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The kagome lattice is a paragon of geometrical frustration, long-studied for its association with
novel ground-states including spin liquids. Many recently synthesized kagome materials feature
rare-earth ions, which may be expected to exhibit highly anisotropic exchange interactions. The
consequences of this combination of strong exchange anisotropy and extreme geometrical frustration
are yet to be fully understood. Here, we establish a general picture of the interactions and resulting
ground-states arising from nearest neighbour exchange anisotropy on the kagome lattice. We deter-
mine a generic anisotropic exchange Hamiltonian from symmetry arguments. In the high-symmetry
case where reflection in the kagome plane is a symmetry of the system, the generic nearest-neighbour
Hamiltonian can be locally defined as a XYZ model with out-of-plane Dzyaloshinskii-Moriya inter-
actions. We proceed to study its phase diagram in the classical limit, making use of an exact refor-
mulation of the Hamiltonian in terms of irreducible representations (irreps) of the lattice symmetry
group. This reformulation in terms of irreps naturally explains the three-fold mapping between
spin liquids recently studied on kagome by the present authors [Nature Communications 7, 10297
(2016)]. In addition, a number of unusual states are stabilised in the regions where different forms
of ground-state order compete, including a stripy phase with a local Z8 symmetry and a classical
analogue of a chiral spin liquid. This generic Hamiltonian also turns out to be a fruitful hunting
ground for coexistence of different forms of magnetic order, or of order and disorder, which we find
is a particular property of the kagome lattice arising from the odd number of spins per frustrated
unit. These results are compared and contrasted with those obtained on the pyrochlore lattice, and
connection is made with recent progress in understanding quantum models with S = 1/2.

I. INTRODUCTION

When confronted with a new magnetic material, one of
the early questions is often to search for its microscopic
Hamiltonian. Magnetic interactions are governed by a set
of rules. In particular, they have to respect the symmetry
of the lattice. For example, Dzyaloshinskii-Moriya (DM)
interaction is a well-known consequence of the absence
of an inversion centre between pairs of spins1,2. Hence,
for any material, an analysis of its lattice symmetry pro-
vides a useful tool in determining a microscopic model3.
Such symmetry-based approach has proven remarkably
successful for a systematic parameterisation and under-
standing of rare-earth pyrochlore materials4–12, as well
as for the Ba3Yb2Zn5O11 breathing pyrochlore13–15 and
YbMgGaO4 triangular spin-liquid candidate16–19. These
successes are due, to some extent, to the nature of the
rare-earth ions. Their 4f valence electrons give rise to
short-range superexchange which can often be modeled
by nearest-neighbour couplings, and thus require a lim-
ited number of coupling parameters. Additionally, their
strong spin-orbit coupling facilitates anisotropic interac-
tions20, providing the microscopic ingredients for exotic
magnetic orders and textures.

In kagome materials, while the traditional Heisen-
berg antiferromagnet, for both classical21–23 and quan-
tum24–29 spins, has been investigated in great depth, the

focus has lately shifted towards more anisotropic models.
The experimental motivation does not only stem from
rare-earth (R) compounds – e.g. R3Ru4Al12 ternary in-
termetallic30–33 or R3Mg2Sb3O14 tripod kagome34–37 –
but also from copper-38–44 and iron-45,46 based materi-
als. On the theoretical front, anisotropy also offers a
natural setting for spin-liquid ground states47–53.

The goal of this paper is to explore the zero-
temperature phase diagram of the generic nearest-
neighbour Hamiltonian allowed by the symmetry of the
kagome lattice for classical Heisenberg spins.

We shall first explain in detail how to derive this
Hamiltonian [Eqs. (12) - (14) and (18) - (20)], from the
point group symmetry; see section II and especially sec-
tion II B for a non-technical summary and section II C for
comparison of our Hamiltonian with related generic mod-
els. The kagome symmetry allows for six independent
coupling parameters. This can be reduced to four in the
presence of a mirror symmetry in the plane of the kagome
lattice itself. In this latter case we have a Hamiltonian
with four parameters {Jx, Jy, Jz, D} which are best ra-
tionalised as an XYZ model with Dzyaloshinskii-Moriya,
denoted XYZDM. The XYZDM Hamiltonian is then di-
agonalized in section III, making use of the decompo-
sition into irreducible representations (irreps). The ir-
rep decomposition provides the natural order parameters
for q = 0 long-range order on kagome54, as expressed
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FIG. 1. The up and down triangles of the kagome lattice are
respectively colored in violet (A) and orange (B). The x and
y axes are in plane, while the z-axis is out of plane, pointing
towards the reader.

in Eqs. (38-43) and represented in Fig. 4. In the basis
formed by these order parameters, the XYZDM Hamilto-
nian becomes quadratic [section III D]. This rewriting is
exact and not a mean field approximation, which allows
for a simple and exact determination of the ground-states
for most of the phase diagram, as explained in section
III E. Sections II and III closely follow the procedure de-
veloped for pyrochlore lattices in Refs. [3, 12, 55, and 56].

A key difference between kagome and pyrochlore
though is that some of the order parameters derived from
the irrep decomposition on kagome correspond to non-
physical states, in the sense that they describe configura-
tions in which spins which are not of unit length. In prac-
tice, this means that some regions of the phase diagram in
parameters space {Jx, Jy, Jz, D} support ground-states
where different kinds of orders co-exist, or that a par-
tial order of the spin degrees of freedom may co-exist
with magnetic disorder. This complexity largely dis-
appears for a portion of the XYZDM model where
O(2) invariance is imposed in the kagome plane; this
is the XXZ model with Dzyaloshinskii-Moriya46, noted
XXZDM. Section IV is devoted to the XXZDM model
whose zero-temperature phase diagram is given in Fig. 5.
Using the irrep decomposition, particular attention will
be paid to the network of classical spin liquids supported
by this model52; how it emerges from the surrounding or-
dered phases57–59 and possibly connects to quantum spin
liquids27,49,50,60–62. In section V, the condition of O(2)
invariance is lifted and one recovers the XYZDM model.
After discussing the inherent invariance and chiral asym-
metry of the XYZDM model [sections V A and V B], we
will describe a variety of specific Hamiltonians with or-
dered and disordered ground-states that, to the best of
our knowledge, have not been observed before. In partic-
ular, an extended region of the XYZDM phase diagram

supports ground-states with (i) local Z8 degeneracy and
global stripe order [section V E] and (ii) classical chiral
spin liquids that can be mapped onto different tricolor
problems [section V F]. In section VI, we explicitly com-
pare the analogies and differences between the generic
models on kagome and pyrochlore lattices, before con-
cluding in section VII.

II. DERIVATION OF THE GENERIC
NEAREST-NEIGHBOUR KAGOME MODEL

A. Which interactions are allowed on kagome ?

The kagome lattice being made of corner-sharing trian-
gles, any nearest-neighbour Hamiltonian can be written
as a sum over triangles X

H =
∑
X∈A

HA∆[X] +
∑
X∈B

HB∆[X] (1)

where A and B refer to the sets of up and down triangles
respectively [Fig. 1].

Let ĴXij be the coupling matrix between a pair of clas-
sical Heisenberg spins Si and Sj on a X ∈ {A,B} tri-
angle, where the spins have unit length |S| = 1, and
i, j ∈ {0, 1, 2} label the kagome sublattices as defined in
Fig. 2. A and B triangles are related by lattice inversion
Î

ĴBij = Î ĴAij Î. (2)

Using the facts that the spins are axial vectors and thus
invariant under lattice inversion,

Î Si = Si , (3)

one obtains for any pair of spins

Si ĴAij Sj = Si Î2ĴAij Î2 Sj
= Si Î ĴAij Î Sj
= Si ĴBij Sj

⇒ ĴAij = ĴBij . (4)

Hence, the Hamiltonian H∆ is the same for A and B
triangles

HA∆ = HB∆ = H∆ =
∑
〈ij〉

∑
α,β

Sαi Ĵ
αβ
ij S

β
j , (5)

where the Greek and Latin indices respectively label the
spin components and the sublattices of a triangle [see
Figs. 1 and 2 for the labelling convention]. Alternatively,
H∆ can be written in the form of a 9×9 coupling matrix
Ĵ

H∆ = 1
2 S̃

 0 Ĵ01 Ĵ02
Ĵ10 0 Ĵ12
Ĵ20 Ĵ21 0

 S̃ = 1
2 S̃Ĵ S̃, (6)
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where S̃ is a 9-component vector containing the magnetic
degrees of freedom for each triangle

S̃ = (Sx0 , S
y
0 , S

z
0 , S

x
1 , S

y
1 , S

z
1 , S

x
2 , S

y
2 , S

z
2 ). (7)

By definition, the coupling matrix Ĵ equals its transpose,
Ĵ = Ĵ t. This leaves 9× 3 = 27 parameters a priori un-
determined in the coupling matrix Ĵ . However, since we
are interested in models respecting the symmetry of the
kagome lattice, the coupling matrix Ĵ must be invariant
under action of the reflection and rotation symmetries
illustrated in Fig. 2. This corresponds to the group C3v
which is of order 6 and its group elements are the neutral
element e, two 2nπ/3-rotations around the out-of-plane
axis, and three reflections through the planes normal to
each bond [Fig. 2]

C3v =
{
e, Ci=1,2

3 , σi=0,1,2
v

}
. (8)

We shall treat the spins as transforming like axial vectors.
All C3v elements can be obtained by successive actions
of one of the C3 rotations and one of the reflections.

Representing these operations as 9× 9 matrices in the
basis defined by Eq. (7) it is sufficient to consider for
example

Γ(σ2
v) =



0 0 0 1 0 0 0 0 0
0 0 0 0 −1 0 0 0 0
0 0 0 0 0 −1 0 0 0
1 0 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 0 0
0 0 −1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 0 −1


, (9)

σv

0 1

2

C3

0 1

2

2π
3

4π
3

FIG. 2. Graphical representations of the σv reflections and
C3 rotations in the C3v symmetry group. The sublattices on a
triangle, {S0, S1, S2}, are labeled in the clockwise convention.
Because of the antisymmetric Dzyaloshinskii-Moriya interac-
tion [Eq. (23)], it is important to conserve the same clockwise
convention for all triangles.

Γ(C1
3 ) =



0 0 0 − 1
2 −

√
3

2 0 0 0 0
0 0 0

√
3

2 − 1
2 0 0 0 0

0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 − 1

2 −
√

3
2 0

0 0 0 0 0 0
√

3
2 − 1

2 0
0 0 0 0 0 0 0 0 1
− 1

2 −
√

3
2 0 0 0 0 0 0 0√

3
2 − 1

2 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0


(10)

Invariance under action of the C3v symmetry group im-
poses {

Γ(σ2
v) Ĵ Γt(σ2

v) = Ĵ
Γ(C1

3 ) Ĵ Γt(C1
3 ) = Ĵ

. (11)

Out of the initial 27 coupling parameters, only six remain
independent after imposing Eq. (11). The remaining cou-
pling parameters are most elegantly presented in the Ĵ01
coupling matrix

Ĵ01 =

 Jx Dz Dy

−Dz Jy K
−Dy K Jz

 , (12)

the other two coupling matrices taking the form

Ĵ12 = 1
4 (Jx + 3Jy)

√
3

4 (Jx − Jy) +Dz
1
2
(
−Dy +

√
3K
)

√
3

4 (Jx − Jy)−Dz
1
4 (3Jx + Jy) 1

2
(
−
√

3Dy −K
)

1
2
(
Dy +

√
3K
) 1

2
(√

3Dy −K
)

Jz


(13)

Ĵ20 = 1
4 (Jx + 3Jy)

√
3

4 (Jy − Jx) +Dz
1
2
(
−Dy −

√
3K
)

√
3

4 (Jy − Jx)−Dz
1
4 (3Jx + Jy) 1

2
(√

3Dy −K
)

1
2
(
Dy −

√
3K
) 1

2
(
−
√

3Dy −K
)

Jz

 .

(14)

Eqs. (12)-(14) define the symmetry allowed nearest
neighbour couplings respecting the C3v point group
symmetries of the kagome lattice.

For the remainder of this manuscript we will consider
the high-symmetry model, with the additional symmetry
that the kagome plane itself is a mirror plane of the sys-
tem. This symmetry is represented by the action of the
matrix

Γ(σh) =



−1 0 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 −1 0 0 0 0 0
0 0 0 0 −1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 −1 0 0
0 0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 0 1


, (15)
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on Ĵ . Constraining the exchange matrices in Eq. (12)-
(14) to be invariant under this additional symmetry,

Γ(σh) Ĵ Γt(σh) = Ĵ (16)

we obtain {
Dy = 0
K = 0 (17)

The coupling matrices then become

Ĵ01 =

 Jx Dz 0
−Dz Jy 0

0 0 Jz

 , (18)

Ĵ12 =

 1
4 (Jx + 3Jy)

√
3

4 (Jx − Jy) +Dz 0√
3

4 (Jx − Jy)−Dz
1
4 (3Jx + Jy) 0

0 0 Jz


(19)

Ĵ20 =

 1
4 (Jx + 3Jy)

√
3

4 (Jy − Jx) +Dz 0√
3

4 (Jy − Jx)−Dz
1
4 (3Jx + Jy) 0

0 0 Jz

 .

