Thomas Minier
email: thomas.minier1@etu.

Gabriela Montoya
email: gmontoya@cs.aau.dk

Hala Skaf-Molli

Pascal Molli
email: pascal.molli@univ-nantes.fr

PeNeLoop: Parallelizing Federated SPARQL Queries in Presence of Replicated Fragments

Keywords:

Replicating data fragments in Linked Data improves data availability and performances of federated query engines. Existing replication aware federated query engines mainly focus on source selection and query decomposition in order to prune redundant sources and reduce intermediate results thanks to data locality. In this paper, we extend replication-aware federated query engines with a replication-aware parallel join operator: PeNeLoop. PeNeLoop exploits redundant sources to parallelize the join operator and reduce execution time. We implemented PeNeLoop in the federated query engine FedX with the replicatedaware source selection Fedra and we empirically evaluated the performance of FedX `Fedra `PeNeLoop. Experimental results suggest that FedX `Fedra `PeNeLoop outperforms FedX `Fedra in terms of execution time while preserving answer completeness.

Introduction

Following the Linked Data principles, billions of RDF triples are made available through SPARQL endpoints. Even if federated SPARQL query engines [START_REF] Görlitz | Federated Data Management and Query Optimization for Linked Open Data[END_REF][START_REF] Schwarte | Fedx: Optimization techniques for federated query processing on linked data[END_REF][START_REF] Acosta | Anapsid: an adaptive query processing engine for sparql endpoints[END_REF] allow to execute SPARQL queries over multiple SPARQL endpoints, data-availability and reliability of SPARQL endpoints is still an issue [START_REF] Buil-Aranda | Sparql webquerying infrastructure: Ready for action?[END_REF].

Data replication is a common practice to overcome availability issues in distributed databases [START_REF] Özsu | Principles of distributed database systems[END_REF]. However, data replication in Linked Data is more challenging: the autonomy of data providers hosting SPARQL endpoints, and data consumers running federated query engines, prevent data replication to be designed. The fragmentation schema and the replication schema remain unknown until a data consumer defines a federation of SPARQL endpoints in a federated query engine.

Existing replication-aware [START_REF] Montoya | Federated sparql queries processing with replicated fragments[END_REF][START_REF] Montoya | Decomposing federated queries in presence of replicated fragments[END_REF] and duplicate-aware [START_REF] Saleem | Daw: Duplicate-aware federated query processing over the web of data[END_REF] federated query engines focus on source selection and query decomposition in order to prune redundant sources and use data-locality to reduce intermediate results. We point out that replicated data can also be used to parallelize query processing, and consequently reduce execution time.

In this paper, we extend replication-aware federated query engines with PeNeLoop, a replication-aware parallel join operator. More precisely, PeNeLoop solves the parallel join problem with fragment replication (PJP-FR). Given a SPARQL query and a set of data sources with replicated fragments, the problem is to use all data sources to reduce query execution time while preserving answer completeness and reducing data redundancy.

In contrast to inter-operator parallelism proposed in the state-of-the-art federated query engines [START_REF] Acosta | Anapsid: an adaptive query processing engine for sparql endpoints[END_REF][START_REF] Schwarte | Fedx: Optimization techniques for federated query processing on linked data[END_REF], PeNeLoop introduces parallelization at the operator level in order to preserve properties ensured by replicated-aware source selection strategies [START_REF] Montoya | Federated sparql queries processing with replicated fragments[END_REF] and replication-aware query decompositions [START_REF] Montoya | Decomposing federated queries in presence of replicated fragments[END_REF].

