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Abstract—In this paper, parallel interconnec-
tion of buck (step-down) converters is consid-
ered. Classical control of such a topology uni-
formly distributes load current over branches.
Yet, whenever non-identical converters (having
distinct characteristics) are considered, this pa-
per demonstrates, both theoretically and exper-
imentally, that minimizing overall losses requires
non uniform and even load-depend current distri-
bution. In this context, a novel highly modular
hierarchical control framework is proposed for
arbitrary number of buck converters. Solutions for
the two related design steps are given, which leads
to a control law minimizing total losses as well
as correcting voltage deviation for any operating
point and without knowledge about load magni-
tude. Several formal statements and experimental
results support our discussions.

I. Introduction
Substituting a single high-capacity centralized

electrical power converter by multiple distributed
converters connected in parallel is a strategy that
becomes more and more popular. Indeed, paralleling
converters offers several advantages such as increased
reliability due to redundancy and distribution of
stresses of components [1], ease of maintenance and
repair, improved thermal management [2] and re-
duced output ripple by interleaving phase of Pulse
Width Modulation (PWM) [3].
An essential feature offered by parallel interconnec-

tion of converters is the possibility to distribute load
current. Indeed, if regulation of output voltage im-
poses overall current, distribution of current among
converters remains free. The most wide-spread strat-

egy for dealing with this degree of freedom is the
so-called balanced current sharing which uniformly
distributes currents among converters [3], [1], [2].
Whenever identical converters (same class of con-
verters sharing the same electrical components) are
considered, this policy is fully justified by the fact
that it equally distributes stresses among converters
as well as minimizes overall losses. However, few
papers in the literature consider interconnection of
non-identical converters for which balanced current
sharing is expected not to be the optimal.
To the best of the authors’ knowledge, existing

solutions to achieve nonuniform current sharing relies
on “virtual droop resistors” which can be interpreted
as a low-frequency negative feedback (the feedback
gain is the so-called “droop resistor”) on current
which aims adjusting equilibrium current [4], [5].
Then a rule of thumb is to fix the droop resistor mag-
nitude for bus voltage to remain into allowed bounds
when the converter injects its maximum power [6],
[4]. As noticed in [5], this strategy maintains constant
current ratio between converters, whereas optimal
current sharing requires load dependent current ra-
tio, as formally demonstrated in this paper.
1) Our first contribution is to provide a rigorous

statement of the control problem related to parallel
interconnection of arbitrary number of non-identical
(having distinct characteristics) buck DC/DC con-
verters with the requirement of converging to the
optimal steady-state with respect to power losses.
Corresponding electrical circuit is depicted by Fig. 1.
This treatment proves, both theoretically and ex-
perimentally, not only that balanced current sharing
cannot be optimal for all load with respect to overall
power losses but also that optimal current ratio is in
general load-dependent (Section IV). 2) As a second
contribution, a sequential design procedure leading
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Fig. 1. Electrical schematic.

to two control layers evolving at different time-
scales is proposed as a suitable framework for solving
the underlying control problem, without knowledge
about load magnitude. Rigorous formalization of re-
quirements and assumptions of each step is provided
(Section V). 3) Building on this statement, our third
and main contribution implements this procedure
and gives rise to (i) a stabilizing fast time-scale inner
controller (Section VI) working in concert with (ii)
an outer controller canceling voltage deviation as well
as imposing optimal current distribution for all load
(Section VII). Then, extensive experimental results
for the full control scheme validate discussions of this
paper (Section VIII).

A preliminary version of this paper was presented
in [7]. Here, as compared to [7], we illustrate modu-
larity of the proposed framework by deriving a new
outer controller which is demonstrated to be com-
patible with any stabilizing inner controller satisfying
mild assumptions, we provide several statements and
proofs of the stability properties of the proposed
schemes, and we provide real experimental validation
relying on inner controller benefiting from higher
robustness properties than that of [7].

Notation: The symbol Im stands for the identity
matrix of dimensions m × m. The null matrix of
size m× n is denoted by 0m×n. The vector (column
matrix) of size m for which every entry is 1 is
denoted by 1m. The notation xk refers to the k-th
element of the vector x, with 1 being the index of
the first element. The operator ’diag’ builds diagonal
matrix from entries of the input vector argument.
The steady-state value of the signal ζ(t) is denoted
by ζ?, i.e. ζ? = limt→+∞ ζ(t).

