
HAL Id: hal-01549751
https://hal.science/hal-01549751

Submitted on 6 Jul 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

PeNeLoop: Parallelizing Federated SPARQL Queries in
Presence of Replicated Fragments

Thomas Minier, Gabriela Montoya, Hala Molli, Pascal Molli

To cite this version:
Thomas Minier, Gabriela Montoya, Hala Molli, Pascal Molli. PeNeLoop: Parallelizing Federated
SPARQL Queries in Presence of Replicated Fragments. Querying the Web of Data (QuWeDa 2017)
Workshop, co-located with 14th ESWC 2017 (Awarded Best workshop paper), Muhammad Saleem;
Ricardo Usbeck; Ruben Verborgh; Axel-Cyrille Ngonga Ngomo, May 2017, Portorož, Slovenia. pp.37-
50. �hal-01549751�

https://hal.science/hal-01549751
https://hal.archives-ouvertes.fr

PeNeLoop: Parallelizing Federated SPARQL
Queries in Presence of Replicated Fragments

Thomas Minier1, Gabriela Montoya2, Hala Skaf-Molli1, and Pascal Molli1

1 LS2N – Nantes University, France
{thomas.minier1@etu.,hala.skaf@,pascal.molli@}univ-nantes.fr
2 Department of Computer Science – Aalborg University, Denmark

gmontoya@cs.aau.dk

Abstract. Replicating data fragments in Linked Data improves data
availability and performances of federated query engines. Existing repli-
cation aware federated query engines mainly focus on source selection
and query decomposition in order to prune redundant sources and re-
duce intermediate results thanks to data locality. In this paper, we extend
replication-aware federated query engines with a replication-aware paral-
lel join operator: PeNeLoop. PeNeLoop exploits redundant sources to
parallelize the join operator and reduce execution time. We implemented
PeNeLoop in the federated query engine FedX with the replicated-
aware source selection Fedra and we empirically evaluated the perfor-
mance of FedX ` Fedra ` PeNeLoop. Experimental results suggest
that FedX`Fedra`PeNeLoop outperforms FedX`Fedra in terms
of execution time while preserving answer completeness.
Keywords: Linked Data ¨ Parallel Query Processing ¨ Fragment Repli-
cation ¨ Federated SPARQL Queries Processing.

1 Introduction

Following the Linked Data principles, billions of RDF triples are made available
through SPARQL endpoints. Even if federated SPARQL query engines [8,15,1]
allow to execute SPARQL queries over multiple SPARQL endpoints, data-availability
and reliability of SPARQL endpoints is still an issue [5].

Data replication is a common practice to overcome availability issues in dis-
tributed databases [13]. However, data replication in Linked Data is more chal-
lenging: the autonomy of data providers hosting SPARQL endpoints, and data
consumers running federated query engines, prevent data replication to be de-
signed. The fragmentation schema and the replication schema remain unknown
until a data consumer defines a federation of SPARQL endpoints in a federated
query engine.

Existing replication-aware [11,12] and duplicate-aware [14] federated query
engines focus on source selection and query decomposition in order to prune
redundant sources and use data-locality to reduce intermediate results. We point
out that replicated data can also be used to parallelize query processing, and
consequently reduce execution time.

In this paper, we extend replication-aware federated query engines with
PeNeLoop, a replication-aware parallel join operator. More precisely, PeNeLoop
solves the parallel join problem with fragment replication (PJP-FR). Given a
SPARQL query and a set of data sources with replicated fragments, the prob-
lem is to use all data sources to reduce query execution time while preserving
answer completeness and reducing data redundancy.

In contrast to inter-operator parallelism proposed in the state-of-the-art fed-
erated query engines [1,15], PeNeLoop introduces parallelization at the op-
erator level in order to preserve properties ensured by replicated-aware source
selection strategies [11] and replication-aware query decompositions [12].