PeNeLoop is based on Bound Join operator implemented in FedX [START_REF] Schwarte | Fedx: Optimization techniques for federated query processing on linked data[END_REF]. Bound joins were originally designed to reduce the number of requests sent in a nested loop join [START_REF] Özsu | Principles of distributed database systems[END_REF]. PeNeLoop extends bound joins processing to use all relevant endpoints with replicated fragments and distribute join processing among them. The contributions of this work are as follows:

(i) We present PeNeLoop, a novel replication-aware parallel join operator that uses replicated fragments to reduce query execution time. PeNeLoop is the fist attempt to use replicated fragments to parallelize query processing in Linked Data (ii) We extend the federated query engine FedX [START_REF] Schwarte | Fedx: Optimization techniques for federated query processing on linked data[END_REF] and the source selection strategy Fedra [START_REF] Montoya | Federated sparql queries processing with replicated fragments[END_REF] with PeNeLoop. (iii) We experiment FedX, FedX`Fedra and FedX`Fedra`PeNeLoop in different setups. We show that FedX `Fedra `PeNeLoop outperforms FedX and FedX `Fedra in terms of execution time while preserving properties of Fedra in terms of reduced number of transferred tuples and answer completeness. The improvements are significative for queries with a large number of intermediate results.

The paper is organized as follows: Section 2 provides background and motivations. Section 3 presents the PeNeLoop approach and algorithm. Section 4 presents our experimental setup and describes our results. Section 5 summarizes related works. Finally, conclusions and future works are outlined in Section 6.

Background and Motivations

For replicating data, we follow the approach of replicated fragments introduced in [START_REF] Montoya | Federated sparql queries processing with replicated fragments[END_REF][START_REF] Montoya | Decomposing federated queries in presence of replicated fragments[END_REF]. Data consumers replicate fragments composed of RDF triples that satisfy a given triple pattern. Figure 1a shows a fragment from DBpedia which contains RDF triples that match the triple pattern ?film dbo:director ?director. Fragments are described using a 2-tuple fd that indicates the authoritative source of the fragment, e.g. DBpedia, and the triple pattern met by the fragment's triples.

Figure 1b shows a federation with four SPARQL endpoints: E 0 , E 1 , E 2 and E 3 . These endpoints expose replicated fragments from DBpedia and Linked-MDB. Figure 1c Fig. 1: A federation with replicated fragments federation and its relevant fragments. For instance, the triple pattern tp 4 has relevant fragment f 4 that has been replicated at E 1 and E 3 .

The logical plan of Q1 produced by FedX [START_REF] Schwarte | Fedx: Optimization techniques for federated query processing on linked data[END_REF] is presented in Figure 2a. As FedX is not replication-aware, i.e., it does not know that the evaluation of tp 2 at E 1 or E 2 will produce the same results, query execution following this plan will retrieve redundant data from endpoints and increase significantly the query execution time.

The Fedra [START_REF] Montoya | Federated sparql queries processing with replicated fragments[END_REF] replication-aware source selection prunes redundant sources in order to minimize intermediate results. Fedra selects E 2 for tp 2 , tp 3 and tp 5 , E 1 for tp 4 and E 0 for tp 1 . Next, Fedra lets FedX builds the logical plan of Figure 2b that minimizes intermediate results.

As pointed in Figure 2b, Fedra has removed E 3 from selected sources of tp 4 . However, it also removes an opportunity of parallelization. Indeed, it is possible to use both endpoints to perform in parallel half of the join of ' 2 with E 1 and the other half with E 3 , as they mirror each other 3 .

Such parallelization can be obtained with a replication-aware query decomposer or with intra-operator [START_REF] Özsu | Principles of distributed database systems[END_REF] parallelism. In this paper, we focus on the second approach because it can be easily embedded in current federated query

(a) FedX Left-Linear plan for Q1 Π 4 3 2 1 tp 2 @E 1 , E 2 tp 3 @E 2 tp 4 @E 1 , E 3 tp 1 @E 0 tp 5 @E 2 , E 3 1 (b) FedX `Fedra Left-Linear plan for Q1 Π 3 2 1 tp 2 tp 3 tp 5 tp 4 @E 1 ,E 3 tp 1 @E 0 @E 2 1
Fig. 2: Logical plans generated by FedX and FedX `Fedra for Q1 engines. Consequently, the challenge is to build replication-aware parallel operators to speed-up query execution.