II. Problem statement

The electrical circuit represented by Fig. 1 is con-
sidered. It mimics the parallel interconnection of m
buck converters that would share a single capacitor.
Converters are controlled via PWM and dk refers

to duty cycle of k-th converter. The control aims
regulating DC bus voltage v to desired level Vref , i.e.

v? = Vref , (1)

where v? refers to the asymptotic value of v(t), for
any positive and unknown load R. Imposing (1) is
equivalent to saying that the sum i?T of each i?k is
equal to Vref/R, where ik referd to current in k-th
inductors Lk. Thus, additional degrees of freedom
remain in the way i?T is distributed among converters.
For this reason, this paper introduces minimization
of the steady-state global losses as an additional
requirement for the outer controller. Note that losses
due to parasitic elements of capacitor C depends on
i?T exclusively, which makes it completely indepen-
dent from current sharing policy. Hence, the quantity
to be minimized is p?

T defined as

pT (i) :=
∑

k∈K pk(ik) with K := {1, · · · ,m}, (2)

where pk refers to power losses due to MOSFET,
diode and inductor of k-th converter.

III. Model description

Power losses are considered by taking parasitic
elements of electrical components of Fig. 1 into ac-
count. Following the methodology proposed by [8,
Sec. 2.2.11] for a single buck converter, the equivalent
circuit depicted by Fig. 2 is derived from Fig. 1.
For the k-th converter, RS,k is the MOSFET on-
resistance, RF,k is the diode forward resistance, VF,k

is the diode threshold voltage and RL,k is the equiva-
lent series resistance (ESR) of the inductor Lk. Resis-
tance RC refers to the ESR of the filter capacitor C.
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R
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VF,k
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ik

im

C

Fig. 2. Equivalent circuit of Fig. 1 with parasitic resistances
and the diode offset voltage.
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Throughout this paper, it is assumed that (i)
frequency of the commutation fs is sufficiently large
for the dynamics to be approximated by an av-
erage (ripple-free) continuous-time model and (ii)
converters operate in continuous conduction mode.
In addition to that, the following hypothesis is made.

Assumption 1. For each converter, magnitudes of
the MOSFET on-resistance and the diode forward
resistance are equal, i.e. RF,k = RS,k, (k ∈ K). 4

By virtue of Kirchhoff’s circuit laws, under previ-
ous assumptions, dynamics of the circuit is governed
by

∀k ∈ K, Lk
dik
dt

= −v − (RL,k +RF,k)ik
+(Vin,k + VF,k)dk − VF,k, (3a)

C(R+RC)dv
dt
− CRRC

diT
dt

= RiT − v, (3b)

where
iT :=

∑
k∈K ik = 1ᵀ

m i, (3c)

refers to the total current. From [8, Eq. (2.134)]
and [9], average power losses pk is given by

pk = (RF,k +RL,k)i2k − VF,kikdk

+(VF,k + tSW,kfsVin,k)ik, (4)

where inductor losses are described by RL,ki
2
k, con-

duction losses by RF,ki
2
k + VF,k(1 − dk)ik and com-

mutation losses are approximated by tSW,kfsVin,kik,
tSW,k being related to switching shape and duration.
Remark (Hypothesis on RS,k and RF,k). Without
Assumption 1, additional terms multiplied by (RS,k−
RF,k) have to be introduced in both (3a) and (4).
Nevertheless, such a hypothesis is fully justified by
the fact that magnitude of RS,k and RF,k are of
the same order and smaller than RL,k, allowing
those terms to be neglected. Experimental results
provided by Section VIII-A validate this statement.
Note that fine stability analysis could be performed
by means of standard robust analysis tools treating
those terms as a small state-dependent perturbation
(see e.g. [10]). y

IV. Optimal current distribution

Equating derivatives of v and ik to zero in (3) gives

∀k ∈ K, ik = −(Vin,k + VF,k)dk + VF,k + v

−RL,k −RF,k
,(5)

v = RiT . (6)

which characterizes the set of all possible equilibria,
among which (iopt, Vref) is of particular interest as it
minimizes pT for v = Vref , i.e.

iopt(R) := arg min
i?

pT (i?) s.t. (1). (7)

In order to derive expression of iopt, let us rewrite
dk in terms of ik and v via (5) and substitute this
expression in (4) for v = Vref . This gives

pk = r1,ki
2
k + r2,kik, (8)

with

r1,k = Vin,k(RF,k +RL,k)/(Vin,k + VF,k),
r2,k = −VF,k(VF,k + Vref)/(Vin,k + VF,k)

+VF,k + fstSW,kVin,k.

As a result, iopt minimizes quadratic cost function
(8) under linear constraint R1ᵀ

miopt = Vref corre-
sponding to (6) and, in turn, admits an analytical
expression.