PeNeLoop is based on Bound Join operator implemented in FedX [15].
Bound joins were originally designed to reduce the number of requests sent
in a nested loop join [13]. PeNeLoop extends bound joins processing to use
all relevant endpoints with replicated fragments and distribute join processing
among them. The contributions of this work are as follows:

(i) We present PeNeLoop, a novel replication-aware parallel join operator
that uses replicated fragments to reduce query execution time. PeNeLoop
is the fist attempt to use replicated fragments to parallelize query process-
ing in Linked Data

(ii) We extend the federated query engine FedX [15] and the source selection
strategy Fedra [11] with PeNeLoop.

(iii) We experiment FedX, FedX`Fedra and FedX`Fedra`PeNeLoop in
different setups. We show that FedX`Fedra`PeNeLoop outperforms
FedX and FedX ` Fedra in terms of execution time while preserving
properties of Fedra in terms of reduced number of transferred tuples and
answer completeness. The improvements are significative for queries with
a large number of intermediate results.

The paper is organized as follows: Section 2 provides background and moti-
vations. Section 3 presents the PeNeLoop approach and algorithm. Section 4
presents our experimental setup and describes our results. Section 5 summarizes
related works. Finally, conclusions and future works are outlined in Section 6.

2 Background and Motivations

For replicating data, we follow the approach of replicated fragments introduced
in [11,12]. Data consumers replicate fragments composed of RDF triples that sat-
isfy a given triple pattern. Figure 1a shows a fragment from DBpedia which con-
tains RDF triples that match the triple pattern ?film dbo:director ?director.
Fragments are described using a 2-tuple fd that indicates the authoritative
source of the fragment, e.g. DBpedia, and the triple pattern met by the frag-
ment’s triples.

Figure 1b shows a federation with four SPARQL endpoints: E0, E1, E2 and
E3. These endpoints expose replicated fragments from DBpedia and Linked-
MDB. Figure 1c describes a federated SPARQL query Q1 executed against this

(a) Fragment description

triples(f): { dbr:A Knight’s Tale
dbo:director dbr:Brian Helgeland,
dbr:A Thousand Clowns
dbo:director dbr:Fred Coe,
dbr:Alfie (1966 film)
dbo:director dbr:Lewis Gilbert,
dbr:A Moody Christmas
dbo:director dbr:Trent O’Donnell,
dbr:A Movie dbo:director
dbr:Bruce Conner, · · · }

fd(f): <dbpedia, ?film dbo:director ?director>

1

(b) Replicated fragments

DBpedia LinkedMDB

E0 E1 E2 E3

f2

f4

f2 f3,f5
f4, f5f1

fd(f1): <dbpedia, ?director dbo:nationality ?nat>
fd(f2): <dbpedia, ?film dbo:director ?director>
fd(f3): <linkedmdb, ?movie owl:sameAs ?film>
fd(f4): <linkedmdb, ?movie linkedmdb:genre ?genre>
fd(f5): <linkedmdb, ?genre linkedmdb:film genre name ?name>

1(c) Federated SPARQL query Q1 and its relevant fragments and endpoints

s e l e c t d i s t i n c t ∗
where {

? d i r e c t o r dbo : n a t i o n a l i t y ? nat . (tp1)
? f i l m db : d i r e c t o r ? d i r e c t o r . (tp2)
?movie owl : sameAs ? f i l m . (tp3)
?movie l inkedmdb : gen re ? gen re . (tp4)
? gen re l inkedmdb : f i lm gen r e name ?gname . (tp5)

}

Triple Relevant Relevant
pattern fragment endpoint

tp1 f1 E0

tp2 f2 E1, E2

tp3 f3 E2

tp4 f4 E1, E3

tp5 f5 E2, E3

Fig. 1: A federation with replicated fragments

federation and its relevant fragments. For instance, the triple pattern tp4 has
relevant fragment f4 that has been replicated at E1 and E3.

The logical plan of Q1 produced by FedX [15] is presented in Figure 2a. As
FedX is not replication-aware, i.e., it does not know that the evaluation of tp2
at E1 or E2 will produce the same results, query execution following this plan
will retrieve redundant data from endpoints and increase significantly the query
execution time.

