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Abstract

At the macroscopic scale, brittle media such as rocks, concretes or ceramics can
be seen as homogeneous continua. However, at the microscopic scale, these ma-
terials involve sophisticated microstructures that mix several phases. Generally,
these microstructures are composed of a large amount of inclusions embedded in a
brittle matrix that ensures the cohesion of the material. These materials generally
exhibit complex mechanical behaviors resulting from the interactions between the
different phases of the microstructure.

As a result, the macroscopic behavior of these media may be predicted con-
sidering an accurate knowledge of their microstructures. This paper proposes a
model to study the impact of diffuse damage resulting from thermal expansion
mismatch between the mixed phases. This type of damage (which is not catas-
trophic for the integrity of two-phase materials) may appear when heterogeneous
materials are subjected to thermal cycles.

This phenomenon involves a high amount of discontinuities and can not be
tackled easily with the Finite Element Method (FEM). The Discrete Element
Method (DEM) naturally accounts for discontinuities and is therefore a good al-
ternative to the continuum approaches. However, the difficulty with DEM is to
perform quantitative simulations because the mechanical quantities are not de-
scribed in terms of the classical continuum theory. This study describes the ap-
proach used here to tackle this fundamental difficulty. The results given by the
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proposed approach are finally compared to experimental observations.

Keywords: discrete element method, DEM, thermal expansion, damages, silica,
alumina, inclusion, brittle, crack, damage, Young’s modulus

1. Introduction

Rocks, concretes or ceramics are heterogeneous materials exhibiting multi-
phase compositions involving different sizes of aggregates, various bonding phases
and additives. Description and prediction of thermo-mechanical behavior of such
materials present a real difficulty due to their complex microstructure. Hashin &
Shtrikman (H&S) have developed an analytic method to predict thermo-mechanical
properties of perfectly cohesive (free of damage) multi-phase materials (1). How-
ever, most of these materials present numerous micro-cracks at room temperature.
These micro-cracks result from thermal expansion mismatches between their dif-
ferent phases. These local defects highly influence thermo-mechanical properties
and may have a great influence on materials lifetime in service conditions.

For instance, Young’s modulus is strongly affected by the presence of micro-
cracks and the measured values are often in disagreement with H&S’s prediction
(2, 3). The study proposed here focuses on a numerical method able to predict the
occurrence of these defects and their overall influence on macroscopic properties
such as Young’s modulus and Coefficient of Thermal Expansion (CTE). Any ma-
terials that exhibit coarse aggregates such as concretes, rocks or ceramics may be
addressed by the presented method.

Various numerical approaches can be distinguished. In the mechanical engi-
neering field, the most used is the Finite Element Method (FEM). FEM, which
is the most widespread technique is well suitable for materials characterized by
reliable stress-strain laws. However, at the microscopic scale, this method is not
adapted to describe discontinuities (4) without assumptions on their localization,
their paths, their growths and their coalescences. Alternative methods to FEM
exist such as X-FEM (Extended Finite Element Method) that keeps the rate of
convergence towards singularities (micro-cracks) thanks to form functions. How-
ever, this method is adapted to describe the crack propagation in quasi-static mode
but is not suitable for the management of opening and closure of numerous micro-
cracks simultaneously.

The DEM is an interesting alternative way to study multi-damaged materials
because it takes naturally into account discontinuities. The DEM implements a
group of distinct elements (also named discrete element) which are in interaction
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through contacts or cohesive laws. This model consists in an assembly of discrete
elements, deformable or not, linked by simple mechanical laws. The advantage
is the natural description of crack initiation, crack propagation and coalescence.
Researchers have used this method to study damages in solids, such as concretes
(5), rocks (6) or ceramics (7). However, the main difficulty is to get quantitative
predictions. This is due to the necessity to find relations between microscopic
laws, at the discrete element scale, and the macroscopic properties, at the structure
scale. In this study the considered macroscopic properties are Young’s modulus,
Poisson’s ratio, coefficient of thermal expansion and failure strength.

In this study, only the thermo-mechanical effects are taken into account. To
avoid complex physico-chemical interactions, a model material is preferred in
place of an industrial one. The phases of this model material have been chosen to
ensure chemical neutrality and to avoid the presence of interphases. This model
material is composed of two phases : spherical alumina inclusions embedded in
a borosilicate glass matrix. The selected model material exhibits a positive CTE
mismatch between the glass matrix and the alumina inclusions.

A short first section is dedicated to model material processing. The second
section focuses on the H&S analytic model whose limits are highlighted. The
third and fourth section introduces the DEM model. In this part, the method to
model thermal expansion with DEM, that presents an innovative feature, is fo-
cused. As a preliminary validation, the next section proposes the implementation
of the DEM model without cracks. The numerical results are compared to the
H&S predictions. In the last part, the micro-cracks are implemented and the given
numerical results are compared to the experimental data in terms of macroscopic
Young’s modulus and CTE. The capability of the presented method to simulate,
understand and predict qualitatively and quantitatively the impact of the micro-
crack density on thermo-mechanical properties is finally discussed.

