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Abstract

This paper presents an analytical treatment of economic systems with an arbitrary number of agents
that keeps track of the systems’ interactions and agent’s complexity. The formalism does not seek to
aggregate agents: it rather replaces the standard optimization approach by a probabilistic description of
the agents’ behaviors and of the whole system. This is done in two distinct steps.

A first step considers an interacting system involving an arbitrary number of agents, where each
agent’s utility function is subject to unpredictable shocks. In such a setting, individual optimization
problems need not be resolved. Each agent is described by a time-dependent probability distribution
centered around its utility optimum.

The whole system of agents is thus defined by a composite probability depending on time, agents’
interactions, relations of strategic dominations, agents’ information sets and expectations. This setting
allows for heterogeneous agents with different utility functions, strategic domination relations, hetero-
geneity of information, etc.

This dynamic system is described by a path integral formalism in an abstract space — the space of
the agents’ actions — and is very similar to a statistical physics or quantum mechanics system. We show
that this description, applied to the space of agents’ actions, reduces to the usual optimization results in
simple cases. Compared to the standard optimization, such a description markedly eases the treatment
of a system with a small number of agents. It becomes however useless for a large number of agents.

In a second step therefore, we show that, for a large number of agents, the previous description is
equivalent to a more compact description in terms of field theory. This yields an analytical, although
approximate, treatment of the system. This field theory does not model an aggregation of microeconomic
systems in the usual sense, but rather describes an environment of a large number of interacting agents.
From this description, various phases or equilibria may be retrieved, as well as the individual agents’
behaviors, along with their interaction with the environment. This environment does not necessarily
have a unique or stable equilibrium and allows to reconstruct aggregate quantities without reducing the
system to mere relations between aggregates.

For illustrative purposes, this paper studies several economic models with a large number of agents,
some presenting various phases. These are models of consumer/producer agents facing binding con-
straints, business cycle models, and psycho-economic models of interacting and possibly strategic agents.
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action, Green function, correlation functions, business cycle, budget constraint, aggregation, forward-
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1 Introduction

In many instances, representative agent models have proven unrealistic, lacking both collective and emerging
effects resulting from agents’ interactions. To remedy these pitfalls, various paths have been explored such
as: complex systems, networks, agent based systems or Econophysics. However Agent Based and Networks
Models rely on numerical simulations and may lack of microeconomic foundations. Econophysics, for its
part, builds on statistical facts as well as empirical aggregate rules to derive some macroeconomic laws that
should eventually be prone, like ad hoc macroeconomics, to the Lucas critique. A gap remains between
microeconomic foundations and multi agent systems.

The present paper is an attempt to fill this gap. It uses statistical physics-like methods to describe
multiple interacting agents. The setup developed here models micro individual interactions in a context of
statistical uncertainty, to recover ultimately some global, i.e. macroeconomic, description of the system.
This approach allows an analytical treatment of a broad class of economic models with an arbitrary number
of agents while keeping track of the system’s interactions and complexity at the individual level. In that,
it is at the crossroads of statistical and economics models. From standard economic models, we keep the
microeconomic concepts developed over the past decades to describe the behaviors of fully or partly rational
agents. From statistical physics, we keep the possibility to study the transition from the individual to the
collective scale.

Are the microeconomic concepts still relevant at the scale of the statistical system - macro — level? Some
microscopic features are known to fade away at large scales, whereas others may become predominant at the
macroeconomic or macroscopic scale. The relevance - or irrelevance in the physical sense - of some micro
interactions when moving from a micro to a macro scale could indirectly shed some lights on the aggregation
problem in economics. Our work is a first attempt to answer these questions.

This article argues that translating standard economic models into statistical ones requires the introduc-
tion of a statistical field formalism that partly differs from those used usually for physical systems. This field
formalism allows going back and forth from micro to macroeconomic scale. It keeps track of the individual
behaviors that shape the field theoretic description, as well as the results at the macro scale. The field
description in turn describes the impact of the macroeconomic environment on individual behaviors.