The Fedra [11] replication-aware source selection prunes redundant sources
in order to minimize intermediate results. Fedra selects E2 for tp2, tp3 and tp5,
E1 for tp4 and E0 for tp1. Next, Fedra lets FedX builds the logical plan of
Figure 2b that minimizes intermediate results.

As pointed in Figure 2b, Fedra has removed E3 from selected sources of tp4.
However, it also removes an opportunity of parallelization. Indeed, it is possible
to use both endpoints to perform in parallel half of the join of ’2 with E1 and
the other half with E3, as they mirror each other 3.

Such parallelization can be obtained with a replication-aware query decom-
poser or with intra-operator [13] parallelism. In this paper, we focus on the
second approach because it can be easily embedded in current federated query

3 Note that joins ’1 and ’3 cannot be parallelized in this way, because ’1 is a local
join performed at E2, and tp1 has only one relevant source.

(a) FedX Left-Linear plan for Q1

Π

./4

./3

./2

./1

tp2@E1, E2 tp3@E2

tp4@E1, E3

tp1@E0

tp5@E2, E3

1

(b) FedX` Fedra Left-Linear plan for Q1

Π

./3

./2

./1

tp2 tp3 tp5

tp4@E1,E3

tp1@E0

@E2

1
Fig. 2: Logical plans generated by FedX and FedX` Fedra for Q1

engines. Consequently, the challenge is to build replication-aware parallel oper-
ators to speed-up query execution.

Parallel Join Problem with Fragment Replication (PJP-FR)
Given S1 and S2 two disjoint sets of replicated data sources. A set of repli-

cated data sources is a set of endpoints that replicate the same fragments. Given
a join ’i between O1 and O2 with relevant sources respectively, S1 and S2. The
parallel join problem with fragment replication is to distribute the execution of
join ’i among endpoints of S1 and S2 in order to minimize the execution time
while guaranteeing complete query answers.

3 PeNeLoop : A Replication-Aware Nested Loop Join
Operator

PeNeLoop is a solution for parallel join problem with fragment replication with
the following assumptions: (i) we focus on nested loop join (NLJ), (ii) we do not
consider the load of different endpoints, (iii) we consider that replicated frag-
ments are synchronized, (iv) replicated sources are determined by a replication-
aware source selection algorithm as Fedra before pruning.

3.1 NLJ Processing

During a NLJ processing, the query engine iteratively evaluates each triple pat-
tern, starting with a single pattern and substituting the set of mappings produced
by the pattern’s execution in the next evaluation step. Even if a NLJ is more
efficient when the first evaluated triple patten is more selective than the others,
it still produces many remote requests in a distributed setting. In FedX [15],
the Bound Join (BJ) operator is proposed to minimize the number of join steps
and the number of requests sent in nested loop joins. A BJ consists of a nested

loop join where sets of mappings are grouped in blocks, i.e., as a single subquery
using SPARQL UNION constructs. The subquery is then sent to the relevant
endpoint in a single remote request. This technique acts as a distributed semijoin
and allows to reduce the number of requests by a factor equivalent to the size of
the block.

PeNeLoop proposes to parallelize the BJ operator itself. Instead of sending
all blocks to the same endpoint, PeNeLoop uses the knowledge about replicated
sources to further parallelize the bound join operator. When processing a join in a
basic graph pattern (BGP), if the current triple pattern has N relevant sources
that replicate the same fragment, PeNeLoop sends each block to a different
endpoint in a Round Robin fashion, i.e., the block bi is sent to the endpoint Ek,
k “ i mod N . Therefore, PeNeLoop does not increase the number of remote
calls while increasing the parallelization during join processing.

3.2 PeNeLoop Algorithm

Algorithm 1: PeNeLoop

Input: tp “ ăs, p, oą: a triple pattern, E “ tE0, . . . , Em´1u: relevant endpoints
of tp, NextOp: next operator in the pipeline, b: maximum number of
mappings per block

Data: Mi: a set of mappings produced by the previous operator in the pipeline,
B “ tM1, . . . ,Mnu: block of sets of mappings waiting to be sent

Init: B “ tu, k “ 0

1 SendBlock(block, tp):
2 Q “ GroupedSubquery(block, tp)
3 SendQuery(Q) to Ek

4 B = tu

5 k = pk ` 1q mod Size(E)

6 � onMappings(Mi):
7 B = B Y tMiu

8 if Size(B) ě b then
9 SendBlock(B, tp)

10 end

11 � onResults(R):
12 Send(R) to NextOp

13 � onEnd():
14 if Size(B) ě 0 then
15 SendBlock(B, tp)
16 end
17 Close()

PeNeLoop is defined as part of a pipelining approach allowing for interme-
diate results to be processed by the next operator as soon as they are ready,
providing higher throughput than a blocking model.