2. Experimental study

The material used for this work is a model material. A model material mimics,
through a simplified framework, a given discoupled phenomenon observed with
real and complex materials. In order to study the impact of thermal expansion
mismatches, a two-phase model material, composed of mono-diameter spheri-
cal alumina inclusion embedded in a borosilicate glass matrix, is preferred. The
thermo-mechanical parameters values for alumina and glass were chosen to pro-
duce a micro-crack network during the cooling stage of the sample preparation.
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Properties Matrix Inclusion
Material Glass Alumina
Expansion coefficent α[50−450◦C](K

−1) 11.6×10-6 7.6×10-6

Young modulus E (GPa) 72 340
Poisson ratio ν 0.23 0.24
Bulk density ρ (kg.m−3) 2570 3970
Tensile stress limit (MPa) 50 380

Table 1: Matrix and inclusions thermo-mechanical properties

2.1. Processing of two-phase model materials
The model materials used in this study are composed of spherical monomodal

alumina inclusions (average diameter equals to 500 µm) which are randomly
placed in a borosilicate glass matrix. Alumina (corrundum phase) is a single
oxide-based ceramic exhibiting fine grains. The main requirements of the selected
glass matrix are homogeneity, isotropy, a rather chemical inertia and the capability
to monitor thermal expansion coefficient. In this way, a borosilicate glass has been
prepared from the melting of a vitrifiable mixture initially constituted by different
raw materials containing silica, boron oxide and other secondary oxides. After
grinding and sieving at 40µm, the glass powder was mixed during 3 hours with
a slight proportion of organic additives used as binder and lubricant. A perfectly
controlled volume fraction of alumina inclusions is incorporated in the mixture
and is homogenized during 1 hour to ensure the dispersion of spherical alumina
inclusions. Green specimens (80 × 40 × 10 mm3) are shaped by uni-axial press-
ing (80 MPa) before debinding and sintering under uni-axial pressure (15MPa at
600◦C) to remove residual porosity. Three different volume fractions of inclusion
were prepared (15%, 30% and 45%). Figure 1 shows the microstructure of a final
two-phase model material highlighting the crack network.

2.2. Induced residual thermal stresses
The thermo-mechanical properties of both individual materials are given in

Table 1. The selected model material exhibits a thermal expansion mismatch such
as :

∆α = αmatrix − αinclusion, with ∆α = 4× 10−6 K−1so ∆α > 0 (1)

The introduction of spherical particles in a matrix, which are chemically and
physically different, leads the occurring of thermal stresses during the cooling
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Inclusions Matrix Cracks

Figure 1: Microstructure of a generated cracking network

stage of the sample processing. Because of the positive CTE mismatch, the matrix
is under tensile mode and the inclusions are subjected to compressive stresses.
Figure 2 describes this phenomenon for a single inclusion. The matrix is subjected
to σorth and σrad. The brittleness of the glass matrix induces orthoradial cracks that
occur and propagate in the matrix. In the case of a unique inclusion, the radial and
orthoradial stresses σrad and σorth can be deduced from the hydrostatic pressure p
at the interface (8):

p = (αm − αp) ∆T

(
1 + νm

2Em
+

1− 2νp

Ep

)−1

(2)

with :
σrad = −p and σorth =

p

2
(3)

with :

• ’m’ and ’p’ indices are respectively the matrix and the inclusion,

• αi is the CTE and
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• Ei and νi are respectively the Young’s modulus and the Poisson’s ratio.

Matrix

Inclusion

αinclusion

αmatrix

αmatrix > αinclusion and T◦ ↘

σorth

σorth

σrad

σrad

Figure 2: Sketch of the residual stresses and induced damages during cooling stage

When multiple inclusions are presents, a complex crack network is created.
Figure 1 shows an example of this crack network.

3. The Hashin & Shtrikman model

Among the various theoretical approaches developed to predict elastic and
thermal properties of two-phase materials, the H&S bounds are used here. This
analytic approach seems well suited to describe inclusional materials (1). The ap-
parent Young’s modulus can be predicted from the knowledge of (i) both volume
fractions of the matrix (vm) and inclusional particles (vp), (ii) bulk and shear mod-
ulus of each phase noted Km, Gm, Kp, and Gp respectively. The bounds of the
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apparent bulk modulus K−v and K+
v are computed as :

K−v = Km +
vp

1
Kp−Km + 3vm

3Km+4Gm

(4)

K+
v = Kp +

vm
1

Km−Kp + 3vp
3Kp+4Gp

(5)

The bounds of the apparent shear modulus G−v and G+
v are computed as :

G−v = Gm +
vp

1
Gp−Gm + 6(Km+2Gm)vm

5Gm(3Km+4Gm)

(6)

G+
v = Gp +

vm
1

Gm−Gp + 6(Kp+2Gp)vp
5Gp(3Kp+4Gp)

(7)

The bounds of apparent Young’s modulus E−v , E+
v are computed as :

E−v =
9K−v G

−
v

3K−v +G−v
(8)

E+
v =

9K+
v G

+
v

3K+
v +G+

v

(9)

As shown in Figure 3, the plots of the experimental Young’s modulus and
CTE are lower than H&S lower bound (HS−) prediction. The Young’s modu-
lus was measured through an ultrasonic technique and the CTE with a standard
dilatometer equipment.