The statistical approach of economic systems presented here is a two-step process. First, the usual model
of optimizing agent is replaced by a probabilistic description. We consider an interacting system involving
an arbitrary number of agents, in which each agent is described by an intertemporal utility function - or any
quantity - depending on an arbitrary number of variables. However each agent’s utility function is subject
to unpredictable shocks. In such a setting, individual optimization problems are discarded. Each agent is
described by a time-dependent probability distribution centered around his utility optimum. Unpredictable
shocks deviate each agent from his optimal action, depending on the shocks’ variances. When these variances
are null, standard optimization results are recovered. The statistic nature of systems of several agents is
accounted for by including uncertainty in agents’ behavior, but the analytical treatment is preserved by
slightly modifying the agents’ standard optimization problem.

This setup is a path integral formalism in the - abstract - space of the agents’ actions, which is actually
very similar to the statistical physics or quantum mechanics techniques. We show that this description yields
the usual optimization results when applied to the space of all agents’ actions, in simple cases and when
the variances of unpredictable shocks are null. Besides, this description is furthermore a good approxima-
tion of standard descriptions and allows to solve otherwise intractable problems. Compared to standard
optimization, such a description markedly eases the treatment of systems with a small number of agents.
This approach is thus consistent and useful in itself, and provides an alternative to the standard modeling
in the case of a small number of interacting agents. It allows to recover an average dynamics, close, or at
times identical to, the standard approach. It also allows to study the dynamics of the set of agents and
its fluctuations under some external shocks. To illustrate the relative advantages of our approach in terms
of resolution, our main examples will be systems of interacting agents, or structures in interactions with
information and strategic advantage, such as developed in [3][4][5][6].

Unfortunately, this formalism, useful for small sets, becomes intractable for a large number of agents.
However, it can be modified, using methods previously developed in statistical field theory [7], into another
more efficient description. This field theoretic description is directly grounded on our initial path integral
formalism.



In a second step, therefore, the individual agents’ description is replaced by a model of field theory that
replicates the properties of the system when N, the number of agents, is large. This modeling, although
approximate, is compact enough to allow an analytical treatment of the system. Hence, a double transfor-
mation, with respect to the usual optimization models is performed. The usual optimization system is first
described by a statistical system of N agents. It can then itself be replaced by a specific field theory with a
large number of degrees of freedom. This field theory does not represent an aggregation of microeconomic
systems in the usual sense, but rather describes an environment of an infinite number of agents, from which
various phases or equilibria may be retrieved, as well as the behaviors of the agents, and the way they are
influenced by, or interact, with their environment.

This double transformation allows first, for a small number of agents, to solve a system without recurring
to aggregation, and second, for a large number of agents, to aggregate them so as to shape an environment
whose characteristics will in turn shape and impact, agents’ interactions. This environment, or "medium",
allows to reconstruct some aggregate quantities, without reducing the system to mere relations between
aggregates. Indeed, the fundamental environment from which these quantities are drawn can witness fluc-
tuations that may invalidate relations previously established. The environment is not macroscopic in itself,
but rather describes a multitude of agents in interaction. It does not necessarily have a unique or stable
equilibrium. Relations between macroeconomic quantities ultimately depend on the state or "phase" of this
environment ("medium"), and can vary with the state of the environment. This phenomenon is the so-called
"phase transition" in field theory: the configuration of the ground state represents an equilibrium for the
whole set of agents, and shapes the characteristics of interactions and individual dynamics. Depending on the
parameters of the system, the form of the ground state may change drastically the description at individual
level.

By several aspects, our work is related to branches of the literature that deal with many agents economic
systems, and notably agent based models (see [8]), and Economic Networks ([9]). Both rely on numerical
simulation of multi agents system, but are often concerned with different types of model. Agent Based
Models deal with general macroeconomics models, whereas network models deal rather with lower scale
models, contracts theory, diffusion of behaviors, sharing of information, learning...

In both type of settings, agents are typically defined by and follow various set of rules. These rules allow
for the emergence of equilibria and dynamics that would otherwise remain inaccessible to the representative
agent setup.

In this respect, he Agent Based approach and ours share some. Indeed, the Agent Based approach
does not seek to aggregate all agents, and considers the interacting system in itself. However, it is highly
numerical and model-dependent and relies on microeconomic relations that may be too simplistic, such as
ad hoc reaction functions for example. The advantage of the Statistical Field Theory approach is to account
for the transition from one scale to another. Macroeconomic patterns should not be solely described as
emerging from the dynamics of a large set of agents, but be grounded on their particular structures of
behavior and interactions. By describing these structures in terms of field theory, our approach allows to
study the conditions of the emergence of a particular dynamics at the macro scale.