Proposition IV.1. Current vector iopt, defined by
(7) reads

iopt(R) = (1m − ΓΨr1)Vref/(mR)− ΓΨr2/2, (9)

where Ψ ∈ R(m−1)×m and Γ ∈ Rm×(m−1) refer to

Ψ := (Γᵀdiag {r1}Γ)−1Γᵀ, (10)

Γ :=
[

Im−1
01×m−1

]
−
[
01×m−1

Im−1

]
. (11)

Proof. The set of solutions of (1) can be
parametrized by q ∈ Rm−1 as follows

i(q) = Vref/(Rm)1m + Γq, (12)

since columns of Γ form a basis of Ker {1ᵀ
m}. Rewrit-

ing pT (i) as

pT = iᵀdiag {r1} i+ rᵀ2 i, (13)

allows to compute the derivative ∂pT (i(q))/∂q which
is equal to zero if and only if

q = −(Γᵀdiag {r1}Γ)−1Γᵀ(Vref/(Rm)r1 + r2/2),

since Γ is full column rank. Substituting the previous
expression of q in (12) gives (9).

Let us now illustrates this result for the experi-
mental setup conditions described in Section VIII for
two converters (m = 2). Fig. 3 depicts power loss
levels pT (i1, i2) (2) with identified parameters r1,2
(colored elliptical sections), as well as the algebraic
relation (6) for v = Vref (black segment), reading
i1 + i2 = Vref/R. The dashed blue line represents
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Fig. 3. Power levels and optimal currents.

uniform current distribution i1 = i2. The location
of optimal losses in the converters as function of the
load is represented by the dashed red line, issued from
(9). Note that this line is straight as iopt is affine with
respect to 1/R.
As these two lines do not overlap, uniform current

distribution cannot be optimal for all R. Nonetheless,
this is the case for the specific load value for which
the lines intersect. For lower output power corre-
sponding to higher load magnitude, iopt,2 exceeds
iopt,1 so that most of the power should be convey
by converter 2, whereas the opposite ordering should
to be preferred for higher output power. Such an ob-
servation is made possible by the fact that the dashed
red line is only affine (and not linear) so that lines
intersect and, in turn, iopt,1 is not a constant (that
is, load independent) fraction of iopt,2, i.e. optimal
current ratio depends on R. The fact that inequalities
r1,1 < r1,2 and r2,1 > r2,2 hold in this case is
the reason behind this optimal current inversion: At
low load current, where r2,kik dominates r1,ki

2
k in

expression of pk given by (8), the use of converter 2
is preferable whereas priority should be given to
converter 1 at high load current, where ordering of
the two terms of pk is reversed. Section VIII relates
this observation to the electrical characteristics of the
converters.

Remark (Load dependent current ratio). Let us il-
lustrate load dependency of converter ratings in the
case of two converters (m = 2). In such a case, (9)
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reads

iopt =


r1,2

r1,1 + r1,2
r1,1

r1,1 + r1,2

 Vref

R
−


r2,1 − r2,2

2(r1,1 + r1,2)
r2,2 − r2,1

2(r1,1 + r1,2)

 ,
so that ratio iopt,1/iopt,2 is a function of R:

iopt,1

iopt,2
= 2Vrefr1,2 −R(r2,1 − r2,2)

2Vrefr1,1 −R(r2,2 − r2,1) .

Note that independency with respect to R is recov-
ered whenever ΓΨr2/2 = 0, so that iopt admits a
linear expression with respect to 1/R. This happens
if terms r2,k are identical for all k which implies that
r2 = 1mr2,1 and, in turn, leads to Ψr2 = 0 since
Γᵀ1m = 0. y

V. New hierarchical control framework
In order to solve the aforementioned problem, a

control framework relying on two nested control loops
is proposed in this section.
On the first hand, local inner controllers ensure

stability of the overall system as well as droop con-
trol1 for all resistive load by relying only on local
information: v and ik. On the other hand, central-
ized outer controller communicates with every inner
controllers by delivering a signal wk in order to drive
the overall system to the optimal steady-state by
relying on measurement of v exclusively. Typically,
wk adjusts voltage reference viewed by individual
k-th inner controller to Vref + wk instead of Vref .

Step 1 (Inner loop design). Find a load-independent
controller d(ik, v, wk) such that induced dynamics of
i and v asymptotically converge to some equilibrium
ie(w,R) and ve(w,R) for all constant signal w ∈ Rm

1In this context, droop control refers to a proportional
negative feedback on current (see [6, eq. (17)]).
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and for all constant load R ∈ R>0. Besides, voltage
equilibrium ve depends on every wk. •

The last sentence of Step 1 can be interpreted as
a controllability requirement for the design of the
outer controller. Indeed, this control layer will be
able to impose a particular current distribution only
if wk impacts ik for all k. This is indeed the case if
voltage equilibrium ve = RiT is a function of every
wk. This means that signals wk cannot be rejected
by inner controller as a perturbation. Consequently,
any integral action on voltage v aiming at regulating
asymptotic value of v to Vref (regardless of wk) is
prohibited at the inner control layer.
Remark (Inner control design). The distributed con-
trol problem underlying the design of linear inner
control can be formulated as follows: Find the stabi-
lizing state feedback d = d0 +K(s)x where x = (i, v)
and K(s) is a (possibly dynamic) sparse matrix of
the form

K(s) =


? 0 · · · 0 ?