The presented results underline the impact of the micro-cracked microstruc-
ture on the macroscopic thermo-mechanical behavior. The micro-cracks lead to a
significative loss of E and α values compared to the H&S prediction. When the
volume fraction of inclusions (15%, 30% and 45%) increases, the results for E
values tend to enhance and for α values, they tend to decrease.

The following parts of this paper will introduce the discrete element model
used to predict apparent Young’s modulus and apparent CTE that can not be
treated with H&S models.

4. The discrete element model

Thanks to the spectacular improvement of computer performances in the last
two decades, DEM approach has met a growing interest in the scientific commu-
nity. Many methods based on the original DEM proposed by Cundall and Strack
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Figure 3: Comparison between experimental thermo-mechanical properties and analytic prediction
at room temperature

(9) have been proposed in the literature. Among these methods, the lattice model
allows to study a continuum as a set of simple physical interactions between dis-
crete elements. For example, Schlangen in (10) proposed to study the fracture
of concretes with discrete elements bonded by mechanical beams. With such a
model, a major problem is that the discrete elements are material points without
volume nor shape.

An interesting approach is to mix lattice and particle models as it was first
proposed by Potyondy in (11). It has been widely used to study phenomena that
cannot be treated with the Finite Element Methods (FEM) such as tribological
problems with wear phenomena. Unlike continuous approaches, the main diffi-
culty for DEM is to simulate quantitatively the continuum. The purpose of the
free DEM software GranOO 1 is to face this difficulty. At this time, GranOO
embeds models that allow quantitative simulations of continuum materials with
DEM (12). This section introduces the main aspects of the numerical models
used in GranOO. In addition, the developments specifically addressed for the pre-
sented study are highlighted : the thermal expansion and an improvement of the
failure criterion.

1see www.granoo.org
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4.1. Overview of the numerical procedure
Figure 4 shows the main simulation steps implemented in this study. The first

step consists in calibrating the thermo-mechanical parameters of the discrete el-
ement model. These microscopic parameters, related to the scale of the discrete
elements, are denoted by the µ indice. These parameters are the microscopic
Young’s modulus Eµ, radius ratioRµ, tensile strength σµf and CTE αµ. Consider-
ing the values reported in Table 1, both borosilicate glass and alumina parameters
are calibrated separately. Readers may refer to the sections 4.4, 4.5 and 4.6 to
get more details about the signification of theses microscopic parameters and the
related calibration method.

After building the initial cubic discrete domains, the second step consists in
inserting the spherical alumina inclusions. This step involves a simple geometrical
algorithm that is not described here.

The aim of this work is to study the influence of the cracks that happen dur-
ing the cooling stage of the sample preparation. This stage concerns the range of
temperature [450◦C - 20◦C] from the glass transition temperature to room temper-
ature.

Finally, the damaged virtual samples given by the last step are frozen. In
this case, only the elastic behavior is taking into account. To forbid the crack
extension, the tensile strength is set to an infinite value. These frozen samples
are submitted to virtual tensile tests (see sections 5.1 and 5.2) to evaluate their
apparent Young’s modulii EM.

4.1.1. Synopsis of the main assumptions
In the following discrete element model the main assumptions are :

• the temperature is considered as constant in the whole domain, the heat
transfer is neglected because the studied experimental samples are submit-
ted to a very low thermal loading variation.

• the contacts between the discrete elements are not taking into account, the
proposed model is a lattice discrete element model. However, the proposed
model must be compatible with discrete element model that manages con-
tacts.

• due to the positive CTE mismatch, only the crack opening is considered. In
a first approach, the crack closure is supposed insignificant and is not taken
into account.
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1- Calibration of thermo-
mechanical parameters of

each individual phase (alu-
mina and borosilicate glass)

Initial discrete domain

2- Insertion of inclusions
with a geometrical algorithm

Initial two-phase discrete domain

3- Simulation of the cooling
stage from 450◦C to 20◦C

Damaged discrete domain

4- Elastic tensile test simulation

Evaluation of Eµ, Rµ, σµf , αµ

Estimation of macroscopic αM

Estimation of macroscopic EM

Figure 4: General view of the whole simulation steps

• a crack occurs locally only in a tensile mode. The failure in compression is
not allowed locally at the discrete element scale.

• the slight variation of the Young’s modulus in respect with the temperature
is not considered.
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4.2. The explicit temporal scheme
The temporal differential equation is solving by using an explicit integration

scheme that is well suited to massive DEM simulations (13) and high velocity
phenomena. The velocity Verlet scheme is chosen for its simplicity and efficiency.
The discrete element orientations are described by quaternions. Quaternions pro-
vide an efficient way to compute discrete element attitudes (14, §2.5). Quaternions
must be normalized for every time step to prevent numerical drift. A pure numer-
ical damping factor may be introduced in the numerical scheme as described by
Tchamwa and Wielgosz (15) to increase the convergence rate toward static solu-
tions.