Econophysics (for a review of these topics see [1][2] and references therein) could, in that respect and at
first glance, be closer to our approach. Actually, in this branch of the litterature, agents are often considered
as a statistical system and the use of Path Integrals to model stock prices’ dynamics has already been
studied [10]. Moreover, the field formalism for polymers developed in [7] is also our starting point in terms of
field modeling. However, Econophysics does not apply fully the potentiality of field theory to the economic
systems. The absence of micro foundations casts thus some doubts on the robustness of these observed
empirical laws.

Our approach, in constrast, keeps track, of usual microeconomics concepts such as utility functions,
expectations, forward looking behaviors, and include these behaviors in the analytical treatment of multi
agents systems by translating the main characteristics of a system of optimizing agents in terms of a statistical
system.

To sum up, the advantage of statistical field theories are therefore threefold. First, they allow, at least
approximatively, to deal analytically with systems with large degrees of freedom, without reducing it to an
aggregate. Second, they provide a transcription of micro relations into macro ones. Last but not least, they
display features that would otherwise be hidden in an aggregate context. Actually, they allow switching
from micro description to macro ones, and vice-versa, and to interpret one scale in the light of the other.



Moreover, and relevantly for economic systems, these model may exhibit phase transition. Depending on
the parameters of the model, the system may experience structural changes in behaviors, at the individual
and collective scale. In that, they allow to consider the question of multiple equilibria.

The first section presents a probabilistic formalism for a system with N economic agents heterogeneous
in goals and information. Agents are described by intertemporal utility functions, or any intertemporal
quantities. However instead of optimizing these utilities, each agent chooses a path for his action that is
randomly distributed around the usual optimal path. More precisely, the weight describing the agent behavior
is an exponential of the intertemporal utility, which concentrates the probability around the optimal path.
This feature models some internal uncertainty, as well as non-measurable shocks. Gathering all agents
yields a probabilistic description of the system in terms of effective utilities. The latter are utility functions
internalizing the forward looking behavior, the interactions and the information pattern of each agent. We
also show that if we reduce the internal uncertainty to 0 one recovers for most cases including the case
of quadratic utilities, in principle if not in practice, the solution usual optimization problem. We end the
section by solving explicitly a basic two agents example to illustrate the main points of the method.

The second section applies the method presented previously. This class of model has already been
used previously by the authors to model single individual agents as an aggregate of several sub-structures,
some having strategical advantages on others. This class of model is quite general and allows to describe
systems with small number of heterogeneous agents in interactions. We then provide some applications to
check that our method allows a simpler resolution than the usual optimization, but also to recover, in good
approximation, the results of the last one as the average path of the system.

Section three details the effective utility of the whole system of agents, as composed of individual utilities
plus possibly some additional contributions. This section stresses the fact that this global effective utility
differs from a collection of individual ones. The agents as whole, are not independent from each other.

Section four considers the probabilistic aspect of our models. We compute the transition functions of the
stochastic process associated with a system of N economic agents. These transition functions have the form
of Euclidean path integrals. We show that, in first approximation, for agents with quadratic utilities, the
transition functions are those of a set of interacting harmonic oscillators. Some non-quadratic interactions
may be added as perturbation expansions. Once diagonalized, the directions corresponding to the harmonic
frequencies correspond to mixed, or fundamental structures, that represent independent agents.

Section five introduces constraints relevant for individual agents, such as budget constraints. We show
that these individual constraints translate in the path integrals defining the system, into adding some non-
local contributions. Some of them may be approximated by inertial terms, i.e. "kinetic energy" contributions.
Moreover, if constraints depend on other agents behaviors, these additional contributions consist of non-local
interaction terms.

Section six provides some elements about the Laplace transform of Green functions. It also establishes
that general non-local interactions must be considered, even when there are no constraints in the model.
These considerations will prove useful in the next sections.

Section seven modifies our formalism to systems with a large number of agents. It shows that, in that
case, the transition functions is computed as correlation functions of a field theory whose action is directly
defined by individual agents’ effective utilities. The section provides a back and forth interpretation between
micro quantities - individual behavior - and macro computations, i.e. collective behavior defined by the
fields. It shows how some features of field theory, such as non-trivial vacuum and/or phase transition, are
relevant to our context. We also introduce non-local individual interactions such as constraints at the field
level. We show how they modify the Green functions of the system, and thus the individual agents’ transition
functions.