Algorithm 1 describes the PeNeLoop algorithm using an event driven paradigm.
Sets of mappings Mi are produced by the previous operator in the pipeline and
sent in continuous to PeNeLoop operator. When a set Mi arrives (Line 6), it
is stored in the next block B. When B reaches its maximum size b (Line 8),
PeNeLoop generates a subquery in a Bound Join fashion using B and tp

@E1

k =⇒

Start

@E2

local join ./1

./2 ./3

@E0

Π End

M5

B
@E3

tp2.tp3.tp5 M6

{M1,M2}

{M3,M4}

./i PeNeLoop Join

./i Parallel Bound Join

1Fig. 3: Join processing of Q1 with PeNeLoop

(Line 2). Then, the subquery is sent to the endpoint Ek (Line 3), B is cleared
and the next endpoint is selected using our Round Robin approach (Line 5).

When results, i.e., new sets of mappings, arrive from the requested endpoints
(Line 11), they are sent to the next operator in the pipeline. Finally, when
the previous operator has completed its work and will not produce any more
data (Line 13), PeNeLoop sends the last non-empty block and then close the
operator.

In the following, we illustrate PeNeLoop processing for the query Q1 (Fig-
ure 1c) using the query plan generated by FedX ` Fedra (Figure 2b). For
simplicity, we fix b “ 2.

Figure 3 illustrates a snapshot of the pipeline during the evaluation of the
triple pattern tp4 of the query Q1. We focus on processing of join ’2, performed
using PeNeLoop. Two blocks tM1,M2u and tM3,M4u have been already sent
to E1 and E3, respectively. A set of mappings M5 arrived from the join ’1 and
was placed in the next block. When another set of mappings M6 arrives, the
block will be full and sent to the next endpoint E1. Join ’2 ends when no more
mappings are produced by join ’1.

4 Experimental Study

The goal of the experimental study is to evaluate the execution time reduction
obtained with the parallelization enabled by PeNeLoop. Moreover, such re-
duction is obtained without degrading the reduced number of transferred tuples
and the answer completeness granted by Fedra. We compare the performance
of the federated query engine FedX alone, FedX with the addition of Fe-
dra (FedX`Fedra) and FedX with both Fedra and PeNeLoop (FedX`
Fedra`PeNeLoop).

We expect to see that FedX ` Fedra ` PeNeLoop exhibits lower query
execution time than FedX and FedX ` Fedra, while maintaining the same
number of transferred tuples and answer completeness.

Dataset and Queries: We use one instance of the Waterloo SPARQL Di-
versity Test Suite (WatDiv) synthetic dataset [2,3] with 105 triples. We gener-
ate 50,000 queries from 500 templates. Next, we unbound subjects and objects
of each query. 100 queries with at least one join are then randomly picked to
be executed against our federations. Generated queries are STAR, PATH and
SNOWFLAKE shaped queries, we use the DISTINCT modifier.

Federations: We setup three federations with respectively 10, 20 and 30
SPARQL endpoints, and generate three versions of each of these federations
by randomizing the fragmentation schema. Every schema is distinct from the
others. Fragments are created from the 100 random queries and are replicated
exactly three times to provide opportunities of parallelization.

To measure the number of transferred tuples, the federated query engine
accesses SPARQL endpoints through a proxy. All the federation endpoints are
deployed on the same machine, and to simulate the network latency, the proxies
were configured to add a delay of 30ms to each request.

