
HAL Id: hal-01549642
https://inria.hal.science/hal-01549642

Submitted on 28 Jun 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

End-to-end optimization of goal-driven and visually
grounded dialogue systems Harm de Vries

Florian Strub, Harm de Vries, Jeremie Mary, Bilal Piot, Aaron Courville,
Olivier Pietquin

To cite this version:
Florian Strub, Harm de Vries, Jeremie Mary, Bilal Piot, Aaron Courville, et al.. End-to-end opti-
mization of goal-driven and visually grounded dialogue systems Harm de Vries. International Joint
Conference on Artificial Intelligence, Aug 2017, Melbourne, Australia. �hal-01549642�

https://inria.hal.science/hal-01549642
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

End-to-end optimization of goal-driven and visually grounded dialogue systems

Florian Strub
florian.strub@inria.fr

Univ. Lille, CNRS, Centrale Lille, Inria,

UMR 9189 - CRIStAL, F-59000 Lille, France

Harm de Vries
mail@harmdevries.com

University of Montreal

Jeremie Mary
jeremie.mary@univ-lille3.fr

Univ. Lille, CNRS, Centrale Lille, Inria,

UMR 9189 - CRIStAL, F-59000 Lille, France

Bilal Piot
piot@google.com

DeepMind

Aaron Courville
aaron.courville@gmail.com

University of Montreal

Olivier Pietquin
pietquin@google.com

DeepMind

Abstract
End-to-end design of dialogue systems has recently
become a popular research topic thanks to power-
ful tools such as encoder-decoder architectures for
sequence-to-sequence learning. Yet, most current
approaches cast human-machine dialogue manage-
ment as a supervised learning problem, aiming at
predicting the next utterance of a participant given
the full history of the dialogue. This vision is too
simplistic to render the intrinsic planning problem
inherent to dialogue as well as its grounded na-
ture, making the context of a dialogue larger than
the sole history. This is why only chit-chat and
question answering tasks have been addressed so
far using end-to-end architectures. In this paper, we
introduce a Deep Reinforcement Learning method
to optimize visually grounded task-oriented dia-
logues, based on the policy gradient algorithm.
This approach is tested on a dataset of 120k dia-
logues collected through Mechanical Turk and pro-
vides encouraging results at solving both the prob-
lem of generating natural dialogues and the task of
discovering a specific object in a complex picture.

1 Introduction
Ever since the formulation of the Turing Test, building sys-
tems that can meaningfully converse with humans has been
a long-standing goal of Artificial Intelligence (AI). Practi-
cal dialogue systems have to implement a management strat-
egy that defines the system’s behavior, for instance to de-
cide when to provide information or to ask for clarification
from the user. Although traditional approaches use linguis-
tically motivated rules [Weizenbaum, 1966], recent meth-
ods are data-driven and make use of Reinforcement Learn-
ing (RL) [Lemon and Pietquin, 2007]. Significant progress
in Natural Language Processing via Deep Neural Nets [Ben-
gio et al., 2003] made neural encoder-decoder architectures
a promising way to train conversational agents [Vinyals and
Le, 2015; Sordoni et al., 2015; Serban et al., 2016]. The

Figure 1: Two example games of the GuessWhat?! dataset.
The correct object is highlighted by a green mask.

main advantage of such end-to-end dialogue systems is that
they make no assumption about the application domain and
are simply trained in a supervised fashion from large text cor-
pora [Lowe et al., 2015].

However, there are many drawbacks to this approach. First,
encoder-decoder models cast the dialogue problem into one
of supervised learning, predicting the distribution over possi-
ble next utterances given the discourse so far. As with ma-
chine translation, this may result in inconsistent dialogues
and errors that can accumulate over time. This is especially
true because the action space of dialogue systems is vast,
and existing datasets cover only a small subset of all tra-
jectories, making it difficult to generalize to unseen scenar-
ios [Mooney, 2006]. Second, the supervised learning frame-
work does not account for the intrinsic planning problem that
underlies dialogue, i.e. the sequential decision making pro-
cess, which makes dialogue consistent over time. This is
especially true when engaging in a task-oriented dialogue.
As a consequence, reinforcement learning has been applied
to dialogue systems since the late 90s [Levin et al., 1997;
Singh et al., 1999] and dialogue optimization has been gener-
ally more studied than dialogue generation. Third, it doesn’t
naturally integrate external contexts (larger than the history of
the dialogue) that is most often used by dialogue participants
to interact. This context can be their physical environment,

ar
X

iv
:1

70
3.

