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Abstract

The ability of a node to relay information in a network is often measured using betweenness centrality. In order to take into
account the fact that the role of the nodes vary through time, several adaptations of this concept have been proposed to time-
evolving networks. However, these definitions are demanding in terms of computational cost, as they call for the computation of
time-ordered paths. We propose a definition of centrality in link streams which is node-centric, in the sense that we only take into
account the direct neighbors of a node to compute its centrality. This restriction allows to carry out the computation in a shorter
time compared to a case where any couple of nodes in the network should be considered. Tests on empirical data show that this
measure is relatively highly correlated to the number of times a node would relay information in a flooding process. We suggest
that this is a good indication that this measurement can be of use in practical contexts where a node has a limited knowledge of
its environment, such as routing protocols in delay tolerant networks.

I. INTRODUCTION

Since Linton Freeman’s works in the late seventies [8], betweenness centrality is often used to evaluate how important a
node may be in order to spread an item throughout a network, whether it is a piece of information, goods or even an infection.
In static graphs, the betweenness centrality of a node x is defined as the sum, over all pairs of nodes, of the fractions of shortest
paths from a vertex to the other that go through x. Such a definition implies the calculation of all shortest paths in the network,
which makes the exact computation of betweenness centrality expensive when the network is large. Moreover, the notion of
centrality is time-dependent in most practical contexts. For example, a sick person is highly central in the infection network
when contagious and in contact with many other people, but not anymore if isolated. This suggests to adapt the definition of
betweenness centrality to dynamical contexts, which raises several delicate questions, not only in terms of interpretation but
also in regards to computational tractability.

A usual approach to describe dynamical interactions consists in representing them as a series of snapshots of equal length,
where each snapshot depicts the aggregated interactions occurring in the network during a given period of time. This approach
allows to use the large toolbox designed for graphs, and in particular centrality measurements. However, it also raises several
issues, which have already been brought to light in previous works (e.g. [12]). One of them is that it forces to use a specific
time scale for the analysis. When the time scale is chosen too large, we loose the benefit of a time-dependent representation,
and when chosen too small, the network is too disconnected and does not contain the spatio-temporal paths actually used for
spreading an item from one node to another.

Therefore, it is legitimate to look for alternate definitions that would take into account the intrinsic dynamical nature of
the data. For this purpose, we use a representation which focuses on the interactions and the moment when these interactions
occur. Such a representation has various names and slightly different formalisms in the literature: temporal networks [11], [20],
time-varying graphs [5], link streams [27] etc. In the rest of this work, we favor this last denomination as it emphasizes the
possibility to analyze the data as a real-time stream of information.

In recent works, many definitions have been proposed to extend Freeman’s graph-based definition to the dynamical context
– [26], [15], [25], [21] among others. As we shall see, these definitions are often close to each other, although exhibiting
subtle differences. In practice, the most appropriate definition certainly depends on the goal pursued, which involves practical
constraints. There are a variety of situations where the definition of a temporal betweenness centrality is helpful: to detect
opinion leaders, potential super-spreaders of epidemics etc. In order to set specific constraints to our study, we focus on the case
of centrality evaluation in a Delay Tolerant Network (DTN), which do not guarantee end-to-end connectivity. In this context,
the purpose of centrality measurements is to identify how efficient is a node for relaying messages in the communication
network (its utility). Other kinds of centralities (closeness, eigencentrality, etc) are not discussed here, as we do not intend to
make an extensive review of this very broad concept. Therefore, in the following we sometimes simply refer to centrality to
designate betweenness centrality, either in graphs or in link streams.

