

v1 v2

Figure 5: The two possibilities for G if two 3-vertices v1 and v2 have
two common b-neighbors. In both cases, γP(G) = 1.

Lemma 2.3. If all the neighbors of a 3-vertex are b-vertices, then G is isomor-
phic to a graph depicted in Figure 5 or these vertices belong to a facial triakis
tetrahedron as depicted in Figure 6.

Proof. Let v be a 3-vertex adjacent to three b-vertices u1, u2 and u3, which
necessarily form a triangle. By definition of a b-vertex, each ui has another 3-
neighbor vi. If the vertices vi are not all distinct, then there exist two b-vertices
sharing two adjacent 3-vertices, and Lemma 2.2 concludes. So assume the vi are
distinct. Let w1 and w2 be the neighbors of v1 distinct from u1 (which are both
adjacent to u1). Since u1 may not have any other neighbor, we infer without
loss of generality that w2 is adjacent to u2 (and w1 to u3), and therefore that
w2 is also adjacent to v2 (and w1 to v3). Similarly, v2 and v3 must have some
vertex w3 as a common neighbor, also adjacent to u2 and u3. Now, since the
neighborhoods of 3-vertices and b-vertices are fully determined, we get a facial
triakis tetrahedron, as depicted in Figure 6.

u1 u2

u3

v

v1
v2

v3

w2

w3

w1

Figure 6: A facial triakis tetrahedron.

Observe in particular that if a b-vertex has three adjacent b-vertices, then
by Observation 2.1, we are in the case of Lemma 2.3 (and the graph is a triakis
tetrahedron).

Lemma 2.4. If G contains three b-vertices forming a three cycle, then either
Lemma 2.3 applies, or G contains the first configuration depicted in Figure 7,
or it is isomorphic to one of the last two graphs depicted in Figure 7.
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Proof. Let u1, u2, u3 be three b-vertices forming a cycle. If they have a common
3-neighbor, then Lemma 2.3 applies, so assume they do not. By Observation 2.1,
every two of these vertices have a 3-vertex as a common neighbor, and they are
distinct by hypothesis. Let v1, v2, v3 be the 3-vertices adjacent respectively to
u1 and u2, u2 and u3, and u1 and u3, and let z1, z2, z3 be the (not neces-
sarily distinct) third neighbors of respectively v1, v2 and v3. Suppose two zi
are distinct, say z1 and z3, and observe that the neighbors of u1 are exactly
{u2, u3, v1, v3, z1, z3}. Therefore, if (u1u2u3) separates z1 from z3, then z3 is
adjacent to u2 and z1 is adjacent to u3. Now, since u2 is a b-vertex, then v2 is
adjacent to z3 and z1, a contradiction. So [u1u2u3] does not separate any two zi
and is facial. Moreover, if say z1 and z3 are distinct, then they must be adjacent
since u1 has no other neighbor. So depending on whether the zi are distinct or
not, G contains the first configuration depicted in Figure 7, or is isomorphic to
one of the last two graphs depicted in Figure 7 (note that all faces incident to
a 3-vertex or a b-vertex in these drawings are facial).

u1 u2

u3

v1

v2v3

z1

z2z3

z1 = z2 = z3

u1
u2

u3

v1

v2v3

u1 u2

u3

v1

v2
v3

z1

z2 = z3

Figure 7: The possible configurations of G if there is a face composed
of b-vertices. The last two graphs, that satisfy γP(G) = 1, are contracts
of the first configuration.

Property 2.5. Let (u1, u2, u3) be a path on three b-vertices. Let v1 be the 3-
vertex adjacent to u1 and u2 and let v2 be the 3-vertex adjacent to u2 and u3.
If u1 is not adjacent to u3, then there exist distinct vertices x and x′ such that
{u1, u2, u3, v1} ⊆ N(x), {u1, u2, u3, v2} ⊆ N(x′), and [xu2u3] and [x′u1u2] are
facial (see Figure 8).

Proof. Since v1 and v2 are 3-vertices, then there exist two vertices x, x′ such
that {u1, u2, v1} ∈ N(x) and {u2, u3, v2} ∈ N(x′). Since u2 is a b-vertex,
we have that x 6= x′ (otherwise u1 and u3 would be adjacent as the second
configuration of Figure 4 shows). Thus, u2 is a b-vertex corresponding to the
first configuration of Figure 4, and so x is adjacent to u3, x′ is adjacent to u1,
and [xu2u3] and [x′u1u2] are facial.

Observe that the above property together with Lemmas 2.3 and 2.4 covers
all possibilities of three connected b-vertices. We now consider the cases when
b-vertices form paths and cycles of length at least four.

Corollary 2.6. Suppose a set of k ≥ 3 b-vertices form a path (u1, . . . , uk)
(where u1 and uk may be adjacent when k > 3). Let v1, . . . , vk−1 be 3-vertices
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u1
u2 u3

v1
v2

x

x′

Figure 8: There are two distinct vertices both adjacent to {u1, u2, u3}.
All triangles are facial.

with vi being adjacent to ui and ui+1, and let v0 be the 3-vertex adjacent to u1
but not to u2. Then there exists a vertex x adjacent to all ui, 1 ≤ i ≤ k and to
v0 and v2. (see Figure 9).

v0

x′

u1

u2

v1

v2 ukuk−1

x

Figure 9: There are two vertices universal to the path
(u1, u2, u3, . . . , uk). Vertex x′ is also adjacent to v0 and v2.

Proof. Applying Proposition 2.5 to vertices u1, u2, u3, there exist distinct ver-
tices x, x′ such that {u1, u2, u3, v1} ⊆ N(x), {u1, u2, u3, v2} ⊆ N(x′), and
[xu2u3] and [x′u1u2] are facial. Since x is adjacent to the b-vertex u3, x must
be adjacent to v3 and thus to u4. Then u4 is also adjacent to x′ as u3 has no
other neighbor. Iterating this argument, we infer that x and x′ are adjacent to
all ui. Now, since x′ is adjacent to u1 but not to v1, by definition of a b-vertex
it is adjacent to v0, and the corollary follows.

Lemma 2.7. If G contains a maximal component of b-vertices isomorphic to P2,
then G contains a facial subgraph isomorphic to one of the graphs of Figure 10.