05
42

3v
1

 [
cs

.C
L

]
 1

5
M

ar
 2

01
7

Figure 2: Oracle model.

a common task they try to achieve, a map on which they try
to find their way, a database they want to access etc. It is
part of the so called Common Ground, well studied in the dis-
course literature [Clark and Schaefer, 1989]. Over the last
decades, the field of cognitive psychology has also brought
empirical evidence that human representations are grounded
in perception and motor systems [Barsalou, 2008]. These the-
ories imply that a dialogue system should be grounded in a
multi-modal environment in order to obtain human-level lan-
guage understanding [Kiela et al., 2016]. Finally, evaluating
dialogues is difficult as there is not an automatic evaluation
metric that correlates well with human evaluations [Liu et al.,
2016a].

On the other hand, RL approaches could handle the plan-
ning and the non-differentiable metric problems but require
online learning (although batch learning is possible but dif-
ficult with low amounts of data [Pietquin et al., 2011]).
For that reason, user simulation has been proposed to ex-
plore dialogue strategies in a RL setting [Eckert et al., 1997;
Schatzmann et al., 2006; Pietquin and Hastie, 2013]. It also
requires the definition of an evaluation metric which is most
often related to task completion and user satisfaction [Walker
et al., 1997]. In addition, successful applications of the RL
framework to dialogue often rely on a predefined structure of
the task, such as slot-filling tasks [Williams and Young, 2007]
where the task can be casted as filling in a form.

In this paper, we present a global architecture for end-to-
end RL optimization of a task-oriented dialogue system and
its application to a multimodal task, grounding the dialogue
into a visual context. To do so, we start from a corpus of
150k human-human dialogues collected via the recently in-
troduced GuessWhat?! game [de Vries et al., 2016]. The
goal of the game is to locate an unknown object in a natural
picture by asking a series of questions. This task is hard since
it requires scene understanding and, more importantly, a di-
alogue strategy that leads to identify the object rapidly. Out
of these data, we first build a supervised agent and a neural
training environment. It serves to train a DeepRL agent on-
line which is able to solve the task. We then quantitatively
and qualitatively compare the performance of our system to a
supervised approach on the same task from a human baseline
perspective. In short, our contributions are:

Figure 3: Guesser model.

• to propose the first multimodal goal-directed dialogue
system optimized via Deep RL;
• to achieve 10% improvement on task completion over a

supervised learning baseline.

2 GuessWhat?! game
We briefly explain here the GuessWhat?! game that will serve
as a task for our dialogue system, but refer to [de Vries et al.,
2016] for more details regarding the task and the exact con-
tent of the dataset. It is composed of more than 150k human-
human dialogues in natural language collected through Me-
chanical Turk.

2.1 Rules
GuessWhat?! is a cooperative two-player game in which both
players see the picture of a rich visual scene with several ob-
jects. One player – the oracle – is randomly assigned an ob-
ject (which could be a person) in the scene. This object is not
known by the other player – the questioner – whose goal is to
locate the hidden object. To do so, the questioner can ask a
series of yes-no questions which are answered by the oracle
as shown in Fig 1. Note that the questioner is not aware of the
list of objects and can only see the whole picture. Once the
questioner has gathered enough evidence to locate the object,
he may choose to guess the object. The list of objects is re-
vealed, and if the questioner picks the right object, the game
is considered successful.

2.2 Notation
Before we proceed, we establish the GuessWhat?! nota-
tions that are used throughout the rest of this paper. A game
is defined by a tuple (I, D,O, o∗) where I ∈ RH×W is
a picture of height H and width W , D a dialogue with J
question-answer pairs D = (qj , aj)

J
j=1, O a list of K objects

O = (ok)
K
k=1 and o∗ the target object. Moreover, each ques-

tion qj = (wji)
Ij
i=1 is a sequence of length Ij with each token

wji taken from a predefined vocabulary V . The vocabulary
V is composed of a predefined list of words, a question tag
<?> that ends a question and a stop token <stop> that ends
a dialogue. An answer is restricted to be either yes, no or not
applicable i.e. aj ∈ {<yes>,<no>,<na>}. For each ob-
ject k, an object category ck ∈ {1, . . . , C} and a pixel-wise
segmentation mask Sk ∈ {0, 1}H×W are available. Finally,
to access subsets of a list, we use the following notations. If
l = (lji)

I,j
i=1 is a double-subscript list, then lj1:i = (ljp)

i,j
p=1 are

Figure 4: Question generation model.

the i first elements of the jth list if 1 ≤ i ≤ Ij , otherwise
lj1:p = ∅. Thus, for instance, wj1:i refers to the first i tokens
of the jth question and (q, a)1:j refers to the j first question-
answer pairs of a dialogue.

3 Training environment
From the GuessWhat?! dataset, we build a training environ-
ment that allows RL optimization of the questioner task by
creating models for the oracle and guesser tasks. We also
describe the supervised learning baseline to which we will
compare. This mainly reproduces baselines introduced in [de
Vries et al., 2016].