Parallel Join Problem with Fragment Replication (PJP-FR)

Given S 1 and S 2 two disjoint sets of replicated data sources. A set of replicated data sources is a set of endpoints that replicate the same fragments. Given a join ' i between O 1 and O 2 with relevant sources respectively, S 1 and S 2 . The parallel join problem with fragment replication is to distribute the execution of join ' i among endpoints of S 1 and S 2 in order to minimize the execution time while guaranteeing complete query answers.

PeNeLoop : A Replication-Aware Nested Loop Join Operator

PeNeLoop is a solution for parallel join problem with fragment replication with the following assumptions: (i) we focus on nested loop join (NLJ), (ii) we do not consider the load of different endpoints, (iii) we consider that replicated fragments are synchronized, (iv) replicated sources are determined by a replicationaware source selection algorithm as Fedra before pruning.

NLJ Processing

During a NLJ processing, the query engine iteratively evaluates each triple pattern, starting with a single pattern and substituting the set of mappings produced by the pattern's execution in the next evaluation step. Even if a NLJ is more efficient when the first evaluated triple patten is more selective than the others, it still produces many remote requests in a distributed setting. In FedX [START_REF] Schwarte | Fedx: Optimization techniques for federated query processing on linked data[END_REF], the Bound Join (BJ) operator is proposed to minimize the number of join steps and the number of requests sent in nested loop joins. A BJ consists of a nested loop join where sets of mappings are grouped in blocks, i.e., as a single subquery using SPARQL UNION constructs. The subquery is then sent to the relevant endpoint in a single remote request. This technique acts as a distributed semijoin and allows to reduce the number of requests by a factor equivalent to the size of the block.

PeNeLoop proposes to parallelize the BJ operator itself. Instead of sending all blocks to the same endpoint, PeNeLoop uses the knowledge about replicated sources to further parallelize the bound join operator. When processing a join in a basic graph pattern (BGP), if the current triple pattern has N relevant sources that replicate the same fragment, PeNeLoop sends each block to a different endpoint in a Round Robin fashion, i.e., the block b i is sent to the endpoint E k , k " i mod N . Therefore, PeNeLoop does not increase the number of remote calls while increasing the parallelization during join processing. PeNeLoop is defined as part of a pipelining approach allowing for intermediate results to be processed by the next operator as soon as they are ready, providing higher throughput than a blocking model.

PeNeLoop Algorithm

Algorithm 1 describes the PeNeLoop algorithm using an event driven paradigm. Sets of mappings M i are produced by the previous operator in the pipeline and sent in continuous to PeNeLoop operator. When a set M i arrives (Line 6), it is stored in the next block B. When B reaches its maximum size b (Line 8), PeNeLoop generates a subquery in a Bound Join fashion using B and tp

@E 1 k =⇒ Start @E 2 local join 1 2 3 @E 0 Π End M 5 B @E 3 tp 2 .tp 3 .tp 5 M 6 {M 1 , M 2 } {M 3 , M 4 } i PeNeLoop Join i Parallel Bound Join 1
Fig. 3: Join processing of Q1 with PeNeLoop (Line 2). Then, the subquery is sent to the endpoint E k (Line 3), B is cleared and the next endpoint is selected using our Round Robin approach (Line 5).

When results, i.e., new sets of mappings, arrive from the requested endpoints (Line 11), they are sent to the next operator in the pipeline. Finally, when the previous operator has completed its work and will not produce any more data (Line 13), PeNeLoop sends the last non-empty block and then close the operator.

In the following, we illustrate PeNeLoop processing for the query Q1 (Figure 1c) using the query plan generated by FedX `Fedra (Figure 2b). For simplicity, we fix b " 2.

Figure 3 illustrates a snapshot of the pipeline during the evaluation of the triple pattern tp 4 of the query Q1. We focus on processing of join ' 2 , performed using PeNeLoop. Two blocks tM 1 , M 2 u and tM 3 , M 4 u have been already sent to E 1 and E 3 , respectively. A set of mappings M 5 arrived from the join ' 1 and was placed in the next block. When another set of mappings M 6 arrives, the block will be full and sent to the next endpoint E 1 . Join ' 2 ends when no more mappings are produced by join ' 1 .