Proof. Let u1, u2 be b-vertices, and let v1 be the 3-vertex adjacent to u1 and
u2, and z the third neighbor of v1. Let v0 and v2 be the second 3-neighbors of
respectively u1 and u2, which can be assumed distinct by Lemma 2.2. Since v0
is a 3-vertex and is not adjacent to u2, v0 has a neighbor t which is adjacent to
u1 and u2 (we can see u1 as the central vertex of any configuration of Figure 4).
By definition of b-vertices, v2 must also be adjacent to t. Let z1 and z2 be the
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third neighbors of respectively v0 and v2. If z1 = z2, then N [t] ⊆ N [v0]∪N [v2],
and the vertex t is in fact a b-vertex, contradicting our hypothesis. Thus z1 6=
z2. Depending on whether z and z1 are distinct or not, we get one of the
configurations of Figure 10 (in both cases, the outer face of the drawing may
not be facial).

u1 u2

v1

v0
v2

z = z1

t

u1 u2
v1

v0 v2

z

t

z2 z1 z2

Figure 10: The possible configurations of G if there is a P2 component of
b-vertices. The outer faces are not necessarily facial. All other triangles
of the drawing are facial.

Finally, if there is an isolated b-vertex in G, then it belongs to one of the
subgraphs depicted in Figure 4. This concludes the proof of the following lemma,
that gives a characterization of the possible intersections of the configurations
from Figure 2.

The special configurations of G are then all the configurations depicted in
Figure 11.

Lemma 2.8. If G contains a special configuration as facial subgraph, then
either G is a small graph (characterized in Lemmas 2.2, 2.3, and 2.4) and
γP (G) ≤ n−2

4 , or each maximal component of b-vertices of G belongs to one of
the induced configurations depicted in Figure 11, 1 to 7, or G contains a facial
octahedron (configuration 8 in Figure 11).

Observation 2.9. If a vertex belongs to two facial subgraphs isomorphic to
configurations from Figure 11, then it is a vertex from the outer face for both of
them.

Proof. Let v be a vertex that belongs to two configurations of Figure 11. If
v is a b-vertex, then none of the two configurations is an octahedron. Then
by maximality of the components of b-vertices in each configuration, the two
configurations must rely on the same set of b-vertices, so they are the same
configuration. Now suppose v is a 3-vertex. In both configurations it must be
an internal vertex, and have an adjacent b-vertex. So the configurations also
share a b-vertex and the same argument concludes. Finally, if v is a vertex
of degree 4, it is an internal vertex of an octahedron. Since two octahedra
cannot intersect on internal vertices and no internal vertex of an octahedron
may be adjacent to a 3-vertex, v does not belong to any other configuration.
The observation follows.

3 Constructing the power dominating set

We now describe the process that defines incrementally a power dominating set
S of G satisfying the announced bound. In Section 3.1, Algorithm 1 produces
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4
3 5

6 7 8

1
2

Figure 11: The different configurations containing a b-vertex, and the
octahedron. So-called “special” vertices of configurations 1 to 5 are cir-
cled in red. For these configurations, vertices circled with a blue-dashed
curve form a set relative to the special vertex of the configuration, and
they are called the circled vertices of the configuration.

a set S1 monitoring special configurations from Figure 2 with a small number
of vertices. Then, Algorithm 2 of Section 3.2 builds a set S2 by expanding
the set S1 iteratively, while keeping certain properties. If the graph G is not
fully monitored after that, we show in Section 3.3 that G has a characterized
structure, which guarantees that our last Algorithm 3 maintains the wanted
bound while adding some well chosen vertices to S2 to build the required set S.

During the three algorithms, we ensure the following property on the set of
selected vertices, that is necessary for the proof of Lemma 3.5:

Property (∗). We say that a subset S of vertices of a plane graph G has
Property (∗) in G whenever, for each induced triangulation G′ ⊆ G of order at
least 4, if G′ is monitored by S then one of the following holds:

(a) one vertex of the outer face of G′ has its closed neighborhood in G moni-
tored by S,

(b) or, we have |S ∩ V (G′)| ≤ |V (G′)|−2
4 .

3.1 Monitoring special configurations

The first step of our algorithm is described in Algorithm 1, which takes care of
monitoring vertices creating special configurations. In the following, we say a
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configuration is monitored by S1 when all its interior b-vertices are in M(S1),
or for an octahedron, if all its vertices are in M(S1).

Algorithm 1: Monitoring special configurations

Input: A triangulation G of order n ≥ 6.
Output: A set S1 ⊆ V (G) monitoring all b-vertices and all vertices of

facial octahedra.
S1 := ∅
if G has a vertex u of degree at least n− 2 then

Label N [u] with u
Return {u}

if G is a triakis tetrahedron (as in Figure 6) then
u, v: two b-vertices of G at distance 2
Label u, its 3-neighbors and two of its adjacent b-vertices with u
Label all other vertices of G with v
Return {u, v}

while ∃ a non-monitored configuration H from Figure 11(1,2,3,4,5) do
u: the special vertex of H
S1 ← S1 ∪ {u}
Label u and the circled vertices of H with u

while ∃ non-monitored configurations H,H ′ from Figure 11(6,7,8) with
a common vertex u do
S1 ← S1 ∪ {u}
Label u and the interior vertices of H and H ′ adjacent to u with u

while ∃ a non-monitored configuration H from Figure 11(6,7,8) do
u: any exterior vertex of H
S1 ← S1 ∪ {u}
Label all vertices of H with u

Return S1

Note that the output of Algorithm 1 is the empty set whenever G contains
neither b-vertices nor facial octahedra. We prove the following lemma:

Lemma 3.1. Let S1 be the set obtained by application of Algorithm 1 to G.
The following statements hold:

(i) All b-vertices and all facial octahedra are monitored by S1.

(ii) If S1 is not empty, |S1| ≤ |M(S1)|−2
4 .

(iii) S1 has Property (∗) in G.

Proof. (i) Every b-vertex in the graph belongs to one of the configurations of
Figure 11. The selected vertices in each configuration monitor all the b-vertices
of the configuration, and thus the algorithm monitors all such vertices. Taking
any vertex of a facial octahedron monitors the whole octahedron, thus all facial
octahedra are monitored as well.