Question generation baseline We split the questioner’s job
into two different tasks: one for asking the questions and an-
other one for guessing the object. The question generation
task requires to produce a new question qj+1, given an im-
age I and a history of j questions and answers (q, a)1:j . We
model the question generator (QGen) with a recurrent neu-
ral network (RNN), which produces a sequence of RNN state
vectors sj1:i for a given input sequence wj

1:i by applying the
transition function f : sji+1 = f(sji , w

j
i). We use the pop-

ular long-short term memory (LSTM) cell [Hochreiter and
Schmidhuber, 1997] as our transition function. In order to
construct a probabilistic sequence model, one can add a soft-
max function g that computes a distribution over tokens wji
from vocabulary V . In the case of GuessWhat?!, this out-
put distribution is conditioned on all previous questions and
answers tokens as well as the image I:

p(wji |w
j
1:i−1, (q, a)1:j−1, I).

We condition the model on the image by obtaining its VGG16
FC8 features and concatenating it to the input embedding at
each step, as illustrated in Fig. 4. We train the model by min-
imizing the conditional negative log-likelihood:

− log p(q1:J |a1:J , I) = − log

J∏
j=1

p(qj |(q, a)1:j−1, I),

= −
J∑
j=1

Ij∑
i=1

log p(wji |w
j
1:i−1, (q, a)1:j−1, I).

At test time, we can generate a sample p(qj |(q, a)1:j−1, I)
from the model as follows. Starting from the state sj1,
we sample a new token wji from the output distribution
g and feed the embedded token e(wji) back as input to
the RNN. We repeat this loop till we encounter an end-of-
sequence token. To approximately find the most likely ques-
tion, maxqj p(qj |(q, a)1:j−1, I), we use the commonly used

beam-search procedure. This heuristics aims to find the most
likely sequence of words by exploring a subset of all ques-
tions and keeping theK-most promising candidate sequences
at each time step.
Oracle The oracle task requires to produce a yes-no an-
swer for any object within a picture given a natural lan-
guage question. We outline here the neural network ar-
chitecture that achieved the best performance and refer to
[de Vries et al., 2016] for a thorough investigation of the
impact of other object and image information. First, we
embed the spatial information of the crop by extracting an
8-dimensional vector of the location of the bounding box
[xmin, ymin, xmax, ymax, xcenter, ycenter, wbox, hbox] where
wbox and hbox denote the width and height of the bounding
box , respectively. We normalize the image height and width
such that coordinates range from −1 to 1, and place the ori-
gin at the center of the image. Second, we convert the object
category c∗ into a dense category embedding using a learned
look-up table. Finally, we use a LSTM to encode the current
question q. We then concatenate all three embeddings into a
single vector and feed it as input to a single hidden layer MLP
that outputs the final answer distribution p(a|q, c∗, x∗spatial)
using a softmax layer, illustrated in Fig. 2.
Guesser The guesser model takes an image I and a se-
quence of questions and answers (q, a)1:N , and predicts the
correct object o∗ from the set of all objects. This model con-
siders a dialogue as one flat sequence of question-answer to-
kens and use the last hidden state of the LSTM encoder as our
dialogue representation. We perform a dot-product between
this representation and the embedding for all the objects in the
image, followed by a softmax to obtain a prediction distribu-
tion over the objects. The object embeddings are obtained
from the categorical and spatial features. More precisely, we
concatenate the 8-dimensional spatial representation and the
object category look-up and pass it through an MLP layer to
get an embedding for the object. Note that the MLP parame-
ters are shared to handle the variable number of objects in the
image. See Fig 3 for an overview of the guesser.

3.1 Generation of full games
With the question generation, oracle and guesser model we
have all components to simulate a full game. Given an ini-
tial image I, we generate a question q1 by sampling to-
kens from the question generation model until we reach the
question-mark token. Alternatively, we can replace the sam-
pling procedure by a beam-search to approximately find the
most likely question according to the generator. The oracle
then takes the question q1, the object category c∗ and x∗spatial
as inputs, and outputs the answer a1. We append (q1, a1) to
the dialogue and repeat generating question-answer pairs un-
til the generator emits a stop-dialogue token or the maximum
number of question-answers is reached. Finally, the guesser
model takes the generated dialogue D and the list of objects
O and predicts the correct object.

4 GuessWhat?! from RL perspective
One of the drawbacks of training the QGen in a supervised
learning setup is that its sequence of questions is not explic-

itly optimized to find the correct object. Such training ob-
jectives miss the planning aspect underlying (goal-oriented)
dialogues. In this paper, we propose to cast the question gen-
eration task as a RL task. More specifically, we use the train-
ing environment described before and consider the oracle and
the guesser as part of the RL agent environment. In the fol-
lowing, we first formalize the GuessWhat?! task as a Markov
Decision Process (MDP) so as to apply a policy gradient al-
gorithm to the QGen problem.