0 ?
. . .

... ?
...

. . . . . . 0
...

0 · · · 0 ? ?

 ∈ Rm×(m+1), (14)

where ? denotes non-zero entry. y

Step 2 (Outer loop design). Given an inner con-
troller solving Step 1, find an outer control law w(v)
imposing the steady-state characterized by (1) and
i? = iopt(R) for all load R ∈ R>0. •

It is emphasis that load is not measured so that
neither inner nor outer controller can depend on R.
In addition to that, particular care should be taken
to prevent nested loops to badly interacts.
Remark (Communications between control layer).
It is worth mentioning that communication from
outer to inner controllers is unidirectional – ik is
not required for wk to be computed – and low
bandwidth – dynamics induced by this outer control
is slower than that of the inner control – which has
obvious implementation advantages in the case where
converters are distant. In the same vein, observe that
if wk is used by the inner controllers, this signal is not
required to guarantee stability which is ensured even
if wk ≡ 0, resulting for instance when communication
network brakes down. y

VI. Inner controller design
In this section, a class of satisfying local inner

controller is first proposed. It can be regarded as

sufficient conditions for Step 1 to be satisfied. This
control law reads as follows

dk = (αk(Vref + wk)− (αk − 1)v − βkik) /Vin,k,
(15)

and has two real parameters, αk and βk. Being added
to Vref , observe that the output wk of the outer
controller can be interpreted as a voltage reference
shift from the inner control view point.
Introducing α′k := (αk − 1)/κk + 1, κk :=

Vin,k/(Vin,k + VF,k) and vC := v − RC(iT − v/R)
which can be physically interpreted as the voltage
of capacitor C, asymptotic stability of xc := [i vC ]ᵀ
and, in turn, v can be established via Lyapunov
function V (xc) := xᵀcPxC , with

P := diag{L1/α
′
1, . . . , Lm/α

′
m, C}/2,

for any R > 0, and αk and βk sufficiently large. In
such a case, it happens that voltage equilibrium ve

must depend on each wk.

Proposition VI.1 (Sufficient condition). For any
αk > VF,k/(Vin,k + VF,k) and βk > −(RL,k +
RF,k)Vin,k/(Vin,k + VF,k), (k ∈ K), inner controller
(15) solves Step 1.

Proof. First observe that law (15) modifies (3a) as
follows

Lk
dik
dt

= −α′k(v − Vref − wk)− β′kik
+(1/κk − 1)(Vref + wk)− VF,k, (16)

where β′k := βk/κk + RL,k + RF,k. Then, from the
definition of vC , it comes out that

v = Req/RCvC +ReqiT (17)

with Req := RRC/(R + RC). Substitution of this
expression into (3b) and (16) gives

Lk
dik
dt

= −α
′
kReq

RC
vC + α′k(Vref + wk)− β′kik

−α′kReqiT + (1/κk − 1)(Vref + wk)− VF,k

C
dvC

dt
= Req

RC
iT −

1
R+RC

vC

or, equivalently,
d

dt

[
i
vC

]
= AC

[
i
vC

]
+BC(Vref1m + w)

−
[
diag {L}−1

VF

0

]
(18)

with
AC :=

diag
{[

L
C

]}−1 [
M −Req/RCα

′

Req/RC1ᵀ
m −1/(R+RC)

]
5



BC :=
[
diag {L}−1 diag {ν}diag {β′}

01×m

]
M := −diag {β′} −Reqdiag {α′}1m1ᵀ

m

and where νk is given by

νk := (α′k + 1/κk − 1)/β′k ∈ R. (19)

To prove that AC is Hurwitz, first observe that

α′k > 0, β′k > 0, (k ∈ K)

hold for any α and β selected as in the statement
of Proposition VI.1. As a result, Lyapunov function
V (xc) is positive definite which ensures that Aᵀ

CP +
PAC given bydiag {α′}−1

M 0m×1

01×m − 1
R+RC


is negative definite since

diag {α′}−1
M = −diag

{
β′1
α′1
, . . . ,

β′m
α′m

}
−Req1m1ᵀ

m

is negative definite for all R > 0. This proves that
dynamics of i and vC are asymptotically stable. As
R > 0, asymptotically stability of v is also guar-
antied.
Let us now prove that voltage equilibrium ve de-

pends on each wk. To this end, observe that

ve = Req
[
1ᵀ

m 1/RC

] [ i
vc

]
= −Req

[
1ᵀ

m 1/RC

]
A−1

C

(
BC(Vref1m + w)−

[
diag {L}−1

VF

0

])
can be derived from (17) and (18) (recall that AC is
Hurwitz and, hence, invertible). Assume, by contra-
diction, that there exists k0 ∈ K such that ve does
not depend on wk0 . As Req 6= 0 for all R > 0, this
implies that[

1ᵀ
m 1/RC

]
A−1

C BCek0 = 0

where ek is the k-th unit vector. This induces that
there exists a non-zero vector η ∈ Rm satisfying

A−1
C BCek0 =

[
Γ 1m

0 −mRC

]
η (20)

since

Ker
{[

1ᵀ
m 1/RC

]}
= Im

{[
Γ 1m

0 −mRC

]}
.