Hardware configuration: One machine with Intel Xeon E5-2680 v2 2.80GHz
and 128GB of RAM hosts the SPARQL endpoints and performs the queries. Each
SPARQL endpoint is deployed using Jena Fuseki 1.1.14. Fuseki is configured to
handle incoming queries on only one executing thread to increase the stress load
and study the effect of the parallelization done by the engine. Endpoints have
no limitations in term of memory used.

Implementations: FedX ` Fedra implementation5 (in Java) has been
modified to preserve the multiple sources that provide the same relevant frag-
ments. Additionally, FedX join processing has been modified to remove some
redundant synchronization barriers imposed by FedX on the first join of a plan,
i.e., the right operand can start execution before the left one has finished its
evaluation, and to use PeNeLoop operator when possible6. Every configuration
of this experimental study has received the same modifications. Proxies used to
measure results are implemented in Java 1.7, using the Apache HttpComponents
Client library 4.3.57.

Evaluation Metrics: i) Execution Time (ET): is the elapsed time since the
query is posed until the complete answer is produced. We used a timeout of
1800 seconds. ii) Number of parallelized queries (NPQ): is the number of queries
where at least one join has been parallelized by PeNeLoop. This metric is
only used in FedX ` Fedra ` PeNeLoop. Queries marked as improved have
a lower execution time (ET) with FedX ` Fedra ` PeNeLoop than with
FedX ` Fedra. iii) Number of Transferred Tuples (NTT): is the number of
transferred tuples from all the endpoints to the query engine during a query
evaluation. iv) Completeness (C): is the ratio between the answers produced by
the query execution engine and the answers produced by the evaluation of the

4 http://jena.apache.org/, January 2015.
5 https://github.com/gmontoya/fedra, June 2016.
6 Implementation available at: https://github.com/Callidon/peneloop-fedx
7 https://hc.apache.org/, October 2014.

http://jena.apache.org/
https://github.com/gmontoya/fedra
https://github.com/Callidon/peneloop-fedx
https://hc.apache.org/

Number of endpoints in federation

30 endpoints20 endpoints10 endpoints

F F+F F+F+PF F+F F+F+PF F+F F+F+P
10

0

10
1

10
2

10
3

10
4

E
xe

cu
ti

o
n
 t

im
e
 (

s)

Fig. 4: Average execution time with FedX (F), FedX ` Fedra (F+F) and
FedX` Fedra`PeNeLoop (F+F+P).

query over the set of all triples available in the federation; values range between
0.0 and 1.0.

Results presented for ET, NTT and C correspond to the average over the
three versions generated for each size of federation. Queries that failed to deliver
an answer due to a query engine internal error are excluded from the final results.

Statistical Analysis: The Wilcoxon signed rank test [17] for paired non-
uniform data is used to study the significance of the improvements on perfor-
mance obtained when the join execution benefits from replicated fragments.8

4.1 Execution time

Figure 4 summarizes the execution time (ET) for the three federations. Execu-
tion time (ET) with FedX` Fedra` PeNeLoop is better for all federations
than with FedX and FedX ` Fedra. As queries have unbounded subjects
and unbounded objects, they generated more intermediate results during joins,
which allow PeNeLoop to distribute more bindings between relevant sources.
Figure 5 presents the execution time for queries with a large number of interme-
diate results (at least 1000 tuples). This represents 562 queries out of 865 for all
federations. PeNeLoop is even more efficient for queries with a large number of
intermediate results. This is an important result because generally the number
of the intermediate results impacts negatively the query execution time.

8 The Wilcoxon signed rank test was computed using the R project (http://www.
r-project.org/)

http://www.r-project.org/
http://www.r-project.org/

Number of endpoints in federation

30 endpoints20 endpoints10 endpoints

F F+F F+F+PF F+F F+F+PF F+F F+F+P
10

0

10
1

10
2

10
3

10
4

E
xe

cu
ti

o
n
 t

im
e
 (

s)

Fig. 5: Average execution time with FedX (F), FedX ` Fedra (F+F) and
FedX`Fedra`PeNeLoop (F+F+P) for queries with at least 1000 interme-
diate results.