4.1 GuessWhat?! as a Markov Decision Process
We define the state xt as the status of the game at step t.
Specifically, we define xt = ((wj1, . . . , w

j
i), (q, a)1:j−1, I)

where t =
∑j−1
j=1 Ij + i corresponds to the number of tokens

generated since the beginning of the dialogue. An action ut
corresponds to select a new word wji+1 in the vocabulary V .
The transition to the next state depends on the selected action:

• If wji+1 = <stop>, the full dialogue is terminated.
• If wji+1 = <?>, the ongoing question is terminated and

an answer aj is sampled from the oracle. The next state is
xt+1 = ((q, a)1:j , I) where qj = (wj1, . . . , w

j
i , <?>).

• Otherwise the new word is appended to the ongoing ques-
tion and xt+1 = ((wj1, . . . , w

j
i , w

j
i+1), (q, a)1:j−1, I).

Questions are automatically terminated after Imax words.
Similarly, dialogues are terminated after Jmax questions.
Furthermore, a reward r(x, u) is defined for every state-
action pair. A trajectory τ = (xt, ut,xt+1, r(xt, ut))1:T is a
finite sequence of tuples of length T which contains a state, an
action, the next state and the reward where T ≤ Jmax ∗Imax.
Thus, the game falls into the episodic RL scenario as the di-
alogue terminates after a finite sequence of question-answer
pairs. Finally, the QGen output can be viewed as a stochastic
policy πθ(u|x) parametrized by θ which associates a proba-
bility distribution over the actions (i.e. words) for each state
(i.e. intermediate dialogue and picture).

4.2 Training the QGen with Policy Gradient
While several approaches exist in the RL literature, we opt for
policy gradient methods because they are known to scale well
to large action spaces. This is especially important in our case
because the vocabulary size is nearly 5k words. The goal of
policy optimization is to find a policy πθ(u|x) that maximizes
the expected return, also known as the mean value:

J(θ) = Eπθ

[T∑
t=1

γt−1r(xt, ut)
]
,

where γ ∈ [0, 1] is the discount factor, T the length of the
trajectory and the starting state x1 is drawn from a distribu-
tion p1. Note that γ = 1 is allowed as we are in the episodic
scenario [Sutton et al., 1999]. To improve the policy, its pa-
rameters can be updated in the direction of the gradient of the
mean value:

θh+1 = θh + αh∇θJ |θ=θh ,
where h denotes the training time-step and αh is a learning
rate such that

∑∞
h=1 αh =∞ and

∑∞
h=1 α

2
h <∞.

Thanks to the gradient policy theorem [Sutton et al., 1999],
the gradient of the mean value can be estimated from a batch
of trajectories Th sampled from the current policy πθh by:

∇J(θh) =
〈 T∑
t=1

∑
ut∈V

∇θh log πθh(ut|xt)(Qπθh (xt, ut)−b)
〉
Th
,

(1)
where Qπθh (x, u) is the state-action value function that esti-
mates the cumulative expected reward for a given state-action
couple and b some arbitrarily baseline function which can
help reducing the variance of the estimation of the gradient.
More precisely

Qπθh (xt, ut) = Eπθ

[T∑
t′=t

γt
′−tr(xt′ , ut′)

]
.

Notice that the estimate in Eq (1) only holds if the prob-
ability distribution of the initial state x1 is uniformly dis-
tributed. The state-action value-function Qπθh (x, u) can
then be estimated by either learning a function approxima-
tor (Actor-critic methods) or by Monte-Carlo rollouts (REIN-
FORCE [Williams, 1992]). In REINFORCE, the inner sum
of actions is estimated by using the actions from the trajec-
tory. Therefore, Eq (1) can be simplified to:

∇J(θh) =
〈 T∑
t=1

∇θh log πθh(ut|xt)(Qπθh (xt, ut)−b)
〉
Th
.

(2)
Finally, by using the GuessWhat?! game notation for Eq (2),
the policy gradient for the QGen can be written as:

∇J(θh) =
〈 J∑
j=1

Ij∑
i=1

∇θh log πθh(w
j
i |w

j
1:i−1, (q, a)1:j−1, I)

(Qπθh ((wj1:i−1, (q, a)1:j−1, I), w
j
i)− b)

〉
Th
. (3)

4.3 Reward Function
One tedious aspect of RL is to define a correct and valuable
reward function. As the optimal policy is the result of the
reward function, one must be careful to design a reward that
would not change the expected final optimal policy [Ng et al.,
1999]. Therefore, we put a minimal amount of prior knowl-
edge into the reward function and construct a zero-one reward
depending on the guesser’s prediction:

r(xt, ut) =

{
1 If argmaxo[Guesser(xt)] = o ∗ and t = T

0 Otherwise
.

So, we give a reward of one if the correct object is found from
the generated questions, and zero otherwise.

