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Abstract 
 

Modeling of water distribution systems is fundamental for the design, analysis and operation of any water network. As with all 
hydraulic models, water demands are one of the most important input components in the model. However, estimation of the demand 
parameters is usually complicated due to the stochastic behavior of the water consumptions. Several methods have been proposed 
for estimating water demands. Most of them have been developed based on given frameworks where the number of unknown 
parameters is assumed to be equal or less than the number of measurements. The outcomes, therefore, rely on this assumption, 
which can lead to significant approximation errors in real water distribution systems. 

 The approach proposed in this paper does not require the number of known inputs to be equal to the number of variables. In 
fact, nodes in the model could each have a different demand pattern. The genetic algorithm approach adopted here shows that the 
average results of multiple GA runs can estimate the demand patterns at each node. Moreover, the model can also be used to 
estimate the flow rates and nodal heads at non-measured locations of the water network, although the accuracy of the estimation 
depends on number, type and location of the measurements. Results are shown and discussed for a literature case study tested for 
a 24-hour time period.  
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1. Introduction 

Water distribution system infrastructure has been constructed and developed for hundreds of years across the world. 
Together with the population growth and urbanization, water distribution systems (WDS) have expanded, and have 
become more complex and more difficult to operate. Modeling of WDS is, therefore, becoming increasingly important 
due to the need of understanding the behavior of these systems. Various simulation software solutions have been 
developed and broadly used for the design, analysis and operation of WDS, including EPANET, CWSNET or 
HydrauliCAD. However, a new major challenge to deal with these models is the requirement for consistency between 
observed data of the real networks and simulated data from simulations models. Estimation of the model parameters, 
hence, is required so that the model is able to represent the real system.  

In WDS, estimation is a process of fitting the outputs from the computer model, usually the pressures and flow rates 
at particular locations in the network, with the field measurements as well as calculating the parameters of interest [1]. 
Various model parameters, such as pipe diameters, roughness coefficients, valve resistances, or nodal demands, are 
required to be estimated. While most of these parameters are time invariant or vary slowly, nodal demands are the 
only parameter that can cause immediate changes in the model output. Estimation of model parameters during short 
periods of time using supervisory control and data acquisition (SCADA) systems, therefore, usually focuses on the 
demand parameter. 

In the literature, the estimation of water demand has been studied by numerous researchers based on different 
methods, for example, extended Kalman filtering [2], tracking state estimation and Kalman filtering [1], Genetic 
Algorithms [3], and Particle Filtering [4]. However, these models have been developed based on given frameworks 
where the measurement locations were predetermined and the calibration parameters are grouped to be less than the 
number of measurements. The outcomes, therefore, rely on these additional assumptions, which can lead to large 
approximations in real water distribution systems. Only few papers have directly dealt with underdetermined systems 
such as a proportional demand method [5] and singular value decomposition (SVD) [6], [7]. 

This paper presents a study by [8] for the estimation of water demands in WDS over a period of 24 hours. A 
methodology is proposed to find the demand multiplier factors for an underdetermined system where the number of 
measurements is less than the number of demand parameter variables. The EPANET toolkit is used to solve the system 
of water network equations while Genetic Algorithms (GAs) are applied to find the best match between known 
measurements inputs and their estimated values. The mean values of multiple GA runs are suggested to be used as the 
best estimation of the flow rates and nodal heads as well as the estimation of the nodal demands in a system. 

 
2. Methodology 

The proposed model applies an implicit technique for the steady-state hydraulic simulation where the estimation 
process is formulated as an optimization problem. The objective function is a weighted least squares function in order 
to minimize the differences between simulated values from the model and their corresponding measured values. 

The objective function at each time step is given by: 
 

 (1) 

where HSim
i, QSim

j are the simulated nodal head and flow rate for the ith node and jth pipe, respectively; Hi
Meas, Qj

Meas are 
the measured head and flow rate at the ith node and jth pipe (in this case these values are known exactly as they have 
been generated from a forward model run by a hydraulic simulator); NH, NQ are the number of head and flow 
measurement sites in the network and wi, wj are the weighting factors applied to different terms to ensure they have 
similar magnitude. 

The decision variables for the optimization problem are the demand multiplier factors fk,t, which are used to 
calculate the nodal demands at each time step:  
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 (2) 

where D0,k is base demand at the kth node, which is calculated using quarter/annual billing information for water usage; 
and fk,t (k = 1…NDM) is the demand multiplier factor at the kth node at time step t. 