Section eight applies our formalism to several standard economic models with a large number of interact-
ing agents. The optimizing consumers/producers model and a simple business cycle model are studied. In
the first case, interactions appear through the budget constraint, and in the second case, through the interest
rate determined by capital productivity. For consumers/producers, we compute the correlation functions of
the field version of the system and interpret it at the individual level. We recover the usual consumption
smoothing, but we can also track the effect of the interaction between agents that increase the fluctuations
of an individual behavior. In the business cycle model, we show that a non-trivial vacuum may appear: for
some values of the parameters, the equilibrium may be shifted in a non-continuous manner. The system
enters another phase, with different individual behaviors. For each phase we compute the effect of the agent’s



interaction on individual dynamics.

Building on previous results, section nine details the mechanisms of non-trivial vacuum for the field
theoretic version of models presented in section two. Stabilization effects between structures may appear
in field theoretic formulation through a stabilization potential. This stabilization allows to describe the
system as sets of integrated structures. Unstable patterns that would otherwise be short lived may use
others to stabilize and form larger and more stable structures. The vacuum configuration of these integrated
structures is different from the initials’ and new features may be present in the resulting system. The section
also develops the notion of effective actions. When several types of agents are present, the actions of some of
them may be integrated out, to be absorbed in the effective action describing the remaining agents. "Hidden"
agents are thus included as external conditions shaping the environment and inducing possibly some phase
transition.

Section ten provides a method to compute macro quantities from micro ones in the context of the field
formalism. In some cases, introducing a macro time scale may allow to recover approximate macroeconomics
relations between aggregate quantities.

2 Method

2.1 Principle

In this paper, the usual agents’ dynamic optimization problem within a system is replaced by a probabilistic
description of the whole system. Several conditions must be satisfied to keep track of agents’ main features.
First, the optimization equations should be recovered in average, at least in some basic cases. Moreover,
this probabilistic description should take into account the agents’ individual characteristics, such as: agents’
constraints, interactions with others, and more importantly, the ability to anticipate other agents’ actions.
This probabilistic description involves a probability density for the state of the system at each period t.
In a system composed of N agents, each defined by a vector of action X; (t), we will define a probability
density P ((X; (t)),_, ) for the set of actions (X; (t)),_, , that describes the state of the system at time ¢.
Importantly, for a large number of agents at least, working with a probability distribution is easier than
solving some often intractable optimization equations. This probability distribution is generally designed to
be gaussian and centered around the optimal solution of the utility problem. In that case, if the variance of
this distribution is proportional to an exogenous parameter, one may expect the probability distribution to be
peaked around the optimal, or "classical solution" when this parameter goes to 0, at least for some particular
cases. Such a probabilistic description can then be seen as a generalization of the usual optimization problem
where some internal uncertainty in agents behavior, uncertainty of each of them with respect to the others,
as in an imperfect information problem, but also to themselves. We justify this "blurred" behavior by the
inherent complexity of all agents, their goals and behavior being modified at each period by some internal,
unobservable and individual shocks, the classical case being retrieved when this uncertainty is neglected.
To develop this point, consider first the intertemporal utility of an agent :

U = 3 g, (X,» (t+n), (X;(t+n— 1))3.#)
n=0
where ugn is the instantaneous utility at time ¢t + n. In the optimization setup, the agent ¢ optimizes on
the control variables X; (t +n). The variables in parenthesis: (X (t+mn — 1))j7éi7 represent the actions of
other agents. We will also denote (X (t +n — 1)) the actions for the set of all agents.

Note that the term utility used here is convenient for any quantity optimized. It can encompass the
production function of an oligopoly model, and/or production and utility functions of consumer/producer
models. It may moreover describe the interaction of several substructures within an individual agent. See
for example [3], [4], [5], [6] for models of heterogeneous interacting agents, or alternatively the litterature on
motion decision and control in neurosciences.

To explain how to switch toward a probabilistic representation that satisfies our requirements, we will
first study a simple example and then generalize the procedure. Assume first that agent ¢ has no information

about others. Their actions are perceived as random shocks by agent i. Rather than optimizing Ut(i) on



X; (t), we postulate that agent ¢ will choose an action X; (¢) and a plan, updated every period, X; (t + n),
n > 0, for its future actions. This plan follows a conditional probabilistic law proportional to:

exp (Ut(i)) = exp Z B"ugn (Xi (t+n), (X;(t+n- 1))#1‘)

n=0

This is a probabilistic law for X; (¢) and the plan X; (¢t +n), n > 0. It is conditional to other agents’ action
variables X; (¢t +n — 1), that are perceived as exogenous by agent 4.