Note that the reward function requires the target object o∗
while it is not included in the state x = ((q, a)1:J , I). This
breaks the MDP assumption that the reward should be a func-
tion of the current state and action. However, policy gradi-
ent methods, such as REINFORCE, are still applicable if the
MDP is partially observable [Williams, 1992].

Algorithm 1 Training of QGen with REINFORCE
Require: Pretrained QGen,Oracle and Guesser
Require: Batch size K

1: for Each update do
2: # Generate trajectories Th
3: for k = 1 to K do
4: Pick Image Ik and the target object o∗k ∈ Ok
5: # Generate question-answer pairs (q, a)k1:j
6: for j = 1 to Jmax do
7: qkj = QGen(q, a)k1:j−1, Ik)
8: akj = Oracle(qkj , o

∗
k, Ik)

9: if <stop> ∈ qkj then
10: delete (q, a)kj and break;
11: p(ok|·) = Guesser((q, a)k1:j , Ik, Ok)

12: r(xt, ut) =

{
1 If argmaxokp(ok|·) = o∗k
0 Otherwise

13: Define Th = ((q, a)k1:jk , Ik, rk)1:K
14: Evaluate ∇J(θh) with Eq. (3) with Th
15: SGD update of QGen parameters θ using∇J(θh)
16: Evaluate ∇L(φh) with Eq. (4) with Th
17: SGD update of baseline parameters using∇L(φh)

4.4 Full training procedure
For the QGen, oracle and guesser, we use the model architec-
tures outlined in section 3. We first independently train the
three models with a cross-entropy loss. We then keep the ora-
cle and guesser models fixed, while we train the QGen in the
described RL framework. It is important to pretrain the QGen
to kick-start training from a reasonable policy. The size of the
action space is simply too big to start from a random policy.

In order to reduce the variance of the policy gradient, we
implement the baseline bφ(xt) as a function of the current
state, parameterized by φ. Specifically, we use a one layer
MLP which takes the LSTM hidden state of the QGen and
predicts the expected reward. We train the baseline function
by minimizing the Mean Squared Error (MSE) between the
predicted reward and the discounted reward of the trajectory
at the current time step:

L(φh) =
〈[
bφh

(xt)−
T∑
t′=t

γt
′
rt′
]2〉
Th

(4)

We summarize our training procedure in Algorithm 1.

5 Related work
Outside of the dialogue literature, RL methods have been
applied to encoder-decoder architectures in machine transla-
tion [Ranzato et al., 2016; Bahdanau et al., 2017] and image
captioning [Liu et al., 2016b]. In those scenarios, the BLEU
score is used as a reward signal to fine-tune a network trained
with a cross-entropy loss. However, the BLEU score is a sur-
rogate for human evaluation of naturalness, so directly opti-
mizing this measure does not guarantee improvement in the
translation/captioning quality. In contrast, our reward func-
tion encodes task completion, and optimizing this metric is

Figure 5: Task completion ratio of REINFORCE trained
QGEN for given dialogue length.

exactly what we aim for. Finally, the BLEU score can only
be used in a batch setting because it requires the ground-truth
labels from the dataset. In GuessWhat?!, the computed re-
ward is independent from the human generated dialogue.

Although visually-grounded language models have been
studied for a long time [Roy, 2002], important breakthroughs
in both visual and natural language understanding has led to
a renewed interest in the field [LeCun et al., 2015]. Espe-
cially image captioning [Lin et al., 2014] and visual question
answering [Antol et al., 2015] has received much attention
over the last few years, and encoder-decoder models [Liu et
al., 2016b; Lu et al., 2016] have shown promising results for
these tasks. Only very recently the language grounding tasks
have been extended to a dialogue setting with the Visual Dia-
log [Das et al., 2016] and GuessWhat?! [de Vries et al., 2016]
datasets. While Visual Dialog considers the chit-chat setting,
the GuessWhat?! game is goal-oriented which allows us to
cast it in into an RL framework.

6 Experiments
As already said, we used the GuessWhat?! dataset1
that includes 155,281 dialogues containing 821,955 ques-
tion/answer pairs composed of 4900 words on 66,537 unique
images and 134,074 unique objects. The experiments source
code is available at https://guesswhat.ai.

