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A SAMPLING THEOREM FOR FUNCTIONS IN BESOV

SPACES ON SPACES OF HOMOGENEOUS TYPE

PHILIPPE JAMING & FELIPE NEGREIRA

Abstract. In this work we establish a sampling theorem for functions
in Besov spaces on spaces of homogeneous type as defined in [HY] in
the spirit of their recent counterpart for R

d established by Jaming-
Malinnikova in [JM]. The main tool is the wavelet decomposition pre-
sented by Deng-Han in [DH].

1. Introduction.

The problem of representing and analyzing functions (signals, images or
other data) on settings other than the usual euclidean case has become very
active field of research over the past decades. In practice this may be ex-
plained by the fact that the meaningful data obtained by an acquisition
system is often considered to belong to spaces (manifolds, fractals,...) that
differ from a linear subspaces of Rd. This problem is also of theoretic inter-
est since understanding functions and how to represent them are intrinsic
questions on the ambient space on which they are defined.

Some of the cases treated in recent years comprise the sphere [NPW],
locally compact groups [FG], or even an arbitrary compact manifold [P2].
Here our framework will be the so-called spaces of homogeneous type intro-
duced by Coifman and Weiss in [CW]. These spaces include all previous
mentioned spaces and many more like the d-sets and d-spaces in the sense
of Triebel [T1, T2] which include various types of fractals, see e.g. [DH] for
a more complete list of concrete examples.

One key feature in analysis is that, in order to be able to study function
spaces F(X) on some ambient space X on which the functions in F(X) are
defined, one needs a proper representing system {ϕj}j (orthonormal bases,
frames,...). Once such a system is available, one associates to any f ∈ F(X)
its coefficients in the representing system {〈f, ψj〉}j (where ψj is a “dual
system”) and then characterizes the fact that f ∈ F(X) by the behavior of
those coefficients. Once this is done, one hopes to be able to reconstruct
f from the coefficients via a summation f ≡

∑

〈f, ψj〉ϕj . A key feature
in this paper is that such decompositions are available on functions spaces
over spaces of homogeneous type and, moreover, the representation system
shares many aspects of the wavelets on R

d (see e.g. [DH, HX, HY]).
However, one now faces a practical issue. A typical measurement system

would not provide the coefficients 〈f, ψj〉 but rather values of f at some
points of the ambient space X. The aim of Sampling Theory is precisely
to reconstruct a function from its samples. The most famous result in that
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direction is the Shannon-Whittaker-Kotelnikov Theorem which states that
a band-limited function on R can be reconstructed from its regular samples.
This theorem has been extended in numerous ways (see e.g. [Un, Za] and
references therein). To some extend the work of Pesenson [P1, P2] or Führ-
Gröchenig [FG] is an adaptation of this classical result to other ambient
spaces. The general idea of a sampling theorem can be stated as follows:
if a function has moderate oscillation, then it is well approximated in the
neighborhood of a point by its value at that point. If those neighborhoods
cover sufficiently well the space, the sample should allow to describe the
function globally. Viewed this way, a sampling theorem is roughly char-
acterized by two parameters: the sampling rate and the oscillation of the
function.

While the sampling rate is somehow conditioned by the geometry of the
ambient space, oscillation can be measured by different means. In that sense,
the first author and E. Malinnikova [JM] proved a sampling theorem on R

d

in which, instead of using Paley-Wiener spaces, oscillation is measured in the
scale of Besov spaces Bs

p,q. In a preliminary report to this work [JN] we have
used this techniques with the representation system presented in [NPW] to
give a proof of this result in the d-dimensional sphere. This work could be
extended to any compact Riemannian manifold by replacing [NPW] with
its extension by Geller-Pesenson [GP]. However, our proof here allows for a
further generalization to spaces of homogeneous type.

Main Theorem. Let X be a space of homogeneous type and 1 6 p 6 ∞.

Then, given 0 < ε < 1 and K > 0, there exists sets of points {an}n on X
and constants c1, c2 such that

c1(1− ε)‖f‖Lp 6

(

∑

n

|f(an)|
p

)1/p

6 c2(1 + ε)‖f‖Lp .

holds true for all f ∈ B
d/p
p,1 (X) with ‖f‖

B
d/p
p,1

6 K‖f‖Lp .

The actual result is more precise, see below. The proof consists in using
the wavelets constructed by Deng and Han in [DH] and to define the Besov
spaces in terms of the wavelet coefficients in the spirit of the characterization
of Besov spaces on R

d proved by Y. Meyer [Me]. This characterization
corresponds to usual Besov spaces in most cases. The proof than consists
in carefully adapting the proof from [JM] to the geometry of homogeneous
spaces.