(ii) If the graph is dealt with by the first if s, the statement is straightforward.
Otherwise, we first ensure that for each vertex u ∈ S1, there are indeed at least
five vertices labeled with u. For configurations 1, 3, 4 and 5, this is clear by
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definition of the circled vertices. For configuration 2, the vertex taken plus the
(at least) three b-vertices of the path plus at least one 3-vertex make (at least)
five labeled vertices. For every vertex u added in the second while loop, there
are at least two vertices labeled with u in each of the two configurations, which
together with u itself makes five vertices. For vertices added in the last while
loop, at least six vertices are labeled with u each time.

Now, we show that each vertex receives at most one label during Algorithm 1.
By Observation 2.9, only vertices on the outer face of some configuration may
be labeled several times, and so in only two cases: they may receive their own
label when they are themselves added to S1, or they may receive a label during
the last while loop if they are in a non-monitored configuration 6, 7 or 8 disjoint
from all remaining non-monitored configurations. Since these last configurations
are monitored by any vertex of their outer face, all vertices are labeled at most
once.

If S1 contains two or more vertices at the end of the algorithm, the statement
is proved. If S1 is reduced to a singleton, since the chosen vertex is of degree at
least five, the statement holds.

(iii) Let G′ be an induced triangulation of G monitored after Algorithm 1.
If |S1 ∪V (G′)| = 0, then Property (∗).(b) holds. Assume then |S1 ∪V (G′)| > 0.
If there is a vertex v ∈ S1 such that some vertices labeled with v are not in G′,
then v is a vertex of the outer face of G′ and Property (∗).(a) holds. Otherwise,
for every vertex v ∈ S1 ∩V (G′), all vertices with label v (which are at least five
as said above) are in G′. If |S1∩V (G′)| ≥ 2, then this is sufficient to deduce that
Property (∗).(b) holds. Otherwise, we observe that the set of vertices bearing a
same label u either does not form an induced triangulation or is of size at least
six, so G′ contains at least six vertices and the statement also holds.

In the following, S1 denotes the output of Algorithm 1 applied to the graph
G. Note that we can now forget the labels put on vertices during Algorithm 1.

3.2 Expansion of S1

The next step consists in selecting greedily any vertex that increases the set of
monitored vertices by at least four. We first make a small observation.

In the following, the graphs of the form P2 +Pk (i.e., formed by two vertices
both adjacent to all vertices of a path Pk) for some k ≥ 1 are called tower
graphs. We remark that the only maximal planar graphs of order n ≤ 6 are the
complete graphs K3 and K4, the graphs P2 + P3 and P2 + P4, the octahedron,
and the flip-octahedron (see Figure 12).

Figure 12: The maximal planar graphs of order n ≤ 6.

Observation 3.2. Let G be a triangulation. Unless G is an octahedron or a
tower graph P2 + Pk (for some k ≥ 1), one interior vertex of G has degree at
least 5.
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Proof. Suppose G is not an octahedron or a tower graph. If G is a flip-
octahedron (last configuration of Figure 12), then one of its interior vertices
has degree five. Otherwise, by the preceding observation, G contains at least
seven vertices. Suppose by way of contradiction that all interior vertices of G
have degree at most 4. Denote by u the exterior vertex of G with maximum
degree, v, w the other two exterior vertices of G, and u1, . . . , uk the interior
neighbors of u (k ≥ 2 or G is K4), so that (vu1 . . . ukw) form a cycle. With-
out loss of generality, we assume that v is adjacent to no less vertices among
u1, . . . , uk than w is.

Let ` be the maximum integer such that for all i ≤ `, ui is adjacent to v.
Since G is not a tower graph, ` < k. Observe that since v is not adjacent to
u`+1, u` and v have a common neighbor t (that is neither u`−1 nor u) to make
another face on the edge vu`. If ` > 1, then v, t, u, u`−1 and u`+1 make five
neighbors to u`, a contradiction.

So ` = 1 and since u2 is not adjacent to v, t 6= u2. (Note that t 6= w or
v would have only one neighbor among u1, . . . , uk while w has at least two,
contradicting our assumption.) Thus u1 has at least four neighbors: u, v, u2
and t. By our initial assumption, [u1u2t] is a facial triangle. Now if k ≥ 3,
u2 also already has four neighbors so [u2u3t] form a facial triangle. But then
t and u3 are already of degree four, so it is not possible to form another facial
triangle containing the edge tu3, a contradiction. So k = 2, and [u2wt] is facial.
But then we get an induced octahedron where the only non facial triangle is
[vtw], in which adding a vertex would raise the degree of t to more than 4, a
contradiction. This concludes the proof.

Let us now proceed with the second part of the algorithm defining a power
dominating set. Assume that after Algorithm 1, M(S1) 6= V (G). We now apply
Algorithm 2 that builds a set of vertices S2 ⊂ V (G) by iteratively expanding
S1 in such a way that each addition of a vertex increases by at least four the
number of monitored vertices. Moreover, at each round, the vertex added to S2

has maximal degree in G among all candidate vertices.

Algorithm 2: Greedy selection of vertices to expand S1

Input: A triangulation G of order n ≥ 6

Output: A set S2 ⊆ V (G) with |S2| ≤ |M(S2)|−2
4

S2 := Algorithm 1(G)
M := M(S2)
while ∃ u in V (G) \ S2 such that |M(S2 ∪ {u})| ≥ |M |+ 4 do

Select such a vertex u of maximum degree in G.
S2 ← S2 ∪ {u}
M ←M(S2)

Return S2

We now prove the following lemma:

Lemma 3.3. Let S2 be the output of Algorithm 2 applied to G. The following
statements hold:

(i) |S2| ≤ |M(S2)|−2
4 .
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(ii) S2 has Property (∗) in G.

Proof. (i) Let ` denote the number of rounds of Algorithm 2 (i.e., the number

of vertices added during the “while” loop). For 0 ≤ i ≤ `, we denote by S
(i)
2 the

set of selected vertices after the i-th round of Algorithm 2 (where S
(0)
2 denotes

the result of Algorithm 1 applied to G), and by M (i) the set M(S
(i)
2 ) of vertices

monitored by S
(i)
2 . The algorithm ensures that for all 0 ≤ i ≤ `−1, we have that

if S
(i)
2 is not the empty set, then |S(i+1)

2 | = |S(i)
2 |+ 1 and |M (i+1)| ≥ |M (i)|+ 4.