Both FedX ` Fedra and FedX ` Fedra ` PeNeLoop benefit from the
reduction of transferred tuples granted by Fedra, which reduce the number of
mappings that PeNeLoop can distribute.

To confirm that PeNeLoop reduces the execution time of FedX` Fedra,
a Wilcoxon signed rank test was run for results of Figure 4 with the hypotheses:
H0 : PeNeLoop does not change the engine query execution time.
H1 : PeNeLoop reduces FedX` Fedra’s query execution time.

We obtain p-values no greater than 1.639ˆ 10´4 for each federation. These
low p-values allow for rejecting the null hypothesis that the execution time of
FedX`Fedra and FedX`Fedra`PeNeLoop are the same. Additionally,
it supports the acceptance of the alternative hypothesis that FedX`Fedra`
PeNeLoop has a lower execution time.

4.2 Number of Parallelized Queries

Figure 6 presents the number of parallelized queries (NPQ) in FedX`Fedra`
PeNeLoop for the three versions of each federation. PeNeLoop increases query
parallelization during join processing, especially in larger federations where frag-
ments are more scattered across endpoints. In most cases, queries parallelized by
PeNeLoop are improved, i.e., they exhibit a lower execution time compared to
FedX`Fedra. Parallelized queries with unimproved execution time are those
that do not have a large number of intermediate results. Parallelization of such

10v1 10v2 10v3 20v1 20v2 20v3 30v1 30v2 30v3
0

20

40

60

80

100

Number of endpoints in federation by version

N
u
m
b
er

o
f
q
u
er
ie
s

timeout

unparallelized

parallelized + unimproved

parallelized + improved

1Fig. 6: Number of parallelized queries with FedX` Fedra`PeNeLoop.

queries does not improve query performance, as their joins were not originally
costly to evaluate.

As pointed in Figure 6, the number of parallelized queries is not constant
within different versions the same federation, because the replication schema
directly influences query parallelization. When this schema is not designed, as
in Linked Open Data, PeNeLoop creates parallelization where locality cannot
be used by Fedra to optimize the query execution plan.

4.3 Number of transferred tuples

Figure 7 summarizes the number of transferred tuples (NTT) in different fed-
erations. FedX`Fedra`PeNeLoop transfers the same amount of tuples as
FedX ` Fedra. This demonstrates that PeNeLoop does not deteriorate the
reduction of transferred tuples provided by Fedra. Moreover, modifications per-
formed on FedX to remove some synchronisation barriers do not introduce any
difference between FedX`Fedra and FedX`Fedra`PeNeLoop in terms
of number of transferred tuples and do not impact FedX`Fedra performance.

4.4 Completeness

Figure 8 presents results concerning answer completeness (C) for the different
federations. In all cases, FedX ` Fedra ` PeNeLoop is able to produce the
same answers as FedX` Fedra for all queries.

As observed with the number of transferred tuples (NTT), our modification
for FedX does not reduce the completeness of FedX and FedX`Fedra, which
support our claim that this modification does not impact negatively FedX `
Fedra.

Number of endpoints in federation

30 endpoints20 endpoints10 endpoints

F F+F F+F+PF F+F F+F+PF F+F F+F+P
10

0

10
2

10
4

10
6

10
8

N
u
m

b
e
r

o
f

tr
a
n
sf

e
rr

e
d
 t

u
p
le

s

Fig. 7: Average number of transferred tuples with FedX (F), FedX `

Fedra (F+F) and FedX` Fedra`PeNeLoop (F+F+P).

4.5 Synthesis

Experimental study results confirm that PeNeLoop can further increase the
performance of join processing in presence of replicated fragments. Execution
time in average is lower with FedX`Fedra`PeNeLoop than with FedX or
FedX` Fedra, and the reduced number of transferred tuples granted by Fe-
dra is maintained. Answer completeness is not degraded. PeNeLoop is able
to parallelize a significant number of queries in presence of replicated fragments
and shows to be more efficient on larger federations. Query performance are sig-
nificantly improved for queries with a large number of intermediate results, and
the time to evaluate joins is reduced by taking advantage of parallel processing.