Experimental Study

The goal of the experimental study is to evaluate the execution time reduction obtained with the parallelization enabled by PeNeLoop. Moreover, such reduction is obtained without degrading the reduced number of transferred tuples and the answer completeness granted by Fedra. We compare the performance of the federated query engine FedX alone, FedX with the addition of Fedra (FedX `Fedra) and FedX with both Fedra and PeNeLoop (FedX Fedra `PeNeLoop). We expect to see that FedX `Fedra `PeNeLoop exhibits lower query execution time than FedX and FedX `Fedra, while maintaining the same number of transferred tuples and answer completeness.

Dataset and Queries: We use one instance of the Waterloo SPARQL Diversity Test Suite (WatDiv) synthetic dataset [2,3] with 105 triples. We generate 50,000 queries from 500 templates. Next, we unbound subjects and objects of each query. 100 queries with at least one join are then randomly picked to be executed against our federations. Generated queries are STAR, PATH and SNOWFLAKE shaped queries, we use the DISTINCT modifier.

Federations: We setup three federations with respectively 10, 20 and 30 SPARQL endpoints, and generate three versions of each of these federations by randomizing the fragmentation schema. Every schema is distinct from the others. Fragments are created from the 100 random queries and are replicated exactly three times to provide opportunities of parallelization.

To measure the number of transferred tuples, the federated query engine accesses SPARQL endpoints through a proxy. All the federation endpoints are deployed on the same machine, and to simulate the network latency, the proxies were configured to add a delay of 30ms to each request.

Hardware configuration: One machine with Intel Xeon E5-2680 v2 2.80GHz and 128GB of RAM hosts the SPARQL endpoints and performs the queries. Each SPARQL endpoint is deployed using Jena Fuseki 1.1.1 4 . Fuseki is configured to handle incoming queries on only one executing thread to increase the stress load and study the effect of the parallelization done by the engine. Endpoints have no limitations in term of memory used.

Implementations: FedX `Fedra implementation 5 (in Java) has been modified to preserve the multiple sources that provide the same relevant fragments. Additionally, FedX join processing has been modified to remove some redundant synchronization barriers imposed by FedX on the first join of a plan, i.e., the right operand can start execution before the left one has finished its evaluation, and to use PeNeLoop operator when possible 6 . Every configuration of this experimental study has received the same modifications. Proxies used to measure results are implemented in Java 1.7, using the Apache HttpComponents Client library 4.3.5 7 .

Evaluation Metrics: i) Execution Time (ET): is the elapsed time since the query is posed until the complete answer is produced. We used a timeout of 1800 seconds. ii) Number of parallelized queries (NPQ): is the number of queries where at least one join has been parallelized by PeNeLoop. This metric is only used in FedX `Fedra `PeNeLoop. Queries marked as improved have a lower execution time (ET) with FedX `Fedra `PeNeLoop than with FedX `Fedra. iii) Number of Transferred Tuples (NTT): is the number of transferred tuples from all the endpoints to the query engine during a query evaluation. iv) Completeness (C): is the ratio between the answers produced by the query execution engine and the answers produced by the evaluation of the query over the set of all triples available in the federation; values range between 0.0 and 1.0. Results presented for ET, NTT and C correspond to the average over the three versions generated for each size of federation. Queries that failed to deliver an answer due to a query engine internal error are excluded from the final results.