6.1 Training details
We pre-train the networks described in Section 3. After train-
ing, the oracle network obtains 21.5% error and the guesser
network reports 36.2% error on the test set. Throughout the
rest of this section we refer to the pretrained QGen as our
baseline model. We then initialize our environment with the
pre-trained models and train the QGen with REINFORCE for
80 epochs with plain stochastic gradient descent (SGD) with a
learning rate of 0.001 and a batch size of 64. For each epoch,
we sample each training images once, and randomly choose
one of its object as the target. We simultaneously optimize
the baseline parameters φ with SGD with a learning rate of
0.001. Finally, we set the maximum number of questions to
8 and the maximum number of words to 12

6.2 Results
Accuracy Since we are interested in human-level perfor-
mance, we report the accuracies of the models as a percentage

1Available at https://guesswhat.ai/download

https://guesswhat.ai
https://guesswhat.ai/download

Image Beam Search REINFORCE Image Beam Search REINFORCE
Is it a person ? no Is it a person ? no Is it a cat ? no Is it a cat ? no
Is it a ball ? no Is a glove ? no Is it a book ? no Is it on the table ? yes
Is it a ball ? no Is an umbrella ? no Is it a book ? no Is it the book ? no
Is it a ball ? no Is in the middle ? no Is it a book ? no Is it fully visible? yes
Is it a ball ? no On a person? no Is it a book ? no

is it on on far right? yes
Failure (blue bat) Success (red chair) Failure (person) Success (bowl)

Is it a person ? yes Is it a person ? yes Is it a bag ? yes Is it a suitcase? yes
Is it the one in front ? yes Is it girl in white ? yes Is it red ? no Is it in the left side ? yes
Is it the one on the left ? no Is it the one in the middle ? no
Is it the one in the middle
with the red umbrella ? yes

Is it the one on the far right ?
no

Is it the one to the right of
the girl in ? no

Is it the one with the blue bag
? yes

Failure (umbrella) Success (girl) Success (most left bag) Failure (left bag)

Table 1: Samples extracted from the test set. The blue (resp. purple) box corresponds to the object picked by the guesser for the
beam-search (resp. REINFORCE) dialogue. The small verbose description is added to refer to the object picked by the guesser.

New Objects New Pictures

Baseline
Sampling 46.4% ± 0.2 45.0% ± 0.1

Greedy 48.2% ± 0.1 46.9%
BSearch 53.4% ± 0.0 53.0%

REINFORCE Sampling 63.2%± 0.3 62.0%± 0.2
Greedy 58.6% ± 0.0 57.5%

BSearch 54.3% ± 0.1 53.2%

Table 2: Accuracies of the models as a percentage of human
performance of the QGen trained with the baseline and RE-
INFORCE. New objects refers to uniformly sampling objects
within the training set, while new pictures refer to the test set.

of human performance (84.4%), estimated from the dataset.
We report the scores in Table 2, in which we compare sam-
pling objects from the training set (New Objects) and test set
(New Pictures) i.e. unseen pictures. We report the standard
deviation over 5 runs in order to account for the sampling
stochasticity. On the test set, the baseline obtains 45.0% ac-
curacy, while training with REINFORCE improves to 62.0%.
This is also a significant improvement over the beam-search
baseline, which achieves 53.0% on the test-set. The beam-
search procedure improves over sampling from the baseline,
but interestingly lowers the score for REINFORCE.

Samples We qualitatively compare the two methods by an-
alyzing a few generated samples, as shown in Table 1. We
observe that the beam-search baseline trained in a supervised
fashion keeps repeating the same questions, as can be seen
in the two top examples in Tab. 1. We noticed this behav-
ior especially on the test set i.e. when confronted with unseen
pictures, which may highlight some generalization issues. We
also find that the beam-search baseline generates longer ques-
tions (7.1 tokens on average) compared to REINFORCE (4.0
tokens on average). This qualitative difference is clearly visi-
ble in the bottom-left example, which also highlights that the
supervised baseline sometimes generates visually relevant but
incoherent sequences of questions. For instance, asking ”Is it
the one to the right of the girl in?” is not a very logical follow-
up of ”Is it the one in the middle with the red umbrella?”. In
contrast, REINFORCE seem to implement a more grounded
and relevant strategy: ”Is it girl in white?” is a reasonable
follow-up to ”Is it a person?”. In general, we observe that
REINFORCE favor enumerating object categories (”is it a

person?”) or absolute spatial information (”Is it left?”). Note
these are also the type of questions that the oracle is expected
to answer correctly, hence, REINFORCE is able to tailor its
strategy towards the strengths of the oracle.