5 Related Work

Fedra [11] is a replication-aware source selection that uses data locality pro-
duced by replicated fragments to enhance federated query engines performances.
Fedra uses Union and BGP reductions to prune data sources and finds as
many sub-queries that can be executed against the same endpoint as possi-
ble, leading to evaluation of local joins and a reduced number of transferred
tuples. PeNeLoop uses replicated fragments differently. As seen in Section 2,
Fedra prunes redundant endpoints that cannot be used to creates localities,
whereas PeNeLoop uses these endpoints to create more opportunities of par-
allelization.

Number of endpoints in federation

30 endpoints20 endpoints10 endpoints

F F+F F+F+PF F+F F+F+PF F+F F+F+P

0.0

0.5

1.0

A
n
sw

e
r

co
m

p
le

te
n
e
ss

Fig. 8: Average completeness with FedX (F), FedX ` Fedra (F+F) and
FedX` Fedra`PeNeLoop (F+F+P).

LILAC [12] is a replication-aware decomposer. Compared to Fedra, LILAC
is able to reduce intermediate results by allocating a triple pattern to several
endpoints. As for Fedra, PeNeLoop can reuse source selection performed by
LILAC to introduce intra-operator parallelism.

Other existing sources selection techniques reduce the number of selected
sources by a federated SPARQL query engine. BBQ [9] and DAW [14] use
sketches to estimate the overlapping among sources, but they only operate on
duplicated sources and not on replication itself. They do not provide information
about replicated fragments that allow PeNeLoop to efficiently parallelize join
processing.

Parallel join processing in distributed database systems has been the subject
of significant investigation. Parallel nested loop algorithms have been investi-
gated in [4,6], but they do not use replication for parallelization. Instead, repli-
cation is mostly used for fault tolerance and to locate data closer to their access
points [10,13], improving query performance by reducing communication time.
PeNeLoop does not use localities created by data redundancy, but opportuni-
ties of parallelization created by this redundancy.

Parallel join processing has been also studied in federated query engines.
For instance, [1,15,7] propose parallel architectures for executing queries con-
currently at different data sources. Anapsid [1] takes advantage of bushy query
execution plans to create inter-operator parallelism. FedX [15] implements bound
joins in a distributed and highly parallelized environment where different sub-
queries can be executed at the endpoints concurrently. PeNeLoop creates intra-
operator parallelism and proposes a more advanced parallel join processing using
replication. Similar to FedX, subqueries are executed concurrently, but they are
distributed between endpoints, increasing parallelization.

To our knowledge, none of existing federated query engines propose to take
advantage of replicated data for join processing or propose a replication-aware
parallel join operator.

6 Conclusions and Future Works

In this paper, we extended a replication-aware federated query engine with a new
replication-aware parallel join operator PeNeLoop. PeNeLoop provides intra-
operator parallelism relying on replicated data. In this way, PeNeLoop pre-
serves properties of source-selection and query decomposition replication-aware
federated query engines. We implemented PeNeLoop in FedX. Evaluation re-
sults demonstrates that PeNeLoop improves significantly query performance.

PeNeLoop is the first attempt to use replicated data to parallelize query
processing in Linked Open Data and opens several perspectives. First, we made
the assumption that the load of the endpoints is uniform during query execution.
We can leverage this hypothesis by making PeNeLoop adaptive to the perfor-
mances of endpoints. Second, we focused on a Nested Loop Join operator, we
can also parallelize others operators such as Symmetric Hash-Join [18] used in
Anapsid. Finally, we focused on SPARQL endpoints, and we think that parallel
query processing in presence of replicated fragments can also be applied to the
Triple Pattern Fragment approach [16].

Acknowledgments. This work is partially supported through the FaBuLA
project, part of the AtlanSTIC 2020 program.