Previous works have proposed centrality-based protocols in DTN. For a review, see [18]. The first approach of this kind
is probably SimBet protocol [6], which mixes a graph-based ego-betweenness centrality to a similarity measurement between
nodes in order to evaluate if a given node is an appropriate relay for message passing. Another good example is BubbleRap [13],
in which the authors adapted the idea to temporal data by proposing a measure which is derived from the simulation of message
propagation through flooding. We can also mention [28], in which the authors propose a protocol based on a definition of
centrality which focuses on the duration of contacts. In these works and others, simulations often achieve good performances in
terms of delivery ratio and cost when compared to benchmarks, which substantiates the validity of these approaches. However,
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the large majority of these protocols use a static definition of the betweenness centrality (even if some of them take into account
the recentness of the interactions) or require a training simulation period to evaluate the centrality of a node. Moreover, some
of these definitions require the knowledge of the global structure of the network, which in practice does not seem to be always
reachable for a node.

The achievement of a comprehensive and efficient routing protocol is out of the scope of this work. Here, we rather focus
on two purposes:
• First, we propose the definition of the ego-betweenness centrality in link streams, which has interesting properties. In a

few words, it takes into account the temporal information, it does not demand the knowledge of the global structure of
the network, it is computationally light and parameter-free.

• Second, we investigate the comparison between various dynamical centrality measurements on several real-world datasets,
to give insights on the criticality of the choice of the betweenness centrality definition implemented.

Despite the variety of definitions of temporal betweenness centralities, the underlying intuition remains similar. So we may
think that the impact of choosing one definition rather than another may have moderate consequences. If this intuition is
correct, we should choose a definition that is suited to our experimental constraints, which is for example the case of the
ego-betweenness for DTN.

The paper is organized as follows: in Section II, we briefly review the dynamical betweenness centrality definitions that can
be found in the literature, and propose our own definition adapted to ego-centered link streams. Then, Section III is devoted
to experimental measurements to compare our definition to others and evaluate on real-world datasets what is the impact of
choosing a given definition over another. After analyzing the observations that we have made, we conclude on the future
directions, in particular the definition of a comprehensive DTN protocol based on the ego-centrality measurement.

II. TEMPORAL BETWEENNESS CENTRALITIES

A. In the literature

According to Freeman’s definition [8], the betweenness centrality of a node v in a static, unweighted undirected graph is
defined as

C(v) =
∑

i,j∈V×V,i<j

gij(v)

gij
,

where gij is the number of shortest paths between i and j and gij(v) the number of these paths that go through node v.
Straightforward strategies to calculate exactly the betweenness centrality usually lead to time complexities in Θ(N3), where N
is the number of nodes. Currently, a widely used approach proposed by Brandes [2] allows a computation in O(NM), where
N and M are the number of nodes and edges respectively. This is usually much more tractable on large sparse graphs.

However, the situations encountered in interaction networks are rarely stable. Therefore, it seems more appropriate to evaluate
dynamically the importance of a node. A node may be an important relay at a given moment of the day and remain silent
later, or it may gain importance progressively, etc. As a consequence, we should not only consider the overall centrality of a
node during the lifetime of the network, but also whether that node is central at a certain point in time. Several works in the
literature focused on adapting betweenness centrality to dynamical contexts, some of which we discuss here.

Perhaps the most natural method to represent the dynamics of interactions consists in using a sequence of static snapshots.
In terms of complexity, this demands to compute centrality on each snapshot. When the network does not vary much from
one snapshot to another, it may be appropriate to use a method which updates centralities. This is the principle of QUBE
and its improved variants [16], which are efficient for updating centralities. However, it also has drawbacks such as a large
memory consumption due to the costly pre-calculation of all shortest paths. Even if we put aside computational issues, any
snapshot-based analysis misses the fact that a predefined timescale biases the analysis. For instance, a short snapshot length
creates partial paths that are ignored in the betweenness computation. To illustrate this idea, an information may be immediately
relayed by a node in a social network, but it may also wait for a while before being spread. In reality, the distribution of
waiting times in such situations is known to be often heterogeneous (e.g. [1]).