(20)

B. Local XYZ model with
out-of-plane Dzyaloshinskii-Moriya

The generic nearest-neighbour Hamiltonian on kagome
can be written as follows

H =
∑
∆

∑
〈ij〉

∑
α,β

Sαi Ĵ
αβ
ij S

β
j , (21)

where the sums are made on all triangles ∆, between
nearest neighbours 〈ij〉, and over all spin components
α, β ∈ {x, y, z}. For the most general case, respecting
the C3v point group symmetry, the coupling matrices Ĵij
are given in Eqs. (12-14). In presence of an additional
mirror symmetry in the kagome plane, Ĵij takes the form
of Eqs. (18-20).

A consequence of the mirror symmetry of the kagome
plane is the decoupling between in-plane S⊥i and out-
of-plane Szi spin components [Eq. (17)]. In materi-
als where the kagome layer is embedded in a three-
dimensional structure, this mirror symmetry can be bro-
ken by surrounding ions. This is the case for exam-
ple in Jarosites45,46,59 and tripod kagome materials34–37.
Here, we focus on models respecting the full kagome sym-
metry. This means among other things that in-plane
Dzyaloshinskii-Moriya couplings are forbidden59. But
out-of-plane ones are not. In the coupling matrices Ĵij ,

y2

x2

y0
x0

y1

x1 zk
Bk=0,1,2

FIG. 3. Local bases Bk used in Eq. (23) where the generic
nearest-neighbour Hamiltonian on kagome takes the form of
an XYZ model with Dzyaloshinskii-Moriya (DM) interactions.
All zk axes are pointing out of plane. All xk (yk) axes are
pointing along (orthogonal to) their local bond.

out-of-plane DM interactions are parametrised by the an-
tisymmetric term Dz, whose traditional form in a Hamil-
tonian is

HDM = D · (Si × Sj) with D = (0, 0, Dz). (22)

From now on, we shall simply write D = Dz.
The expression of the coupling matrices in Eqs. (19-

20) is not necessarily very insightful. In the appropriate,
bond-dependent, local bases Bk given in Fig. 3, one can
take advantage of the kagome symmetry by ±2π/3 rota-
tions to rewrite the three Ĵij matrices in the same, more
convenient, form

ĴB
2

01 = ĴB
0

12 = ĴB
1

20 =

 Jx D 0
−D Jy 0

0 0 Jz

 . (23)

As a summary, the generic nearest-neighbour Hamilto-
nian respecting the full symmetry of the kagome lattice
is a local XYZ model with out-of-plane Dzyaloshinskii-
Moriya (DM) interactions [Eq. (23)]. We label this model
XYZDM. One should emphasise that it is not a tradi-
tional XYZ model, as would be the case if it was ex-
pressed in the same global frame for all bonds. Such a
global XYZ Hamiltonian is not allowed by the symmetry
of the kagome lattice, assuming that the spins transform
as axial vectors under the point group operations.

C. Related generic models

Among the related generic systems that have been
studied in the literature, one should mention the
generic quantum spin Hamiltonian on the triangular
lattice16,63–65, quantum kagome ice51, the spin-orbital
liquids of non-Kramers magnets48 and the classical
regular-magnetic-order classification of Messio et al.66.

The former is the triangular version of the present
kagome Hamiltonian, which has been particularly
successful in describing the spin liquid candidate
YbMgGaO4

16,19. Besides the obvious fact that trian-
gular and kagome lattices are different, one of the main
distinctions between the two microscopic Hamiltonians
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is the absence of Dzyaloshinskii-Moriya interactions in
triangular systems because of inversion symmetry. The
propensity of the DM coupling to induce an intrinsic
magnetic chirality will be a recurrent feature of our work.

Quantum kagome ice has been studied in the context
of a pyrochlore lattice in a strong [111] magnetic field51,
where the “spin” degrees of freedom correspond to the
states of a “dipole-octupole” crystal-field doublet67. It is
thus inherently different from the generic model studied
here, but remains a motivation for future applications of
our work, in particular the inclusion of quantum fluctu-
ations. Quantum kagome ice is indeed a promising can-
didate for a gapped Z2 spin liquid ground-state51,68–70,
where disclination defects have been proposed to host
symmetry-protected vison zero modes70.

Furthermore, concerning the inclusion of quantum fluc-
tuations, a projective symmetry group analysis has in-
vestigated possible spin-orbital liquids with fermionic
spinons for non-Kramers pseudospin−1/2 models48. The
unusual time-reversal symmetry of non-Kramers ions
steps away from our present study, but is an inter-
esting aspect of generic models48,71, that has been
shown to support magnetic phases forbidden for Kramers
pseudospin−1/2 kagome models.

As for the classification of Ref. [66], it is a group the-
oretical approach, applied to a variety of lattices includ-
ing kagome, able to list all regular magnetic orders which
respect the lattice symmetries modulo global O(3) spin
transformations. It has been used e.g. in studying the
candidate quantum spin liquid material, Kapellasite72.
Even if the lattice symmetry plays a key role in both our
approaches, the constraint of global O(3) symmetry pre-
vents the consideration of most models with anisotropic
interactions, which represents the “bulk” of the XYZDM
model. Nevertheless, the regular magnetic orders will
reappear in our work for Hamiltonians tuned precisely
on high-symmetry points, where a global O(3) invariance
reappears.

III. HAMILTONIAN DIAGONALIZATION

Now that our model has been determined, let us ex-
plore the phases it begets. In this section III, we will see
how the irrep decomposition provides the eigenbasis of
order parameters necessary to diagonalize the coupling
matrix Ĵ . The general method to determine the ground-
states is exposed in section III E. We refer the reader to
Ref. [12] to see this method applied to pyrochlores.

A. Irreducible Representations

Any spin configuration on a triangle can be described
by the 9−dimensional vector of Eq. (7). Let Γ(g) be
the 9 × 9 matrix representing the element g ∈ C3v ={
e, Ci=1,2

3 , σi=0,1,2
v

}
in the global Cartesian basis, as ex-

emplified in Eqs. (9) and (10). By definition, the Γ ma-
trices provide a 9−dimensional representation of the C3v
symmetry group.

The Γ representation is said to be reducible if there is a
unitary transformation Û such that Û Γ(g) Û−1 is block-
diagonal, with the same block structure, for all g ∈ C3v.
If the blocks cannot be further reduced, i.e. if they are
“as small as possible”, then each block is an irreducible
representation (irrep) of C3v in its own subspace. The
interest of such an irreducible decomposition is that it
is valid for any matrix invariant under action of the C3v
symmetry group. Once rewritten in the basis provided
by Û , Ĵ is greatly simplified as it can only couple basis
vectors transforming according to the same irrep. This
method brings us a stone’s throw from the full diagonal-
isation of the Hamiltonian.

The decomposition of the Γ representation can be for-
mally written as a direct sum of the irreps ΓI

Γ =
⊕
I

γIΓI , (24)

where each irrep ΓI appears γI times in the decomposi-
tion. For any symmetry operations g ∈ C3v, the trace of
ΓI(g) is called its character, χI(g). The character of Γ(g)
is χ(g). In terms of these characters, Eq. (24) translates
to

χ(g) =
∑
I

γIχI(g) , ∀g ∈ C3v. (25)

The coefficients γI can be found using the formula73

γI = 1
n

∑
g∈C3v

χI(g)χ(g), (26)

where n is the order of the group (n = 6). The irreps
and character of the C3v symmetry group are tabulated,
and can be read in Appendix B of Ref. [73] for example.
As for χ(g), it is directly obtained from Eqs. (9) and
(10), the trace of the neutral element e being trivial. All
characters are summarized in table I

C3v e C3 σv
Γ1 = A1 1 1 1
Γ2 = A2 1 1 -1
Γ3 = E 2 -1 0

Γ 9 0 -1

TABLE I. Character table of the point group C3v. e, C3 and
σv correspond to the three conjugacy classes of C3v. We have
used the Mulliken symbols for the notation of the irreducible
representations ΓI . The last line corresponds to the charac-
ters of the reducible representation Γ.

Using Eq. (26) and table I, we find

γ1 = 1, γ2 = 2 and γ3 = 3. (27)
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In practice, it means that the coupling matrix Ĵ of
Eq. (6) can be block-diagonalized into 6 blocks: γ1+γ2 =
3 scalar blocks (corresponding to A1 and A2) and γ3 = 3
blocks of size 2× 2 (corresponding to E).

B. Basis Vectors

The basis vectors of this block-diagonalization must
obey the same symmetry properties as the irreps they
correspond to (for more details, see Ref. [74]). But
how to calculate these basis vectors? From the coupling
matrices in Eqs.(18) - (20), the xy-components are de-
coupled from the z-component. Hence, an appropriate
choice of basis should not mix the in-plane and out-of-
plane components of the spins. This translates to 6 (resp.
3) basis vectors with only in-plane (resp. out-of-plane)
spin components.

For one-dimensional representations, the group ele-
ments are scalars and they reduce to the character itself.
In the trivial one-dimensional irreducible representation
A1, all the elements are equal to one. Hence, we are look-
ing for a state invariant under all C3v symmetries. The
only possibility is:

S̃(A1) =
(

1
2 ,
√

3
2 , 0, 1

2 ,−
√

3
2 , 0,−1, 0, 0

)
, (28)

illustrated in Fig. 4. Please keep in mind that the spins
transform like axial vectors, i.e. they are invariant under
lattice inversion [Eq. (3)].

The irrep A2 appears twice in Γ [Eq.(27)]. Thus we
need two basis vectors for this representation. Since a
A2 irrep corresponds again to a one-dimensional repre-
sentation, it is easy to see how the elements act on the
vectors. According to the character table (cf. table I),
we are looking for two vectors Ṽi=1,2 that are invariant
under C3 and change from Ṽi to −Ṽi under σv. The only
solutions are:

S̃z(A2) = (0, 0, 1, 0, 0, 1, 0, 0, 1) (29)

and

S̃⊥(A2) =
(
−
√

3
2 ,

1
2 , 0,

√
3

2 ,
1
2 , 0, 0,−1, 0

)
(30)

The last irrep E is of dimension 2 and appears 3 times
in Γ. Therefore one needs to find 3 different pairs of basis
vectors for this representation. Since the group elements
do not reduce to their character anymore, this is less
straightforward than for the A irreps. Also, the choice of
basis vectors is not unique, but can be made physically
intuitive. By definition of the irrep decomposition, each
pair of basis vectors shall generate an invariant subspace
under action of the C3v symmetry group. All elements of
the C3v symmetry group can be described as a successive

permutation of the spin positions and global rotation of
the spin orientations. Such transformations trivially con-
serves the norm of the total magnetic moment. It means
that the subspace of saturated configurations, i.e. with
collinear spins, is invariant under action of the C3v sym-
metry group. Magnetisation along the z-axis has already
been accounted for by the A2z basis vector [Eq. (29)].
We are thus left with the subspace of configurations with
saturated in-plane magnetization which, by decoupling
of the xy and z spin components previously mentioned,
is also invariant under action of all C3v elements. This
subspace thus corresponds to an E irrep, labeled EFM .
A natural choice of basis for EFM is{

S̃1,FM (E) = (1, 0, 0, 1, 0, 0, 1, 0, 0)
S̃2,FM (E) = (0, 1, 0, 0, 1, 0, 0, 1, 0) , (31)

as depicted in Fig. 4.
Hence, out of the six expected basis vectors with in-

plane spin components for the representation Γ of Eq. (7),
four of them have now been determined, namely A1, A2⊥
and EFM . By imposing the orthogonality of the ba-
sis, the remaining two in-plane basis vectors are given
in Eq. (32). The subspace they generate is invariant un-
der action of the C3v symmetry group; the corresponding
irrep is labeled EAF and represented in Fig. 4. S̃1,AF (E) =

(
1
2 ,−

√
3

2 , 0,
1
2 ,
√

3
2 , 0,−1, 0, 0

)
S̃2,AF (E) =

(
−
√

3
2 ,−

1
2 , 0,

√
3

2 ,−
1
2 , 0, 0, 1, 0

) (32)

A1

A2z
A2⊥

EFM1 EFM2

EAF1 EAF2

FIG. 4. Spin configurations corresponding to different
irreducible representations, as expressed in Eqs. (28-32).
EFM1, EFM2 and A2z have saturated magnetization respec-
tively along the x, y and z axes. A1 and A2⊥ have maximum
negative vector chirality, while EAF has maximum positive
vector chirality [Eq. (79)]. When considered together, the A1
and A2⊥ irreps are labeled A for convenience.
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Within the EFM and EAF subspaces, the basis vectors
are orthogonal for each sublattice i ∈ {0, 1, 2}:


3∑

α=1

(
S̃1,FM (E)

)
3i+α ·

(
S̃2,FM (E)

)
3i+α = 0

3∑
α=1

(
S̃1,AF (E)

)
3i+α ·

(
S̃2,AF (E)

)
3i+α = 0

(33)

The last two basis vectors correspond to antiferromag-
netic states with out-of-plane spin components. The cor-
responding subspace is invariant under action of the C3v
symmetry group and is labeled Ez. A possible choice of
basis for this subspace is

{
S̃1z(E) =

√
3
2 (0, 0, 1, 0, 0,−1, 0, 0, 0)

S̃2z(E) = 1√
2 (0, 0, 1, 0, 0, 1, 0, 0,−2)

, (34)

whose spins are not normalized
3∑

α=1

(
S̃1z(E)

)2
3i+α 6= 1

3∑
α=1

(
S̃2z(E)

)2
3i+α 6= 1

. (35)

The inequalities (35) are not a consequence of the par-
ticular choice of basis in Eq. (34). Within the subspace
generated by S̃1z(E) and S̃2z(E), it is impossible to find
a configuration where the three spins are all normalized.
The reason is trivially because it is impossible for three
normalized collinear spins to bear zero magnetization.
This is an important property of the kagome lattice,
which will be discussed in detail throughout the paper.