So, provided we can establish a base case (either for i = 0 or i = 1), Statement

(i) holds by induction on `. If S
(0)
2 is not the empty set, then 1 ≤ |S(0)

2 | ≤
|M(0)|

6 ,

and thus |S(0)
2 | ≤

|M(0)|−2
4 . Otherwise, by Observation 3.2, the first vertex added

to S2 is of degree at least 5 so |M (1)| ≥ 6. Thus this time |M
(1)|−2
4 ≥ 1 = |S(1)

2 |,
and the desired result follows by induction.

(ii) Let G′ ⊆ G be an induced triangulation monitored by S2 after Algo-
rithm 2. First assume G′ is isomorphic to a tower graph. Note that no vertex
selected during Algorithm 1 is an interior vertex of a tower graph. Observe
that for each interior vertex v of a tower graph, there exists an exterior vertex
v′ such that N [v] ⊆ N [v′] and d(v′) > d(v). Then at any given round i, Al-
gorithm 2 would rather select v′ instead of any interior vertex v, and thus no
interior vertex of G′ is in S2. Since G′ is monitored, then at least one of the
exterior vertices of G′ (say u) is in S2 or has propagated to an interior vertex of
G′, so N [u] ⊆ M and Statement (a) of Property (∗) holds for S2 in G. If G′ is
isomorphic to the octahedron or to the flip-octahedron, then one of the exterior
vertices of G′ is in S1 thanks to Algorithm 1, and Property (∗).(a) also holds.

Assume now that |V (G′)| ≥ 6, and suppose that Property (∗).(a) does not
hold for G′. Then some vertices of G′ belong to S2, and vertices of V (G′) ∩ S2

only monitor vertices of G′ (no propagation may occur from a vertex of the outer
face of G′). Then the same proof as for (i) above restricted to G′ shows that
Property (∗).(b) holds. This proves that Property (∗) holds for S2 in G.

In the following, S2 denotes the output of Algorithm 2 on the graph G.

3.3 Monitoring the remaining components

After Algorithm 2, some vertices of the graph may still remain non-monitored.
Algorithm 3 thus completes the set S2 into a power dominating set of G,
while keeping the wanted bound. In order to succeed, we need to have a bet-
ter understanding of the structure of the graph around these non-monitored
vertices. More precisely, we show that the graph can be described in terms
of splitting structures (see Figure 13): they are structures composed of a set
C = {u1, u2, u3} of three non-monitored vertices and of two associated triangu-
lations G1 and G2 whose exterior vertices are monitored.

We make use of the following lemma, that is proved in Section 4. We denote
by MG(S) the set of vertices not monitored by S in G (i.e., V (G) \MG(S)).

Lemma 3.4. Let G be a triangulation, S a subset of vertices of G monitoring
all b-vertices and facial octahedra. Let G′ an induced triangulation of G. If
MG(S)∩V (G′) 6= ∅, and for any v ∈ V (G), |MG(S ∪{v})| ≤ |MG(S)|+ 3 (i.e.,
Algorithm 2 stopped), then G′ corresponds to one of the configurations depicted
in Figure 13.
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Observe that the triangulations associated to a splitting structure may con-
tain non-monitored vertices, in which case we can again apply the above lemma
and deduce that they are in turn isomorphic to a splitting structure.

If M(S2) = V (G), then by Lemma 3.3, S2 is a power dominating set of G
with at most n−2

4 vertices. Otherwise, Algorithm 3 recursively goes down to
splitting structures whose associated triangulations are completely monitored,
in which case it adds a vertex to S to monitor the remaining vertices.

Algorithm 3: Monitoring the last vertices

Input: A triangulation G of order n ≥ 6 and an induced triangulation
G′ ⊆ G

Output: A set S ⊆ V (G′) monitoring G′ and such that |S| ≤ |V (G′)|−2
4

S ← V (G′)∩Algorithm 2(G)
if ∃ u 6∈MG(S) then

G1, G2 ← triangulations associated to the splitting structure of G′

containing u
S′ ← Algorithm 3(G, G1)
S′′ ← Algorithm 3(G, G2)
S ← S′ ∪ S′′ ∪ {u}

Return S

We now prove that after the addition of vertices during Algorithm 3, the
wanted bound still holds.

Lemma 3.5. Let G′ be an induced triangulation of G, and S a subset of vertices
of G monitoring all b-vertices and facial octahedra. Let C be a splitting structure
in G′ with G1 and G2 its associated triangulations. Let u be a vertex of C, and
let S′ denote the set S ∩ V (G1) and S′′ the set S ∩ V (G2). If G1 and G2 are
monitored by S and S′ and S′′ have Property (∗) respectively in G1 and G2,
then S′ ∪ S′′ ∪ {u} has Property (∗) in G′, and G′ is monitored.

Proof. First recall that after application of Algorithm 2, any vertex in MG(S)
has at most three non-monitored neighbors. Therefore, in the induced triangu-
lation G′, a vertex adjacent to a vertex in C may not be adjacent to vertices
from another configuration C ′ in G, or it would have two non-monitored neigh-
bors in C and two in C ′, a contradiction. Thus if a vertex can propagate in G′,
then it can also propagate in G.

We know that S′ and S′′ have Property (∗) in repectively G1 and G2, and so
G1 and G2 both satisfy either Property (∗).(a) or (b). Since all exterior vertices
of G1 and G2 have non-monitored neighbors, then in fact, G1 and G2 satisfy

Property (∗).(b). Thus |S′| ≤ |V (G1)|−2
4 and |S′′| ≤ |V (G2)|−2

4 . We remark that
|V (G′)| ≥ |V (G1)| + |V (G2)| + 2 in every splitting structure. After adding a
vertex u ∈ C, we have:

|S′∪S′′∪{u}| ≤ |V (G1)| − 2

4
+
|V (G2)| − 2

4
+1 =

|V (G1|+ |V (G2)|
4

≤ |V (G′)| − 2

4
.