Because of this limitation, there have been efforts to adapt the definition of betweenness to temporal representations. To
do so, a natural approach consists in defining the notion of shortest path in link streams, which plays an equivalent role to
a shortest path for the computation of betweenness in a graph. First, we need to define a temporal path, for this purpose we
use the classic definition of a temporal path (or time-respecting path or journey) that can be found for example in Holme and
Saramäki [11]: “paths are usually defined as sequences of contacts with non-decreasing times that connect sets of vertices”.
Then, there are several possible options to define an equivalent of a shortest path in a temporal network, depending on the
representation of the temporal data and on the choice of a time of analysis. For example, the shortest temporal path (minimum
number of hops from the source to the destination), the fastest temporal path (minimum span of time) or the foremost temporal
path (minimum arrival date to the destination) – see for example [3] for formal definitions and computational costs. Note that
these denominations are not consensual and others can be found in the literature – e.g., fastest temporal path is referred to as
shortest transition in [17].
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The authors of [26] use a trans-snapshot representation of the dynamical data, which allows a path to go from a snapshot
to the next. Then a shortest path is defined as a path that spans over the smallest number of snapshots, actually corresponding
to the fastest path according to the previous typology, and the definition of the betweenness follows. They isolate important
nodes in the network at a given time and show that these nodes are different from the ones that the static betweenness points
out. In [15], the temporal graph representation itself defines links that connect a timestamp to the next, and a node to its future
self. According to this representation, the shortest travel time from a temporal node to another is closely related to the number
of hops of a path. Hence, the betweenness of a node v is computed by averaging the fraction of shortest travel time paths
going through v. These two definitions are actually close to each other, since they consider the shortest travel time from a
source to the destination (hence, fastest paths) to be a natural equivalent of the shortest path in a graph. However, a major
drawback of these approaches is the computational cost of this path enumeration, which can be as large as O(T 3N3), T being
the number of time intervals, N the number of nodes, in the case of [15] and O(TN3) in [26].

Similarly, the authors of [25] introduce the temporal coverage centrality, which can be seen as an adaptation of betweenness
centrality to temporal networks, as it evaluates the importance of a node through its capacity to relay information from a vertex
to another. However, it slightly differs from betweenness centrality, as coverage counts the fraction of pairs of nodes, which
have a fastest path going through a given node at a given time, without normalizing it to the overall number of such paths.
In [21], the authors make the choice of calling temporal betweenness of v the number of shortest time-respecting paths going
through v. They also do not consider a fraction of the number of shortest paths, and refer to this quantity as “unnormalized
betweenness centrality”. Thus, this quantity is not a direct generalization of betweenness centrality to a dynamical network,
but as in the case of [25], it is cheaper in terms of computational complexity.

Note also that the various definitions of dynamical centralities do not deal with simultaneous events in the same way. In
some cases (e.g. [26]), links occurring at the same moment can be involved in the same shortest path. In others, such as [15],
[21], links go strictly forward in time, therefore, a shortest path cannot contain simultaneous links. In yet other cases [25], a
notion of delay is integrated to the link. Depending on the application and data under study, all these choices are legitimate.
In the case of a DTN, where we consider messages which are sent from a device to another, the processing is not immediate,
which justifies the use of delays or of forward links. However, if the time to process the message is much shorter than the
temporal resolution, it also makes sense to allow simultaneous links in a same temporal path.

The multiplicity of possible definitions leads us to a purpose-oriented point of view. In a DTN, information about the whole
network is usually not available to all nodes. It is more realistic to consider that these nodes only have access to information
about their direct neighbors, and we describe this point of view as ego-centered, as is the case for instance in [6]. The concept
of ego-network as well as the question of how to analyze it has been widely debated in sociology (see for example [9], [4]).
In the scope of this paper, an interesting aspect of this question is how the definition of centrality in ego-centered networks is
correlated to the whole network centrality [19], [7]. We come back to this question later. Besides that, we aim at defining a
centrality measurement that could be computed rapidly enough with limited resources, as is generally the case in DTN.

B. Ego-betweenness centrality in link streams

1) Link stream: Let us first define the notion of link stream. A link stream L is defined as the triplet (V,E, T ), where V
is a set of nodes, T = [A,Ω] is a time interval, and E, a set of triplets {lk}k=1..|E|. A triplet lk is of the form (u, v, t) with
u, v ∈ V × V , and A ≤ t ≤ Ω. Each link stands for an interaction between nodes u and v, taking place at instant t. If the
interactions are directed from u to v, we will refer to the link stream as directed, and if they are not, it is undirected. Instead
of t, we often use the notation tuv , or tu→v if the stream is directed, to indicate to which interaction t is related.