C. Order parameters

The vector S̃ can be expressed in terms of the irreps
basis:

S̃ = mA1 S̃(A1) +mA2,zS̃z(A2) +mA2,⊥S̃⊥(A2)
+mx

E,FM S̃1,FM (E) +my
E,FM S̃2,FM (E) +mx

E,AF S̃1,AF (E)
+my

E,AF S̃2,AF (E) +mx
E,zS̃1z(E) +my

E,zS̃2z(E)
(36)

with

mα,i = 1
3 S̃ · S̃i(α) (37)

being the order parameters associated with the irre-
ducible representations:

mA1 = 1
3

(
1
2S

x
0 +
√

3
2 Sy0 + 1

2S
x
1 −
√

3
2 Sy1 − Sx2

)
(38)

mA2,z = 1
3 (Sz0 + Sz1 + Sz2 ) (39)

mA2,⊥ = 1
3

(
−
√

3
2 Sx0 + 1

2S
y
0 +
√

3
2 Sx1 + 1

2S
y
1 − S

y
2

)
(40)

mE,FM = 1
3

(
Sx0 + Sx1 + Sx2
Sy0 + Sy1 + Sy2

)
(41)

mE,AF = 1
3

(
1
2S

x
0 −

√
3

2 S
y
0 + 1

2S
x
1 +

√
3

2 S
y
1 − Sx2

−
√

3
2 S

x
0 − 1

2S
y
0 +

√
3

2 S
x
1 − 1

2S
y
1 + Sy2

)
(42)

mE,z = 1
3

( √
3
2 (Sz0 − Sz1 )

1√
2 (Sz0 + Sz1 − 2Sz2 )

)
(43)

By decomposition of Eq. (36), the order parameters obey
the relation

m2
A1

+m2
A2,z +m2

A2,⊥ + m2
E,FM + m2

E,AF + m2
E,z

= 1
3
(
S 2

0 + S 2
1 + S 2

2
)

= 1
(44)

Please note that max(|mE,z|2) < 1, which means that
order into the Ez phase necessarily co-exists with other
phases.

Alternatively, one can write the spin configurations as
a function of the order parameters:

Sx0 = 1
2mA1 −

√
3

2 mA2,⊥ +mx
E,FM + 1

2m
x
E,AF

−
√

3
2 m

y
E,AF

Sy0 =
√

3
2 mA1 + 1

2mA2,⊥ +my
E,FM −

√
3

2 m
x
E,AF

− 1
2m

y
E,AF

Sz0 = mA2,z +
√

3
2m

x
E,z + 1√

2m
y
E,z

(45)

Sx1 = 1
2mA1 +

√
3

2 mA2,⊥ +mx
E,FM + 1

2m
x
E,AF

+
√

3
2 m

y
E,AF

Sy1 = −
√

3
2 mA1 + 1

2mA2,⊥ +my
E,FM +

√
3

2 m
x
E,AF

− 1
2m

y
E,AF

Sz1 = mA2,z −
√

3
2m

x
E,z + 1√

2m
y
E,z

(46)
Sx2 = −mA1 +mx

E,FM −mx
E,AF

Sy2 = −mA2,⊥ +my
E,FM +my

E,AF

Sz2 = mA2,z −
√

2my
E,z

(47)
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D. Hamiltonian in quadratic form

In terms of the order parameters, the Hamiltonian of
Eq. (21) can be rewritten as

H =
∑
∆

3
2(λA1m

2
A1

+ λA2,zm
2
A2,z + λA2,⊥m

2
A2,⊥

+λE,FM m2
E,FM + λE,AF m2

E,AF + λE,z m2
E,z

+ λE,mix mE,FM ·mE,AF ) (48)

where the sum is over all triangles ∆ in the kagome lat-
tice, and the coefficients λi are

λA1 = 1
2

(
Jx − 3Jy − 2

√
3D
)

(49)

λA2,z = 2Jz (50)

λA2,⊥ = 1
2

(
−3Jx + Jy − 2

√
3D
)

(51)

λE,FM = Jx + Jy (52)

λE,AF = 1
2

(
−Jx − Jy + 2

√
3D
)

(53)

λE,mix = Jx − Jy (54)
λE,z = −Jz (55)

To avoid any confusion, one should probably insist that
the Hamiltonian of Eq. (48) is not a Landau mean-field
expansion, but an exact rewriting of the original Hamil-
tonian of Eq. (21). The present decomposition is the final
outcome of the block diagonalization of sections III A and
III B. Hence, it prevents the mixing between inequivalent
irreps. In the absence of the reflection symmetry in the
kagome plane [Eq. (16)] there would be allowed couplings
between A2z and A2⊥ on one hand, and EFM , EAF and
Ez on the other hand. Once this symmetry is imposed,
however, there is no coupling between the xy-plane and
the z-axis, the only possible coupling term is between
EFM and EAF . This coupling term is coming from our
physically intuitive, but mathematically arbitrary choice
of EFM and EAF . It can be eliminated with a differ-
ent choice of basis vectors, whose corresponding order
parameters are

mE,α = cosφmE,FM − sinφmE,AF

mE,β = sinφmE,FM + cosφmE,AF
(56)

where φ is given by

φ = 1
2 arctan

(
Jy − Jx

3
2 (Jx + Jy)−

√
3D

)
. (57)

In this basis, the Hamiltonian is now fully quadratic for
each triangle

H =
∑
∆

3
2
(
λA1m

2
A1

+ λA2,zm
2
A2,z + λA2,⊥m

2
A2,⊥

+λE,α m2
E,α + λE,β m2

E,β + λE,z m2
E,z

)
,

(58)

with

λE,α = (Jx + Jy) cos2 φ

− 1
2(Jx + Jy − 2

√
3D) sin2 φ

− 1
2(Jx − Jy) sin(2φ),

(59)

λE,β = (Jx + Jy) sin2 φ

− 1
2(Jx + Jy − 2

√
3D) cos2 φ

+ 1
2(Jx − Jy) sin(2φ).

(60)

However, the two new pairs of basis vectors, Eα and
Eβ , correspond to non-normalized spin configurations, as
in the case of Ez.

E. How to determine the ground-states

The choice of any specific model is defined by its cou-
pling parameters {Jx, Jy, Jz, D}. In the Hamiltonian
of Eq. (58), this choice only appears in the eigenval-
ues λI , while the spin variables are entirely embedded
in the quadratic terms – each term corresponding to
a different order parameter mI . As was done on the
pyrochlore lattice12, the energy can a priori be mini-
mized for each triangle by maximizing the value of the
order parameter mI0 which has the smallest eigenvalue
λI0 = min{λA1 , λA2,z, λA2,⊥, λE,α, λE,β , λE,z}. For a
uniform lattice, the eigenvalues λI have the same value
for all triangles. It means that the ground-state for a
given set of coupling parameters is obtained by paving
the entire kagome lattice with configurations which sat-
urate the I0 order parameter on every triangle: m2

I0
= 1

and m2
I 6=I0

= 0.
If there is more than one minimum eigenvalue, say

λI0 = λI′
0

= min{λA1 , λA2,z, λA2,⊥, λE,α, λE,β , λE,z},
then both I0 and I ′0 configurations are allowed in the
ground-state. Such accidental degeneracy occurs for
specific values of parameters at the T = 0 frontier
between I0 and I ′0 phases. These frontiers are sometimes
the birth places of spin liquids12.

However, there is an important caveat. The unit-
length spin constraint must always be respected, |Si| =
1. While this constraint is ensured for any of the
A1, A2z, A2⊥, EFM and EAF configurations (see Fig. 4),
it is not the case for the Eα, Eβ and Ez configurations.
The corresponding order parameters cannot be saturated
for any physical spin configuration

max(|mE,z|2) < 1 (61)
max(|mI |2 | I ∈ {Eα, Eβ}) < 1 when Jx 6= Jy (62)

If the minimum eigenvalue λI0 corresponds to I0 ∈
{Eα, Eβ , Ez}, then basis vectors associated with other
eigenvalues λI 6=I0 ≥ λI0 need to be included in the
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ground-state. In terms of the irreps decomposition of
Eq. (36), it means that the ground-state is most likely
described by more than one irrep, and its determination
becomes a tedious task.

IV. XXZ MODEL WITH
DZYALOSHINSKII-MORIYA

The diagonalization of Eq. (58) comes at the cost of
introducing two pairs of basis vectors, Eα and Eβ , with
non-normalized spins. To circumvent this problem, we
can restrict our analysis at first to the region of the phase
diagram where the coupling between EFM and EAF van-
ishes [Eqs. (54)]

Jx = Jy. (63)

In this region, the coupling matrices of Eqs.(18-20) be-
come

Ĵ01 = Ĵ12 = Ĵ20 =

 Jx D 0
−D Jx 0

0 0 Jz

 (64)

which corresponds to the XXZ model with
Dzyaloshinskii-Moriya interactions (XXZDM)

H =
∑
〈ij〉

Jx(Sxi Sxj + Syi S
y
j ) + JzS

z
i S

z
j + D · (Si × Sj).

(65)

In terms of the order parameters, the Hamiltonian of
Eq. (48) becomes

H =
∑
∆

3
2(λA1m

2
A1

+ λA2,zm
2
A2,z + λA2,⊥m

2
A2,⊥

+ λE,FM m2
E,FM + λE,AF m2

E,AF + λE,z m2
E,z

)
,

(66)

with

λA2,z = +2Jz (67)
λE,FM = +2Jx (68)
λE,AF = −Jx +

√
3D (69)

λA1 = λA2,⊥ = −Jx −
√

3D (70)
λE,z = −Jz. (71)

Except for the Ez irrep, all other basis vectors corre-
spond to normalized spins. Following the method de-
tailed in section III E, this allows for the direct determi-
nation of the ground-state for all parameters where λE,z
is not the minimal eigenvalue. The resulting phase dia-
gram is given in Fig. 5. Portions of this phase diagram
have been explored in the literature for classical Heisen-
berg spins, such as the Heisenberg antiferromagnet21–23,

the XXZ model57,58,75, as well as Dzyaloshinskii-Moriya
interactions59. In particular, this phase diagram has re-
cently been shown to support a network of spin liquids
with three-fold symmetry52. This is why our goal in this
section will be to present a comprehensive picture of the
competing phases at play, in the context of the irreducible
representations they are generated from.

A. Long-Range Order

The various ordered phases presented below are cate-
gorized as a function of their global degeneracy and illus-
trated in Fig. 5. Their region of existence is easily calcu-
lated by ensuring that the corresponding eigenvalue(s) is
(are) smaller than all the other ones [Eq. (67-71)].

1. Z2 degeneracy

The only ground-state with Z2 degeneracy – generated
by time-reversal symmetry – is the out-of-plane ferromag-
netic phase, A2z.

2. O(2) degeneracy

The XXZDM model is invariant by continuous global
spin rotations around the z-axis. In other words, any
ground-state with finite in-plane spin components pos-
sesses (at least) a global O(2) degeneracy. This is the
case for the EFM , EAF and A = A1⊕A2⊥ phases, which
are respectively stabilized by in-plane ferromagnetic, neg-
ative DM and positive DM interactions.