Remark that, for a usual convex utility with a maximum, the closest the choices of the X; (t + n) to Ut(l)
optimum, the higher the probability associated to X; (¢t +n). Thus, this choice of utility is coherent with
a probability peaked around the optimization optimum. This choice of utility is therefore coherent with a
probability peaked around the optimization optimum.

The principle of the probabilistic description can be better understood with a simple example, in which
one agent has no information about others. In that case, the variables X, (¢t +n) will be considered as
random noises and agent ¢ will thus integrate them out. The probability for X i (t) and X; (t+n), n > 0 will

then be:
. (s
/exp (Up) exp ( ) H HdX
JjFi s>t
2
Here, exp (— ngé)) is the subjective weight attributed by i to the X, (s). In general if no information is

2
available to agent ¢, we can assume that 0? — oo and exp (—ﬁ—ﬁ”) — 0 (X (s)), where & (X (s)) is the

Dirac delta function. Other agents may thus be considered either as inert, or as random perturbations,
as long as no further information becomes available: agent ¢ set their future actions to 0, or equivalently,
discard them from his planning.

When there are no constraint and no inertia in uﬁ‘) - or, alternatively - when ugl) solely depends on X; (t)
and other agents’ previous actions (X (t — 1))j Li the periods are independent. Consequently, exp (Ué”) is
a product of independent terms of the kind exp (B”ug_gn (Xi (t+n),(X;(t+n— 1))#1‘))' The probability

associated to the action X; (¢) is then:

/ /exp (U exp ( i i ) TTTT % () ) TL i s) oxexp (uf? (i ), (X5 6 = 1)),))

JjFi s>t s>t

Each agent is described by its instantaneous utility: the lack of information induces a short sighted behavior.
The factor exp (ugn (Xi t+n),(X;t+n- 1))].#)) is the probability for a random term whose integral
on X; (s+n) is set to 1. In absence of any period overlap, i.e. without any constraint, the behavior of agent
i is described by a random distribution peaked around the optimum of ugi) (Xi (t), (X, (t— 1))],#) which
models exactly the optimal behavior of an agent influenced by individual random shocks.

Having understood the principle of the probabilistic scheme with this simple example, we can now com-
plexify the information pattern, to account for the agents’ heterogeneity. The knowledge some agents may
have about other agents’ utilities affects the statistical weight describing their behaviors. Actually, if agent
i has some information about agent j utility, he is able to forecast its influence on agent j through X (),
and in turn, the delayed reactions X; (t + n) of agent j.

Let us more precisely consider, as previously, the conditional probability for X; (¢) and the X; (t 4+ n),
n > 0, depending on the (X, (s — 1))].# . For s > t we define this probability to be proportional to

exp (Ut(i)):



P (X (8), X (£ 1) 5o X () o | (X () 41,050

o< exp (Ut(i))

= o [ S amull, (Xt ), (G +n-1),,)

n=0

This determines the (statistical) behavior of agent i, given other agents’ future actions. At first sight,
integrating this expression over the (X; (t+n—1)),,, .., and X; (¢t +n), n > 0 would yield a statistical
weight:

P (X (8) ] X (6= 1), (X (£ = 1), 0.05.) (1)
for each agent ¢. However, we cannot proceed this way to find P( i () [ Xi (6 —1),(X; (t=1)); S>t>,
and we will rather show that all the P (XZ- () | Xi(@=1),(X; (t=1)); S>t) have to be found jointly, as a

system of equations. Actually, in the previous equations, the probabilities:

P (Xi (), Xi(t+n) | (X; (5))#1,3215)
are conditional to the actions of other agents (X; (¢ +n —1));,, as they were in the simple case of no
information. But, these variables are now themselves forecasted by agent i as depending on X; (¢). This
interconnection needs to be taken into account to find P (Xi (), X (t+n) [ (X;(5)),2 S%). Tt leads us to

define (agent i’s expectation of) the conditional probability of other agents actions given X (¢):