2) Most recent paths in a stream: Our definition of a (time-respecting) path in a link stream is standard: a path from u1 to
un is a sequence of links of the stream {(u1, u2, tu1u2), . . . , (un−1, un, tun−1un)} such that ∀i, tuiui+1 ≥ tui−1ui + ε. Here,
ε designates the delay between the sending of a message and its reception, which we consider uniform over the whole link
stream, for the sake of simplicity.

Betweenness centrality of a node e in a graph is defined as the sum of the fractions of shortest paths between any pair of
nodes on which e is located. Thus, defining an equivalent of this notion in link streams suggests to define an equivalent of a
shortest path in an ego-centered link stream. We argue here that when looking for important information relay, an appropriate
equivalent to a shortest path in a link stream is a path that gives the most recent information to the destination about the
source status. This differs from the definitions of fastest, foremost or shortest path aforementioned.

Note that our point of view is retrospective, since at time τ we measure the paths that already exist in the link stream. The
motivation for this is that we consider data as a dynamical stream, where we process each link at the time of its appearance,
hence, future links are considered to be unknown. Let this specific time-respecting path be called the most recent path from
u1 to un, which is defined at a specific point in time τ , the time of analysis.

Formally, we can define a most recent path at time τ as a path {(u1, u2, tu1u2), . . . , (un−1, un, tun−1un)} where tun−1un +
ε ≤ τ and tu1u2

is maximum. In the practical measurements that we implement in the following, we make the assumption –
quite usual in the literature – that 0 < ε = δt, where δt is the time resolution of the link stream. As a consequence, if x sends
a message to y at t, then y can relay this message at the next time step t + δt. On the other hand, ε is not null, so that if
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x sends a message to y at t, while y sends a message to z, z cannot be informed of x status, which allows to eliminate the
delicate simultaneity problems aforementioned.

Note also that the notions of most recent, fastest and foremost paths are closely related. If we imagine a fastest path from
u to v, going through w at time tw, this path is also a most recent path from u to v going through w at time tv , which is
the time at which it reaches v. Similarly, it is a foremost path from u to v at time tu, when it leaves u. The difference stems
essentially from the time of analysis.

3) Ego-graph and ego-link stream: There are several ways to define an ego-graph. We use the definition from [7], which
is perhaps the most common. The ego-graph is composed of a node e (usually called ego), its links to its neighbors, and the
links among its neighbors. In other words, it is the subgraph induced by e and its direct neighbors. An ego-link stream is the
natural equivalent of this notion in a dynamical context. Therefore, an ego-link stream centered on e is a restriction of the link
stream to the interactions between e and any of its neighbors, or between two neighbors of e. Denoting Ne the neighborhood
of a node e, the ego-link stream is simply Le = (Ne ∪ {e}, Le, T ), where Le are the triplets in L which only involve nodes
of Ne ∪ {e}.

The computation of a shortest path in an ego-graph is straightforward, as the distance between two nodes is at most 2.
Consider two nodes u and v that are neighbors of e. Nodes u and v are either directly connected or they are not. In the case
where they are not connected, the distance between them is 2 because of the path u − e − v, and possibly because of other
paths u− w − v passing through another neighbor w of e.

4) Most recent paths in an ego-link stream: Schematically, we represent in Figure 1 some situations that can be encountered
in ego-link streams.

The time of analysis is τ . In case 1(a), direct communication from u to v at time tu→v = 2 allows v to know about u’s
status dating from time 2. Communication using e as a relay arrives at time te→v + δt = 5 > tu→v , but it gives information
to v about u’s status dating from tu→e = 1. As a result, the most recent path at instant τ is simply {(u, v, 2)}. In case 1(b),
using e as a relay allows to receive the information about u’s status dating from tu→e = 2 while using communication from
u to v through w would give u’s status at instant tu→w = 1. As a result, the most recent path from u to v at instant τ is
{(u, e, 2), (e, v, 4)}.
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Figure 1. Various examples of most recent paths from u to v (in blue) at time τ . In red, alternative paths from u to v.