The O(2) degeneracy persists at the frontiers between
the Ez region and one of these ordered phases (EFM ,
EAF or A), such as for example for 2|D|/

√
3 < Jz =

−2Jx [see the borders of the Ez triangle in Fig. 5.(c)].
The reason why there is no enhancement of degeneracy
at these frontiers is because Ez order cannot co-exist with
only one of the EFM , EAF or A phases. On the other
hand, in presence of two other irreps, the co-existence
with Ez is possible; this corresponds to the Heisenberg
antiferromagnet and equivalent models, which will be dis-
cussed in section IV B.

3. O(3) degeneracy

At the frontier between the EFM and A2z phases,
Jx = Jz < −|D|/

√
3, the ground-state is ferromagnetic

with O(3) degeneracy. Using the threefold symmetry in
parameter space of the XXZDM model52, the same O(3)
degeneracy holds for the three borders of the A2z tri-
angle in Fig. 5.(b), albeit with different spin configura-
tions. These different spin configurations correspond to
the umbrella states – or variants thereof – of the regu-
lar magnetic orders of Ref. [66]. It is noticeable to find
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Jz < 0

(a)

Jz > 0

Jz = 0

(b)

A EAF

EFM

A2z

Jz < 0
X

X
Z

XXZ
+XXZ −

XXZ0

FDM− FDM+

-3 -2 -1 0 1 2 3
-3

-2

-1

0

1

2

3

Jx
Jz

D/Jz

(c)
EAF A

EFM

Ez

Jz > 0
X

X
Z

XXZ −XXZ
+

HAF

X−X+

-3 -2 -1 0 1 2 3
-3

-2

-1

0

1

2

3

Jx
Jz

D/Jz

(d)
A2z A A EFM EFM EAF EAF

FIG. 5. Zero-temperature phase diagram of the XXZ model with Dzyaloshinskii-Moriya interactions (XXZDM). The phase
diagram can be divided into five continuous regions when represented on a sphere (a), with spherical coordinates (θ, ϕ):
(Jx, D, Jz) = (cosϕ sin θ,− sinϕ sin θ, cos θ). The three-fold symmetry of the XXZDM kagome model52 is transparent in this
representation. The left/right hemispheres correspond to ferromagnetic/antiferromagnetic coupling Jz, which can be projected
onto two planar phase diagrams for a quantitative comparison, respectively panels (b) and (c). A2z and Ez regions take the
form of triangles centred at the “poles” of each hemisphere. The latter is noticeably smaller because of its comparatively high
antiferromagnetic frustration, making it less energetically stable when competing with the surrounding ordered phases. The
name of specific models with extensive degeneracy are written in white, as defined in Ref. [52] and given in Table II. For
convenience the corresponding spin configurations are copied from Fig. 4 in panel (d). The A region corresponds to A1 and
A2⊥, which have the same energy in the XXZDM model.

these regular magnetic orders in the highly anisotropic
XXZ model with Dzyaloshinskii-Moriya considered here,
thanks to an accidental O(3) degeneracy of the Hamilto-

nian.
All spin configurations are obtained from Eq. (36),

while imposing
m2
A2z

+ m2
I = 1 with I ∈ {A,EFM , EAF }. (72)
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At the A2z⊕A and A2z⊕EAF frontiers, the out-of-plane
ferromagnetism of the umbrella states conveys a finite
scalar chirality

κ = S0 · (S1 × S2) (73)

to the ground-state manifold.

We should conclude this discussion with a few words
about the finite-temperature physics. The Mermin-
Wagner-Hohenberg theorem prevents any symmetry
breaking phase transition at finite temperature in the
Heisenberg ferromagnet (HFM) (Jx = Jz < 0, D = 0).
By symmetry of our phase diagram, the models equiva-
lent to the HFM with parameters

Jx = −1
2Jz > 0, D = ±

√
3

2 Jz (74)

have the same energy excitations than the HFM, and are
thus also protected by the Mermin-Wagner-Hohenberg
theorem from ordering, despite their apparent anisotropy.

B. XXZDM: classical spin liquids

1. Three-fold mapping

The phases discussed in section IV A are long-range
ordered with wavevector q = 0. Once the orientation
of one spin is known, the spin configuration of the en-
tire lattice is fixed. This is not the case anymore when
the ground-state is generated by combinations of EFM ,
EAF and A basis vectors. Such combinations give rise
to a network of extensively degenerate phases52. This
network is robust for both classical and quantum spins,
and its branches are related to each other via a three-fold
symmetry52 which is also valid for triangular lattices76.
This mapping follows a similar motivation than for XXZ
chains, where DM couplings can be “erased” by a local ro-
tation and twisted boundary conditions77. On kagome,
twisted boundary conditions are not necessary because
of specific choices of rotations. Here we shall clarify how
these classical spin liquids can be understood from the
point of view of their irreps, as summarised in Table II.

Let us consider the (A,EAF ) pair as a working ex-
ample. These irreps generate the ground-state manifold
of the antiferromagnetic XXZ model, which can be ex-
tended to ferromagnetic Jz < 0 [Fig. 5]. It is well-known
that this ground-state manifold can be mapped onto the
three-coloring problem, whose mapping is unique up to a
global O(2) rotation of the spins78. Indeed, all spins lie in
the xy-plane and make a 120◦ angle with their neighbours
[Figs. 5.(d) and 6]. By symmetry, the same mapping also
holds for the two other pairs of irreps

(A,EAF )↔ (EAF , EFM )↔ (EFM , A). (75)

EFM , A

1 0

2

0 1

2

A,EAF

0

1

2

FIG. 6. All spin configurations generated by the (A,EAF ),
(EAF , EFM ) or (EFM , A) pair of irreps correspond to a three-
color mapping on the kagome sites, or equivalently on the
honeycomb bonds. While this coloring is straightforward in
the former case78 (top right), it is less so if the ferromagnetic
EFM states are involved (top left). The mapping is given by
the matrix at the bottom. For example for a spin on sublattice
1 (resp. 0 or 2) in a ferromagnetic triangle of violet color, the
corresponding color is orange (resp. violet or cyan).

The correspondence between a configuration with
ferromagnetic EFM states and the three-coloring model
is given in Fig. 6.

The pairs of irreps in Eq. (75) generates the ground-
states on three lines of parameter space, which end in
contact either with the A2z phase, or with the Ez phase.

In the former case, the global O(2) degeneracy is
enhanced to O(3). At zero temperature and in pres-
ence of Dzyaloshinskii-Moriya interactions, this symme-
try enhancement confers a scalar chirality to the classi-
cal spin liquid52. In the irrep language, this corresponds
to ground-states described by the (EAF , EFM , A2z) or
(EFM , A,A2z) irreps [Table II]. Remarkably, the classical
degeneracy of these models has recently been shown to
persist for quantum spins in every non-trivial Sz sector79.

When the pair of irreps of Eq. (75) are coupled to the
Ez phase, the zero-temperature ground-state manifold
supports an emergent classical Coulomb phase, char-
acterised by either antiferromagnetic or ferromagnetic
pinch points in the structure factor52. The trio of irreps,
(A,EAF , Ez), corresponds to the emergent Coulomb
phase of the canonical Heisenberg antiferromagnet
(HAF).
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Common features Positive DM Zero DM Negative DM

of the ground-states 0 < D = −
√

3 Jx D = 0 & 0 < Jx D =
√

3 Jx < 0

Coulomb phase Ez, EFM , A [X−] Ez, A,EAF [HAF] Ez, EAF , EFM [X+]

H∆ = Jz
2 (B2−3)

0 < Jz = −2Jx 0 < Jz = Jx 0 < Jz = −2Jx

The conserved
flux B is given

by:


−
√

3
2 S

x
0 − 1

2S
y
0 +

√
3

2 S
x
1 − 1

2S
y
1 + Sy2

1
2S

x
0 −

√
3

2 S
y
0 + 1

2S
x
1 +

√
3

2 S
y
1 − S

x
2

Sz0 + Sz1 + Sz2



Sx0 + Sx1 + Sx2

Sy0 + Sy1 + Sy2

Sz0 + Sz1 + Sz2



−
√

3
2 S

x
0 + 1

2S
y
0 +

√
3

2 S
x
1 + 1

2S
y
1 − S

y
2

1
2S

x
0 +

√
3

2 S
y
0 + 1

2S
x
1 −

√
3

2 S
y
1 − S

x
2

Sz0 + Sz1 + Sz2


three-coloring EFM , A [XXZ−] A,EAF [XXZ] EAF , EFM [XXZ+]

× global O(2) −|Jx| < Jz < 2|Jx| −Jx/2 < Jz < Jx −|Jx| < Jz < 2|Jx|

three-coloring EFM , A,A2z [FDM−] A,EAF , A2z [XXZ0] EAF , EFM , A2z [FDM+]

× global O(3) Jx = Jz < 0 −Jx/2 = Jz < 0 Jx = Jz < 0

TABLE II. Summary of the network of extensively degenerate ground-states found in Ref. [52], presented in light of the irreps
from which they are generated. These classical spin liquids sit at the frontier between ordered phases [section IV A]; their
domain of existence at zero temperature is given in each case. There are three different branches in the network, with positive,
negative and zero Dzyaloshinskii-Moriya (DM) couplings, corresponding to the three columns of the table. Going from one
branch to the other is done by local transformations52. These transformations can be rationalized here as a permutation of
the bi-dimensional irreps with in-plane spin components: EFM , EAF and A [Eq. (75)]. Each pair of these irreps generates
an extensive manifold of configurations that can be mapped onto the three-coloring problem, with additional O(2) global
symmetry (third row). If the out-of-plane ferromagnetic irrep A2z is added, then the global degeneracy becomes O(3) (fourth
row). If on the other hand the antiferromagnetic irrep Ez is added, then one obtains a Coulomb phase defined by an emergent
divergence-free field B (second row). The zero-temperature ground-state of the Heisenberg antiferromagnet (HAF) is described
by the Ez, A and EAF irreps (0 < Jx = Jz, D = 0). The names of the models are given in brackets, as defined in Ref. [52].

2. Along the XXZ line inside the Ez region

If one continues along the XXZ line towards the Ising
antiferromagnet (0 < Jx < Jz and D = 0), the minimal
eigenvalue corresponds to the Ez phase. Since the Ez
eigenstates are made of non-normalised spins, it means
that irreps with higher eigenvalues are also populated.
In increasing order, the excited eigenvalues are EAF ⊕A
(degenerate), then EFM and finally A2z [Eqs. (67-71)].
The ground-states in this region are known to bear a
finite magnetisation57,58, which can be

• either in plane due to the EFM component.
A typical ground state configuration is [57]
S0 = (1, 0, 0),S1 = (−c, 0, s),S2 = (−c, 0,−s)
where c = Jx/(Jz + Jx) and s =

√
1− c2.

• or out of plane due to the A2z component.
A typical ground state configuration is [57]
S0 = (0, 0, 1),S1 = (s′, 0,−c′),S2 = (−s′, 0,−c′)
where c′ = Jz/(Jz + Jx) and s =

√
1− c′2.

This means that all eigenstates can be populated in the
ground-state. In particular the EAF and A order param-
eters, which correspond to the second lowest eigenvalue,
always take a finite value. These are the same irreps re-
sponsible for the tricolouring spin liquid along the XXZ
line for Jz < Jx, away from the Ising limit.

Here an interesting similarity appears with
the quantum model. There are indeed strong
indications27,49,50,60–62 that the ground-state of the
XXZ model for quantum spins S = 1/2 supports a
quantum spin liquid, and that this quantum spin liquid
remains in the same phase for the entire range of positive
values of Jx and Jz (D = 0). Our present work cannot
explain this quantum phenomenon, but it brings a clas-
sical intuition. Along the XXZ line with Jx, Jz > 0, the
two lowest eigenvalues are always λE,z and λE,AF = λA.
They cross at the Heisenberg antiferromagnetic point
(Jx = Jz), but the EAF ⊕ A irreps are responsible
for a (tricolouring) classical extensive degeneracy over
the entire range of parameters. This is because they
correspond to the lowest eigenvalue for Jz < Jx (towards
the XY limit), and they co-exist with the non-normalised
Ez irrep for Jx < Jz (towards the Ising limit).
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D = −
√

3/2 D = −0.4 D = 0 D =
√

3/2

FIG. 7. Regions of the XYZDM parameter space (Jx, Jy) where the lowest eigenvalue λI0 corresponds to a given irrep I0 ∈ {A1
(blue), A2⊥ (red), A2z (green), Emin (beige), Ez (white)}. The top and bottom panels correspond to Jz = 1 and Jz = −0.5
respectively. The values of D are given at the top of the figure. For these values of Jz, the Ez and A2z regions appear as
ground-states of the XYZDM model for |D| <

√
3/2. The Jx = Jy line acts as a mirror in parameter space [section V A].