To avoid divergence of the temporal scheme, the chosen time step ∆t must be
lower than the smaller oscillation period tos of the whole system. For an elastic
interaction the period is computed as:

∆t =
1

k
min(tos) with k ≥ 2π and tos =

√
Mij

Kij

(10)

where Mij and Kij are respectively the equivalent mass and stiffness of an inter-
action between a discrete element i and j. Cambou in (16) proposes a k value
equal to 2π. In this study, the stiffness is related to the cohesive beam interactions
(see section 4.4) and is equal to :

Kij =
EµSµ
lµ

(11)

where Eµ, Sµ and lµ are respectively the cohesive beam Young’s modulus, section
and length. The equivalent mass of an interaction between a discrete i and j is :

Mij =
MiMj

Mi +Mj

(12)

where Mi and Mj are the mass of the discrete element i and j. The time step used
in this work is about the nanosecond.

4.3. Initial domain building
In this study, only cubic discrete domains are used. The discrete domains are

initially packed. The radius of the discrete elements follows an uniform distri-
bution. The range of the distribution is 25%. This value prevents from creating
ordered discrete domains that lead to geometrical anisotropy (17). The algorithm
used to pack the initial domain comes from the GranOO workbench (18). The
packing process involves three main steps:
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1. the given boundary shape (a cube) is filled with discrete elements randomly
placed in the domain. The filling process goes on as long as free places are
found.

2. even if no free place exists, a few number of discrete element are inserted.
It induces a high level of inter-penetration. A new equilibrium state is
achieved by performing a DEM computation. This second step is repeated
while the wanted number of discrete element is not reached.

3. finally, the bond network is constructed thanks to a Delaunay triangulation.
The nodes of the Delaunay triangulation are the center of the discrete ele-
ments. The edges given by the Delaunay triangulation are used to build the
bond network.

4.4. Elastic behavior
The cohesive beam bond model (17) is used here to simulate perfectly elastic

media characterized by a Young’s modulus and a Poisson’s ratio. The bond net-
work given by the initial domain building (see previous section) is replaced by a
beam network.

In such model, the discrete elements are bonded by Euler-Bernoulli beams.
These beams are able to work in tensile, bending and torsion modes. The interac-
tions resulting from the cohesive beams at the discrete element scale are denoted
microscopic. They are symbolized by the µ suffix. In opposition, the emergent
behaviors of the whole assembly network are denoted macroscopic (see Figure 5).
The macroscopic scale is symbolized by the M suffix. The macroscopic behavior
corresponds to the behavior of the simulated material.

Eµ, rµ

Cohesive beam

Microscopic scale (µ)

Macroscopic scale (M)

Discrete element

Bounding shape

Figure 5: The cohesive beam bond and the two scales involved by the DEM
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The cohesive beams are simply defined by two microscopic parameters : a
Young’s modulus Eµ and a radius ratio Rµ. The Eµ and the Rµ values are quanti-
fied thanks to a calibration process. The aim of this process is to reach the required
values of macroscopic Young’s modulus EM and Poisson’s ratio νM. The calibra-
tion process can be achieved in two main steps :

1. the calibration of the microscopic beam radii in order to merge the imposed
value of Poisson’s ratio νM and

2. the calibration of the microscopic beam Young’s modulus in order to reach
the required value of Young’s modulus EM.

More details about the calibration process are given in the section 5.3.

4.5. Brittle behavior
Within the discrete element approach, cracks are generally simulated by break-

ing the cohesive bonds when an imposed criterion is reached (19, 20). The main
existing approaches are based on the computation of bond strains (21) or stresses
(11). However, these approaches are not able to simulate complex crack paths
such as the hertzian cone crack that exhibits on fused silica glass (22). In a pre-
vious study, a new criterion, based on the computation of an equivalent Cauchy
stress tensor and a maximal hydrostatic pressure value was developed. It has been
shown that this criterion gives more accurate results than the standard DEM failure
criteria. The equivalent Cauchy stress tensor is computed as :

¯̄σi =
1

2Ωi

(
1

2

∑
j

rij ⊗ fij + fij ⊗ rij

)
(13)

where :

• ⊗ is the tensor product between two vectors,

• ¯̄σi is the equivalent Cauchy stress tensor of the discrete element i,

• Ωi is the volume of the discrete element i,

• fij is the force imposed on the discrete element i by a cohesive beam that
bonds the discrete element i to another discrete element j and,

• rij is the relative position vector between the center of the two bonded dis-
crete elements i and j.
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The developed criterion assumes that fracture occurs if the computed tensile
hydrostatic stress is higher than a threshold value σf :

1

3
trace(¯̄σi) ≥ σf (14)

In the initial study (22), all bonds that belong to the discrete element that reach
the σf criterion are destroyed. As a consequence, a debonded discrete element oc-
curs and a debris is created. However, the loss of discrete elements when fracture
occurs can be viewed as a loss of mass and volume. In the following study, only
the half of bonds that belong to the discrete element is destroyed. Hence, a second
computation is necessary to select the bonds to break out.

Because brittle failure occurs in tensile mode (mode I), the breaking bond set
must follow a surface normal to the higher tensile stress direction. The higher
tensile stress direction di is assumed to be the direction of the vector formed by
the principal stress components di (σ

I
i, σ

II
i , σ

III
i ) related to the discrete element i.