The notion of most recent path is defined for any directed pair of nodes (u, v) in a link stream, as long as there is
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at least a temporal path from u to v. In other words, v is reachable from u before instant τ . More complex most recent
paths can exist in a link stream, such as the case represented in Figure 1(c). Here the most recent path corresponds is
{(u,w1, 3), (w1, w2, 5), (w2, v, 7)}.

5) Ego-betweenness definition and computation:
a) Definition: Ego-betweenness centrality at instant τ is defined in a similar way as centrality is in ego-centered graphs [9].

It is the sum over the directed pairs of Ne of the fractions of most recent paths going through e. Moreover, in the case of
ego-centrality in graphs, the distance between two neighbors of e is at most 2, as previously mentioned. We would like to keep
a similar idea when defining centrality in an ego-centered link stream, so that a path such as the one depicted in Figure 1(c),
would not be considered when computing centrality even if is is the most recent one from u to v.

That is why we define the ego-betweenness in link streams in the following way:

C(e, τ) =
∑

i,j∈Ne×Ne

pij(e, τ)

pij(τ)
,

where pij(τ) is the number of most recent paths of length at most 2 from i to j at time τ and pij(e, τ) is the number of such
paths going through e. Here, length refers to the number of links in the path from i to j. Note that there is no restriction such
as i < j, since the path from i to j is not equivalent to the path from j to i. This definition apply to both a directed or an
undirected link stream, the difference being whether the links are directed or not.

b) Computation: We propose here an algorithm to compute the ego-betweenness of a node e. We consider the case of
a directed link stream, the undirected case being simple to deduce. As we are interested in the stream around e, we only
consider links involving nodes of Ne ∪ {e}, that is e and its neighborhood. We go through the sub-stream in chronological
order. Throughout the process, we store for any directed pair of nodes (u, v) the most recent path(s) of length 1 or 2 from u
to v, if it or they exist. For any directed link (u, v, t), there are three cases to consider:

1) Either u = e, in which case there may be new most recent paths from any neighbor w of e to v, going through e. Thus,
we compare temporal paths of the form {(w, e, tw→e), (e, v, t)} to see if they are more recent than the current most recent
path from w to v, and update if necessary.

2) Or v = e, in which case we update the most recent path from u to e, which is now {(u, e, t)}, but it has no immediate
influence on e centrality.

3) Or u 6= e and v 6= e, in which case, there is a new most recent path from u to v, which is now {(u, v, t)}. Moreover,
there may be a new most recent path from w to v of the form {(w, u, tw→u), (u, v, t)}, we thus have to compare it to
the existing most recent path and update if necessary.

Then, at each step the ego-betweenness of node e is updated accordingly. The generalization to an undirected link stream is
straightforward, as we simply consider that each link (u, v, t) implies a directed link from u to v and another from v to u at
time t.

As already mentioned, this definition as major advantages: it is ego-centered, which corresponds to the situation where a
node has limited information about its environment and reduces the computation time in comparison to dynamical betweenness
on the whole stream. But, it also has several drawbacks. First, ego-centered betweenness centrality in graphs is known to
have no direct theoretical relationship to the betweenness centrality stricto sensu, so there is certainly no simple way to relate
theoretically the ego-betweenness to any existing dynamical generalization of this concept. In addition, as it takes into account
the temporal evolution of the network, it is more computationally demanding than a static method would be.

c) Complexity: As the definition is ego-centered and therefore use a subpart of the stream for each node, it is difficult to
make a direct comparison to the complexity of the temporal betweenness centralities aforementioned. We can express it as a
function of Ne = |Ne|, and Me = |Le|, the number of links in the ego-centered link stream. We are going through the stream
once, and for each link, we have to consider at most Ne + 1 pairs of directed neighbors, to see if the link under consideration
changes the most recent path between them. This leads to a complexity in O(MeNe).