References

1. Acosta, M., Vidal, M.E., Lampo, T., Castillo, J., Ruckhaus, E.: Anapsid: an adap-
tive query processing engine for sparql endpoints. In: International Semantic Web
Conference. pp. 18–34. Springer (2011)

2. Aluç, G., Hartig, O., Özsu, M.T., Daudjee, K.: Diversified stress testing of rdf
data management systems. In: International Semantic Web Conference. pp. 197–
212. Springer (2014)

3. Aluç, G., Ozsu, M., Daudjee, K., Hartig, O.: chameleon-db: a workload-aware ro-
bust rdf data management system. university of waterloo. Tech. rep., Tech. Rep.
CS-2013-10 (2013)

4. Bitton, D., Boral, H., DeWitt, D.J., Wilkinson, W.K.: Parallel algorithms for the
execution of relational database operations. ACM Transactions on Database Sys-
tems (TODS) 8(3), 324–353 (1983)

5. Buil-Aranda, C., Hogan, A., Umbrich, J., Vandenbussche, P.Y.: Sparql web-
querying infrastructure: Ready for action? In: International Semantic Web Con-
ference. pp. 277–293. Springer (2013)

6. DeWitt, D.J., Naughton, J.F., Burger, J.: Nested loops revisited. In: Parallel and
Distributed Information Systems, 1993., Proceedings of the Second International
Conference on. pp. 230–242. IEEE (1993)

7. Görlitz, O., Staab, S.: Splendid: Sparql endpoint federation exploiting void de-
scriptions. In: Proceedings of the Second International Conference on Consuming
Linked Data - Volume 782. pp. 13–24. COLD’11, CEUR-WS.org, Aachen, Ger-
many, Germany (2010), http://dl.acm.org/citation.cfm?id=2887352.2887354

8. Görlitz, O., Staab, S.: Federated Data Management and Query Optimization for
Linked Open Data, vol. 331, pp. 109–137. Springer, Heidelberg (2011)

9. Hose, K., Schenkel, R.: Towards benefit-based rdf source selection for sparql
queries. In: Proceedings of the 4th International Workshop on Semantic Web In-
formation Management. p. 2. ACM (2012)

10. Kossmann, D.: The state of the art in distributed query processing. ACM Com-
puting Surveys (CSUR) 32(4), 422–469 (2000)

11. Montoya, G., Skaf-Molli, H., Molli, P., Vidal, M.E.: Federated sparql queries pro-
cessing with replicated fragments. In: International Semantic Web Conference. pp.
36–51. Springer International Publishing (2015)

12. Montoya, G., Skaf-Molli, H., Molli, P., Vidal, M.E.: Decomposing federated queries
in presence of replicated fragments. Web Semantics: Science, Services and Agents
on the World Wide Web 42, 1 – 18 (2017), //www.sciencedirect.com/science/
article/pii/S1570826816300580

13. Özsu, M.T., Valduriez, P.: Principles of distributed database systems. Springer
Science & Business Media (2011)

14. Saleem, M., Ngomo, A.C.N., Parreira, J.X., Deus, H.F., Hauswirth, M.: Daw:
Duplicate-aware federated query processing over the web of data. In: International
Semantic Web Conference. pp. 574–590. Springer (2013)

15. Schwarte, A., Haase, P., Hose, K., Schenkel, R., Schmidt, M.: Fedx: Optimization
techniques for federated query processing on linked data. In: International Semantic
Web Conference. pp. 601–616. Springer (2011)

16. Verborgh, R., Vander Sande, M., Hartig, O., Van Herwegen, J., De Vocht, L.,
De Meester, B., Haesendonck, G., Colpaert, P.: Triple pattern fragments: A low-
cost knowledge graph interface for the web. Web Semantics: Science, Services and
Agents on the World Wide Web 37, 184–206 (2016)

17. Wilcoxon, F.: Individual comparisons by ranking methods. In: Breakthroughs in
Statistics, pp. 196–202. Springer (1992)

18. Wilschut, A.N., Apers, P.M.: Dataflow query execution in a parallel main-memory
environment. Distributed and Parallel Databases 1(1), 103–128 (1993)

http://dl.acm.org/citation.cfm?id=2887352.2887354
//www.sciencedirect.com/science/article/pii/S1570826816300580
//www.sciencedirect.com/science/article/pii/S1570826816300580

	PeNeLoop: Parallelizing Federated SPARQL Queries in Presence of Replicated Fragments