Moreover, the exterior vertices of induced triangulations of G′ all have only
monitored neighbors (the exterior vertices of G′ excepted) and thus S′∪S′′∪{u}
has Property (∗) in G′.
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Figure 13: The seven different splitting structures and their associated
triangulations G1 and G2. White vertices are non monitored. All tri-
angles are facial except for G1 and G2.
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To prove that the addition of one vertex of C is sufficient to monitor G′, we
consider different cases depending on the splitting structure.

• For splitting structures (a), (b) and (c), adding u2, then u1 and u3 are
monitored by adjacency.

• For splitting structures (d) and (e), adding u1, then u2 is monitored by
adjacency, and then any vertex of the outer face of G1 or G2 propagates
to u3.

• For splitting structures (f) and (g), adding u1, then two exterior vertices
of G1 propagate independently to the other two vertices of C.

Thus G′ is monitored, which concludes the proof.

We can now use Lemma 3.5 to prove by direct induction on the splitting
structures that at the end of Algorithm 3, Property (∗) holds for S in G. More-
over, the proof of Lemma 3.5 shows that for the set S, G satisfies Property
(∗).(b). Thus the output S of Algorithm 3 satisfies the wanted bound and
the graph is completely monitored. We thus get the following corollary that
concludes the proof of Theorem 1.1.

Corollary 3.6. At the end of Algorithm 3, M(S) = V (G) and |S| ≤ |V (G)|−2
4 .

In the following section, we finally prove Lemma 3.4.

4 Defining splitting structures

This section is dedicated to the proof of Lemma 3.4. In the following, we work
under the assumption of the lemma, i.e., we assume that the set S monitors
all octahedra and b-vertices, and that the addition of any vertex v to S would
extend the set of vertices monitored by S by at most three. Any vertex contra-
dicting the second part of the assumption is called a contradicting vertex. For
simplicity, when G and S are clear from context, we denote M = MG(S) and
M = V (G) \MG(S).

As a direct consequence of the definition of power domination, we get the
following observation:

Observation 4.1. Let S be a set of vertices of G such that for every vertex
v ∈ V (G), |MG(S ∪ {v})| ≤ |MG(S)|+ 3. The following properties hold:

(i) Each vertex of M has either zero, two or three non-monitored neighbors.

(ii) Each vertex of M has at most 2 neighbors in M .

(iii) For every vertex u ∈M \S, there exists v ∈M∩N(u) such that N [v] ⊂M
(that propagated to u).

We now make the following statement.

Lemma 4.2. If v is of degree at least five, then for every two neighbors u1 and
u2 of v, there exists a neighbor w of v adjacent to u1 or u2, but not both, and
the corresponding triangle [vuiw] is facial.
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G1

G2x1

x2 x3
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w

Figure 14: The configuration for G′ containing a non-monitored com-
ponent isomorphic to K3. G1 and G2 are triangulations. All other
triangles of the drawing are facial.

Proof. We partition the set of neighbors of v into two paths from u1 to u2:
a path (w′1, . . . , w

′
k) of length at least three (i.e., k ≥ 2) and another path

(w1, . . . , w`), possibly empty. We have w′1 6= w′k. By way of contradiction,
assume both w′1 and w′k are adjacent to both u1 and u2. Contracting the
path (w′1, . . . , w

′
k−1) into w′1 and the path (u1, w1, . . . , w`) into u1, we get that

u1, u2, v, w
′
1, w

′
k induce a K5 in the resulting graph, contradicting planarity of

G. Thus w′1 is not adjacent to u2 (and [w′1u1v] is facial) or w′k is not adjacent
to u1 (and [w′ku2v] is facial).

We remark that Lemma 4.2 also holds when v is in M with at least two neigh-
bors in M . Indeed, by Observation 4.1(iii), v has a neighbor v′ that propagated
to it. Then v′ only has monitored neighbors, and two of them are also adjacent
to v. Thus v has degree at least five, which is the hypothesis of Lemma 4.2.

Lemma 4.3. Components of G[M ] are of order at most three.

Proof. Let C be a component of G[M ]. By Observation 4.1(ii), each vertex of
M has degree at most two in M , so C is a path or a cycle. Then adding any
vertex of C to S would monitor all of C. Since we work under the assumption
of Lemma 3.4, C is of order at most three.

Thus each component of G[M ] is isomorphic to either K3, P3, P2, or K1.
Lemmas 4.4, 4.5 and 4.6 deal successively with the first three cases, whereas
Lemma 4.7 goes through the case where M is an independent set in the induced
triangulation considered.

Lemma 4.4. Let G and M satisfy the assumption of Lemma 3.4. If an induced
triangulation G′ contains a component of G[M ] isomorphic to K3, then G′ is
isomorphic to the configuration depicted in Figure 14.

Proof. Let C be a component ofG[M ] isomorphic toK3 with V (C) = {x1, x2, x3}.
Let u be a vertex of M , adjacent to at least one of the vertices of C.

We first consider the case when u has neighbors in M \ C. If u is adjacent
to two vertices in C, then by Observation 4.1(i), u has exactly one neighbor in
M \C, say v. Then M(S∪{u}) ⊇M(S)∪{x1, x2, x3, v}, and u is a contradicting
vertex. So u has only one neighbor in C, say x1. Within the neighborhood of
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x1, the path from x2 to x3 going through u must contain at least three interior
vertices since u is not adjacent to x2 or x3, so x1 is of degree at least five.
Applying Lemma 4.2 on x1, we get that a neighbor w of x1 is adjacent to x2
or x3 but not both. Since w is adjacent to two vertices in C, it has no other
neighbors in M or the above case would apply. Hence, adding u to S, all
neighbors of u in M get monitored, then w propagates to x2 or x3 which can in
turn propagate to the last vertex of C. So u is a contradicting vertex.