Dialogue length For the REINFORCE trained QGen, we
investigate the impact of the dialogue length on the success
ratio in Fig. 5. Interestingly, REINFORCE learns to stop on
average after 4.1 questions, although we did not encode a
question penalty into the reward function. This policy may
be enforced by the guesser since asking additional but noisy
questions greatly lower the prediction accuracy of the guesser
as shown in Tab. 1. Therefore, the QGen learns to stop ask-
ing questions when a dialogue contains enough information
to retrieve the target object. However, we observe that the
QGen sometimes stops too early, especially when the image
contains too many objects of the same category. Interest-
ingly, we also found that the beam-search fails to stop the dia-
logue. Beam-search uses a length-normalized log-likelihood
to score candidate sequences to avoid a bias towards shorter
questions. However, questions in GuessWhat?! almost al-
ways start with ”is it”, which increases the average log likeli-
hood of a question significantly. The score of a new question
might thus (almost) always be higher than emitting a single
<stop> token. Our finding was further confirmed by the fact
that a sampling procedure did stop the dialogue.

Vocabulary Sampling from the supervised baseline on the
test set results in 2,893 unique words, while sampling from
the REINFORCE trained model reduces its size to 1,194.
However, beam search only uses 512 unique words which is
consistent with the observed poor variety of questions.

7 Conclusion
In this paper, we proposed to build a training environment
from supervised deep learning baselines in order to train
a DeepRL agent to solve a goal-oriented multi-modal dia-
logue task. We show the promise of this approach on the
GuessWhat?! dataset, and observe quantitatively and quali-
tatively an encouraging improvement over a supervised base-
line model. While supervised learning models fail to generate
a coherent dialogue strategy, our method learns when to stop
after generating a sequence of relevant questions.

Acknowledgement The authors would like to acknowledge
the stimulating environment provided by the SequeL labs.
We acknowledge the following agencies for research fund-
ing and computing support: CHISTERA IGLU and CPER
Nord-Pas de Calais/FEDER DATA Advanced data science
and technologies 2015-2020, NSERC, Calcul Québec, Com-
pute Canada, the Canada Research Chairs and CIFAR.

References
[Antol et al., 2015] S. Antol, A. Agrawal, J. Lu, M. Mitchell,

D. Batra, Z. Lawrence, and D. Parikh. Vqa: Visual question
answering. In Proc. of ICCV, 2015.

[Bahdanau et al., 2017] D. Bahdanau, P. Brakel, K. Kelvin,
A. Goyal, R. Lowe, J. Pineau, A. Courville, and Y. Bengio. An
actor-critic algorithm for sequence prediction. Proc. of ICLR,
2017.

[Barsalou, 2008] Lawrence W Barsalou. Grounded cognition.
Annu. Rev. Psychol., 59:617–645, 2008.

[Bengio et al., 2003] Y. Bengio, R. Ducharme, P. Vincent, and
C. Jauvin. A neural probabilistic language model. JMLR,
3(Feb):1137–1155, 2003.

[Clark and Schaefer, 1989] H. Clark and E. Schaefer. Contributing
to discourse. Cognitive Science, 13(2):259–294, 1989.

[Das et al., 2016] A. Das, S. Kottur, K. Gupta, A. Singh, D. Yadav,
J. Moura, D. Parikh, and D. Batra. Visual Dialog. arXiv preprint
arXiv:1611.08669, 2016.

[de Vries et al., 2016] H. de Vries, F. Strub, S. Chandar,
O. Pietquin, H. Larochelle, and A. Courville. GuessWhat?!
Visual object discovery through multi-modal dialogue. Proc. of
CVPR, 2016.

[Eckert et al., 1997] W. Eckert, E. Levin, and R. Pieraccini. User
modeling for spoken dialogue system evaluation. In Proc. of
ASRU, 1997.

[Hochreiter and Schmidhuber, 1997] S. Hochreiter and J. Schmid-
huber. Long short-term memory. volume 9, pages 1735–1780.
MIT Press, 1997.

[Kiela et al., 2016] D. Kiela, L. Bulat, A.Vero, and S. Clark. Vir-
tual Embodiment: A Scalable Long-Term Strategy for Artificial
Intelligence Research. NIPS workshop in Machine Intelligence,
2016.

[LeCun et al., 2015] Y. LeCun, Y. Bengio, and G. Hinton. Deep
learning. Nature, 521(7553), 2015.

[Lemon and Pietquin, 2007] O. Lemon and O. Pietquin. Machine
learning for spoken dialogue systems. In Proc. of Interspeech,
2007.

[Levin et al., 1997] E. Levin, R. Pieraccini, and W. Eckert. Learn-
ing dialogue strategies within the markov decision process frame-
work. In Proc. of ASRU, 1997.

[Lin et al., 2014] TY. Lin, M. Maire, S. Belongie, J. Hays, P. Per-
ona, D. Ramanan, P. Dollár, and L. Zitnick. Microsoft coco:
Common objects in context. In Proc. of ECCV, 2014.