The surface (Si) created by the fracture is assumed to be normal to the main
principal stresses direction di. To mimic this surface creation, the bonds between
the discrete elements i and j are broken assuming the following condition :

rij · di > 0 (15)

where · is the scalar product and rij is the relative position vector between the
bonded discrete i and j. This method allows to create a crack path along the
surface Si. Figure 6 illustrates this process in 2D. The main advantage of this
method is to let the possible management of crack closures by taking into account
the contacts between unbonded discrete elements. This last aspect (crack closure)
is not treated in this study.

4.6. Thermal expansion behavior
All materials subjected to a thermal loading undergo thermal expansion. For

a free of crack material, if the temperature is homogeneous in the whole volume,
thermal strains do not lead to stress and the mater is still relaxed. As a conse-
quence, imposing forces or torques to discrete elements is not the most valuable
way to treat thermal expansion phenomenon using DEM.

The proposed solution consists in incrementing the free length of the cohesive
beams l0 by a ∆l0 value computed from the temperature variation ∆T (see Figure
7). It leads to the expansion of the whole domain without adding any internal
forces. So, free length of cohesive beams become a function of the temperature :

l0(T ) = linitial
0 (1 + ∆T × α) (16)
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Discrete element i

di

Fracture surface (Si)

Broken beams

Discrete element j

Figure 6: Illustration of the method for selecting broken bonds

where ∆T = T−T0 is the temperature variation, α is the linear thermal expansion
coefficient and linitial

0 is the initial free length for the initial temperature T0.

(a) T = T0

∆l0

(b) T = T0 + ∆T

linitial
0

lfinal
0

Cohesive beam

Discrete elements

Figure 7: Thermal expansion of the cohesive beams. (a) At the initial temperature T0, the free
length is linitial

0 . (b) For a given temperature T , the free length is lfinal
0 = linitial

0 + ∆l0.

To avoid confusion, it is important to note that the current lengths l are not
directly affected by these computations. Changing the free length l0, for the given
cohesive beam, leads to change the reaction forces acting on the bonded discrete
elements. If the related discrete elements are unconstrained, the current length l
of the beam converges toward the most updated value of its free length l0 after a
given number of iterations.
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4.6.1. Numerical study of thermal expansion
As the other mechanical parameters described in the previous sections, the

thermal linear expansion α is considered at two levels : microscopically (αµ)
and macroscopically (αM). The αµ is the input parameter related to the thermal
expansion coefficient of the cohesive beams and the αM is the resulting thermal
expansion of the bounding shape of the discrete domain.

To study the relation between the microscopic and the macroscopic thermal
expansion, some simulations were carried out. The discrete domain used for these
simulations is shown in Figure 8. The discrete domain contains around 10,000
discrete elements and the average number of bonds per discrete element is 13.6
(also named coordination number).

y

x
z

Sx+

Sy+

Sz+

Sy−

Sx−

Sz−
Lx

Ly

Lz

Figure 8: The cubic discrete domain used to study thermal expansion

Thermal expansion is introduced at the microscopic scale by changing the free
length of each cohesive beams k according to equation 16 :

l0k(T ) = linitial
0k

(1 + ∆T × αµ) (17)

In this whole study, the temperature is considered as homogeneous in the material.
So, in a first approach, heat conduction is not taken into account.

To measure the macroscopic thermal expansion coefficient αM, the length vari-
ations of the bounding box are computed and updated during the simulation. This
bounding box has six faces : Sx+, Sx−, Sy+, Sy−, Sz+ and Sz−.

In this whole study, the first index ’x’, ’y’ or ’z’ means that the considered
surface is normal to the related axis : x, y or z. The second index, minus ’−’
or plus ’+’, denotes the location of the face according to the axis direction. For
example, Sx+ denotes the face normal to the x axis and located positively along
this axis.
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The discrete elements that belong to these faces were identified by the prelim-
inary packing algorithm used to build the initial discrete domain (for details about
the packing algorithm, see (18), (23) and section 4.3).

The lengths Lx, Ly, Lz along the x, y and z axes of the bounding box are
computed by averaging the position vectors of the discrete elements that belong
to these faces :

Lx = 〈pi · x〉i∈Sx+ − 〈pi · x〉i∈Sx− (18)

Ly = 〈pi · y〉i∈Sy+ − 〈pi · y〉i∈Sy− (19)

Lz = 〈pi · z〉i∈Sz+ − 〈pi · z〉i∈Sz− (20)

where pi is the position vector of the discrete element i.
According to the equation 16, three macroscopic linear thermal expansion co-

efficients αMx , αMy and αMz along the x, y and z axes are computed as :

αMx =
∆Lx

∆T × Linitial
x

(21)

αMy =
∆Ly

∆T × Linitial
y

(22)

αMz =
∆Lz

∆T × Linitial
z

(23)

where ∆Lx, ∆Ly, ∆Lz are the length variation due to thermal expansion of
the bounding box.

Figure 9 shows the results of such numerical simulations. The applied thermal
loading corresponds to an increase of temperature of 1/20 Kelvin per iteration.
The simulation is achieved after 10,000 iteration that corresponds to a total tem-
perature variation of 500 K. The microscopic thermal expansion coefficient used
for these simulations is αµ = 7.6 10−6K−1. The evolutions of the macroscopic lin-
ear thermal expansion coefficients αMx , αMy and αMz versus the iterations number
are plotted in Figure 9. The given results show that :

1. the evolutions of the three macroscopic linear thermal expansion coeffi-
cients αMx , αMy and αMz are quite similar and

2. the macroscopic thermal expansion coefficients converge toward the value
of 7.6 10−6K−1 corresponding to the microscopic one.