Statistical Analysis: The Wilcoxon signed rank test [START_REF] Wilcoxon | Individual comparisons by ranking methods[END_REF] for paired nonuniform data is used to study the significance of the improvements on performance obtained when the join execution benefits from replicated fragments. 8

Execution time

Figure 4 summarizes the execution time (ET) for the three federations. Execution time (ET) with FedX `Fedra `PeNeLoop is better for all federations than with FedX and FedX `Fedra. As queries have unbounded subjects and unbounded objects, they generated more intermediate results during joins, which allow PeNeLoop to distribute more bindings between relevant sources. Figure 5 presents the execution time for queries with a large number of intermediate results (at least 1000 tuples). This represents 562 queries out of 865 for all federations. PeNeLoop is even more efficient for queries with a large number of intermediate results. This is an important result because generally the number of the intermediate results impacts negatively the query execution time. Both FedX `Fedra and FedX `Fedra `PeNeLoop benefit from the reduction of transferred tuples granted by Fedra, which reduce the number of mappings that PeNeLoop can distribute.

To confirm that PeNeLoop reduces the execution time of FedX `Fedra, a Wilcoxon signed rank test was run for results of Figure 4 with the hypotheses: H0 : PeNeLoop does not change the engine query execution time. H1 : PeNeLoop reduces FedX `Fedra's query execution time.

We obtain p-values no greater than 1.639 ˆ10 ´4 for each federation. These low p-values allow for rejecting the null hypothesis that the execution time of FedX `Fedra and FedX `Fedra `PeNeLoop are the same. Additionally, it supports the acceptance of the alternative hypothesis that FedX `Fedra PeNeLoop has a lower execution time. queries does not improve query performance, as their joins were not originally costly to evaluate.

Number of Parallelized Queries

As pointed in Figure 6, the number of parallelized queries is not constant within different versions the same federation, because the replication schema directly influences query parallelization. When this schema is not designed, as in Linked Open Data, PeNeLoop creates parallelization where locality cannot be used by Fedra to optimize the query execution plan.

Number of transferred tuples

Figure 7 summarizes the number of transferred tuples (NTT) in different federations. FedX `Fedra `PeNeLoop transfers the same amount of tuples as FedX `Fedra. This demonstrates that PeNeLoop does not deteriorate the reduction of transferred tuples provided by Fedra. Moreover, modifications performed on FedX to remove some synchronisation barriers do not introduce any difference between FedX `Fedra and FedX `Fedra `PeNeLoop in terms of number of transferred tuples and do not impact FedX `Fedra performance.

Completeness

Figure 8 presents results concerning answer completeness (C) for the different federations. In all cases, FedX `Fedra `PeNeLoop is able to produce the same answers as FedX `Fedra for all queries.

As observed with the number of transferred tuples (NTT), our modification for FedX does not reduce the completeness of FedX and FedX`Fedra, which support our claim that this modification does not impact negatively FedX Fedra.

Synthesis

Experimental study results confirm that PeNeLoop can further increase the performance of join processing in presence of replicated fragments. Execution time in average is lower with FedX `Fedra `PeNeLoop than with FedX or FedX `Fedra, and the reduced number of transferred tuples granted by Fedra is maintained. Answer completeness is not degraded. PeNeLoop is able to parallelize a significant number of queries in presence of replicated fragments and shows to be more efficient on larger federations. Query performance are significantly improved for queries with a large number of intermediate results, and the time to evaluate joins is reduced by taking advantage of parallel processing.

Related Work

Fedra [START_REF] Montoya | Federated sparql queries processing with replicated fragments[END_REF] is a replication-aware source selection that uses data locality produced by replicated fragments to enhance federated query engines performances. Fedra uses Union and BGP reductions to prune data sources and finds as many sub-queries that can be executed against the same endpoint as possible, leading to evaluation of local joins and a reduced number of transferred tuples. PeNeLoop uses replicated fragments differently. As seen in Section 2, Fedra prunes redundant endpoints that cannot be used to creates localities, whereas PeNeLoop uses these endpoints to create more opportunities of parallelization. LILAC [START_REF] Montoya | Decomposing federated queries in presence of replicated fragments[END_REF] is a replication-aware decomposer. Compared to Fedra, LILAC is able to reduce intermediate results by allocating a triple pattern to several endpoints. As for Fedra, PeNeLoop can reuse source selection performed by LILAC to introduce intra-operator parallelism.