V. THE GENERIC XYZDM MODEL

In this section, the constraint (63) is relaxed, giving
rise to the XYZDM Hamiltonian (23), which has been
diagonalised in Eq. (58). This model is described by four
independent coupling parameters {Jx, Jy, Jz, D}.

As opposed to the XXZDM model studied in section
IV, there is no in-plane O(2) invariance anymore. The
main consequences of this broken symmetry are double.

1. The eigenvalues of the A1 and A2⊥ irreps are not
degenerate [Eqs. (49,51)].

2. The EFM and EAF basis vectors are not eigen-
vectors of the coupling matrix Ĵ . The new eigen-
vectors correspond to Eα and Eβ , as defined in
Eq. (56), whose spins are not normalized. Further-
more, Eα and Eβ cannot be degenerate.

Properties (1) and (2) are linked; it is not possible to
have one without the other

λA1 6= λA2,⊥ ⇔ λE,mix 6= 0 ⇔ λEα 6= λEβ . (76)

For convenience let us define the eigenvalues

λEmin = min[λE,α, λE,β ]

= 1
2

(
λE,FM + λE,AF −

√
(λE,FM − λE,AF )2 + λ2

E,mix

)
λEmax = max[λE,α, λE,β ]

= 1
2

(
λE,FM + λE,AF +

√
(λE,FM − λE,AF )2 + λ2

E,mix

)
(77)

of the corresponding Emin and Emax irreps.

The additional ground-states permitted by the extra
degree of freedom, Jx 6= Jy, comes from the newly
possible combinations of irreps that were absent in the
XXZDM model. One should be cautious though that not
all combinations of irreps represent a possible ground-
state of the XYZDM model. A given combination of
irrep means degeneracy between their eigenvalues, which
implies constraint(s) on the parameters {Jx, Jy, Jz, D}.
Within this constrained parameter region, one needs to
check if the degenerate combination of irreps possesses
the lowest eigenvalue λ [Eqs. (49,50,51,55,59,60)]. As il-
lustrated in Fig. 7, and discussed in detail in the present
section V, this is true for a broad diversity of unexplored
phases.
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A. Symmetry between A1 and A2⊥

In the three-dimensional parameter space(
Jx
D
,
Jy
D
,
Jz
D

)
, the two-dimensional subspace defined by

Jx = Jy is a mirror symmetry in the thermodynamic
properties of the XYZDM model. Indeed, Eqs. (49-55)
and (57) respect the following invariance

A1 ↔ A2⊥

Jx ↔ Jy

φ↔ −φ

(78)

It means that all results obtained for the A1 irrep are
directly applicable to A2⊥, and vice-versa.

B. Intrinsic chiral asymmetry

The vector chirality for a triangle is given by80,81

κ = 2
3
√

3
(S0 × S1 + S1 × S2 + S2 × S0) . (79)

The z component of the vector chirality, κz, is the con-
jugate variable of the Dzyaloshinskii-Moriya parameter
D of Eq. (22). Hence, κz takes a saturated value for
the ground-states induced by Dzyaloshinskii-Moriya in-
teractions59, namely the A1, A2⊥ (κz = −1) and EAF
(κz = +1) states [Fig. 4].

The XXZDM model (Jx = Jy) is symmetric under
sign reversal of D; it means that the contributions of
the EAF and A = A1 ⊕ A2⊥ are exchanged in the spin
configurations of Eq. (36) when D → −D.

In the XYZDM model on the other hand (Jx 6= Jy),
the DM-reversal symmetry is broken. For large positive
D, the A1 and A2⊥ states are respectively favoured by
positive Jx and Jy, with global Z2 degeneracy. This
means that the two basis vectors with negative chirality
(κz = −1) can be differentiated energetically. On
the other hand, the EAF irrep with positive chirality
(κz = +1) becomes mixed with the non-chiral EFM irrep
into states which are not normalised anymore [Eq. (56)].
The fate of the XYZDM model is thus particularly
asymmetric between positive and negative values of DM
interactions.

This intrinsic asymmetry between positive and nega-
tive chirality comes from the fact that any transformation
of the C3v group given in Eq. (8) is at the same time a
permutation of the sites within a triangle, and a rotation
of the spin orientations. Let us consider Fig. 4.

• For the A1 and A2⊥ states, a clockwise permutation
of the sites comes with a clockwise rotation of the
spin orientations. Any state with negative chirality
κz = −1 is left invariant under a C3 transformation,
and a uni-dimensional irrep is sufficient to ensure
invariance.

• For the EAF states, a clockwise permutation of the
sites comes with a counterclockwise rotation of the
spin orientations; any state with positive chirality
κz = +1 is modified under a C3 transformation,
and a two-dimensional subspace becomes necessary
to recover invariance.

This chiral asymmetry is not unique to kagome though.
The physics of direct (D > 0) and indirect (D < 0)
Dzyaloshinskii-Moriya interactions on the pyrochlore an-
tiferromagnet are known to be qualitatively different,
both at zero and finite temperatures12,82–84 [Fig. 15].
In analogy with kagome, direct DM interactions on
pyrochlore are known to favour the all-in all-out or-
dered phase, which transforms according to the A2 uni-
dimensional irrep. As for indirect DM interactions, they
favour the so-called Γ5 configurations, which transforms
according to the E two-dimensional irrep.

A specificity of the kagome lattice is actually that
this chiral asymmetry disappears for a large portion of
coupling parameters, namely the XXZDM model when
Jx = Jy.

C. Long-range orders with only trivial
time-reversal symmetry

1. Ferromagnetism: A2z ⊕ Emin

The A2z states are incompatible with the Eα or Eβ
states. This is because the ferromagnetic A2z contribu-
tion provides the same Szi=0,1,2 = Sz component to the
three spins in the triangle. Since spin normalization im-
poses

|S⊥i | =
√

1− (Sz)2, ∀i = 0, 1, 2 , (80)

the three in-plane spin components S⊥i=1,3 have to be
of the same norm. This is not possible for the non-
normalized Emin basis vectors [section III D]. The only
solution is Sz = ±1. At the frontiers in the phase dia-
gram where λA2z = λEmin , out-of-plane ferromagnetism
(A2z order) is energetically favoured.

2. Vector chirality: A1 or A2⊥ (⊕Ez)

In addition to the out-of-plane ferromagnetic A2z or-
der, new ordered phases with global Z2 degeneracy ap-
pear in the XYZDM model. They correspond to either
A1 or A2⊥ order and carry a saturated vector chirality
κ. These phases are ground-states of a large portion of
the phase diagram, as illustrated in Fig. 7.
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Furthermore, the A1 or A2⊥ states are incompatible
with the Ez states. If a spin configuration is a linear
combination of the Ez and either the A1 or the A2⊥ ba-
sis vectors [Eq. (36)], then imposing normalisation of all
spins makes the Ez contribution null. It means that the
A1 or A2⊥ orders persist up to, and including, the fron-
tiers with Ez.

D. Scalar-chiral order with global O(2) invariance:
(A1 or A2⊥)⊕A2z

At the frontiers between the ferromagnetic A2z states
and one of the other uni-dimensional irreps, A1 or A2⊥,
the ground-states are obtained by erasing all the other
order parameters, resulting in

m2
A2z

+m2
I = 1, (81)

with I = {A1, A2⊥}. Such ground-state manifold has a
O(2) degeneracy, parametrized by υ

mA2z = cos υ

mI = sin υ
. (82)

Injecting these solutions into Eq.(36) leads to the follow-
ing normalized spin configurations with long-range q = 0
order and finite scalar chirality

A1 ⊕A2z


S0 =

(
1
2 sin υ,

√
3

2 sin υ, cos υ
)

S1 =
(

1
2 sin υ,−

√
3

2 sin υ, cos υ
)

S2 = (− sin υ, 0, cos υ)

(83)

A2⊥ ⊕A2z


S0 =

(
−
√

3
2 sin υ, 1

2 sin υ, cos υ
)

S1 =
(√

3
2 sin υ, 1

2 sin υ, cos υ
)

S2 = (0,− sin υ, cos υ)

(84)

E. Stripe order with local Z8 degeneracy:
(A1 or A2⊥)⊕ Emin

The Emin irrep corresponds to non-normalized spin
configurations [Eqs. (56), (77)]. However, when com-
bined with another irrep, it is a priori possible for a linear
combinations of the two to respect the condition |Si|2 = 1
for all spins i. The goal of this section is to prove this
possibility for the A1 and A2⊥ irreps. While we will use
A2⊥ as an example, all arguments also directly apply to
A1 [section V A]. In section V E 4, we will briefly discuss
what happens at the frontier with out-of-plane ferromag-
netism (A2z irrep).

1. Spin configurations

In this section, we consider Hamiltonians where the
ground-states are linear combinations of the A2⊥ and
Emin spin configurations, i.e.

λA2⊥ = λEmin < λI∈{A1,A2z,Ez,Emax} (85)
⇒mI∈{A1,A2z,Ez,Emax} = 0. (86)

According to Eq.(56),

mE,max = 0⇒mE,AF = η mE,FM , (87)

with η =


− tanφ if Emin = Eα

+ cotφ if Emin = Eβ

where η is function of φ and thus depends on the cou-
pling parameters {Jx, Jy, Jz, D} of the Hamiltonian. In
practice, the values of these parameters are constrained
by Eq. (85). But since φ ∈ [−π4 : π

4 ] [Eq. (57)], η can
a priori take any real values. This is why we will first
consider the general case, −∞ < η < ∞. Then we will
analyse the range of possible ground-states as a function
of η, and calculate what are the corresponding parame-
ters {Jx, Jy, Jz, D} that respect the condition (85).

Using Eqs.(86) and (87), we are left with three vari-
ables mA2⊥ , mx

E,FM and my
E,FM which completely de-

termine the spin configurations, as given in Eqs. (45-47).
Imposing the unit-length constraint gives a set of three
non-linear equations with three unknown variables. Solv-
ing this set of equations gives the values of mA2⊥ , mx

E,FM

FIG. 8. Ground states for an arbitrary value of coupling
parameters sitting at the frontier between A2⊥ and Emin;
0 < Jx = −Jy3 , D = 0, Jy/2 < Jz < −Jy which corre-
sponds to η = −0.5. See Eqs. (89-92) for the spin config-
urations. The two states on the bottom right correspond to
A2⊥. Each of the A2⊥ states can be “paired” with three other
states, having one spin in common with the same orientation;
see for example the violet spin of the two colored triangles.
On the other hand, none of the six other states can be paired
together. Hence, the Z8 degeneracy is divisible between two
exclusive groups of four states, centred around each of the
A2⊥ states.
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and my
E,FM , and thus the ensemble of ground-states.

Since mA2z = 0 = |mEz |, we know that Szi = 0, and can

restrict the spin configurations to in-plane components

Υ = {Sx0 , S
y
0 , S

x
1 , S

y
1 , S

x
2 , S

y
2}. (88)

At the level of a triangle, the ground-state between A2⊥
and Emin is 8-fold degenerate

Υ±1 = ±(−
√

3 η (2 + η)
2(1 + η + η2) ,

2 + 2η − η2

2(1 + η + η2) , +
√

3 η (2 + η)
2(1 + η + η2) ,

2 + 2η − η2

2(1 + η + η2) , 0, 1 ) (89)

Υ±2 = ±( +
√

3 (1 + 2η)
2(1 + η + η2) ,

1− 2η − 2η2

2(1 + η + η2) ,
√

3
2 ,

1
2 ,+

√
3 (1− η2)

2(1 + η + η2) ,
1 + 4η + η2

2(1 + η + η2) ) (90)

Υ±3 = ±(−
√

3
2 ,

1
2 , −

√
3 (1 + 2η)

2(1 + η + η2) ,
1− 2η − 2η2

2(1 + η + η2) ,−
√

3 (1− η2)
2(1 + η + η2) ,

1 + 4η + η2

2(1 + η + η2) ) (91)

Υ±4 = ±(−
√

3
2 ,

1
2 ,

√
3

2 ,
1
2 , 0,−1 ) (92)

Equivalently, the ground-state degeneracy is also 8-fold
at the frontier between A1 and Emin

Υ′±1 = ±(−2 + 2η + η2

2(1− η + η2) ,
−
√

3 η (−2 + η)
2(1− η + η2) ,

−2 + 2η + η2

2(1− η + η2) ,
√

3 η (−2 + η)
2(1− η + η2) , − 1, 0 ) (93)

Υ′±2 = ±(−(1 + 2η − 2η2)
2(1− η + η2) ,

√
3 (1− 2η)

2(1− η + η2) , −1
2 ,
√

3
2 ,
−(1− 4η + η2)
2(1− η + η2) ,

√
3 (1− η2)

2(1− η + η2) ) (94)

Υ′±3 = ±(− 1
2 ,−
√

3
2 ,

−(1 + 2η − 2η2)
2(1− η + η2) ,

√
3 (−1 + 2η)

2(1− η + η2) ,
−(1− 4η + η2)
2(1− η + η2) ,

−
√

3 (1− η2)
2(1− η + η2) ) (95)

Υ′±4 = ±(1
2 ,
√

3
2 ,

1
2 ,−
√

3
2 , − 1, 0 ) (96)

This is by itself a noticeable result. Indeed, we have
here an extended region of parameters, at the frontier
between the Emin and A2⊥ (or equiv. A1) irreps [Fig. 7],
with a local eight-fold degeneracy. This discreteness is
neither due to single-ion anisotropy, nor a symmetry-
breaking magnetic field, nor the quantization of spins. It
emerges naturally from a time-reversal invariant Hamil-
tonian with classical O(3) spins. For such models, a two-
fold degeneracy is commonly induced by time-reversal
symmetry. The degeneracy can be enhanced by the
lattice symmetry: for example four-fold or six-fold for
square or cubic lattices respectively. On kagome, the
natural expectation would have been Z6 = Z3⊗Z2. And
for higher symmetry ground-states, linear combinations
of multiple classical orders usually allow for a continuous
degree of freedom connecting the various ordered phases.