These two results conduct to :

αµ = αMx = αMy = αMz = α (24)
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E (GPa) ν σf (MPa) α (10−6K−1)
glass 72 0.23 50 11.6

alumina 340 0.24 380 7.6

Table 2: The main thermo-mechanical parameter values of the borosilicate glass and alumina
where E is the Young’s modulus, ν is the Poisson’s ratio, σf is the failure strength limit and α is
the linear thermal expansion coefficient

The first result ensures that thermal expansion is isotropic and the second result
shows that thermal expansion coefficient can be introduced directly without any
calibration.
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Figure 9: Evolution of the macroscopic linear thermal expansion coefficients αMx
, αMy

and αMz

versus the number of iterations

5. From discrete to continuous quantities

Continuous quantities such as Young’s modulus, Poisson’s ratio, tensile failure
strength or coefficient of thermal expansion are computed from discrete quantities.
This section focuses on the main methods for computing these quantities.

Because continuous quantities are always considered at the scale of the whole
discrete assembly (macroscopic scale), these quantities are not directly computed.
Continuous quantities are virtually measured during numerical testings. For in-
stance, mechanical quantities such as Young’s modulus, Poisson’s ratio and ten-
sile failure strength are retrieved through virtual tensile test. The CTE is computed
through a virtual thermal expansion test.

A calibration procedure must be achieved to set the microscopic parameter val-
ues that match the values of the two simulated constituents : alumina and borosil-
icate glass. The thermo-mechanical parameter values of these two materials are
shown in Table 2.
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According to the previous section, the linear thermal expansion coefficient α
has not to be calibrated. However, Young’s modulus, Poisson’s ratio and fail-
ure strength limits have to be calibrated in regard of their microscopic quantities
thanks to virtual tensile tests. These virtual tests involve cubic discrete domains
similar to the presented one on Figure 8.

5.1. Virtual tensile test and computational methods of macrosopic quantities
5.1.1. Imposed displacements

To simulate a tensile test, opposite displacements are imposed to the discrete
elements Sx+ and Sx−. These displacements are applied along the X axis. A
small constant velocity of 20 nanometers per iteration is used to apply these dis-
placements.

5.1.2. Numerical measurement of the main normal force F

The cohesive normal forces Fx− and Fx+ resulting from the imposed displace-
ments are considered as the sum of the local forces fi applied by the beams to the
Sx+ and Sx− discrete element sets :

Fx− =
∑

i∈Sx−
fi · x (25)

Fx+ =
∑

i∈Sx+
fi · x (26)

If no failure occurs during the simulation, the cohesive normal forces Fx− and
Fx+ are opposite :

Fx− ≈ −Fx+ (27)

The cohesive normal force F is computed by averaging the two opposite forces :

F =
1

2
(Fx− − Fx+) (28)

5.1.3. Numerical measurement of the main normal stress σMxx

The main normal stress σMxx is simply computed as :

σMxx =
F · x

Ly × Lz
(29)

where Ly and Lz are the lengths of the sample along the y and z axes.

19



5.1.4. Numerical measurement of the main strains
The macroscopic strain εMxx , εMyy and εMzz along the x, y and z axes can be

expressed as :

εMxx =
∆Lx
Lx

εMyy =
∆Ly
Ly

εMzz =
∆Lz
Lz

(30)

5.1.5. Numerical measurement of the macroscopic Young’s modulus
The macroscopic Young’s modulus EM is computed as :

EM =
σMxx

εMxx

(31)

5.1.6. Numerical measurement of the macroscopic Poisson’s ratio
The macroscopic Poisson’s ratio νM is computed by averaging the macro-

scopic Poisson’s ratio values along the y and z axes as :

νMy = −
εMyy

εMxx

νMz = −εMzz

εMxx

(32)

νM =
1

2

(
νMy + νMz

)
(33)

where νMy ≈ νMz .

5.1.7. Numerical measurement of the macroscopic failure stress
The macroscopic failure stress σMf

is the value of the macroscopic tensile
stress σMxx when the failure occurs. The failure is considered when a sudden
decrease of the measured macroscopic tensile stress σM appears (see Figure 10-
(c)).

5.2. Typical results from virtual tensile tests
Typical behaviors resulting from virtual tensile tests are reported on Figure

10. The (a) and (b) graphs show that the macroscopic Poisson’s ratio νM and
the macroscopic Young’s modulus EM quickly converge towards constant values
: 0.23 and 72 GPa respectively . These converged values are considered as the
material properties of the domain in regard of their microscopic quantities. The
(c) graph shows the evolution of the macroscopic tensile stress σMxx versus the
macroscopic strain εMxx . A sudden decreasing of the σMxx indicates the failure
of the virtual specimen. The corresponding value of σMxx is considered as the
material strength limit σMf

.
The results plotted in Figure 10 correspond to the macroscopic properties of

the glass matrix. In other words, the microscopic parameters were calibrated to
match the glass values.
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Figure 10: Evolution of (a) the macroscopic Poisson’s ratio νM, (b) the macroscopic Young’s
modulusEM and (c) the macroscopic tensile stresses σM versus the macroscopic strain εMxx

during
a virtual tensile test

5.3. Calibration procedure
Deducing microscopic parameters values that match wanted values at the macro-

scopic scale presents some difficulties. This problem has been discussed in detail
by Ostoja-Starzewski (24). The author proposes micro-macro analytic laws for
typical ordered lattice configurations. In the last paragraph (§ 6.3) dedicated to
the periodic random lattice network, Ostoja-Starzewski proposes numerical tests
to calibrate the model. By the way, analytic approaches are limited to ordered
configurations as mentioned by Potyondy and Cundall in (11, §3.1).

