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Abstract 

This paper presents a novel data analysis methodology for determining the approximate location of a leak/burst within a District 
Metered Area (DMA). This methodology is based on Statistical Process Control (SPC) and it is encapsulated in a Leakage Location 
System (LLS) that automatically processes the night-time data recorded, with a one minute frequency, by the DMA’s pressure 
loggers. The LLS was field tested and verified on a large number of real-life DMAs with both real and engineered leak/burst events 
(i.e., simulated by opening fire hydrants). The selected DMAs have varying sizes and different characteristics (e.g., 
industrial/urban/rural, pressure-managed/gravity-fed, etc.). These DMAs were monitored for a period of approximately 4 months 
and 132 engineered events simulating leaks/bursts ranging between 1% and 40% of the average DMAs’ inflow were carried out. 
The results obtained illustrate that the LLS enables obtaining substantially reduced operational costs by significantly reducing the 
leaks/bursts search area and reducing the number of unnecessary leak/burst repairs. The results obtained also illustrate that the LLS 
has the potential to enable water companies to: (a) improve customer service through more proactive and informed communications 
and reduction of the number/duration of supply interruptions and poor pressure situations, (b) realise a wide range of sustainability 
and environmental type benefits by saving large amounts of water, reducing energy requirements for pumping, consumption of 
chemicals for water treatment and hence the carbon footprint and (c) reduce the social costs associated with the disruption of traffic 
and business, the reduced fire-fighting capabilities and the potential of pollutant ingress through cracks.  
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1. Introduction 
 

Sensitivity analysis plays an important role in hydraulic system engineering. Sensitivities are first order estimates 
of the change of the state variables (flows, heads) with respect to different kind of parameter changes. Consequently, 
sensitivity analysis can be used for example for hydraulic model calibration [1]. The calculation of the sensitivities is 
normally a computationally costly procedure since it involves the inversion of the Schur Complement  of 
the Jacobian matrix of the system equations of the Global Gradient Algorithm [2]. In this paper a new method is 
proposed that enables the calculation of the analytically exact sensitivities for a smaller subset of nodes. It will be 
proven that these sensitivities are equivalent with those that results from the inversion of the full system matrix. In 
terms of time saving, this is a very important result.  

 
In a previous paper the Graph Matrix Partitioning Algorithm (GMPA) was introduced [3]. It was shown that the 

hydraulic steady-state calculation of large complex pipe networks can be split into a local and a global solution. 
Whereas the global solution includes solving a nonlinear system of equations the local solution consists of simple 
linear calculations. The basic idea of this method was the observation that supply networks commonly include a 
number of tree-like subgraphs (e.g. the large number of subsystems representing the secondary distribution and house 
connection pipes) that can be treated separately in a more efficient manner. The nodes of these subsystems often carry 
important information about withdrawals and cannot be removed without losing accuracy. With the GMPA exact 
accuracy (where the solution is completely identical to the full solution of the hydraulic equations) is maintained while 
reducing the size of the system to be solved by magnitude.    

 
In this paper the basic idea of the GMPA is used for the derivation of the sensitivity matrix of the global topological 

minor subgraph. The development is based on the two assumptions that, first, the graph theoretical forest has been 
removed from the system and, second, that only Demand Driven Analysis (DDA) is considered. 

 
In [3] the topological minor subgraph of a network graph that consists of supernodes and superlinks was introduced. 

Whereas the set of supernodes is a real subset of the original set of nodes, the superlinks replace the series of original 
links between the two supernodes. Fig. 1 shows the network graph of an example system (left) and its topological 
minor (right).  The supernodes are the reference node R (by definition) and nodes a and b. The identification of the 
supernodes is simple for the network core: all nodes with nodal degree > 2. The superlinks consist of the paths between 
the supernodes. For example, in Fig. 1, superlink s2 replaces the original links 2, 3 and 4. If for each superlink one 
arbitrary link has to be chosen as so called internal tree chord, the links can be subdivided into the internal tree chord 
and an arbitrary number of internal tree links.  
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Fig. 1. (a) example system; (b) and its topological minor (supernodes and superlinks). 

In [3] it was shown that the incidence matrix of the topological minor subgraph can be calculated analytically based 
on partitioning of the original incidence matrix of the network graph. For that purpose, in Eq. (1) the columns in the 
link-node incidence matrix  that refer to supernodes are separated from the columns that refer to interior nodes. 
Similarly, the rows in  that refer to internal tree chords are separated from internal tree branches.    

 

         (1) 

 
The upper rows  (first index 1) refer to the path tree branches and the lower rows  (first index 2) refer to the 

internal path tree chords. The second index distinguishes the supernodes from the intermediate nodes (1: supernodes; 
2: interior nodes). It can be shown that submatrix  is square and invertible and has an analytical inverse. Based on 
this partitioning the hydraulic steady-state calculation of large complex pipe networks can be split into a local and a 
global solution [3]. Whereas the global solution includes solving the nonlinear system of equations for the topological 
minor subgraph that consists of supernodes and superlinks, the local solution for nodes and links in the interior of the 
partitioned superlinks includes only linear calculations. In [3] it was shown that the matrix  for the smaller 
topological minor equations has the same structure as the Jacobian for the original system.  
 