We assume now that any vertex of M adjacent to C has only vertices of C
as neighbors in M . Note that such a vertex must be adjacent to at least two
vertices in C. Let u be a common neighbor of x1 and x2 such that [ux1x2] is
facial (u exists since the edge x1x2 is contained in exactly two facial triangles).
By Lemma 4.2, there is a neighbor v of u that is adjacent to only one of {x1, x2}
(say x1) and [uvx1] is facial. The vertex v must have a second non-monitored
neighbor, that must be in C, so v is adjacent to x3. Observe that the triangle
[vx1x3] must be facial. Otherwise, there is a vertex t 6= v such that [tx1x3]
is facial and t is separated from x2 by (vx1x3). Then by Lemma 4.2, t has
a neighbor t′ with only one neighbor among {x1, x3} also separated from x2
by (vx1x3), and thus with only one non-monitored neighbor, a contradiction.
Now, v and x3 have a common neighbor w outside the triangle [vx1x3], such that
[vwx3] is facial. By definition of v, we have w 6= x2. We also have w 6= u or v
would be of degree three contradicting Observation 4.1(iii). The cycle (uvx3x2)
separates w from x1, so the second non-monitored neighbor of w (different from
x3) must be x2. Unless an additional edge uw form a facial triangle [uwx2],
there is another neighbor of x2 that is separated from both x1 and x3 by the
cycle (uvwx2), a contradiction. So u is adjacent to w in a facial triangle [uwx2].

In a similar way that we proved that [vx1x3] is facial, we infer that [wx2x3] is
facial. By construction, [ux1x2], [uvx1], [vwx3] are facial, and we proved [vx1x3],
[uwx2] and [wx2x3] also are. If the triangle [x1x2x3] is facial, then the graph
induced by the vertices u, v, w, x1, x2, x3 is a facial octahedron, contradicting
the assumption of Lemma 3.4. Thus [x1x2x3] is not facial, and applying the
same line of reasoning as above inside [x1x2x3] shows that G′ is isomorphic to
the configuration depicted in Figure 14.

Lemma 4.5. Let G and M satisfy the assumption of Lemma 3.4. If an induced
triangulation G′ contains a component of G[M ] isomorphic to P3, then G′ is
isomorphic to one of the splitting structures depicted in Figure 15.

Proof. Let C be a component ofG[M ] isomorphic to P3 with V (C) = {x1, x2, x3}.

Let u be a vertex adjacent to C. We first prove that all neighbors of u
in M are vertices of C. By Observation 4.1(i), u has at most two neighbors
in M \ V (C). If u has exactly one neighbor u1 in M \ V (C), then x2 is a
contradicting vertex, since u propagates to u1 once x2 is added to S. Assume
then that u has two neighbors in M \ V (C) and thus only one neighbor in C.
If u is adjacent to x1 or x3, then u is a contradicting vertex. Suppose that u
is adjacent to x2 only, which must then be of degree at least five. We apply
Lemma 4.2 on x2 and get a neighbor v of x2 adjacent to x1 or x3 but not both.
Taking u in S, v then propagates (and then x2 propagates to x3) so u is a
contradicting vertex. Thus neighbors of C may not be adjacent to vertices in
M that are not in C.
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Figure 15: The two possible configurations for G′ containing a non-
monitored component isomorphic to P3. G1 and G2 are triangulations.
All other triangles of the drawing are facial.

We now prove that there is no vertex of M adjacent to all vertices of C.
Suppose by way of contradiction that u is a vertex in M adjacent to x1, x2
and x3. By Lemma 4.2, u has a neighbor z ∈ M with exactly one neighbor in
{x1, x3} (say x1) and [uzx1] is facial. Note that by the above statement, z is
also adjacent to x2.

Again, we can apply Lemma 4.2 to find a neighbor z′ of z adjacent to x1 or
x2 but not both. Vertex z′ must have a second non-monitored neighbor, namely
x3. So z′ cannot be adjacent to x1 which is separated from x3 by (ux2z), so z′

is adjacent to x2 and x3 and [x2zz
′] is facial. Now u is necessarily adjacent to

z′ forming a facial triangle [ux3z
′] (otherwise some vertex would have a single

neighbor in C).
Observe that the triangle [zx1x2] must be facial. Otherwise, there is a vertex

t 6= z such that [tx1x2] is facial and t is separated from x3 by (zx1x2). Then
by Lemma 4.2, t has a neighbor t′ with only one neighbor among {x1, x2} also
separated from x3 by (zx1x2), and thus with only one non-monitored neighbor,
a contradiction. With a similar argument, we get that [z′x2x3], [ux1x2] and
[ux2x3] are facial. But then x2 is a b-vertex (as in the bad configuration of
Figure 2), a contradiction.

Let w,w′, z, z′ ∈ M such that [x1x2w], [x1x2w
′], [x2x3z], [x2x3z

′] are faces.
By the above statement, all these vertices are distinct. Suppose that there is
a neighbor u of x2 different from the above vertices. Vertex u has a second
neighbor in C, say x1. The cycle (ux1x2) separates w or w′ from x3, say
w. By Lemma 4.2, w has a neighbor with exactly one neighbor in {x1, x2},
and that cannot be adjacent to x3, a contradiction. Thus x2 has no other
neighbor. Renaming vertices if necessary, we suppose [x2wz] and [x2w

′z′] are
facial triangles.

Note that x1 or x3 must have another neighbor. Otherwise, w is adjacent
to w′ andz is adjacent to z′, which implies that x2 is a b-vertex (as in the ugly
configuration of Figure 2), a contradiction. Let y ∈M be a neighbor of x1 such
that [x1wy] is facial. The second neighbor of y in C is necessarily x3. Similarly,
z has a neighbor z1 such that [x3z1z] is facial and adjacent to x1 and x3. Note
that z1 6= w or w would be adjacent to three vertices in C. Then y = z1 or
the cycle (x3ywz) would separate z1 from x1. We prove with similar arguments
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Figure 16: The two possible configurations of an induced triangulation
G′ if G[M ] has a component isomorphic to P2. G1 and G2 are triangu-
lations. All other triangles of the graph are facial.

that there is a vertex y′ such that [x1w
′y′] and [x3z

′y′] are facial.
If y = y′, then G′ is isomorphic to the first splitting structure of Figure 15.

Otherwise, suppose first that x1 has another neighbor t. It also has to be
adjacent to x3. Then applying Lemma 4.2 to t, we find a vertex adjacent to
only one vertex in C, a contradiction. So y and y′ are adjacent, and [x1yy

′]
and [x3yy

′] are facial. Thus G′ is isomorphic to the second configuration of
Figure 15.