A bounded range of demand factors may apply as: 
  (3) 

where (fk
min, fk

max) are  the bounds of decision variables. 
The genetic algorithm (GA) estimation model implemented for this research has been written in C-sharp language. 

The flowchart of the algorithm is shown in Figure 1. An initial population of chromosomes is randomly generated and 
decoded into corresponding demand multiplier factor values of each chromosome. For each node of the network 
exactly one of these DMFs is assigned and EPANET is subsequently called to simulate the steady state hydraulics of 
the system. Simulated flows and heads (QSim, HSim) at the measurement locations are obtained and compared with their 
actual measured values via the calculation of the objective function of Eq.(1). The inverse of the objective function (in 
the expression of 1/(F+1) to avoid an indeterminate form when F equals to zero) is applied to define the fitness function 
for each member of the GA population. This is the measure for the quality of each member, and is used to determine 
its opportunity of survival. 

By applying GA selection, crossover and mutation, new generations that inherit features of previous generation are 
created, and the estimation process is then repeated until the stopping criteria is met. 

Fig. 1. Flowchart for GA estimation of demand multiplier factors 

It should be noted that the proposed estimation model is to be applied to cases where the number of measurements 
is less than the number of unknown variables. In other words, the estimation of the demand in water distribution 
systems is mathematically a nonlinear underdetermined problem. A local solution of the problem can be found by 
local linearization methods such as QR decomposition, SVD or using the Moore-Penrose pseudoinverse matrix in 
Newton-Raphson method. However, due to the possibility of non-uniqueness of the solutions, the results from 
mathematical methods may be either far from the actual solution or result in negative demands at some nodes. A single 
run of the GA model, therefore, might converge to any of the non-unique solutions or be trapped in a local optimal 
solution where the simulated values cannot perfectly match the measured values at measurement locations. As a result, 
it appears that a good approximation of the demand multiplier factors estimation problem can only be obtained if 
multiple runs of the GA model are implemented and then averaged. The following section shows the results of the 
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multiple runs of the proposed GA model of a WDS that has been studied by the SVD model from [6] for the same 
estimation problem. 

 

3. Case study 
The case study used to evaluate the methodology is shown in Figure 2. The network has 9 nodes, 12 pipes, one 

tank, one pump and one reservoir. The network topology and all information such as the pipe parameters, length, 
roughness and pump characteristic can be found from EPANET example [9], namely the Net1 network. 

Fig. 2. Study network for the estimation problem. 
The GA estimation model was tested for two scenarios of measurement sites according to [6]. In the first test, three 

pressure sensors are assumed to be located at nodes 3, 5 and 8. The second test assumes two flow meters are set at 
pipes 7 and 11, respectively and a pressure sensor is placed at node 4. 

 
3.1. Input for GA estimation model 

In practice, input data for the estimation process are collected from a supervisory control and data acquisition 
(SCADA) system. In this research, input data is generated using EPANET toolkit as follows: (1) known demand 
multiplier factors are assigned to nodal demands; (2) run EPANET to retrieve the corresponding “true” or “known” 
pipe flow rates and nodal heads; (3) select the flows and heads at the selected locations as input for the GA model. The 
output flows and heads for selected pipes and nodes based on the simulation of the “true” values are used as the 
measured values (HMeas, QMeas) for the estimation process. 

 
3.2. GA operators and model parameters 

For the selection of GA operators, tournament selection was chosen because of its better convergence compared to 
proportionate selection or ranking selection; two-point crossover operator with the relatively high probability of Pc = 
0.8 and the bitwise mutation with the probability of Pm = 1/str  0.13 (str is the length of the string) are chosen, which 
are suggested by a study from [10].  

The variation of the water demands at each node is presented by the range of the water demand multiplier factors. 
These values, after multiplying with their base demand, are expected to cover all the water usage throughout the day, 
including the lowest water use (possibly zero demand) and some extreme cases where the water demand is much larger 
than its average values. The range of decision variables (i.e. the demand multiplier factors), therefore, was selected to 
be from fk

min = 0.0 to fk
max

 = 4.0 which is selected based on typical values of the demand factors reported in [11].  
One of the factors that may affect the accuracy of the GA estimation model is the increment ( ) of the DMFs. The 

selection of a large increment for the decision variables leads to faster convergence of the GA model although it may 
result in a coarser approximation of the estimated demands. Alternatively, the GA model may give better results if 
selecting smaller increment steps. However, the model requires more computational effort to converge due to the 
larger search space size. In this case study, the increment step of the decision variables was selected as  = 0.05, 
corresponding to a search space size of 818 = 1.85*1015 possible solutions for the GA model. 