Other existing sources selection techniques reduce the number of selected sources by a federated SPARQL query engine. BBQ [START_REF] Hose | Towards benefit-based rdf source selection for sparql queries[END_REF] and DAW [START_REF] Saleem | Daw: Duplicate-aware federated query processing over the web of data[END_REF] use sketches to estimate the overlapping among sources, but they only operate on duplicated sources and not on replication itself. They do not provide information about replicated fragments that allow PeNeLoop to efficiently parallelize join processing.

Parallel join processing in distributed database systems has been the subject of significant investigation. Parallel nested loop algorithms have been investigated in [START_REF] Bitton | Parallel algorithms for the execution of relational database operations[END_REF][START_REF] Dewitt | Nested loops revisited[END_REF], but they do not use replication for parallelization. Instead, replication is mostly used for fault tolerance and to locate data closer to their access points [START_REF] Kossmann | The state of the art in distributed query processing[END_REF][START_REF] Özsu | Principles of distributed database systems[END_REF], improving query performance by reducing communication time. PeNeLoop does not use localities created by data redundancy, but opportunities of parallelization created by this redundancy.

Parallel join processing has been also studied in federated query engines. For instance, [START_REF] Acosta | Anapsid: an adaptive query processing engine for sparql endpoints[END_REF][START_REF] Schwarte | Fedx: Optimization techniques for federated query processing on linked data[END_REF][START_REF] Görlitz | Splendid: Sparql endpoint federation exploiting void descriptions[END_REF] propose parallel architectures for executing queries concurrently at different data sources. Anapsid [START_REF] Acosta | Anapsid: an adaptive query processing engine for sparql endpoints[END_REF] takes advantage of bushy query execution plans to create inter-operator parallelism. FedX [START_REF] Schwarte | Fedx: Optimization techniques for federated query processing on linked data[END_REF] implements bound joins in a distributed and highly parallelized environment where different subqueries can be executed at the endpoints concurrently. PeNeLoop creates intraoperator parallelism and proposes a more advanced parallel join processing using replication. Similar to FedX, subqueries are executed concurrently, but they are distributed between endpoints, increasing parallelization.

To our knowledge, none of existing federated query engines propose to take advantage of replicated data for join processing or propose a replication-aware parallel join operator.

Conclusions and Future Works

In this paper, we extended a replication-aware federated query engine with a new replication-aware parallel join operator PeNeLoop. PeNeLoop provides intraoperator parallelism relying on replicated data. In this way, PeNeLoop preserves properties of source-selection and query decomposition replication-aware federated query engines. We implemented PeNeLoop in FedX. Evaluation results demonstrates that PeNeLoop improves significantly query performance.

PeNeLoop is the first attempt to use replicated data to parallelize query processing in Linked Open Data and opens several perspectives. First, we made the assumption that the load of the endpoints is uniform during query execution. We can leverage this hypothesis by making PeNeLoop adaptive to the performances of endpoints. Second, we focused on a Nested Loop Join operator, we can also parallelize others operators such as Symmetric Hash-Join [START_REF] Wilschut | Dataflow query execution in a parallel main-memory environment[END_REF] used in Anapsid. Finally, we focused on SPARQL endpoints, and we think that parallel query processing in presence of replicated fragments can also be applied to the Triple Pattern Fragment approach [START_REF] Verborgh | Triple pattern fragments: A lowcost knowledge graph interface for the web[END_REF].