d) Practical example: To illustrate this definition on a practical example, we compute the evolution of the centrality
of e at time t, denoted C(e, t), in the link stream represented in Figure 2. From time 0 to 2, there is no most recent path
going through e, so that e’s centrality is null. Starting from time 3, e is located on the only most recent path from u to v, so
C(e, 3) = 1. But at time 4, there is a new most recent path from u to v, which is {(u, v, 3)}, and as e is not located on it,
C(e, 4) = 0. At time 5, we identify that e is located on {(u, e, 1), (e, w, 4)} which is the only most recent from u to w, that
implies that C(e, 5) = 1. At time 6, we observe that e is also located on a path from w to u: {(w, e, 4), (e, u, 5)}, however
there is another path which is as recent: {(w, u, 4)}, C(e) is therefore increased by 1

2 to 1.5. Finally at time 7, there are two
new most recent paths which allow to relay information from w to v: {(w, e, 4), (e, v, 6)} and {(w, u, 4), (u, v, 6)}, the first
one contributes for 1

2 to e’s centrality, so that C(e, 7) = 2.

III. COMPARING CENTRALITIES ON DATA

In order to investigate how the dynamical centrality definition impacts the interpretation of this measurement, we are interested
in comparing these measures on real-world datasets.
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Figure 2. Example of a link stream centered on node e.

A. Dynamical betweennesses under scrutiny

First, we use a flooding method for the purposes of defining a reference. The idea is to simulate a flooding protocol from
all the nodes of the system, and count the number of times a node relay a message according to these experiments on average.
It is a means to define a common reference to all our other measurements. The goal of this choice is twofold: first, it allows
to limit the number of comparisons, which is necessary because of space constraints. Second, flooding methods are actually
used in practical contexts as a substitute for a centrality measurement (it is treated as such in [13] for example), and can be
understood as a crude proxy to evaluate the relay-utility of a node.

Then, we use several temporal between measurements mentioned in the literature review. Snapshot-based centrality does
not exactly belong to this category and it has already been shown that it yields quite different results from truly temporal
centralities – e.g., [26] – however, it has been widely used to measure the importance of a node at a given moment in time.
Note that this measurement is parametrized by the length of the snapshot. We also use the temporal coverage centrality [25],
which aims to describe the importance of a node in a link stream with similar intentions as our definition, that is to say taking
into account the dynamics without resorting to any timescale. Other dynamical centrality measurements have been considered
for this comparison, in particular the one proposed by Tang et al. [26], however our implementation is not efficient enough to
process the datasets described in the following in a reasonable time.

B. Datasets and preprocessing

1) Datasets: We compare these dynamical centrality measurements on three different undirected contact datasets:
• Hypertext [14] is a collection of contacts collected at the Hypertext 2009 conference in the context of SocioPatterns

project1. 113 participants were equipped with radio badges recording contacts with other participants per 20 seconds
windows. The total duration of the dataset is about 2 days and a half.

• Infocom [22] is a collection of contacts collected at the Infocom 2006 conference. Each node represents a wireless sensor
recording contacts per 120 seconds windows. It contains 98 nodes consisting of 20 static devices and 78 participants. The
total duration of the dataset is a little shorter than 4 days.

• School [24], [10] is a collection of contacts collected at a primary school, also part of SocioPatterns project. The dataset
represents the contacts between 242 participants (pupils and teachers). A link between two nodes represents a contact
within a 20 seconds window. The total duration of the dataset is about 32 hours.

Such data are particularly suited to the context of DTN. However, these centrality measurements are relevant to other cases
too, such as evaluating the importance of a node in a social network. To see if we make similar observations in a different
context, we also used
• Enron [23], this dataset contains the 47, 088 emails that 151 Enron employees exchanged during three years. It records

who has sent an email to whom and when.
We summarize the main features of these four datasets in Table I, more details can be found in the references provided.