Let us now breifly describe the content of this article. In section 2 we
make a quick review of spaces of homogeneous type as defined in [HY]. In
section 3 we show some useful proprieties of wavelet family constructed in
[DH] as well as the characterization of Besov spaces in this context. Finally,
in section 4 we prove our main result.

2. General framework.

We begin by describing the general framework in which we are going to
work. A quasi-metric ρ in a set X is a function ρ : X×X → [0,∞) satisfying

(i) ρ(x, y) = 0 if and only if x = y,
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(ii) ρ(x, y) = ρ(y, x) for all x, y ∈ X,
(iii) there exists a constant A > 0 such that for all x, y, z ∈ X

(2.1) ρ(x, y) 6 A(ρ(x, z) + ρ(z, y)).

Following [HY], a space of homogeneous type (X, ρ, µ)d,θ is a set X en-
dowed with a quasi-metric ρ and a non-negative Borelian measure µ, where
d > 0 and 0 < θ 6 1 are such that there exist a constant C > 0 for which
given any 0 < r < diam(X) and any x, x′, y ∈ X

C−1rd 6 µ(B(x, r)) 6 Crd,(2.2)

|ρ(x, y)− ρ(x′, y)| 6 Cρ(x, x′)θ(ρ(x, y) + ρ(x′, y))1−θ .(2.3)

Macias and Segovia [MS] have proved that these spaces are just the spaces
of homogeneous type in the sense of Coifman and Weiss [CW], whose defi-
nitions only require ρ to be a quasi-metric, without (2.3), and µ to satisfy
the doubling condition, which is weaker than (2.2).

The parameter d in (2.2) is sometimes called the homogeneous dimension

of X. And, indeed, it is clear from the examples given in the introduction
that d refers to some kind of dimension of the space. In addition, θ in (2.3)
measures how close the space is of being metric, i.e. when ρ is a metric
then we can take θ = 1. In this case we get what is known as an Ahlfors
d-regular space. Nonetheless it is important to remark that in some cases
the parameter θ can not be omitted, as for instance the case R

d endowed
with a non-isotropic metric and the Lebesgue measure.

Let us end this section by mentioning a useful fact which follows from
(2.2): for α > −d and r > 0

(2.4)

∫

B(x,r)
ρ(z, x)α dµ(z) ≈ rα+d

where the constants depend only on the ambient space X.

3. Wavelet expansion.

Wavelets in arbitrary X are defined through what is called an approxima-

tion to the identity (see [HY, §1]). However to define any wavelet system,
as in R

d, at some point we will need to partition our ambient space in a
uniform manner for each scale j ∈ Z. This can be done in different ways ac-
cording to the space (e.g. for the sphere there is construction with spherical
simplices [MNW], an arbitrary compact manifold it is decomposable into a
r-lattice [P2], ...), but here we will take a more general approach by using
the following result of Hytönen and Kairema.

Theorem 3.1 ([HK, Theorem 2.1]). For each j ∈ Z there exist a countable

collection of open subsets {Qj
k}k∈Ij in such that

(i) for every j ∈ Z,

X =
⋃

k∈Ij

Qj
k,

(ii) there are constants r0, r1 > 0 for which given any pair (j, k) there

exist at least one yjk ∈ Qj
k with

(3.5) B(yjk, r02
−j) ⊂ Qj

k ⊂ B(yjk, r12
−j),
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(iii) if i > j then

(3.6) either Qi
k′ ⊂ Qj

k or Qi
k′ ∩Q

j
k = ∅,

(iv) for each (j, k) and i < j there exist a unique k′ for which

Qj
k ⊂ Qi

k′ .

We will call the sets Qj
k dyadic cubes and we will refer to the points yjk

in (3.5) as their centers. Note that (3.5) implies that µ(Qj
k) ≈ 2−jd with

constants that depend on r0, r1 and X. These cubes are used to construct
a wavelet type system that is localized around their respective centers. We
will need the following result that can be found e.g. in [DH, §3.5].

Theorem 3.2. Let {Qj
k}k∈Ij be the family of dyadic cubes of the previous

theorem and yjk their respective centers. There exists two families of func-

tions {ϕj,k}j,k, {ψj,k}j,k and a constant Cϕ > 0 such that

— each {ϕj,k}j,k satisfies a size condition

(3.7) ϕj,k(x) = 0 if ρ(x, yjk) > Cϕ2
−j and ‖ϕj,k‖∞ 6 Cϕ2

jd/2,

— each {ϕj,k}j,k satisfies a smoothness condition

(3.8) |ϕj,k(x)− ϕj,k(y)| 6 Cϕ2
j(d/2+θ)ρ(x, y)θ for all x, y ∈ X.