This is not the case here. The reason comes from the
non-normalized irrep Emin ∈ {Eα, Eβ} which (i) pre-
vents the continuous connection between multiple orders,
on the basis that some of the orders are not physical while
(ii) nonetheless allowing for a discrete number of physical
linear combinations, i.e. with normalized spins. These
additional states respect the “natural” Z6 kagome sym-
metry. Once added to the pre-existing A1 states, we get
the Z8 degeneracy.

2. Stripe order

Fig. 8 provides a visual representation of the Z8
ground-states for an arbitrary value of coupling param-
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A
B
A
B
A
B
A
B
A
B
A
B

FIG. 9. Example of a stripe order emerging on the frontier
between Emin and A2⊥ irreps. The magenta and cyan tri-
angles correspond, for example, to the two coloured states of
Fig. 8. Spins on the “B” lines are long-range ordered all over
the lattice. As for spins on the “A” lines, they are long-range
ordered in one direction (horizontal) but disordered in the
other direction (vertical) where they can randomly take one
out of two possible orientations. By symmetry, the stripes
can also be diagonal.

eters at the frontier between A2⊥ and Emin. Even if
the ground-state is eight-fold degenerate, each sublattice
(red, blue or violet spins) only has six possible spin ori-
entations. Each of the spin orientations of a A2⊥ state is
also present in one of the other six states, creating pairs
of states [Fig. 8]. The consequence of this pairing is a
sub-extensive ground-state entropy, as explained below.

Imagine a horizontal line of A2⊥ states on the kagome
lattice, such as the bottom line of magenta triangles of
Fig. 9. The pairing allows for the line of triangles just
above to be one of two kinds: either the same A2⊥ state,
or the paired state sharing the same spin; see e.g. the
two coloured triangles in Fig. 8. Repeating the procedure
gives rise to a stripe order, where each stripe can be of
arbitrary width [Fig. 9]. By choosing another pair of
states in Fig. 8, the stripes can be made diagonal. It is
not possible to terminate a stripe in the bulk, because the
non-A2⊥ states are paired with one, and only one, other
state. The resulting degeneracy of this ground-state
is ∼ 2L for a system of open boundaries and linear size L.

Since the ground-state configurations are not linked by
an exact symmetry of the Hamiltonian, thermal fluctu-
ations may lift the degeneracy between them at finite
temperature, via an order-by-disorder mechanism.

3. Crossing stripes for high-symmetry Hamiltonians

Along the frontier between Emin and (A1 or A2⊥),
η varies continuously [Eq. (87)], allowing for a smooth
deformation of the ground-state configurations given in

FIG. 10. Example of a configuration with crossing stripes, a
possible ground-state for the parameters given in Eqs.(98) and
(99). Each color corresponds to one of the eight degenerate
ground-states of Fig. 11. The grey lines are a guide to the eye
for the position of the stripes. For each of the eight colours,
the three edges of the triangle are covered by stripes in a
different way.

Eqs. (89-92) and (93-96). For example in the cyan tri-
angle of Fig. 8, the orientation of the red and blue spins
rotates in the kagome plane when varying η, while the vi-
olet spin remains fixed. It means that for specific values
of η, these rotating spins can overlap with each other.
This overlap provides more possibilities to connect the
triangles next to each other on the kagome lattice, and
thus a higher entropy. There are four specific values of
η with such high symmetry, two at the frontier with A1,
and another two at the frontier with A2⊥.

η∗ = ±
(

2−
√

3
)±1

(97)

The opposite values of η comes from the symmetry be-
tween A1 and A2⊥ [section V A]. When combined with
the symmetry between Eα and Eβ [Eq. (87)], one gets the
reciprocal values of η∗ in Eq. (97). A word of caution,
though. Considering the spin configurations of Eqs. (89-
92) and (93-96), one can find other ensemble of states of
high symmetry, corresponding to other values of η. The
corresponding values of {Jx, Jy, Jz, D}, however, do not
satisfy the constraint of Eq. (85) and the spin configura-
tions do not correspond to ground-state configurations.

The spin configurations for the different values of η∗
are given in Fig. 11. These configurations are ground-
states of the XYZDM model for the following range of
parameters



Jx = −2−
√

3
2 +
√

3
Jy

D = −(2−
√

3)Jy

− 2|Jy|
2 +
√

3
< Jz <

4|Jy|
2 +
√

3

(98)
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Jx = −2−
√

3
2 +
√

3
Jy D = −(2−

√
3)Jy − 2|Jy|

2 +
√

3
< Jz <

4|Jy|
2 +
√

3

a) Ground states at the frontier between A2⊥ and Eα (Jy < 0⇒ η =
√

3− 2)

b) Ground states at the frontier between A1 and Eβ (Jy > 0⇒ η = 1
2−
√

3
)

Jy = −2−
√

3
2 +
√

3
Jx D = −(2−

√
3)Jx − 2|Jx|

2 +
√

3
< Jz <

4|Jx|
2 +
√

3

c) Ground states at the frontier between A2⊥ and Eβ (Jx > 0⇒ η = 1√
3− 2

)

d) Ground states at the frontier between A1 and Eα (Jx < 0⇒ η = 2−
√

3)

FIG. 11. In the XYZDM model, when the Emin ∈ {Eα, Eβ} irrep meets one of the one-dimensional antiferromagnetic irreps,
A1 or A2⊥, there is a local Z8 degeneracy for each triangle [Fig. 8]. For special values of parameters on this frontier, there is
an enhancement of the symmetry, where every ground-state shares a common spin orientation with three other ground-states.
The four different sets of high-symmetry ground-states are displayed here, together with their parameter region. Injecting the
corresponding value of η in Eqs. (89-92) and (93-96) gives the expression of the spin configurations. The values of η are uniquely
determined by the coupling parameters {Jx, Jy, Jz, D} [Eqs.(57) and (87)]. The two states on the right correspond to either
A1 or A2⊥.



Jy = −2−
√

3
2 +
√

3
Jx

D = −(2−
√

3)Jx

− 2|Jx|
2 +
√

3
< Jz <

4|Jx|
2 +
√

3

(99)

For any given sublattice, there are only four possible
spin orientations, connected between each other by a π/2
rotation. Any of these four orientations are shared be-
tween two different states. In this regard, the A1 and
A2⊥ states are not particular anymore. Every ground-
state shares a common spin orientation with three other
ground-states. Hence, the stripe order of Fig. 9 remains
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(1)

(2)

(3)

(4)

(5)

FIG. 12. Five-step illustration on how to calculate the entropy
of the ensemble of crossing-stripe configurations. For the sake
of clarity, the size of the lattice on step (5) is Lx = 16 and
Ly = 2, which gives N∆ = LxLy = 32 triangles.

a possible paving of the lattice. But in addition, diago-
nal stripes can now co-exist, because crossing triangles
between two or three stripes do not cost any energy
[Fig. 10]; they can be introduced while keeping all tri-
angles within the 8-fold degenerate set of ground-states.

Even if it is not as straightforward as for the simple
stripe order of Fig. 9, the number of configurations Ωcs
in the crossing-stripe ground-state remains exactly count-
able. Let us consider a kagome lattice whose borders have
a tetragonal shape [as represented in Figs. 9 and Fig. 10
for example] and open-boundary conditions. There are
Lx triangles in the horizontal direction and Ly lines of tri-
angles in the vertical direction [Fig. 12]. Please note that
our choice to consider a tetragonal shape of the kagome
lattice differentiates Lx from Ly. The counting argument
goes as follows [Fig. 12]:

• step (1): Once the first triangle is chosen among
the 8 possible ground-states, there are 2 possible
choices for each of the remaining triangles on the
line: ω1 = 8× 2Lx−1 = 4× 2Lx .

• step (2): For any spin configuration of the bottom
line of triangles, a simple exhaustive counting of
possibilities shows that there are always 2 possible
choices to add the above three triangles. This can
be understood as follows. With the orientation of
the bottom spins fixed, there are 2×2 = 4 possibili-
ties for the two triangles just above the bottom line;
to connect these two triangles via the top central
triangle eliminates 2 choices, which leaves: ω2 = 2.

• step (3): The addition of the next two triangles is
uniquely determined: ω3 = 1.

• step (4): By repeating step (3) until (almost) the
end of the line, one gets: ω4 = 1.

• step (5): The last remaining triangle is only con-
strained by one spin, which always leads to 2 pos-
sible choices: ω5 = 2.

Repeating steps (2-5) for each additional line of trian-
gles in the vertical direction gives the overall number of
configurations

Ωcs =
(
4× 2Lx

)
4Ly−1 = 2Lx+2Ly , (100)

with a sub-extensive ground-state entropy. The same re-
sult can be obtained by counting how many stripes can
be made on the lattice [see the grey lines in Fig. 10]. This
is because for a given triangle, there are 8 possible ways
to place stripes (or not) around its three edges; it corre-
sponds to the Z8 degeneracy of the ground-states. This
proves that any configuration can be obtained from any
other configuration by adding a finite number of stripes
on the lattice.

4. At the frontier with out-of-plane ferromagnetism:
addition of the A2z irrep

As can be deduced from Eqs.(98) and (99), when

Jz = − 2|Jy|
2 +
√

3
or Jz = − 2|Jx|

2 +
√

3
, we reach models

whose ground-states are described by the Emin ⊕ A2z ⊕
(A1 or A2⊥) irreps. Since the A2z irrep carries out-of-
plane ferromagnetism, the consequences are relatively
straightforward.

In the ground-state, the in-plane spin components are
described by the Z8 degeneracy of Eqs. (89-92) and (93-
96), while the out-of-plane components take the same
value Szi=1,3 = Sz ∈ [−1 : +1], the ratio between the two
being given by normalization |S⊥i |2 + (Szi )2 = 1, ∀i =
0, 1, 2. For each triangle, the degeneracy is now Z8⊗
O(2).

F. Tricolour spin liquid
with local O(2)×Z2 invariance: Emin ⊕ Ez

1. Spin configurations

Let us turn our attention to what happens when the
Emin and Ez regions meet. Both irreps correspond to
states whose spins are not normalized in length. But
luckily, linear combinations of the two provide a manifold
of physical states with normalized spins. The procedure
is the same as what has been done so far. Using the
general expressions of the spins given in Eqs. (45-47), one
imposes that mI∈{A1,A2z,A2⊥,Emax} = 0 and |Si=0,1,2|2 =
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1. The spin configurations respecting these conditions

are as follows (where η has been defined in Eq. (87))

η > 0 : S0 =



(η + 2) cos(s)−
√

3η sin(s)
2(1 + η)

−
√

3η cos(s) + (η − 2) sin(s)
2(1 + η)

±
2√η
1 + η

sin
(
s+ π

6

)

 , S1 =



(η + 2) cos(s) +
√

3η sin(s)
2(1 + η)√

3η cos(s)− (η − 2) sin(s)
2(1 + η)

∓
2√η
1 + η

sin
(
s− π

6

)

 , S2 =


1− η
1 + η

cos(s)

sin(s)

±
−2√η
1 + η

cos(s)


(101)

η < 0 : S0 =



(η + 2) cos(s)−
√

3η sin(s)
2(1− η)

−
√

3η cos(s) + (η − 2) sin(s)
2(1− η)

±2
√
−η

1− η cos
(
s+ π

6

)

 , S1 =



(η + 2) cos(s) +
√

3η sin(s)
2(1− η)√

3η cos(s)− (η − 2) sin(s)
2(1− η)

∓2
√
−η

1− η cos
(
s− π

6

)

 , S2 =


cos(s)
1 + η

1− η sin(s)

±2
√
−η

1− η sin(s)


(102)

where s ∈ [0 : 2π] is a O(2) degree of freedom. For a
single triangle, the ground-state symmetry is O(2)×Z2.
While the original O(2) invariance of the XXZDM model
remains intrinsically broken, a “deformed” in-plane O(2)
invariance is recovered in the ground-state by allowing
variations of the Sz components. It is deformed because
the Sx and Sy components are equivalent only up to a
prefactor which is function of η; Sx and Sy form an ellip-
soid upon varying s. Since there is no coupling between
in-plane and out-of-plane components, the time-reversal
symmetry can be further applied to the Sz components
alone [see the ± terms in Eqs. (101), (102)], giving rise
to the additional Z2 degeneracy.