The activity of the nodes vary a lot, depending on the moment considered, which widely impacts the centrality measurements.
For example, we observe large periods of low activity in the contact datasets, corresponding to the night periods. We show in
Figure 3 the fraction of active nodes for each dataset through time, that is to say the nodes which have at least one contact
during a given time-window (300s for the contact data, 1 week for Enron).

2) Computation issues and data preprocessing: Flooding and snapshot-based centralities are easy to implement and fast, but
these definitions can hardly be considered as generalizations of the betweenness centrality to link streams. The computation of
other dynamical centralities can be somewhat problematic. Practically, the running times on the examples that we discussed
above can be quite long. We set arbitrarily the computation time limit to 100 hours on a standard working station to calculate
the centralities of all the nodes of a dataset. By this standard, our implementation of coverage centrality could not achieve the
computation on Infocom and School. To circumvent this problem, we modified the original time resolution of these datasets,

1http://www.sociopatterns.org
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Figure 3. Fraction of active nodes in each dataset.

by gathering consecutive time steps in larger ones, as can be seen in Table I and parallelized the computation on several nodes.
We then obtain the following aggregated computation times, with one significant digit:
• Hypertext : 90 hours (cov.), 5 minutes (ego-bet.).
• Infocom : 300 hours (cov.), 20 minutes (ego-bet.).
• School : 2000 hours (cov.), 8 hours (ego-bet.).
• Enron : 100 hours (cov.), 800 seconds (ego-bet.).

Concerning Tang et al. centrality [26], we could not compute it on any of these datasets, as mentioned earlier. Note that in
both cases, we can certainly not claim that our implementations of these algorithms are optimal, or that this observation would
stand with other datasets.

Dataset N = |V | M = |L| Duration Time resolution
Hypertext 113 20, 818 59 hours 20s
Infocom 98 98, 450 95 hours 240s
School 242 46, 968 32 hours 300s
Enron 151 47, 088 3 years 960s

Table I
CHARACTERISTICS OF THE DATASETS.

C. Comparison tools and results

1) Comparison measures: In order to evaluate how different these centrality measurements are, we could compute the
Pearson correlation coefficient through time. However, the heterogeneity of centrality values make the Pearson coefficient
difficult to interpret, giving for example much weight to low centrality nodes. When considering centrality measurements, it
is more relevant to focus on the ranking of nodes rather than on the value of the centrality itself. The observer is in general
interested in knowing if a node is more central than another. For example, in the case of existing DTN protocols based on
centrality, the condition for a message to be forwarded depends on the fact that the target is more central than the source.

Therefore, we focus on measurements that indicate if a ranking is correlated to another. For this purpose, we use the
Spearman footrule correlation, which is defined as:

F(r1, r2) = 1−
∑

i |r1(i)− r2(i)|
M

where rx(i) designates the position of node i in ranking x, M is the maximum footrule distance, that is to say 2dN/2ebN/2c,
where N is the length of the ranking (which is also the number of nodes in the network). We also use the Kendall-tau
correlation:

K(r1, r2) = 1− |{i, j} : r1(i) > r1(j) and r2(i) < r2(j)|
N(N − 1)/2
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Figure 4. Spearman footrule correlations between the different centrality measurements and the ranking according to the flooding method.

These two measurements are complementary, as Spearman footrule uses the sum over all nodes of the difference of rankings,
while Kendall-tau focuses on the relative rankings between two nodes, without considering by how many ranks the ranking
of each node differs from one measure to the other. Note that it is frequent that two nodes share the same centrality value. In
such case, we argue that the most adequate way to rank the nodes is the standard competition ranking (two nodes sharing the
same score should have the same ranking).

2) Experimental results: The results of these measurements are reported in Figures 4 and 5. We can first notice that both
correlation measurements behave qualitatively in a similar way, except for the fact that the Kendall-tau correlation fluctuates
more. When the Kendall-tau correlation drops or increases, it is also true for the Spearman footrule. Note also that during
inactivity periods, for example from hour 9 to hour 24 in School, as the centralities do not evolve, all measurements remain
strictly constant.