An integer-coding scheme was selected for the GA model. Each decision variable was coded by an integer number, 
ranging from 0 to 80 based on the choice table of the demand multiplier factors (corresponding to  = 0.05). By 
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using this coding information, the chromosome in the GA process was decoded into a set of demand multiplier factors 
that are multiplied by the base demand and can be used for the hydraulic simulation process. An example of GA model 
process for the estimation problem is shown in Figure 3. 

 
 
 
 

Fig. 3. Example of a GA process for the estimation problem 
The population size for GA model was selected as N=100. Finally, due to the non-uniqueness and the stochastic 

behavior of the problem, for each GA application, multiple runs with different seeds were implemented. The stopping 
criteria for each GA run is defined by the number of generations, which equals to Nstop = 1000 generations. 

 
4. Results and discussions 
4.1. Comparison between two scenarios of measurement sites 

A series of 100 runs (each initiated with a different random number seed) of the GA model was implemented for 
each scenario of measurement sites in a steady state simulation. The results are shown in Table 1 and Table 2. 

Table 1. Average nodal demands and nodal pressures of the GA model for Test 1 and Test 2 (shown in Figure 2) 

Node 
Nodal demands (GPM) Nodal pressure (psi) 

Actual Test 1 Test 2 
Test 1 Test 2 

%Error 
Test 1 

%Error 
Test 2 Actual Test 1 Test 2 

Test 1 Test 2 
%Error 
Test 1 

%Error 
Test 2 (100 runs averaged) (100 runs averaged) 

2 150 260.83 146.18 110.83 3.82 73.89 2.55 119.26 119.66 119.55 0.40 0.29 0.34 0.24 

3 100 114.05 135.6 14.05 35.60 14.05 35.60 118.67 118.67 118.08 0.00 0.59 0.00 0.50 

4 150 116.93 110.03 33.07 39.97 22.05 26.65 120.74 123.81 120.74 3.07 0.00 2.54 0.00 

5 100 83.9 91.35 16.10 8.65 16.10 8.65 115.86 115.86 116.51 0.00 0.65 0.00 0.56 

6 100 88.15 112.65 11.85 12.65 11.85 12.65 110.79 113.43 109.39 2.64 1.40 2.38 1.26 

7 150 237.3 135.23 87.30 14.77 58.20 9.85 117.66 119.39 118.3 1.73 0.64 1.47 0.54 

8 200 130.9 175.1 69.10 24.90 34.55 12.45 118.76 118.76 118.83 0.00 0.07 0.00 0.06 

9 150 241.7 162 91.70 12.00 61.13 8.00 117.02 120.06 117.02 3.04 0.00 2.60 0.00 

*italic - measured locations,  - absolute differences between actual values and estimated values 

Table 1 presents the average values of nodal demands and nodal pressures from 100 runs of the GA model. For the 
estimation of the nodal demands, Test 2 (2 pipe flows and 1 nodal pressure are measured) provides better results than 
Test 1 (3 nodal pressures are measured). The maximum error was found at node 3 for Test 2, of 35.6%, while for Test 
1 the maximum error occurred at node 2 with the corresponding percentage of 73.88%. Test 2 also shows the best 
estimate at node 2 with an estimated nodal demand of 146.18 GPM (the actual value is 150 GPM, corresponding with 
only 2.55% error). On the other hand, the minimum estimate error of Test 1 was found at node 6 with a proportion of 
11.85%. For the estimation of the nodal pressures, the GA model achieved very good results, with the maximum error 
less than 2.6% for all nodes in the network. 

Table 2. Average pipe flow rates of the GA model for Test 1 and Test 2 (shown in Figure 2) 

Pipe 
Flow rates (GPM) 

Actual Test 1 
(100 runs averaged) 

Test 2 
(100 runs averaged) Test 1 Test 2 

% error  
Test 1 

% error  
Test 2 

1 1866.18 1863.60 1864.32 2.58 1.86 0.14 0.10 

2 1234.21 1108.63 1244.62 125.58 10.41 10.17 0.84 

3 129.34 128.40 153.39 0.94 24.05 0.73 18.59 
4 191.16 103.23 202.67 87.93 11.51 46.00 6.02 

5 120.66 102.58 128.36 18.08 7.70 14.98 6.38 
6 40.81 29.71 55.47 11.10 14.66 27.20 35.92 