Lemma 4.6. Let G and M satisfy the assumption of Lemma 3.4. If an induced
triangulation G′ contains a non-monitored component isomorphic to P2, then
G′ is isomorphic to one of the configurations depicted in Figure 16.

Proof. Let C = {x1, x2} with x1x2 ∈ E(G), and let w and w′ be the vertices
such that [x1x2w] and [x1x2w

′] are facial.

Claim 1. There is exactly one vertex of M at distance 2 of C.

Proof. Suppose there is no vertex ofM at distance 2 from C. By Lemma 4.2,
w has a neighbor t ∈ M adjacent to only one vertex among {x1, x2}. Then t
has only one neighbor in M , which contradicts Observation 4.1(i). Thus there
is a vertex of M at distance 2 from C. Suppose that there is u′ ∈ M \ V (C)
neighbor of a vertex u ∈ N(C) and v′ ∈ M \ V (C) neighbor of another vertex
v ∈ N(C). Then u is a contradicting vertex (whether it is distinct from v or
not). (�)

Let x3 be the only vertex of M at distance 2 of C.

Claim 2. The vertices adjacent to x3 are exactly the vertices of (N(x1) ∪
N(x2)) \ {w,w′}.

Proof. Suppose there is a vertex w′′ ∈M,w′′ 6= {w,w′} adjacent to x1 and
x2. The cycle(x1x2w

′′) separates x3 from either w or w′, say w. By Lemma 4.2,
there exists a vertex v adjacent to w and to only one vertex among {x1, x2}.
By Observation 4.1(i), v has a second non-monitored neighbor, that cannot be
x3, which contradicts Claim 1. Thus w and w′ are the only common neighbors
of x1 and x2. Therefore, all vertices adjacent to only one of x1 and x2 (i.e.,
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in N(x1) ∪ N(x2) \ {w,w′}) are adjacent to x3 (and there is at least one such
vertex).

Suppose there exists some vertex v adjacent to x3 but not in N(x1)∪N(x2).
Then v is in M or it has another neighbor x4 ∈ M \ {x1, x2, x3}, and v is a
contradicting vertex. Thus no vertex v ∈ V (G) \ (N(x1) ∪ N(x2)) is adjacent
to x3.

We now prove that w and w′ are not adjacent to x3. Suppose w is adjacent to
x3. By Lemma 4.2, w has a neighbor u1 adjacent to only one of {x1, x2} (say x1)
such that [u1x1w] is facial. (Thus u1 is also adjacent to x3 and [wu1x3] is facial,
since it separates x3 from x1 and x2.) Again by Lemma 4.2, u1 has a neighbor
v1 in M adjacent to only one of {x1, x3}. Suppose first v1 is adjacent to x3 (and
not to x1). Then v1 is also adjacent to x2. Following Observation 4.1(iii), w has
other neighbors in M different from u1. So there is a vertex t such that [x2tw]
is facial, and since t is separated from x1 by (x2v1x3w), t is adjacent to x3.
Applying Lemma 4.2 on t, we get a contradiction. So v1 is adjacent to x1 but
not to x3, and thus v1 = w′ (and w′ is not adjacent to x3). But x3 has degree
at least three, so there is a vertex v2 adjacent to x2 and x3. Again, [u1x3w],
[v2x2w] and [v2x3w] must be facial. But then there is no vertex that may have
propagated to w. Thus w and w′ are not adjacent to x3. (�)

Let us now consider the neighbors of x1 and x2 inM\{w,w′}. Let (u1, . . . , uk)
and (v1, . . . , v`) be the paths from w to w′ among respectively N(x1) ∩M and
N(x2) ∩M . Since x3 has degree at least 3, then by Claim 2, k + ` ≥ 3. First
observe that k and ` both are at most 2. Otherwise, say k ≥ 3, then by Claim
2, each ui is adjacent to x3, and the triangles [uiui+1x3] are facial, in particular
[u1u2x3] and [u2u3x3]. But then u2 contradicts Observation 4.1(iii).

We thus have two cases:

• k + ` = 3, say u1 is the only neighbor of x1 and v1, v2 are the only two
neighbors of x2 in M \ {w,w′}. By Claim 2, u1, v1 and v2 are neighbors
of x3. Moreover, since none of {w,w′} is adjacent to x3, u1 is adjacent to
v1 and v2. Also by Claim 2, triangles [u1v1x3], [v1v2x3] and [u1v2x3] are
facial, and G is isomorphic to the first graph depicted in Figure 16.

• x1 and x2 both have exactly two neighbors in M \ {w,w′}. By Claim 2,
u1, u2, v1 and v2 are neighbors of x3. Again, u1 is adjacent to v1 and u2
is adjacent to v2 since neither w nor w′ is adjacent to x3. Also by Claim
2, triangles [u1v1x3], [v1v2x3], [u1u2x3] and [u2v2x3] are facial and G is
isomorphic to the second graph depicted in Figure 16.

This concludes the proof.

Lemma 4.7. Let G and M satisfy the assumptions of Lemma 3.4. If an in-
duced triangulation G′ is such that M ∩V (G′) is an independent set, then G′ is
isomorphic to one of the splitting structures depicted in Figure 17.

Proof. Let G satisfy the assumptions of the lemma. In this proof, we denote

M ′ the set M ∩ V (G′), and M
′

the set M ∩ V (G′).

Claim 1. There exists a vertex u ∈M ′ with only two neighbors in M
′
.
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Figure 17: The two possible configurations of an induced triangulation
G′ if M ∩ V (G′) is an independent set. G1 and G2 are triangulations.
All other triangles of the drawings are facial.

Proof. Suppose by way of contradiction that every vertex in M ′ with non-

monitored neighbors has exactly three neighbors in M
′
. Note first that no two

vertices in M ′ have exactly two common neighbors in M
′
, or they would be

contradicting vertices. Hence, they share either one or three such neighbors.