From the expression of AC , it comes out that

AC

[
Γ 1m

0 −mRC

]
=

−diag
{[

L
C

]}−1
diag

{[
β′

1

]}[
Γ 1m

0 −m

]
so that [

−νk0ek0

0

]
=
[
Γ 1m

0 −m

]
η (21)

holds from (20) and the definition of BC . Remarking
that [

Γ 1m

]−1 =
[
(ΓᵀΓ)−1Γᵀ

1/m1ᵀ
m

]
,

the first m lines of (21) implies

−νk0

[
(ΓᵀΓ)−1Γᵀ

1/m1ᵀ
m

]
ek0 = η

so that ηm = −νk0/m1ᵀ
mek0 = −νk0/m, whereas the

last m + 1 line of (21) requires that ηm = 0. This
is a contradiction since G = diag {ν} is an invertible
matrix by virtue of Lemma VI.2. This proves that ve

depends on each wk.

Remark (Comparison with [7]). In contrast with
inner control law proposed in [7], controller (15)
does not depend on system parameters (but Vin,k,
which is assumed to be measurable), which has obvi-
ous robustness advantages. Also, closed-loop stability
conditions stated by Proposition VI.1 are easily met
since VF,k, RL,k and RF,k are typically of small
magnitudes so that lower bounds of αk and βk are
slightly positive and negative, respectively. y

V ′
ref

w′
k

v

β′
k

α′
k

R
RC

Lk

α′
k

i1

ik

im

C

Fig. 5. Equivalent circuit to dynamics of the closed-loop
system with primary control.

Remark (Selection of αk and βk). Relationship (16)
allows to interpret α′k and β′k as virtual electrical
stiffness and damping associated to the k-th branch,
respectively. This gives a way to adjust αk and βk

within the range defined by Proposition VI.1. To this
end, another approach relies on Kirchhoff’s circuit
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laws which gives a way to physically interpret closed-
loop equations (3b), (3c) and (16) as the dynamics
induced by virtual electrical circuit depicted by Fig. 5
by rewriting (16) as

Lk

α′k

dik
dt

+ β′k
α′k
ik = V ′ref,k(α′k) + w′k(α′k)− v,

where V ′ref,k(α′k) := Vref−(VF,k/α
′
k)(Vin,k−Vref)/Vin,k

and w′k(α′k) := wk(VF,k/(α′kVin,k) + 1). Comparing
to Fig. 2, for every converter k, the pair MOSFET
and diode is replaced by constant voltage source
V ′ref,k in series with a controllable voltage source w′k.
Note that V ′ref,k(α′k) ≈ Vref and w′k(α′k) ≈ wk when
VF,k/α

′
k is of small magnitude. Also, the inductor

value becomes Lk/α
′
k with an ESR equal to β′k/α′k.

This observation can serve as guidelines for the se-
lection of parameters αk and βk. Transient duration
associated with each converter can be assigned via β′k
(and, in turn, βk) since time constant associated with
k-th inductor corresponds to (Lk/α

′
k)/(β′k/α′k) =

Lk/β
′
k. Additionally, αk can be used to control (via

α′k) the steady-state when outer controller is discon-
nected since i?k|wk=0 = α′k(V ′ref,k(α′k)− v?)/β′k. y

Remark (Comparison with [6]). The inner controller
proposed by [6, Fig. 23] adopts a two-stage form
where a current inner loop delivers the duty cycle
via

dk = τi,k(s)(iref,k − ik),

from the ouput iref,k of a voltage outer loop reading

iref,k = τref,k(s)(Vref + wk −RD,kik) + τv,k(s)v,

so that the overall control law can be written as

dk = τi,k(s)τref,k(s)(Vref + wk) + τi,k(s)τv,k(s)v
−τi,k(s)(1 + τref,k(s)RD,k)ik,

which parameters are transfer functions τi,k, τref,k

and τv,k. By selecting those transfer functions as
static gains equals to β/Vin,k, αk/βk, and (1−αk)/βk,
respectively, and setting RD,k = 0, this formulation
boils down to our control law (15).2 Consequently, as
compared to [6], this paper provides formal closed-
loop stability certificate for a particular version of
control law considered in [6]. y

Let us now anticipate the outer loop design which
aims driving inner closed-loop equilibrium to the
optimal steady-state. Indeed, for this problem to be
solved, some knowledge about how inner closed-loop

2Note that RD,k appears to be a redundant parameter as
dk can be freely assigned via the parameter transfer functions
τi,k, τref,k and τv,k, whatever is RD,k.

behaves is required. Focusing on the steady-state,
next lemma gives an answer to this question, which
can be interpreted as a necessary condition for Step 1
to be solved.