— the families are dual in the sense that

(3.9) f =
∑

j∈Z

∑

k∈Ij

〈f, ψj,k〉ϕj,k

holds true for any f ∈ L2(X).

Unlike wavelet systems in R
d, here the family {ϕj,k}j,k does not necessar-

ily constitute an orthogonal system.1 In particular their supports are not
necessarily disjoint. However, the size condition (3.7) together with (3.5)
and (3.6) imply that there exist a constant N > 0 for which given any j ∈ Z

the supports of {ϕj,k}k∈Ij have finite multiplicity N .
We refrain from listing properties of the family {ψj,k}j,k as they will not

be used here except for the fact that 〈f, ψj,k〉 makes sense for f ∈ L1
loc. This

allows us to define the Besov spaces on X in the following way:

Definition 3.3. Let {ψj,k}j,k be the dual family of (3.9). Then, given
0 < p, q 6 ∞ and s ∈ R, the Besov space Bs

p,q(X) is defined as the set of all

functions f ∈ L1
loc such that the norm

‖f‖Bs
p,q

:=







∑

j∈Z






2
j
(

s+d
[

1

2
−

1

p

])





∑

k∈Ij

|〈f, ψj,k〉|
p





1/p






q





1/q

is finite. As usual, the Lp, ℓq norms are replaced by the sup-norms when
p = ∞ or q = ∞.

1An orthonormal wavelet system on spaces of homogeneous type has been constructed
in [AH]. The construction is much more involved than the wavelet frames considered here
and does not bring any significant improvement in our results.
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This definition is based on that given by Han, Müller and Yang in [HMY]
which follows from Littlewood-Paley theory through the approximations of
the identity. This is the equivalent definition to that given by Meyer [Me]
in R

d. It also the way they are presented in the sphere by Narcowich-
Petrushev-Ward [NPW].

A difference characterization of Besov spaces in the general setting of a
space of homogeneous type has also been given in e.g. [GKS], [MY]. This
definition coincide to that given by Geller-Pesenson [GP], and again gives
the same Besov space in the Euclidean setting.

Further Müller and Yang in [MY] proved in the more general case that
both definitions coincide when −θ < s < θ and max{ 1

1+θ ,
1

1+s+θ} 6 p, q 6
∞.

4. Sampling on spaces of homogeneous type.

We are now ready to prove our main theorem.

Theorem 4.1. Let (X, ρ, µ)d,θ be a space of homogeneous type, 1 6 p 6 ∞,

and set α = max(1, d
pθ ), β = max

(p
d ,

1
θ

)

. For every l ∈ Z, fix a collection of

dyadic cubes {Ql
n}n∈Il with centers {aln}n.

Then, given 0 < ε < 1 and K > 0, there exist a constant κ = κ(p, d, θ)
such that if l ≥ β ln

(

κK
εα

)

(4.10)





∫

X

∣

∣

∣

∣

f(x)−
∑

n∈Il

f(aln)1Ql
n
(x)

∣

∣

∣

∣

p

dµ(x)





1/p

6 ε‖f‖Lp

holds true for all f ∈ B
d/p
p,1 (X) with ‖f‖

B
d/p
p,1

6 K‖f‖Lp. In particular, this

implies that

(1− ε)‖f‖Lp 6





∑

n∈Il

∣

∣f(aln)µ(Q
l
n)
∣

∣

p





1/p

6 (1 + ε)‖f‖Lp

whenever l ≥ β ln
(

κK
εα

)

and f ∈ B
d/p
p,1 (X) is such that ‖f‖

B
d/p
p,1

6 K‖f‖Lp.

Proof. Let us first note that

(4.11)





∫

X

∣

∣

∣

∣

f(x)−
∑

n∈Il

f(aln)1Ql
n
(x)

∣

∣

∣

∣

p

dµ(x)





1/p

=

∥

∥

∥

∥

∥

∥

(

∫

Ql
n

|f(x)− f(aln)|
p dµ(x)

)1/p
∥

∥

∥

∥

∥

∥

ℓpIl

and so the Lp-norm of f(x) −
∑

n∈Il

f(aln)1Ql
n
(x) can be computed as the

ℓp-norm of the sequence
{

∥

∥f − f(aln)
∥

∥

Lp(Ql
n)

}

n∈Il
.
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Now, take an arbitrary n ∈ Il and consider x ∈ Ql
n. From (3.9) we may

write

(4.12) f(x)− f(aln) =
∑

j∈Z

∑

k∈Ij

〈f, ψj,k〉
(

ϕj,k(x)− ϕj,k(a
l
n)
)

.