Suppose first that all vertices in M ′ with a common neighbor in M
′

have
exactly one such common neighbor. We define an auxiliary graph H as follows:

the vertices of H are the vertices in M
′
, and two vertices in H are adjacent

if they have a common neighbor in G′. Observe that from a planar drawing
of G′, we can easily build a planar drawing of H: we keep the position of the
vertices, and for each edge (uv) in H, u and v have a common neighbor x in
G′ and we can have the edge (uv) follow closely the edges (ux) and (xv) (that

would not create crossings since NG′(x)∩M ′ = 3). By our assumption that no

two vertices in M ′ have more than one common neighbor in M
′
, the degree of

a vertex in H is precisely twice its degree in G′. Since every vertex in M
′

has

degree at least 3 and every vertex in M ′ has three neighbors in M
′
, that implies

that H has minimum degree at least 6. But this contradicts Euler’s formula for
planar graphs.

So there are at least two vertices u and v in M ′ with three common neighbors

in M
′
, say x1, x2 and x3, forming a subgraph isomorphic to a K2,3. Consider

such five vertices, such that the subgraph G′′ induced by the vertices within the
outer face of the K2,3 does not contain the same structure. Denote x1 and x3
the exterior vertices (i.e., x2 is inside the cycle (x1ux3v)). Since x1, x2 and x3
are pairwise non adjacent, there is another neighbor w of x2 in M ′, which has

at least two other neighbors in M
′
. By minimality of the selected K2,3, now all

vertices in G′′ that belong to M ′ and share a neighbor in M
′

do share exactly
one. Building the graph H on G′′ the same way as above, we get a planar graph
H where every vertex has degree at least six except for x1, x2 and x3 that have
respectively degree at least 2, 4 and 2. Therefore, we get that the sum of the
degrees of the vertices in H is at least 6|V (H)| − 10, again a contradiction with
Euler’s formula. This concludes the proof. (�)

Claim 2. If a vertex u of M ′ has degree 2 in M
′
, then all the vertices of

M ′ sharing a neighbor in M
′

with u also have degree 2 in M
′
.
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Proof. Let u1 be a vertex of M ′ with two neighbors v1, v2 in M
′
. Suppose

that there exists a vertex u2 in M ′ adjacent to v1 or v2 (say v1) and with degree

3 in M
′
. If u2 is not adjacent to v2, then u2 is a contradicting vertex. So assume

u2 is also adjacent to v2 and let v3 be the third neighbor of u2 in M
′
. Applying

Lemma 4.2 to vertex u1, let t be a vertex adjacent to only one of v1 and v2, say

v1, and such that [u1v1t] is facial. There is another vertex adjacent to t in M
′
.

If this vertex is not v3, then t is a contradicting vertex (as u1 propagates to v2
then u2 to v3). So t has only two neighbors in M

′
, v1 and v3.

Now, every other vertex in the graph is separated from v1, v2 or v3 by
one of the three separating cycles (u1v1u2v2), (tv1u2v3) and (tu1v2u2v3). The
monitored vertex u2 necessarily has more neighbors (by Observation 4.1(iii)).
Suppose there is a neighbor of u2 in the cycle (tu1v2u2v3). Then there is a
neighbor w to u2 and v2 forming a face [u2v2w]. If w is not adjacent to v3,

then w has some extra neighbors in M
′
, and is a contradicting vertex (u1 prop-

agates to v1 then u2 to v3). If w is also adjacent to v3, by Lemma 4.2 it has
a neighbor adjacent to only one of v2 and v3, also separated from v1 by the
cycle (tu1v2u2v3), and the same argument applies. The same arguments apply
also if u2 has neighbors in the other separating cycles. Thus there is no vertex

adjacent to v1 or v2 with degree 3 in M
′
. This concludes the proof. (�)

Let u1 be a vertex of M ′ with exactly two neighbors in M
′
, denoted x and z.

By Lemma 4.2, there is a neighbor of u1 adjacent to only one of x and z, say u2
is adjacent to x but not z (and [xu1u2] is facial). By Claim 2, u2 has only one

other neighbor in M
′
, denote it y. Note that we now have the property (P): any

neighbor v ∈ M ′ of x, y or z has at least two neighbors in {x, y, z} and is not

adjacent to any vertex of M
′ \ {x, y, z}. Otherwise v would be a contradicting

vertex. Consider the two paths from u2 to z that partition N(u1). Let w1 be
the last vertex before z in the path that does not go through x (i.e., [u1w1z] is
facial and w1 is not adjacent to x). Since u2 is not adjacent to z, then w1 6= u2.
By the above property (P), w1 is adjacent to y. Moreover, y may not have a
neighbor separated from x and z by (u1u2yw1), so [u2w1y] is a facial triangle.

Suppose first that x is of degree three, and let u3 denote its third neighbor,
adjacent to both u1 and u2. It has one other neighbor among y and z, say y.
Observe that [u2u3y] is necessarily a facial triangle, and that by Claim 2, u3 is
not adjacent to z. Since z is of degree at least 3, it has a neighbor v1 6= u3 such
that [u1v1z] is facial. By property (P), v1 is adjacent to y. Now z has no other
neighbor within the cycle (v1yw1z), or it would be a common neighbor to y and
z, but applying Lemma 4.2 would lead to a contradiction. So w1 is adjacent
to v1, and [v1w1y] and [v1w1z] are facial triangles. In addition, y cannot have
a neighbor separated from x and z by (u1u3yv1) so [u3v1y] is a facial triangle.
Thus we are in the first configuration of Figure 17.

Assume now that each of x, y and z have degree at least 4. Let u3 form a
facial triangle with x and u2. If u3 is adjacent to z, then the fourth neighbor
of x is also adjacent to z. By Lemma 4.2, it has a neighbor adjacent to only
one of x and z, which is separated from y by (u1xu3z), a contradiction. So u3
is adjacent to y forming a facial triangle [u2u3x]. By the same argument, we
infer the existence of u0 and v1, common neighbors of x and z and of y and z
respectively, and that the corresponding triangles are facial. If x were of degree
5, then we would get similarly a contradiction applying Lemma 4.2 on u3 or
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u0. By the same reasoning on y and z, we obtain the second configuration of
Figure 17, which concludes the proof of Lemma 4.7.

The results from the four Lemmas 4.4, 4.5, 4.6 and 4.7 conclude the section:
after Algorithm 2, each induced triangulation of G is isomorphic to one of the
graphs depicted in Figure 13.
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