Algorithm 1 : 2 Q 4 B = tu 5 k 7 B 14 if

 1245714 PeNeLoopInput: tp " ăs, p, oą: a triple pattern, E " tE0, . . . , Em´1u: relevant endpoints of tp, N extOp: next operator in the pipeline, b: maximum number of mappings per block Data: Mi: a set of mappings produced by the previous operator in the pipeline, B " tM1, . . . , Mnu: block of sets of mappings waiting to be sent Init: B " tu, k " 0 1 SendBlock(block, tp): " GroupedSubquery(block, tp) 3 SendQuery(Q) to E k = pk `1q mod Size(E) 6 onMappings(Mi): = B Y tMiu 8 if Size(B) ě b then 9 SendBlock(B, tp) Size(B) ě 0 then 15 SendBlock(B, tp)

Fig. 4 :

 4 Fig. 4: Average execution time with FedX (F), FedX `Fedra (F+F) and FedX `Fedra `PeNeLoop (F+F+P).

Fig. 5 :

 5 Fig.5: Average execution time with FedX (F), FedX `Fedra (F+F) and FedX `Fedra `PeNeLoop (F+F+P) for queries with at least 1000 intermediate results.

Figure 6 1 Fig. 6 :

 616 Figure 6 presents the number of parallelized queries (NPQ) in FedX `Fedra PeNeLoop for the three versions of each federation. PeNeLoop increases query parallelization during join processing, especially in larger federations where fragments are more scattered across endpoints. In most cases, queries parallelized by PeNeLoop are improved, i.e., they exhibit a lower execution time compared to FedX `Fedra. Parallelized queries with unimproved execution time are those that do not have a large number of intermediate results. Parallelization of such

Fig. 7 :

 7 Fig. 7: Average number of transferred tuples with FedX (F), FedX Fedra (F+F) and FedX `Fedra `PeNeLoop (F+F+P).

Fig. 8 :

 8 Fig. 8: Average completeness with FedX (F), FedX `Fedra (F+F) and FedX `Fedra `PeNeLoop (F+F+P).

 describes a federated SPARQL query Q1 executed against this

	(a) Fragment description	(b) Replicated fragments	
	dbo:director dbr:Brian Helgeland, triples(f): { dbr:A Knight's Tale	DBpedia				LinkedMDB
		dbr:A Thousand Clowns				
		dbo:director dbr:Fred Coe, dbr:Alfie (1966 film)	f1	f2	f2	f4 f3,f5	f4, f5
		dbo:director dbr:Lewis Gilbert,				
		dbr:A Moody Christmas				
		dbo:director dbr:Trent O'Donnell,				
		dbr:A Movie dbo:director dbr:Bruce Conner, • • • }	E0	E1 fd(f1): <dbpedia, ?director dbo:nationality ?nat> E2 fd(f2): <dbpedia, ?film dbo:director ?director> fd(f3): <linkedmdb, ?movie owl:sameAs ?film>	E3
	fd(f): <dbpedia, ?film dbo:director ?director>		fd(f4): <linkedmdb, ?movie linkedmdb:genre ?genre> fd(f5): <linkedmdb, ?genre linkedmdb:film genre name ?name>
	1 (c) Federated SPARQL query Q1 and its relevant fragments and endpoints 1
	s e l e c t d i s t i n c t * where {			Triple pattern fragment endpoint Relevant Relevant
		? d i r e c t o r dbo : n a t i o n a l i t y ? n a t .		(t p 1)	tp1	f1	E0
		? f i l m db : d i r e c t o r ? d i r e c t o r . ? m ov i e o w l : sameAs ? f i l m . ? m ov i e l i n k e d m d b : g e n r e ? g e n r e .		(t p 2) (t p 3) (t p 4)	tp2 tp3	f2 f3	E1, E2 E2
	}	? g e n r e l i n k e d m d b : f i l m g e n r e n a m e ? gname . (t p 5)	tp4 tp5	f4 f5	E1, E3 E2, E3

Note that joins '1 and '3 cannot be parallelized in this way, because '1 is a local join performed at E2, and tp1 has only one relevant source.

http://jena.apache.org/, January 2015.

https://github.com/gmontoya/fedra, June 2016.

Implementation available at: https://github.com/Callidon/peneloop-fedx

https://hc.apache.org/, October 2014.

The Wilcoxon signed rank test was computed using the R project (http://www. r-project.org/)

endpoints 10 endpoints

Acknowledgments. This work is partially supported through the FaBuLA project, part of the AtlanSTIC 2020 program.