Recall that by (3.7) if ϕj,k(x) 6= 0 then ρ(x, yjk) 6 Cϕ2
−j . We therefore

introduce

Ixj := {k ∈ Ij : ρ(x, y
j
k) 6 Cϕ2

−j}, In,xj := I
aln
j ∪ Ixj , Inj :=

⋃

x∈Ql
n

Ixj .

First note that if k ∈ Ixj and z ∈ Qj
k, then from (2.1) we get

ρ(x, z) 6 A
(

ρ(z, yjk) + ρ(x, yjk)
)

6 A(Cϕ + r1)2
−j .

Therefore Qj
k ⊂ B(x,C2−j) with C = A(Cϕ + r1). But since the cubes

Qj
k’s are disjoint of volume ≈ 2−jd a measure counting argument shows that

2−jd|Ixj | . 2−jd, and thus Ixj is a finite set with #Ixj 6 R where R is a
constant that depends only on X and the dyadic decomposition.

Further, let us introduce En
j (f) :=

(

∑

k∈Irj
|〈f, ψj,k〉|

p
)1/p

. From (4.12)

we deduce that

(4.13) |f(x)− f(aln)| 6
∑

j∈Z

sup
k∈Ij

|ϕj,k(x)− ϕj,k(a
l
n)|

∑

k∈In,x
j

|〈f, ψj,k〉|

6 R1/p′
∑

j∈Z

sup
k∈Ij

|ϕj,k(x)− ϕj,k(a
l
n)|E

n
j (f)

with Hölder’s inequality.
From (3.7) and (3.8) we know that

|ϕj,k(x)− ϕj,k(a
l
n)| 6

{

2C2jd/2,

C2jd/22jθρ(x, aln)
θ.

The second inequality improves over the first one when 2jρ(x, aln) . 1. Then
we can split the sum of (4.13) in two parts to obtain

|f(x)− f(aln)| 6 Cp

∑

j6l

2jd/22jθρ(x, aln)
θEn

j (f) + Cp

∑

j>l

2jd/2En
j (f).



SAMPLING ON SPACES OF HOMOGENEOUS TYPE 7

Next, taking the Lp-norm over Ql
n and using the triangular inequality, we

get

(

∫

Ql
n

|f(x)− f(aln)|
p dµ(x)

)1/p

6 Cp

∑

j6l

2jd/22jθ

(

∫

Ql
n

ρ(x, aln)
θp dµ(x)

)1/p

En
j (f)

+ Cp

∑

j>l

2jd/2µ(Ql
n)

1/pEn
j (f)

6 Cp

∑

j6l

2jd/22jθ2−l(θ+d/p)En
j (f) + Cp

∑

j>l

2jd/22−ld/pEn
j (f)

where we used (2.4) together the fact that µ(Ql
n) ≈ 2−ld in the last inequal-

ity. So when we take the ℓp-norm over Il we have that

(4.14)

∥

∥

∥

∥

∥

∥

(

∫

Ql
n

|f(x)− f(aln)|
p dµ(x)

)1/p
∥

∥

∥

∥

∥

∥

ℓpIl

6 Cp

∑

j6l

2jd/22jθ2−l(θ+d/p)
∥

∥En
j (f)

∥

∥

ℓpIl

+ Cp

∑

j>l

2jd/22−ld/p
∥

∥En
j (f)

∥

∥

ℓpIl
.

To estimate the ℓp norm of En
j (f) we write for each k ∈ Ij, Λ

k
j,l := {n ∈

Il : k ∈ Inj }, so that

(4.15)
∥

∥En
j (f)

∥

∥

ℓpIl
=





∑

n∈Il

(En
j (f))

p





1/p

=





∑

n∈Il

∑

k∈Inj

|〈f, ψj,k〉|
p





1/p

=







∑

k∈Ij

∑

n∈Λk
j,l

|〈f, ψj,k〉|
p







1/p

.

Now, the same arguments to estimate the cardinal of In,xj imply that

#(Λk
j,l) 6

{

C ′2(l−j)d if j 6 l,
C ′ if j > l.