We now analyze the results obtained according to each centrality measurement. Concerning the ego-betweenness centrality,
there is first a transition period during which the correlation with the flooding ranking can be unstable (for example in the
case of Hypertext), then the correlation stabilizes. This is related to the fact that the value of the ego-betweenness in the past
affects the value of the ego-betweenness in the future. For example, if a node and its neighborhood are not active any longer
starting from time t, then the ego-betweenness of the node remains constant. This observation is also true for the flooding
score. In the cases of Enron, Hypertext and School, this level is quite high, as the Spearman footrule are around 0.7, 0.6 and
0.5, respectively and the Kendall tau: 0.6, 0.5 and 0.4. In the case of Infocom however, the level of correlation is very low
(F ' 0.2, K is close to 0). Except in this last case, it indicates that the ego-betweenness centrality yields rankings quite similar
to the flooding method. For example, a Kendall-tau larger than 0.5 means that more than three quarter of the pairs of nodes
are ranked in the same order according to both rankings.

Concerning the snapshot-based centrality, it is difficult to identify a clear pattern of correlation with the flooding case. During
periods of low activity, the snapshots are very sparse, causing the correlation to drop to very low levels. During higher activity
periods, the correlation increases according to both measurements but fluctuates around levels which are lower than what we
observed with the ego-betweenness. This was partly expected, as it has been noticed in previous works that the snapshot-based
centrality can yield results very different from dynamical centrality measurements. Note that we tested several snapshot sizes
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Figure 5. Kendall tau correlations between the different centrality measurements and the ranking according to the flooding method.

(5, 10, 20 and 30 minutes for contact data), and observed similar qualitative behaviors. We plotted the value corresponding to
the highest level of correlation between the flooding method and the snapshot-based centrality, which corresponds to 5 minutes
snapshots in all contact network cases, and 1 week for Enron.

More surprisingly, the coverage centrality also yields very different results from the ego-betweenness case. The level of
correlation to the flooding is lower than for the ego-betweenness. Compared to the snapshot-based centrality, it varies from
a dataset to another, but the correlation measurements seem to be of the same order of magnitude, positive but at quite low
levels. This was unexpected as coverage centrality seems to rely on a similar intuition as the ego-betweenness. Several reasons
can be evoked to explain this observation: the fact that coverage centrality is not normalized by the number of paths going
from one node to another, or the difference between a fastest and a most recent path. However, we think that the most plausible
cause is the fact that coverage centrality considers the whole stream, while ego-betweenness is restricted to the sub-stream
around e. In a flooding experiment, a node which receives a message send it to all its future neighbors, so this measurement
also relies mostly on the local structure around e. Thus, the ego-betweenness as we defined it seems to be closer to what a
flooding process would do. Depending on the context, a user would have to choose which measurement is the most appropriate
to his problem.

We think that the results reported in this section give useful insights about the characteristics of the link stream that a
centrality measure captures. However, they also depend on the features of the datasets, and notably their size. So in the
short term, we would like to compare systematically and on a larger scale the ego-betweenness to these dynamical centrality
measurements and others that could not be implemented here (e.g. [26], [15], [21]).

IV. CONCLUSION

In this work, we defined the ego-betweenness centrality in link streams as an extension of the concept ego-betweenness
centrality in graphs to a dynamical context. We also proposed a computation algorithm, which proved to be tractable on several
real-world datasets. Its node-centered design allows to compute it with the mere knowledge of the neighborhood of a node.
Such a property is desirable in many contexts, notably networks where there is no guarantee of an end-to-end connectivity. We
compared the ego-betweenness to other centrality measurements in the literature, which also aim at assessing the utility of a
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node as a relay of information in a dynamical network. We observed that most of the times, it is relatively highly correlated to
a flooding-based centrality measure. Therefore, we have good hopes that the ego-betweenness could be useful to opportunistic
routing in DTN. In order to develop this application, the next step is to implement this measure in a comprehensive protocol.
Existing protocols based on centrality often use it jointly with a similarity measurement, thus we contemplate the idea of
defining an ego-centered similarity measure achievable in this context.
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