2. Long range order with stripes (η 6= ±1)

For any set of coupling parameters {Jx, Jy, Jz, D}
there corresponds a given value of η [Eqs. (57), (87)],
which gives the spin configurations of Eqs. (101) and
(102) for positive and negative η respectively. Let us
consider the spin S2 without loss of generality. Following
the same argument as in the previous sections, in order
to have two neighbouring triangles in a different ground-
state – i.e. something different from trivial q = 0 order –
one needs to find different ground-states sharing at least
one spin in common. As mentioned above, the in-plane
spin components form an ellipsoid Eη when varying s.

Since the function

ℵη : [0 : 2π] −→ Eη (103)

s 7−→


(

1−η
1+η cos(s), sin(s)

)
if η > 0(

cos(s), 1+η
1−η sin(s)

)
if η < 0

is bijective for η 6= ±1, it means it is not possible to use
the O(2) degeneracy to find two different states with at
least one spin in common. Before turning our attention
to the special cases η = ±1, we shall first consider the
other, Z2, degeneracy.

If all Szi=0,1,2 components are finite, then the ground-
state is uniquely defined. However, if one of them is zero
– e.g. Sz2 = 0 for s = ±π/2 and η > 0 – then the
Z2 degeneracy ensures two different states with one spin
in common, namely S2 = (0, 1, 0). It is not possible to
have two spins in common between different states in this
context.

What kind of degeneracy do we obtain ? Since s is
fixed, it means the in-plane spin components are long-
range ordered, described by a q = 0 wavevector. The S2
spin is actually fully ordered since its Sz component is
nil. As for Sz0 and Sz1 , they have Z2 degeneracy but as
soon as, say, a Sz0 component is chosen, its Sz1 neighbour
is fixed, and so on along a line of 0,1,0,1... nearest neigh-
bours. Since the neighbouring line 0,1,0,1... is separated
by a row of S2 spins, one gets the same kind of stripe or-
der as depicted in Fig. 9 but where the one-dimensional
disordered degree of freedom is the Sz component of the
0 and 1 sublattices. By choosing different values of s, e.g.
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{−π6 ,
5π
6 } or {π6 ,

7π
6 } for η > 0, the stripes can be made

diagonal.

3. Tricolour spin liquids (η = ±1)

For η = ±1, the function ℵη of Eq. (103) is not bijective
anymore, but remains surjective. The O(2) degeneracy
can now be exploited to allow more non-trivial tilings of
the lattice. The spin configurations become

Ψ±η=+1(s) =


S0 =


cos
(
−π6

)
cos
(
s+ π

6

)
sin
(
−π6

)
cos
(
s+ π

6

)
± sin

(
s+ π

6

)

 , S1 =


cos
(π

6

)
cos
(
s− π

6

)
sin
(π

6

)
cos
(
s− π

6

)
∓ sin

(
s− π

6

)

 , S2 =


0

sin(s)

∓ cos(s)




, (104)

Ψ±η=−1(s) =


S0 =


sin
(π

6

)
sin
(
s+ π

6

)
cos
(π

6

)
sin
(
s+ π

6

)
± cos

(
s+ π

6

)

 , S1 =


sin
(
−π6

)
sin
(
s− π

6

)
cos
(
−π6

)
sin
(
s− π

6

)
∓ cos

(
s− π

6

)

 , S2 =


cos(s)

0

± sin(s)




, (105)

as illustrated in Fig. 13. In order to determine how to
connect ground-state configurations next to each other
(via at least one spin in common), the idea is to

i. randomly choose a ground-state labeled ` and a sub-
lattice k = {0, 1, 2},

ii. flip the sign of the Sz components thanks to the Z2
degeneracy,

iii. use the O(2) degeneracy parametrised by s to recover
the same spin on sublattice k as in the ground-state `;
this transformation is unique and gives a new ground-
state `+ 1. Let us randomly choose a new sublattice
k′ 6= k,

η = +1 η = −1

FIG. 13. Projection (in green) of the ground-state configura-
tions in the kagome plane, at the frontier between Emin and
Ez, for η = ±1 [Eqs. (104) and (105)]. When expressed in
the local bases Bk=0,1,2 of Fig. 3, the O(2) invariance takes
the form of a circle in spin space which lies entirely in the lo-
cal (y, z)k=0,1,2 (η = +1, left) or (x, z)k=0,1,2 (η = −1, right)
planes

iv. repeat steps (ii) and (iii) until a closed set is obtained,
i.e. that further iterations reproduce only ground-
states of the set.

The above procedure gives the following sextets of spin
configurations [Ψ±±(s) has been defined in Eqs. (104,105)]

η = +1 :



Ψ±+1 (s) , Ψ∓+1 (π − s)

Ψ±+1

(
2π
3 + s

)
, Ψ∓+1

(
5π
3 − s

)
Ψ±+1

(
4π
3 + s

)
, Ψ∓+1

(
7π
3 − s

)


(106)

η = −1 :



Ψ±−1 (s) , Ψ∓−1 (−s)

Ψ±−1

(
2π
3 + s

)
, Ψ∓−1

(
2π
3 − s

)
Ψ±−1

(
4π
3 + s

)
, Ψ∓−1

(
4π
3 − s

)


(107)

for any value of s ∈ [0 : 2π/3[. There is no need to
consider further values of s since there is a 2π/3 period-
icity in the sextets. Remarkably, for each sextet, when
the spins on each sublattice k are expressed in the local
bases Bk=0,1,2 [Fig. 3], they correspond to only three dif-
ferent orientations. This means that each sextet can be
mapped onto a tricolouring of the triangle, as illustrated
in Fig. 14 for s = π. Such tricolouring paving is possible
on the kagome lattice and bears a countable and exten-
sive entropy85. It is known to describe the ground-state
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η = +1

η = −1

FIG. 14. Sextets of ground-states at the frontier between Emin and Ez for η = +1 (top) and η = −1 (bottom) [Eqs. (104) –
(107)]. Each spin orientation appears in two different ground-states. The paving of the kagome lattice by these six states is
equivalent to a tricolouring problem, and the spins have been coloured accordingly. Here s has been arbitrarily fixed to a value
of π.

of the XXZ [78], and equivalent XXZ± [52] Hamiltonians
[section IV B].

However, the tricolouring paving of the present
ground-state carries an additional property. Since the
spins are not coplanar, it means that the ground-states
may carry a finite scalar chirality. Following the defini-
tion of Eq. (73), one obtains

κ
[
Ψ±+1(s)

]
= ∓3

√
3

8 cos(3s) (108)

κ
[
Ψ±−1(s)

]
= ∓3

√
3

8 sin(3s) (109)

One can easily check that all ground-states belonging
to a given sextet carry the same scalar chirality. This
means that the models at the frontier between the Ez
and Emin irreps for η = ±1 possess an extensively degen-
erate ground-state with a uniform scalar chirality; this is
the classical analogue of a chiral spin liquid.

Please note that in general, for a given tricolour
problem on kagome, if each colour were to correspond
to the same spin orientation expressed in a global frame,
then it is not possible to get a finite scalar chirality
after statistical average. The intrinsic property of a
tricolouring problem is that, for each triangle, permut-
ing any pair of spins remains a valid configuration.
Since this permutation reverses the sign of the scalar
chirality, averaging over the ensemble of tricolour states
necessarily gives zero scalar chirality. Hence a necessary,
but not sufficient, condition for chiral tricolour spin
liquids is for the colouring to correspond to the same
spin orientations in different local frames.

To conclude this section, one needs to provide the
Hamiltonians – i.e. the values of {Jx, Jy, Jz, D} – sup-
porting such classical chiral spin liquids as their ground-

states. Using Eqs.(57) and (87) for η = ±1, one obtains
D =

√
3

2 (Jx + Jy)

Jz = 1
2 (−3Jx − Jy)

Jx < Jy < − 5
7Jx

(110)


D =

√
3

2 (Jx + Jy)

Jz = 1
2 (−3Jy − Jx)

Jy < Jx < − 5
7Jy

(111)

When Jx = Jy < 0, one recovers a special point of the
XXZDM model, equivalent of the Heisenberg antiferro-
magnet, where the EFM , EAF and Ez states are all de-
generate in the ground-state (see Table II). On the other
hand, when Jy = − 5

7Jx > 0 or Jx = − 5
7Jy > 0, the Emin

and Ez irreps meet respectively the A1 and A2⊥ irreps
in the ground-state. Such models are expected to pos-
sess a very high degeneracy at zero temperature, but the
exact, and complete, determination of their ground-state
manifolds becomes challenging.

VI. COMPARISON BETWEEN
KAGOME & PYROCHLORE

When compared to pyrochlores, the emergence of
states with non-normalised spins is rather remarkable.
When the lowest eigenvalue

λmin = min{λA1 , λA2,z, λA2,⊥, λE,α, λE,β , λE,z} (112)
is not degenerate and corresponds to Eα, Eβ or Ez, the
ground-state necessarily includes different kinds of mag-
netic order. In other words more than one order param-
eter, as defined in Eqs. (38-43), is non zero.
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(a) (b)
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J±±/Jzz

(d) Apyro
2 (e) Epyro (f) T pyro

2 (g) T pyro
1,pl (h) T pyro

1,ice

FIG. 15. (a) Pyrochlore lattice whose minimal unit cell is a tetrahedron, made of four sublattices. Each sublattice possesses
an easy axis connecting the centre of the two neighbouring tetrahedra. The spin component along this easy axis is noted Sz.
(b, c) Ground states of Hamiltonian (113) for classical Heisenberg spins assuming a negative (b) and positive (c) value of Jzz.
Panel (b) is derived from the results of Ref. [12], together with the irrep decomposition illustrated in panels (d− h). Panel (c)
has been obtained in Ref. [86], while semi-classical and quantum mean field versions thereof were derived in Refs. [71,87] and
Ref. [88] respectively. (d) “all in all out” states transforming like the Apyro

2 irrep. (e) Γ5 states89 transforming like the Epyro

irrep. (f) Palmer-Chalker states90 transforming like the T pyro
2 irrep. (g) Canted, easy plane, ferromagnetic states transforming

like the T pyro
1 irrep. We label the basis vector corresponding to this state as T pyro

1pl . (h) Spin-ice state, with two spins pointing
inside and two pointing outside the tetrahedron, which transforms like the T pyro

1 irrep. We label the basis vector corresponding
to this state as T pyro

1ice . Spins configurations in panels (d,h) and (e,g,h) lie respectively along their local easy axes and within
their local easy planes. All results in this figure can be found in Refs. [12, 56, 71, 86, and 87].

A similar irrep decomposition to the one done in this
paper has been made on the pyrochlore lattice12 for the
generic nearest-neighbour Hamiltonian3 [Fig. 15]. In py-
rochlores, all irreps correspond to configurations with
normalised spins. Unless the lowest eigenvalue λmin is
degenerate, there is no co-existence of magnetic order in
the classical ground-state. This is a strong qualitative
difference between two of the most studied lattices in
frustrated magnetism.

One should understand that the presence of the Eα,β,z
irreps on kagome is not an artefact of the method. For
both kagome and pyrochlore, the Hamiltonians have
been derived solely based on the symmetries of the
lattice, and then diagonalised for the minimal unit cell.
The resulting eigenbasis corresponds to physical spin
configurations on pyrochlore, while on kagome it does
not. This can be intuitively rationalised as follows,
where the irreps and basis vectors will be labeled by
“pyro” or “kag” for clarity.