            (2) 
 

The index S indicates that the matrices refer to the topological subgraph.  is a square and positive definite 
 matrix,  is the number of supernodes. The  incidence matrix ( : number of superlinks) of the 

topological subgraph, , can be calculated from the partitioned original incidence matrix [3]: 
 

          (3) 
 

The  diagonal matrix  includes the sum of the derivatives of the headloss equations of links in a superlink 
and can be also calculated from the partitioned original  and  matrices: 
 

                                (4) 
 

In the following it will be shown that the inverse matrix  of Eq. (2) is identical with the sensitivities for the 
supernodes that are calculated by inversion of the full system Jacobian matrix. The result implies that to get these 
sensitivities a much smaller system has to be inverted than it was the case for the full system. Often it is sufficient to 
know the sensitivities of a subset of network nodes and links that have great importance. The supernodes usually 
represent four-way pipe junctions and T-junctions and therefore are of special importance.    
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The idea that is central to this paper will first be explained in more detail followed by a numerical example for the 
network in Fig. 1. The full proof of the equivalence can be found in the Appendix.  
 

2. Sensitivity of the topological submatrix 
 

It is well known [1] that the sensitivity matrix of the nodal heads with respect to the inflows and outflows at the 
nodes of a general water supply network graph with incidence matrix  and headloss derivative matrix  is determined 
by the inverse Schur Complement matrix  

 
        (5) 

 
The inverse in Eq. (5) has a central meaning for all kind of sensitivity calculations since all the other sensitivities 

include it as well. For example, the sensitivity of pipe flows  with respect to nodal demands  is: 
 

      (6) 
 

The Schur Matrix of the partitioned system is: 
 

   (7) 

 
The matrix  is introduced for a more convenient notation in the later equations.  
 

Due to the separation of supernodes and interior nodes, the matrix in Eq. (7) has a certain structure that allows the 
efficient calculation of the inverse. First the square and symmetric bottom right block  is considered. The submatrix 
consists of independent blocks that refer to the interior nodes of the superlinks. Since the supernodes are not included 
the submatrix is the same as for a system where all the supernodes are fixed head nodes.  
 

   (8) 

 
The matrix  is always invertible since it is the sum of a symmetric, positive definite matrix  first 

term (since  has full rank) and the second matrix  is diagonal, non-negative definite. A more physical 
description of the two matrices is as follows: the first matrix is the Schur matrix of the internal tree subnetworks. An 
analytical inverse exists in this case. The second matrix connects the internal trees with the second supernode by 
introducing the internal tree chords.  

 
As can be seen from the example in Eq. (8) the submatrix  is block tridiagonal, a property which allows a very 

efficient calculation of the inverse. This property can now be used for the calculation of the Schur complement of the 
partitioned original Schur matrix for the upper left block of the original matrix: 
 

      (9) 
 

Eq. (9) includes the formula for the calculation of the sensitivities of the heads at the supernodes with respect to the 
demands at supernodes. Often it suffices to know the sensitivity of a subset of nodes. The supernodes are well suited 
due to their connectivity property in the network graph.  It is worth noting that also the memory requirement is an 
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issue for large networks since the sensitivity matrix is a full matrix for connected systems (no zero elements). If the 
full matrix is required either the calculation can be extended by application of the full theorem of Schur: 
 

     (10) 

 
The application of the theorem of Schur greatly decreases the cost for calculation of the inverse. In what follows 

an alternative method will be presented that is even more efficient and has an intuitive meaning. Based on Eq. (7) and 
Eq. (9) the system for calculation of the inverse can be written as 
 

     (11) 

 
As already mentioned above matrix  is the sum of the positive definite matrix  and the non-negative 

definite matrix  and therefore invertible and we get: 
 

      (12) 
 
And therefore 

      (13) 

 
Now we show that the inverse  can be calculated in a more convenient way by inverting the matrix  of Eq. (2) 

of the topological minor subgraph. For that purpose we have to show that both calculations are equivalent. Therefore 
it has to be proven that  

      (14) 
 

For the full proof the reader is referred to the Appendix. Eq. (14) implies that the sensitivities of the supernode 
heads with respect to the supernode demands can be simply calculated by the inversion of the matrix  . Here, 
the diagonal matrix  includes for every superlink on the main diagonal the sum of headlosses of the links that are 
replaced by the superlink. The incidence matrix  is the incidence matrix of the network graph that consists of 
supernodes and superlinks only. The method of the second alternative is even more efficient then the calculation by 
Eq. (9) since the  inversion of the tridiagonal blocks in  is not required anymore.  