[Liu et al., 2016a] C. Liu, R. Lowe, I. Serban, M. Noseworthy,
L. Charlin, and J. Pineau. How NOT to evaluate your dialogue
system: An empirical study of unsupervised evaluation metrics
for dialogue response generation. In Proc. of EMNLP, 2016.

[Liu et al., 2016b] S. Liu, Z. Zhu, N. Ye, S. Guadarrama, and
K. Murphy. Optimization of image description metrics using pol-
icy gradient methods. Under review at CVPR, 2016.

[Lowe et al., 2015] Ryan Lowe, Nissan Pow, Iulian Serban, and
Joelle Pineau. The ubuntu dialogue corpus: A large dataset for
research in unstructured multi-turn dialogue systems. In Proc. of
SIGdial, 2015.

[Lu et al., 2016] J. Lu, J. Yang, D. Batra, and D. Parikh. Hierarchi-
cal Question-Image Co-Attention for Visual Question Answer-
ing. In Proc. of NIPS, 2016.

[Mooney, 2006] R. Mooney. Learning language from perceptual
context: A challenge problem for AI. In Proc. of the 2006 AAAI
Fellows Symposium, 2006.

[Ng et al., 1999] A. Ng, D. Harada, and S. Russell. Policy invari-
ance under reward transformations: Theory and application to
reward shaping. In Proc. of ICML, 1999.

[Pietquin and Hastie, 2013] Olivier Pietquin and Helen Hastie. A
survey on metrics for the evaluation of user simulations. The
Knowledge Engineering Review, 28(1):59–73, 003 2013.

[Pietquin et al., 2011] O. Pietquin, M. Geist, S. Chandramohan,
and H. Frezza-Buet. Sample-efficient batch reinforcement learn-
ing for dialogue management optimization. ACM Transactions
on Speech and Language Processing (TSLP), 7(3):7, 2011.

[Ranzato et al., 2016] M. Ranzato, S. Chopra, M. Auli, and
W. Zaremba. Sequence level training with recurrent neural net-
works. Proc. of ICLR, 2016.

[Roy, 2002] D. Roy. Learning visually grounded words and syn-
tax for a scene description task. Computer speech & language,
16(3):353–385, 2002.

[Schatzmann et al., 2006] J. Schatzmann, K. Weilhammer, M. Stut-
tle, and S. Young. A survey of statistical user simulation
techniques for reinforcement-learning of dialogue management
strategies. The knowledge engineering review, 21(2):97–126,
2006.

[Serban et al., 2016] I. Serban, R. Lowe, L. Charlin, and J. Pineau.
Generative Deep Neural Networks for Dialogue: A Short Review.
NIPS workshop Learning Methods for Dialogue, 2016.

[Singh et al., 1999] S. Singh, M. Kearns, D. Litman, and
M. Walker. Reinforcement Learning for Spoken Dialogue Sys-
tems. In Proc. of NIPS, 1999.

[Sordoni et al., 2015] A. Sordoni, M. Galley, M. Auli, C. Brockett,
Y. Ji, M. Mitchell, JY. Nie, J. Gao, and B. Dolan. A neural net-
work approach to context-sensitive generation of conversational
responses. In Proc. of NAACL HLT, 2015.

[Sutton et al., 1999] R. Sutton, D. McAllester, S. Singh, Y. Man-
sour, et al. Policy gradient methods for reinforcement learning
with function approximation. In Proc. of NIPS, 1999.

[Vinyals and Le, 2015] O. Vinyals and Q. Le. A neural conversa-
tional model. ICML Deep Learning Workshop, 2015.

[Walker et al., 1997] M. Walker, D. Litman, C. Kamm, and
A. Abella. Paradise: A framework for evaluating spoken dia-
logue agents. In Proc. of ACL, 1997.

[Weizenbaum, 1966] J. Weizenbaum. Eliza—a computer
program for the study of natural language communication be-
tween man and machine. Commun. ACM, 9(1):36–45, 1966.

[Williams and Young, 2007] J. Williams and S. Young. Partially
observable markov decision processes for spoken dialog systems.
Computer Speech & Language, 21(2):393–422, 2007.

[Williams, 1992] R. Williams. Simple statistical gradient-following
algorithms for connectionist reinforcement learning. Machine
learning, 8(3-4):229–256, 1992.

	1 Introduction
	2 GuessWhat?! game
	2.1 Rules
	2.2 Notation

	3 Training environment
	3.1 Generation of full games

	4 GuessWhat?! from RL perspective
	4.1 GuessWhat?! as a Markov Decision Process
	4.2 Training the QGen with Policy Gradient
	4.3 Reward Function
	4.4 Full training procedure

	5 Related work
	6 Experiments
	6.1 Training details
	6.2 Results

	7 Conclusion