Another difficulty is the relationship between the sample topology (shape, re-
finement, etc.) and emergent macroscopic behaviors. It induces that the micro-
scopic parameters are only valid for a single and unique discrete element sample.
This problem was underlined by Hentz et al. in (25) and Liao et al. in (26).

A solution was proposed by Andre and al. in (17) and (22). These studies
show that the initial packing processes of the discrete samples is of high level
of importance. The packing processes must ensure a stable level of geometrical
isotropy, volumic fraction and coordination number between the different created
samples. These criteria allows to minimize the level of dependency between the
sample topology and the emergent behaviors of these samples. The Cooker pro-
gram, proposed by the GranOO discrete element workbench, is able to control
these packing parameters.
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To minimize the number of simulations, the calibration involves a well defined
procedural approach described in (17) and (22). The resulting set of microscopic
parameters is independent of the size, the shape or the refinement of the discrete
domain. It means that this set of microscopic values can be applied to any kind
of discrete domains with arbitrary shapes. Figure 11 shows the convergence rate
of the macroscopic Young’s modulus EM, the macroscopic Poisson’s ratio νM and
the macroscopic tensile strength σfM versus the number of discrete elements. The
computations were conducted on discrete samples with an increasing number of
discrete element from 2,000 to 20,0000 (see Figure 12). The same set of micro-
scopic parameter values was used for all these different samples. Because the
initial packing algorithm involves random procedures, four samples were built
for each number of discrete element. It explains the scatters at each given point.
These curves underline that the macroscopic quantities converge toward single
values. It confirms that a given set of microscopic parameter values gives a single
set of macroscopic parameters values for any discrete samples.
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Figure 11: Evolution of (a) the macroscopic (a) Young’s modulus EM, (b) the macroscopic Pois-
son’s ratio νM and (c) the macroscopic tensile strength σfM versus the number of the discrete
element

Table 3 sums up the microscopic values of the glass and alumina materials
given by the calibration process.
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(a) 2,000 discrete elements (b) 10,000 discrete elements (c) 20,000 discrete elements

Figure 12: Snapshot of discrete samples with increasing refinement

Eµ (GPa) Rµ σµf (MPa) αµ (10−6K−1)
glass 5,200 0.1 60 11.6

alumina 24,560 0.1 360 7.6

Table 3: The main microscopic thermo-elastic parameter values of glass and alumina after cali-
bration process where Eµ is microscopic Young’s modulus, Rµ is microscopic radius ratio, σµf

is
microscopic failure strength limit and αµ is microscopic linear thermal expansion coefficient

6. Two-phase materials

The discrete domains used to obtain the virtual two-phase materials were built
in a box shape with approximatively 10,000 discrete elements. Four discrete do-
mains were built to ensure the statistical representativeness of the calculus. After
building the discrete domains, a second phase (inclusions) is generated thanks to
a geometrical algorithm that randomly distributes spherical inclusions inside the
cubic domains. If the inclusions intersect the boundaries of the domains, they are
cut by the boundary plane of the cubic domain (see Figure 13a).

For each specimen, several volume proportions of inclusions have been chosen
: 0%, 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40% and 45%. The average inclu-
sion radius is 250 µm ±10%. The number of discrete elements that belongs to an
inclusion is about 200. The virtual cubic two-phase domains with approximatively
2.2 millimeters length are composed of three types of bonds (see Figure 13b): ma-
trix, inclusion and interface bonds. Because no interphase exists between alumina
inclusion and glass matrix (see section 1), the bonds that link a matrix discrete
element and an inclusion discrete element are considered as matrix bonds.

The lengths of the virtual domains were chosen to reproduce a statically rep-
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resentative sample. The imposed number of discrete elements (around 10,000)
corresponds to a good compromise between the precision of the results and the
computational time cost.

Matrix discret 
elements

Inclusion discret elements

(a) View with discrete elements only
Inclusion and interface bonds

Matrix bonds

(b) View with bonds only

Figure 13: Virtual sample of the two-phase model material

6.1. Unbreakable numerical model
As a preliminary approach, the failure stress of each phase is set to an in-

finite value. So, no micro-crack appears during thermo-elastic numerical test.
The domains are submitted to a numerical cooling from 450 to 20◦C to get the
CTE of virtual undamaged two-phase domains. Then, tensile tests are performed
to measure macroscopic Young’s modulus. The results in Figure 14 show that
the thermo-mechanical behavior of the simulated cohesive two-phase material are
consistent with the predictions of H&S model. It allows to validate the numerical
two-phase model. However, the experimental results reported in Figure 3 show
that this approach is limited to perfect materials.