Assumption 2. Inner controller is linear, time-
invariant, proper and continuous. 4

Lemma VI.2 (Necessary condition). For any inner
controller satisfying Assumption 2 and solving Step 1,
there exist load-independent N ∈ Rm, i0 ∈ Rm and
G ∈ Rm×m such that the stable equilibrium point (i, v)
satisfies

i = Gw −Nv + i0. (22)

Furthermore, N satisfies the following inequality

1ᵀ
mN ≥ 0, (23)

and G is an invertible diagonal matrix.

Proof. Any inner control law completing Step 1 can
be parametrized by load-independent proper transfer
functions di,k(s), dv,k(s), dw,k(s) and constant scalar
d0,k as follows

dk(s) = di,k(s)ik(s) + dv,k(s)v(s) + dw,k(s)wk/s

+d0,k/s.

as w is supposed to be constant. Substituting dk(s)
by this expression in Laplace transform of (3a) gives

hk(s)ik(s) = ((Vin,k + VF,k)dv,k(s)− 1)v(s)− VF,k/s

+(Vin,k + VF,k)d0,k/s+ (Vin,k + VF,k)dw,k(s)wk/s,

where hk(s) := RL,k + RF,k + Lks − (Vin,k +
VF,k)di,k(s). Since hk(s) is not identically zero for all
proper function di,k(s), this leads to a relationship of
the form

i(s) = G(s)w/s−N(s)v(s) + i0(s) (24)

where diagonal terms of G are (Vin,k +
VF,k)dw,k(s)/hk(s) and off-diagonal entries are
zero.
Let us now prove that G(s), N(s) and s i0(s) con-

verge to load-independent constant matrices G?, N?

and i?0 when s → 0+, so that asymptotic expression
of (24), i.e.

lim
t→+∞

i(t) = lim
s→0+

s(G(s)w/s−N(s)v(s) + i0(s))

= G?w + i?0 −N? lim
s→0+

sv(s)

= G?w + i?0 −N? lim
t→+∞

v(t) (25)
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is nothing but (22). To this end, let fw 7→i(s) and
fw 7→v(s) be the matrix transfer functions from w to
i and v, respectively. Observe that

fw 7→v(s) = p(s)1ᵀ
mG(s) (26)

fw 7→i(s) = (Im − p(s)N(s)1ᵀ
m)G(s) (27)

where

p(s) := R+ CRRCs

1 + C(R+RC)s+ 1ᵀ
mN(s)(R+ CRRCs)

Indeed, (26) is derived by left multiplying (24) by 1ᵀ
m

and substituting the resulting expression of 1ᵀ
mi = iT

into Laplace transform of (3b), which reads

(1 + C(R+RC)s)v = (R+ CRRCs)1ᵀ
mi, (28)

so that
v = p(s)1ᵀ

m(G(s)w + i0/s) (29)

holds. Then, the use of (24) and (29) gives (27)
readily. Let us define f?

w 7→v, f?
w 7→i, p? and h?

k as the
limits when s → 0+ of fw 7→v(s), fw 7→i(s), p(s) and
hk(s), respectively. We now use the facts that, for all
R > 0, (i) f?

w 7→v and f?
w 7→i exist and have finite values

since asymptotic stability is assumed and (ii) every
entries of f?

w 7→v is non-zero as location of the voltage
equilibrium must depend on every wk. By (26), fact
(ii) implies that p? 6= 0 so that 1ᵀ

mG
? must be finite,

by virtue of fact (i). Since G(s) is diagonal, fact (ii)
implies that G? is finite. To prove that N? is finite,
it suffices to remark that f?

w 7→i = G? −N?f?
w 7→v and

to invoke fact (i). Finally, the fact that i?0 is finite
follows from asymptotic stability and (25).
It remains to prove that (23) holds. Suppose, by

contradiction, that (23) is not satisfied, i.e. 1ᵀ
mN

? <
0. Observe that p? reads

p? = R

1 +R1ᵀ
mN?

(30)

so that the load R = −1/1ᵀ
mN

? > 0 leads to infinite
value of p? which contradicts previous statement.
This proves that (23) holds.

Remark (Lemma VI.2 for (15)). As inner control
law (15) verifies Assumption 2 and solves Step 1,
Lemma VI.2 ensures that equilibrium induced by
inner closed-loop (3) with (15) adopts the form (22).
Indeed, by setting derivative of ik to zero in (16),
resulting equation takes the form (22) with G =
diag {ν}, N = diag {β′}−1

α′ and i0 = νVref − VF ,
every terms being load-independent. Also observe
that inequality (23) trivially holds. y

+
+

+
−

Vref

v

ż z ∈ R w ∈ Rm

H

F

∫
ǫ

Fig. 6. Outer control law (32).