Introducing this into (4.15) gives us

∥

∥En
j (f)

∥

∥

ℓpIl
6











C ′

p2
(l−j)d/p

(

∑

k∈Ij
|〈f, ψj,k〉|

p
)1/p

if j 6 l,

C ′

p

(

∑

k∈Ij
|〈f, ψj,k〉|

p
)1/p

if j > l,
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and going back to (4.14) we obtain that

(4.16)

∥

∥

∥

∥

∥

∥

(

∫

Ql
n

|f(x)− f(aln)|
p dµ(x)

)1/p
∥

∥

∥

∥

∥

∥

ℓpIl

6 Cp

∑

j6l

2jd/22j(θ−d/p)−lθ





∑

k∈Ij

|〈f, ψj,k〉|
p





1/p

+ Cp

∑

j>l

2jd/22−ld/p





∑

k∈Ij

|〈f, ψj,k〉|
p





1/p

=: I + II.

The second term on the right hand side is simply bounded by

(4.17) II 6 Cp2
−ld/p‖f‖

B
p/d
p,1

.

As for the first term, we divide the sum over j 6 l into two: j < j0 and
j0 6 j 6 l, where j0 < l is to be fixed later. Thus

I = Cp





∑

j<j0

+

l
∑

j=j0



 2−lθ2j(θ+d/2−d/p)





∑

k∈Ij

|〈f, ψj,k〉|
p





1/p

6 Cp2
−lθ
∑

j<j0

2jθ‖f‖Lp + Cp2
−lθ max

j06j6l

{

2j(θ−d/p)
}

‖f‖
B

d/p
p,1

=: Ia + Ib

Running the sum over j < j0 in Ia, we get Ia 6 Cp2
(j0−l)θ‖f‖Lp . And for Ib

we have

Ib 6 Cp2
−lθ
(

2j0(θ−d/p) + 2l(θ−d/p)
)

‖f‖
B

d/p
p,1

6 Cp2
−ld/p

(

2(j0−l)(θ−d/p) + 1
)

‖f‖
B

d/p
p,1

.

Altogether we get

(4.18) I 6 Cp2
(j0−l)θ‖f‖Lp +Cp2

−ld/p
(

2(j0−l)(θ−d/p) + 1
)

‖f‖
B

d/p
p,1

.

Adding (4.17) and (4.18) in (4.16) yields

∥

∥

∥

∥

∥

∥

(

∫

Ql
n

|f(x)− f(aln)|
p dµ(x)

)1/p
∥

∥

∥

∥

∥

∥

ℓpIl

6 Cp2
(j0−l)θ‖f‖Lp + Cp2

−ld/p
(

2(j0−l)(θ−d/p) + 2
)

‖f‖
B

d/p
p,1

.



SAMPLING ON SPACES OF HOMOGENEOUS TYPE 9

But as we saw at the begging in (4.11) this is the same to say that

(4.19)





∫

X

∣

∣

∣

∣

f(x)−
∑

n∈Il

f(aln)1Ql
n
(x)

∣

∣

∣

∣

p

dµ(x)





1/p

6 Cp2
(j0−l)θ‖f‖Lp + Cp2

−ld/p
(

2(j0−l)(θ−d/p) + 2
)

‖f‖
B

d/p
p,1

.

We now choose j0 := l −
ln(2Cp/ε)

θ ln 2 so that Cp2
(j0−l)θ 6

ε

2
. Then

— if p > d/θ, Cp2
−ld/p

(

2(j0−l)(θ−d/p) + 2
)

6 3Cp2
−ld/p. Therefore taking

l ≥
p

d ln 2
ln





6Cp‖f‖Bd/p
p,1

ε‖f‖Lp



, (4.19) reduces to

(4.20)





∫

X

∣

∣

∣

∣

f(x)−
∑

n∈Il

f(aln)1Ql
n
(x)

∣

∣

∣

∣

p

dµ(x)





1/p

6 ε‖f‖Lp

from where the theorem follows.
— On the other hand, if p < d/θ

Cp2
−ld/p

(

2(j0−l)(θ−d/p) + 2
)

6 2Cp2
−ld/p2(j0−l)(θ−d/p)

6 2Cp max

(

2−lθ,

(

ε

2Cp

)1− d
θp

2−ld/p

)

6
κ

2
ε
1− d

pθ 2−lθ

with κ := 4Cpmax
(

1, (2Cp)
d
pθ

−1
)

. Thus, if l ≥
1

θ ln 2
ln





κ‖f‖
B

d/p
p,1

ε
d
pθ ‖f‖Lp



 we

again obtain (4.20). �
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