 
Numerical Example 
 

In the following example the system in Fig. 1 is considered. Table 1 shows the pipe properties length (L), Diameter 
(D) and roughness (Hazen-Williams coefficient CHW) and the results of a steady-state calculation for the nodal 
demands Q and reservoir head H at node R that are given in Table 2. 
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          Table 1. Links of network Fig. 1                                       Table 2. Nodes of network Fig. 1 

ID L [m] D [mm] CHW q [m3/h] h [m]  [s/m2]  ID Q [m3/h] H [m] 

1 1.000 300 100 360.00 10,45 193,47  R -360.00 150,00 

2 1.000 200 100 90,68 5,86 430,70  a 10.00 139,55 

3 1.500 150 100 60,68 16,95 1862,90  b 20.00 105,65 

4 1.200 200 100 81,01 5,70 469,51  c 30.00 133,70 

5 800 200 100 178,31 16,40 613,04  d 40.00 116,74 

6 800 150 100 118,31 31,14 1755,01  e 50.00 133,85 

7 800 150 100 48,31 5,93 818,24  f 60.00 123,16 

8 1.200 100 100 31,01 28,20 6062,57  g 70.00 92,01 

9 1.000 100 100 20,68 11,09 3576,73  h 80.00 86,08 

10 800 100 100 -31,68 -19,57 4116,67     

 
The matrix  for the full system is shown in Fig. 2. The block diagonal submatrix  is shown in blue. The 

top left block refers to superlink S2 (interior nodes c, d), the middle block to S3 (interior node e) and the tridiagonal 
block bottom right to superlink S4 (interior nodes f, g, h). 
 

 

Fig. 2. Schur Complement of the Jacobian for the full system 

 

The inverse matrix of  for the full system, which is the negative sensitivity matrix , is shown in Fig. 
3 below. 

 
Fig. 3. Inverse of the Schur Complement of the Jacobian matrix of the full system 

Now, the topological subgraph shown on the right in Fig. 1 is considered. The matrix of headloss derivatives  of 
the superlinks is as follows: 
 

  =  

 
With the incidence matrix  the Schur Complement matrix of the topological subgraph can be calculated: 
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Comparison of the first two rows and columns of the full matrix (multiplied by -1) in Fig. 3 with the sensitivity 

matrix  of the topological subgraph shows that the values for the supernodes a and b are 
identical. For example, the sensitivity of head at node b with respect to a change in demand at the same node is -
2,365.64 m/(m3/s). The sensitivity says that the demand change of 10 m3/h (0.002778 m3/s) would lead to a head 
change of -6.57 m.  Please note that the first order sensitivity includes a linearization of the original non-linear system. 
The correct result in this case would be – 6.74 m.  

Conclusions 

In this paper an efficient method for calculation of the sensitivities of the supernodes has been proposed. It was 
shown that the calculation of the inverse Schur Complement for the topological subgraph delivers identical results for 
these nodes in the same way as for the inverse of the full system. Especially, with consideration of the fact that the 
inverse matrix has full fill-in (no zero elements) for a connected graph the focus on the supernodes can help to 
overcome limitations of the full system. If the correct flows for each link are used that might be calculated for example 
by application of the Graph Matrix Partitioning Algorithm (GMPA) the sensitivities in this case are exactly the same 
as for the full system. That means that the proposed method includes no simplification by aggregation.  

 
There exists a wide field of application for sensitivities. For instance, being first order approximations they can be 

included in gradient based parameter optimization algorithms. Other examples are optimal allocation problems such 
as placement of pressure sensors for monitoring and identification of leakage [4]. The proposed approach has some 
limitations based on the assumption that the demands are fixed (not pressure dependent) and that the graph theoretical 
forest is excluded. Current research focuses on the generalization of the method to PDM problems that take into 
consideration the forest as well.  
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Appendix A.  Proof of   

The objective is to show the following equivalence: 
 

      (A.0) 
 

From the previously published paper [3] it is known that: 
         (A.1) 

       (A.2) 
         (A.3) 

 
With the abbreviation  ( ) we have: 
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(A.4) 
 
Thus, the equivalent statements follow: 

                                        (A.5) 
               (A.6) 

           (A.7) 
                       (A.8) 

 
The incidence matrix of the topological minor subgraph can be rewritten from Eq. (6) considering that 

: 
 

              
 

               
               

             (A.9) 
 

Finally, combining Eq. (A.8) and Eq. (A.9) we get 
 

                            (A.10) 
 
By multiplication of Eq. (A.10) with  and rearranging of the equations the left hand side of Eq. (A.0) can be 
separated: 

                                               
   

           (A.11)
  
If it can be proven that the left hand side of Eq. (A.11) is equivalent with  this proves also Eq. (A.0). The 
following equivalent expressions hold:  

 
 

 
 

 
 

 (A.12) 
 
Combining Eq. (A.12) and Eq. (A.10) delivers: 
 

                                
         

                    (A.13) 
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Rearrangement of the left and right side of the equality sign finally gives the desired result: 
 

   (A.14) 
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