VII. Outer controller design
In this section, the outer controller w(v) design

which slowly drives the system toward (iopt, Vref) is
discussed.
First observe that, together with (6), relationship

(22) allows to write steady-state current and voltage
as follows

i = (Im −
N1ᵀ

m

1/R+ 1ᵀ
mN

)(Gw + i0), (31a)

v = 1ᵀ
mGw + 1ᵀ

mi0
1/R+ 1ᵀ

mN
. (31b)

The goal is to ensure that (i, v) equals (iopt(R), Vref)
for all load. To this end, we might look for inner
controller leading to G,N and i0 in (22) for which
there exists a constant vector w, to be determined,
which guaranties that this optimal steady-state is
always achieved. Finding solution of this problem (if
any) might be intricate. Furthermore, some of the
matrices G, N and i0 will have to be load depend.
Instead, we propose to let signal w be generated on-
line via outer control layer described by

ż = ε(Vref − v), (32a)
w = Fz +H. (32b)

and graphically represented Fig. 6.
By selecting ε > 0 sufficiently small, dynamics

of w can be made as slow as desired, which is
equivalent to saying that ε is a tuning parameter
for selecting relative aggressiveness of the inner loop
w.r.t the outer loop. Thus, from the time-scale of
w, closed-loop dynamics induced by inner controllers
can be considered at the steady-state in accordance
to the frequency separation principle, so that (22)
and (31b) apply.3 As shown by the following theorem,
by assigning particular expression of F and H, it is
possible not only to impose that v goes to Vref but
also to make i converge to iopt for all R.

Theorem VII.1. Given any inner controller verify-
ing Assumption 2 and solving Step 1. Let G, N and

3See e.g. [10] for standard results on systems with two time
scales.
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i0 be defined as in Lemma VI.2. If F and H are given
by

F = G−1(1m − ΓΨr1), (33a)
H = G−1Γ(Ψr11ᵀ

m/m+ (ΓᵀΓ)−1Γᵀ)
(VrefN − i0)−G−1ΓΨr2/2, (33b)

then there exists ε0 > 0 such that for all 0 < ε ≤ ε0
outer controller (32) solves Step 2.

Proof. Using (33) with (32b) gives

Gw = 1mz + ΓJ(z), (34)

where

J(z) := −Ψ (r1(z − 1ᵀ
m(VrefN − i0)/m) + r2/2)

+(ΓᵀΓ)−1Γᵀ(VrefN − i0). (35)

For ε sufficiently small, inner controller can be
considered at the steady-state, so that (22) and (31b)
apply. Hence, substituting v given by (31b) into (32a)
and making use of (34) leads to

ż = ε(Vref −
mz + 1ᵀ

mi0
1/R+ 1ᵀ

mN
), (36)

as 1ᵀ
mΓ = 0. By virtue of Lemma VI.2, inequality

εm/(1/R + 1ᵀ
mN) > 0 holds for all R > 0 so that

dynamics of z is stable. As a result, ż? = 0 which
implies v? = Vref by (32a) and

z? = Vref/(mR) + 1ᵀ
m(VrefN − i0)/m, (37)

by (36). Using asymptotic value of v together with
(34) allows to rewrite (22) as follows

i? = 1mz
? + ΓJ(z?)−NVref + i0.

Multiplying both side of this equality by the invert-
ible matrix [1m,Γ]ᵀ gives[

1ᵀ
m

Γᵀ

]
i? =

[
mz? − 1ᵀ

m(VrefN − i0)
ΓᵀΓJ(z?)− Γᵀ(VrefN − i0)

]
.

as 1ᵀ
mΓ = 0. From (37) and (35), this expression

reduces to[
1ᵀ

m

Γᵀ

]
i? =

[
Vref/R

−ΓᵀΓΨ(r1
Vref

mR
+ r2

2 )

]
=
[
1ᵀ

m

Γᵀ

]
iopt,

by recognizing the expression of Γᵀiopt and 1ᵀ
miopt,

deduced from (9). As a result, i? equals iopt.