The pyrochlore lattice possesses a cubic symmetry

which means that the x, y and z axes are equivalent.
However, for each sublattice, there is a given easy
axis which defines a local Sz components [Fig. 15 and
Appendix A]. This easy axis on pyrochlore plays a role
similar to the global z-axis on kagome. For example the
“ferromagnetic” state where Sz = 1 for all spins trans-
forms like the A2 irrep on both lattices12. It corresponds
to the “all in all out” state on pyrochlore [Fig. 15.(d)].
One needs to keep in mind that for pyrochlore, Sz is
defined in a local frame; a ferromagnetic state expressed
in the local frame is actually antiferromagnetic in
the global one. On kagome (resp. pyrochlore), the
only other basis vector with Sz components is Ekagz

(resp. T pyro
1ice , see Fig. 15.(h)). These basis vectors are

“antiferromagnetic” in the sense that
∑
i S

z
i = 0. This

is a necessity because the “ferromagnetic” contribution
has already been accounted for in the A2 basis vectors.
Hence, the non-normalised spins of Ekagz comes from
the trivial fact that the sum of three Ising degrees of
freedom cannot be zero. This is of course possible for
four spins on a tetrahedron, which is why all spins in
the T pyro

1,ice basis vector are normalised.
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Here we have an interesting analogy between the Ekagz

phase on kagome and the spin-ice physics supported by
the T pyro

1,ice irrep. The analogy can be made quantitative
when applied to a special case of the generic nearest-
neighbour Hamiltonian on pyrochlore3,4,71,87,88,91

HQSI =
∑
〈ij〉

Jzz S
z
i S

z
j − J±

(
S+
i S
−
j + S−i S

+
j

)
+ J±±

[
γijS

+
i S

+
j + γ∗ijS

−
i S
−
j

]
, (113)

where the classical Heisenberg spins are expressed in their
local frames, with S± = Sx ± ıSy, and γij are com-
plex phase factors; see Appendix A for the definitions of
the local frames and γij . The classical ground-states of
Hamiltonian (113) are known12,56,71,86,87 and reproduced
in Fig. 15.(b, c). This phase diagram on pyrochlore dis-
plays the same form as the XXZDM model on kagome
[Fig. 5.(c)], by replacing J±± with the Dzyaloshinskii-
Moriya coupling D. On their respective models, the
T pyro

1,ice and Ekagz irreps have minimal eigenvalue over a tri-
angular region, surrounded by three long-range ordered
phases whose spins lie in their easy- or kagome planes.
For Jzz negative, the same description holds with the
A2 irreps sitting in the middle. One difference though is
that on kagome, the three surrounding “in-plane” irreps
are two dimensional, while on pyrochlore they are either
two-dimensional (Epyro) or three-dimensional (T pyro

2 and
T pyro

1,pl ). It means that the three-fold symmetry of the
phase diagram on kagome [see Eq. (75) and Ref. [52]] is
only two-fold on pyrochlore

J±± ←→ −J±± & T pyro
2 ←→ T pyro

1,pl . (114)

with an isosceles, rather than equilateral, triangular re-
gion in the middle of the phase diagrams of Fig. 15.(b, c).

From this point of view, the Ising antiferromagnet,
residing at the centre of the Ekagz white triangle of
Fig. 5.(c), is the kagome analogue of spin ice. The rea-
son why the physics of these two models is qualitatively
different largely stems from the non-normalised spins in
the Ekagz irrep. The analogies, and differences, between
the Ekagz and T pyro

1,ice irreps are a vivid illustration of what
happens between the kagome and pyrochlore lattices on
a broader scale.

Indeed, our kagome/pyrochlore comparison has so
far been restricted to the XXZDM model and the
Hamiltonian of Eq. (113). As discussed in this paper,
the kagome symmetry allows for the XXZDM model
to lose its in-plane O(2) invariance and to become the
XYZDM model. An important consequence is that the
Hamiltonian diagonalisation then requires the mixing of
the Ekag

FM and Ekag
AF irreps into the non-normalised Ekag

α

and Ekag
β eigenstates [Eq. (56)]. Similarly, the pyrochlore

symmetry allows for a more generic Hamiltonian than
the one of Eq. (113) [3]. In pyrochlore, the additional

interaction takes the form of a coupling between the
easy-plane and easy-axis spin components, Jz± [4].
This coupling also induces a mixing between the states
transforming according to the T pyro

1 irrep, namely T pyro
1,ice

and T pyro
1,pl . However, the resulting eigenvectors remain

physical in the sense that all spins are normalised [12].

On pyrochlore, the even and larger number of spins in
the minimal unit cell makes it easier (i) to accommodate
frustration and (ii) to support a variety of classical spin
liquids12,86,92–95 thanks to linear combination of ground-
state irreps. This propensity of the pyrochlore lattice
for spin liquids is consistent with the Moessner-Chalker
criterion for O(n) antiferromagnets93 [see Appendix B].

On kagome, the odd and smaller number of spins
in the minimal unit cell is responsible for extended re-
gions of parameter space where multiple types of order
have to co-exist in the ground-state. Disorder is not
necessarily less favoured on kagome, since the Mermin-
Wagner-Hohenberg theorem prevents finite-temperature
symmetry breaking for a variety of high-symmetry mod-
els with Goldstone modes. However, the presence of the
Eα, Eβ and Ez irreps induces exotic ordered and disor-
dered phases, as exemplified at the frontier of these re-
gions in section V.

Colloquially speaking, frustration on kagome is more
“pathological” than on pyrochlore.

VII. CONCLUSION

The generic nearest-neighbour Hamiltonian allowed
by the symmetry of the kagome lattice, where the
kagome plane is a mirror plane, is the XYZ model
with Dzyaloshinskii-Moriya interactions [Eqs. (21,23)],
described by four coupling parameters (Jx, Jy, Jz, D).
The XYZ interactions are properly defined in a set of
local bases [Fig. 3]; a simple XYZ Hamiltonian, where
the spins would be expressed in the same global basis, is
forbidden by kagome symmetry [Eqs. (18-20)]. As for the
Dzyaloshinskii-Moriya vector D, it points out of plane59.

Using a decomposition in irreducible representations,
the XYZDM Hamiltonian for classical Heisenberg spins
can be diagonalised for each triangle. It is quadratic in
terms of the order parameters [Eq. (58)], which allows
for a systematic determination of the ground-state for a
broad region of parameter space (Jx, Jy, Jz, D). The pic-
ture that emerges is a connected map of ordered phases
and classical spin liquids [Fig. 5 and Table II]. In partic-
ular, in the XXZ model with Dzyaloshinskii-Moriya, the
irrep decomposition sheds a new light on the mapping
between three different spin liquids observed in Ref. [52];
the spin-liquids ground-states are equivalent up to a per-
mutation of their irreps [Table II]. The EAF and A irreps
responsible for the tricolouring spin liquids persist in the
ground-state of the Ez region [section IV B 2]. This co-
existence of phases at the classical level might play a role
in the stability of the quantum spin liquid along the XXZ
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line for quantum sins S = 1/249,50,60.
The XYZDM model is “asymmetric” with respect to

spin chirality [section V B]. This enables to energeti-
cally differentiate the two states with negative chiral-
ity (κz = −1), namely A1 and A2⊥. At finite temper-
ature, this is expected to change the universality class of
the phase transition into these ordered states to Ising.
This chiral asymmetry also mixes the EAF states with
positive chirality (κz = +1) together with the in-plane
ferromagnetic states, EFM . This mixing produces new
forms of order and spin liquids. It is possible to sta-
bilise an 8-fold degenerate ground-state at the level of
each triangle [Eqs. (89-96), Figs. 8 and 11]. This local Z8
degeneracy leads to a global sub-extensive entropy and
paves the lattice to form stripe orders, with or without
crossings [Fig. 9 and 10]. In addition to sub-extensive
stripe order, there exists a range of coupling parameters
[Eqs. (110,111)] whose ground-state corresponds to a tri-
colouring of the kagome lattice [Fig. 14]. The colouring
corresponds to a different spin orientation depending on
the sublattice, which allows for this extensively degen-
erate ensemble of ground-states to bear a global finite
scalar chirality. In other words, this family of models
supports a classical (tricolour) chiral spin liquid.

To conclude, in section VI, we have compared the
generic models on two of the most studied frustrated lat-
tices: kagome & pyrochlore. Despite striking analogies
on their phase diagrams [see Figs. 5 and 15], the two
models differ on the qualitative nature of their irreps,
since eigenstates of the generic model always have nor-
malised spins on pyrochlore, but not on kagome – Eα, Eβ
and Ez irreps. As a consequence, kagome materials can
naturally support low-temperature phases with multiple
kinds of orders, even without quantum superposition of
states or formations of domains. Disordered magnetic
textures can also co-exist with long-range order, and
be responsible for persistent dynamics below ordering
transitions.

In this paper, we have provided a detailed exploration
of exact results for the generic kagome model with clas-
sical Heisenberg spins. We believe this opens several
directions of investigation. For example, we have not
looked in detail inside the pathological Eα, Eβ and Ez
irreps, nor have we studied the more generic Hamilto-
nian where kagome plane symmetry is broken [Eqs. (12)
- (14)]. These regions and Hamiltonians very probably
hide a richness of exotic phases and unconventional dy-
namics, where co-existence between order and disorder
might be the norm rather than the exception.

Such co-existence is reminiscent of the partial order
observed in Vesignieite96 and purified Edwardsite97 com-
pounds. While lattice distortion has been suggested
to be the source of partial order in the latter mate-
rial, nearest-neighbour anisotropic coupling – via in-
plane Dy Dzyaloshinskii-Moriya interactions – might be
responsible for the observed competition between or-

der and disorder in Vesignieite43,96,98. The two-step or-
dering observed in Vesignieite98 would also be consis-
tent with the co-existence of different kinds of order.
More generally, rare-earth-based materials such as tripod
kagome34–37 offer the strong spin-orbit coupling neces-
sary for highly anisotropic interactions. For comparison
to experiments, a study of the finite-temperature prop-
erties of the generic XYZDM model would be helpful.
The melting of three-sublattice order is for example a
famously complex mechanism99. In light of the diverse
regions of (sub-)extensive degeneracy, order-by-disorder,
multi-step ordering and Berezinsky-Kosterlitz-Thouless
transitions are to be expected.

And of course, a large portion of the parameter space
forming the XYZDM model is an unexplored territory
with quantum spins. The anisotropy of the XYZDM
model is a perfect ingredient for the emergence of chi-
ral phases, and the known results for the XXZ quantum
spin liquids penetrating the Ez region27,49,50,60–62 makes
it exciting to study how quantum fluctuations will mix
states that are already co-existing at the classical level79.

On a more academic level, the comparison between
the kagome and pyrochlore lattices raises the question of
what happens for the equivalent lattice in four dimen-
sions, made of corner-sharing pentachorons – the four-
dimensional analogues of tetrahedra in 3D and triangles
in 2D. In this case, the odd number of spins in the mini-
mal unit cell (q = 5) comes together with a high number
of degrees of freedom to support the stability of disor-
dered phases in the ground-states.
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Appendix A: Definitions of local coordinate frames
for the pyrochlore lattice

With respect to the global cubic coordinate frame, the
positions of the four spins in a tetrahedron S0, S1, S2,
S3 are

r0 = (1, 1, 1) r1 = (1,−1,−1)
r2 = (−1, 1,−1) r3 = (−1,−1, 1) . (A1)

For each sublattice, the local easy axes are

zlocal
0 = 1√

3
(1, 1, 1) zlocal

1 = 1√
3

(1,−1,−1)

zlocal
2 = 1√

3
(−1, 1,−1) zlocal

3 = 1√
3

(−1,−1, 1) ,

(A2)
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while the easy planes are defined by the local x− and
y−axes.

xlocal
0 = 1√

6
(−2, 1, 1) xlocal

1 = 1√
6

(−2,−1,−1)

xlocal
2 = 1√

6
(2, 1,−1) xlocal

3 = 1√
6

(2,−1, 1) ,

(A3)

ylocal
0 = 1√

2
(0,−1, 1) ylocal

1 = 1√
2

(0, 1,−1)

ylocal
2 = 1√

2
(0,−1,−1) ylocal

3 = 1√
2

(0, 1, 1) .

(A4)

These local coordinate frames are responsible for com-
plex phase factors in the Hamiltonian of Eq. (113) [4 and
100], defined by a 4× 4 matrix

γ =



0 1 w w2

1 0 w2 w

w w2 0 1

w2 w 1 0


(A5)

where w = eı2π/3.

Appendix B: Moessner-Chalker criterion

The Moessner-Chalker criterion provides a measure
of frustration strength for a family of antiferromagnetic
O(n) models, using a Maxwell counting argument93. For
a corner-sharing lattice, made of N units (here triangles
or tetrahedra) containing q spins each, the number of
ground-state degrees of freedom is DM = N [q(n−1)/2−
n].

This criterion reproduces the extensive degeneracy of
the Heisenberg pyrochlore (q = 4, n = 3) and brings
the XY pyrochlore (q = 4, n = 2), Heisenberg hyper-
kagome (q = 3, n = 3) and Heisenberg kagome (q =
3, n = 3) to a marginal value, DM = 0 [93]. This
marginal value accounts for the fact that, despite an ex-
tensively degenerate ground-state, order-by-disorder in-
duces a finite-temperature transition in the two former
three-dimensional models22,101, while Mermin-Wagner-
Hohenberg theorem pushes this transition to zero tem-
perature in the two-dimensional Heisenberg kagome
antiferromagnet21–23.
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