6.2. Breakable numerical model
In this section, the matrix bonds are considered as breakable. Following the

approach described in Figure 4, the discrete domains are subjected to cooling tests
(where micro-cracks appear), and then, to a tensile test. Here, the virtual tensile
tests are non-destructive. The micro-cracks are "frozen" and they are not allowed
to propagate themselves during the tensile test. It allows to measure the apparent
Young’s modulus of the damaged virtual samples. Experimentally, the Young’s
modulus is measured by ultrasonic pulse echography technique does not provide
any additional damage in normal conditions of using (27). The CTE is measured
with a standard dilatometer equipment.
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Figure 14: Comparison between numerical and analytical H&S models of free of damage two-
phase materials

The numerical results and the experimental observations are plotted on Figure
15. The results of micro-cracked virtual model materials exhibit a highly different
behavior than H&S predictions and seem in good agreement with the experimental
observations.
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Figure 15: Comparison between numerical predictions and experimental values of damaged two-
phase materials

7. Discussion

Qualitatively, the evolution of numerical Young’s modulus with the increase of
volume fraction of inclusions follows experimental observations and remains be-
low H&S predictions. Quantitatively, the numerical results overestimate Young’s
modulus when volume fraction is lower than 20%. However, Young’s modulus es-
timation is in good accordance with experimental data for volume fraction higher
than 20%.
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In addition, the numerical prediction of CTE matches quantitatively the ex-
perimental observations. For numerical samples, the CTE are measured indirectly
from length variations. Figure 16 shows the evolution of numerical and experi-
mental thermal strains versus temperature during a cooling stage from 450◦C to
50◦C. These data concern an experimental sample and a numerical sample with
45 vol% of inclusions. Figure 16 shows that the numerical results are in good
accordance with the experimental observation. The evolution of numerical strains
follow two distinct zones named undamaged and damaged. From this observation,
two CTE can be computed from linear regressions applied inside the damaged and
undamaged data range. It is observed that the undamaged CTE is inside the H&S
bounds. The damaged CTE is lower than the lower H&S bound and is very close
to the experimental one. Another value of interest is the number of broken beams
during a simulation. Figure 16 shows that the strain slope changing corresponds
to the beginning of cracking.

This two distinct regimes are not clearly observed on experimental data. This
difference is due to the initial level of damage between the experimental sam-
ple and the numerical one. At the initial temperature, i.e, 450◦C, the numerical
sample is free of damage. Therefore, the experimental sample is already slightly
damaged. So the changing strain slope is smoothed and not clearly visible. That’s
why the experimental CTE values reported in figure 15a are deduced from linear
regression on the complete range from (450◦C to 20◦C) while the numerical CTE
are deduced from the range 300◦C to 20◦C.

In addition, only the radial micro-cracks are taken into account in the numer-
ical model. However, real microstructure of such two-phase materials include
other discontinuous phenomena, such as debounding around inclusions or defects
that may influence the thermo-elastic properties.

As explained in section 2, the system ∆α > 0 promotes the radial micro-
cracks. The agreement between experimental and numerical results while the
presence of alumina inclusions increases seems to validate that radial micro-cracks
are predominant. For a low volume fraction, the number of radial micro-cracks is
low. As a consequence, the other types of damages such as debounding or defects
may have a non negligible effects on the apparent Young’s modulus.

Radial micro-cracking phenomenon seems to monitor elastic behavior of two-
phase model materials for high level of inclusions. So, according to the results
in Figure 15, the numerical model may be relevant for quantitative studies. The
developed model seems to catch and predict the main phenomena that drives the
evolution of Young’s modulus and CTE of two-phase damaged materials.
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beams versus temperature for a sample with 45% of inclusions

8. Perspectives and conclusions

This work related to the simulation of thermo-elastic behaviour using DEM
presents a significant improvement for discrete element methods applied to the
simulation of continuum media. The proposed DEM model has been first vali-
dated in regards with well established analytic solutions. In the case of undam-
aged materials, the numerical results show a good level of accordance with H&S
prediction. In addition, the developed method allows to predict (i) the damage
level generated by thermal cycle on materials that exhibit a thermal expansion
mismatch and (ii) the apparent thermo-mechanical parameters such as Young’s
modulus and CTE. This study confirms that thermal damages provoke a great in-
fluence on apparent thermo-mechanical parameters and the developed model may
be applied to a large class of heterogeneous brittle materials : geo-materials, civil
engineering materials and ceramics.

The prediction of apparent thermo-mechanical parameters such as Young’s
modulus, Poisson’s ratio or CTE is of high level of importance for engineering
applications. The proposed method seems to be adapted to predict this parameters
and allows to consider further studies to improve the understanding of industrial
multiphase materials. Further investigations may address micro-cracks closure,
inclusion debounding or self-healing (that appears when the temperature is greater
than the glass transition temperature). The main perspective of this study is the
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prediction of apparent thermo-mechanical parameters as a function of (i) ther-
mal history of the material and (ii) the composition of the material. These pre-
dictions may help scientists to develop new innovative materials with controlled
microstructures.
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