Observe that G, N and i0 are load-independent
for any inner controller verifying Assumption 2 and
solving Step 1. In such a case, it is emphasized that,
in contrast with iopt(R), matrices F and H does not
depent on the unknown load R. In fact, the role

played by the integrator (32a) is twofold: First, it
regulates voltage v and, second, it estimates the value
of R which can be deduced from z? via (37). The
knowledge of R is then used to assign optimal current
sharing iopt(R) by inverting (31a).
Remark (Balanced current sharing). Balanced cur-
rent sharing refers to the case where each i?k has
the same value. Such a situation can be imposed by
simply selecting F and H as follows

F = G−11m, (38a)
H = G−1Γ(ΓᵀΓ)−1Γᵀ(VrefN − i0), (38b)

while sticking to the same control scheme (32). This
fact can be proven by means of similar developments
to the proof of Th. VII.1: Matrix J , previously de-
fined by (35), becomes J = (ΓᵀΓ)−1Γᵀ(VrefN−i0) so
that [1m,Γ]ᵀi? = [Vref/R,0]ᵀ which is equivalent to
i? = 1mVref/(mR) where each component shares the
same value Vref/(mR). Note that such a steady-state
coincides with the optimal one only when powerloss
functions pk(ik) are identical for every converter.
Section VIII-B illustrates this point. y

VIII. Experimental implementation

A. Experimental setup

The experimental setup, represented on Fig. 7, is
composed of two buck converters (m = 2), which
are heterogeneous in the sense that inductors as
well as transistors are different (L1 = 1.3mH and
L2 = 0.6mH, transistors 1 and 2 references are
STP31510F7 and STP30NF10, respectively). It hap-
pens that electrical components of converter 2 have
lower quality but its diode threshold voltage is lower.
As a result, inequalities r1,1 < r1,2 and r2,1 > r2,2
hold and, in turn, induce inversion between con-
verter having priority, depending on the load (see
Section IV). This kind of configuration can appear
when a fast synchronous buck converter with low
power rating is used for converter 2 and a slower
classical buck converter with higher power rating is
used for converter 1.
Considering an input voltage Vin,1 = Vin,2 =

24V, (i) regulating voltage stability at the reference
Vref = 12V and (ii) imposing optimal current iopt
through the two converters are control objectives to
be achieved for any R > 0. The controller hardware
is a dSpace MicroLabBox with switching frequency
at 20kHz and sampling frequency at 10kHz.
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Fig. 7. Experimental setup.

aaaaaaa
R

Solution balanced (38) optimal (33)

R1 = 12Ω 1 2
R2 = 1Ω 4 3

TABLE I
Experimental conditions.

B. Experimental results
Relying on inner control law (15), flexibility of the

proposed control scheme is illustrated by comparing
two outer controllers (32) that differ according to
parameters F and H: Optimal solution (33) versus
balanced solution (38). Along the experiments two
different loads are used. Resulting four different cases
are described by Table I and black crosses of Fig. 3
locates corresponding positions in the (i1, i2)-plan.
For initial conditions corresponding to steady-state

of configuration 1 , experiments are performed by
switching from configurations 1 to 4 , successively.
Results are represented by Fig. 8 which depicts
currents through inductors (subplot 1), voltage v
together with reference voltage Vref (subplot 2) and
duty cycles (subplot 3). Fig. 9 represents the cur-
rents in the (i1, i2)-plan. It shows that after short
transient, for each configuration 1 to 4 the crosses
are correctly reached. During time interval 1 , the
desired voltage Vref and uniform distribution i1 = i2
is maintained. For the same load, the control in 2
achieves optimal losses by modifying current distri-
bution and giving priority to converter 2. From 2
to 3 , the load variation shows that after a short
transient, Vref is reached and optimal distribution is
achieved. Note that for this configuration i2 is less
than i1 whereas the opposite was observed for 2 (see
Section IV). This behavior is consistent with Fig. 3

since 3 is located below the line i1 = i2 in contrast
with 2 which is above. For the last time interval 4 ,
the currents are balanced, leading to higher losses as
clearly shown by Fig. 3 since power level increases
from 3 to 4 .
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Fig. 8. Time experiments.
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Fig. 9. Time experiments in the (i1, i2)-plan.

The efficiency of the optimal distribution com-
pared with the balanced one is shown by measuring
the losses in both cases. The losses are measured for
different loads translated in terms of total current.
Direct measurements of the input source power and

10



output dissipation power are performed to compute
losses which are represented by Fig. 10. The upper
subplot represents the measured total losses, for both
optimal current iopt and balanced current ibal. The
lower subplot represents downgrading with respect
to the optimal power losses, defined by the ratio

ρ := (pT(ibal)− pT(iopt))/pT(iopt). (39)

Those pictures show that total losses are higher for
the balanced strategy. The point where ratio ρ =
0 corresponds to the intersection of lines related to
balanced and optimal currents on Fig. 3, for which
optimal distribution is uniform.
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Fig. 10. Power losses (see (39) for the definition of ρ).

IX. Perspectives
Among many others, possible extensions of this

work are the followings: (i) Consider discontinuous
conduction mode, both in the dynamical equations
and in the power losses expression, and (ii) gives the
ability to the outer controller to select an optimal
steady-state taking power limitations of each con-
verters into account.
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