Chromosome 1 10 12 34 1 71 5 42 16 10 12 48 14 80 5 42 16

Chromosome 2 35 38 48 14 80 65 58 73 35 38 34 1 71 65 58 73

10 12 48 14 80 49 42 16 Child 1 10 12 48 14 80 49 42 16
N N N N N Y N N Decode 0.5 0.6 2.4 0.7 4 2.45 2.1 0.8
2 38 34 1 71 65 58 73 Child 2 2 38 34 1 71 65 58 73
Y N N N N N N N Decode 0.1 1.9 1.7 0.05 3.55 3.25 2.9 3.65

Mutation

Crossover
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7 766.18 509.85 766.19 256.33 0.01 33.46 0.00 

8 481.97 454.14 473.52 27.83 8.45 5.77 1.75 
9 188.70 188.69 166.30 0.01 22.40 0.01 11.87 

10 29.34 14.35 51.23 14.99 21.89 51.11 74.61 

11 140.81 113.61 140.80 27.20 0.01 19.32 0.00 

12 59.19 58.44 63.44 0.75 4.25 1.26 7.19 

*italic - measured locations,  - absolute differences between actual values and estimated values 

Table 2 presents the average values of pipe flow rates from 100 runs of the GA model. It can be seen from the table 
that Test 2 again shows better results than for Test 1. In Test 2, the estimate of the flows is relatively accurate for the 
pipe with average flows (>50GPM) and high flows (>400 GPM). Large estimate errors only occur at pipes with low 
flows (<50GPM) such as pipe 10 (74.61%) and pipe 6 (35.92%). For Test 1, relatively large estimate errors can be 
found in all ranges of flow magnitude, for example, pipe 7 (the actual value is 766.18 GPM, the estimate value is 
509.85 GPM, corresponding to an error of 33.46%), pipe 4 (the actual value is 191.16 GPM, the estimate value is 
103.23 GPM, estimated error of 46%) or pipe 10 (the actual value is 29.34 GPM, the estimate value is 14.35 GPM, 
estimated error of 51.23%). This result highlights the important role of the locations and types of the measurements 
in the demand estimation problem. 

 
4.2. Results of GA model for extended period simulation 

The GA model is tested in a 24-hour extended period simulation for Test 2 where the measurements are placed at 
pipes 7, 11 (flow measurements) and node 4 (a pressure measurement), respectively. In order to evaluate the effects 
of the number of GA runs on the model output, the results of an individual 20 GA runs and 100 GA runs are examined. 
The estimated flow rates at selected pipes and estimated demands at selected nodes are plotted in Figure 4 and Figure 
6. By increasing the number of GA runs from 20 to 100, the model provides slightly better estimates of flows (e.g. 
flow at pipe 5 – Figure 6), while giving very good approximations of the water demands at all nodes.  

Figure 5 displays the scattergrams and correlation coefficients (R2) of the average estimated flows of 100 GA runs 
versus actual flows at all pipes of the network. Similarly, Figure 7 plots the scattergrams and correlation coefficients 
of the average estimated demands of 100 GA runs versus actual demands at all nodes. It can be seen that the 
correlations are strong and for both flow estimates and demand estimates, except the flow in pipe 10 (R = 0.715) and 
the demand at node 7 (R=0.677). The strong correlation values indicate that the estimation is consistently good over 
time for the entire network. 

Fig. 4. Estimation of flow rates at pipe 2, 5, 7 and 9. 
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Fig. 5. Scattergrams and correlation coefficients between flow estimates (average of 100 GA runs) and actual flows (units for both axes are 

GPM) 
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Fig. 6. Estimation of demands at node 2, 3, 5 and 8. 
 
Fig. 7. Scattergrams and correlation coefficients between demand estimates (average of 100 GA runs) and actual demands (units for both axes 

are GPM) 
5. Conclusions 

Estimation of water demand in water distribution systems is problematical due to the limited number of 

measurement sites. In this paper, a GA model based on integer coding has been introduced for the estimation of the 
water demand multipliers for underdetermined problems in water distribution systems where the number of 
measurement sites is less than the number of unknown parameters. The results provided from the case study show that 
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multiple runs of the GA model can produce relatively good approximation of the state in a water network. Future 
research efforts will involve finding advanced methods for the estimation of the demand to reduce the computational 
time. In addition, uncertainty of the model is another consideration given the presence of errors in measurement data. 
Finally, addressing the problem of leakage in the network is also important in achieving reliable results. 
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