Py (X5 (8)) o (X5 (L))o | X 1) (2)
- Etﬂp( (k) (X (t+k71)))
k>0

where E! denotes agent i’s expectation at time ¢.
Equation (2) means that agent ¢ forecasts the probabilities P ((Xj (t+k))p | (X (E+E— 1))) for other

agents, including its dependence in X; (t + k), and takes it into account in his computations of his own future
path. Now, we assume that agent i attributes the weight (2) to the path (X (¢)),; -, (X; (E+ 1)), -

Rather than defining a conditional expectation P (Xi (), Xi (t+n) [ (X ()4 s>t) we will then define a
joint probability:

eXp(U())EtHP( it —s—k:))j#|(Xj(t—|—k—1)))

k>0
which describes the probability attributed by agent i to the joint path:

X; (t) s 7Xz (t + n) geee (Xj (t))jii g ey (Xj (t + n))#i geee

This weight, once attributed, takes into account the interrelations between the paths X; (¢t + n) and (X ( + 1))
One can now integrate on the (X (¢t +n));_, to find the probability for a path X; (¢),..., X; (t +n), ...

P (Xi (t) o Xi (E 1) o | Xa (E— 1), (X (£ — 1))].#)

— [ (U0) BT P (06 (64 1), | (06 (14 k= 1)) A (24 B),

k>0

/exp B"ugﬁn ( i(t+n), (X;(t+n— 1))]‘7&1‘)

n=0

<B [[P ( (E+ k) | (X5 (E+E— 1))) d(X; (t+ k),

k>0



where d (X (t 4 k)),_, stands for Hde (t+ k). As before, we need to express the behavior of agent ¢ at
J#i
P(Xi(0) | X3 (6= 1), (X (5= 1)) 41,020

that describes the probability for X; (t) as a function of X; (¢ — 1) and (X; (¢ — 1)), To do so, we can now
integrate:

time ¢ given past actions:

P (Xi (t) ) Xi (-t n) o | X (E— 1), (X (t — 1))#1.)

over X; (t + k + 1) with & > 0, and this will yield P ( SO X (t=1) (X (s = 1)), S%).

P(X0) [ X (=1 (X, (5= 1)) ®

/exp (0) Bt HP (05 (4 B)), | X (K= 1)) (X (64 ),y dXi (k4 1)

/exp Zﬁ"ugfm ( (t+n),(X;(t+n- 1))]';&)

n>=0

< B TP (X (4 k), | (O (4 k= 1)) (X (E+K)),, dX (E+ R +1)
k>0

and the set of these equations with ¢ = 1, ...k where k is the number of agents, defines the set of statistical
weights P (Xi (1) | Xi (t—1), (X, (t - 1))#1,).
As such, the system of equations (3) depends on agents expectations and these ones have to be defined

to solve (3). To do so, we first define the effective utility for agent ¢ at time ¢, written Uesy (X; (2)), as:

P (X001 X, = 1), (X (¢ - 1), ) = ST ) 0

where the normalization factor N; is defined as:

Nim [ exp (e (X () X ()

The interpretation of Ueys (X; (t)) is straightforward given our procedure. The statistical weight describes
the behavior of agent i at time ¢ and is expressed as the exponential of a utility function. This utility
function has included all expectations of the agent about the future. In a classical interpretation, the first
order condition applied to Ueys (X; (t)), that would express X; () as a function of the X (¢t — 1), j # 4 and
X; (t — 1) corresponds to the solution of the dynamics equation for agent i. Given our approach this is of
course not the case, but we show in Appendix 1, that for quadratic utilities, Uy (X; (t)) encompasses this
classical result and allows recovering the optimization solution in the limit of no internal uncertainty.

Remark that definition (4) does not include directly the normalization term N;. It implies that Ue sy (X; (£))
is not uniquely defined by (4) since it allows to include any term independent from X; (). However, it allows
to work with U,y (X; (t)) without being careful with the normalization of this function, and to add the
needed factor only when it is necessary, i.e. when computing some expectations. We will come back to this
point later in this section.

The previous definition (4) will allow to rewriting the conditional probabilities in (3) as:

P((X;5(8) 5 (X (E+ 7)), [ Xi (8= 1))

B TIP (5 4 k) | (6 (4 = 1)

k>0

E!exp ZZUeff i (t+ k)

k>0 j#i



where:

Blexp | YN Uepp (X;(t+k) | = [[Elexp | D Uess (X (t+£))

k>0 j#i ji k>0

is the expectation at time ¢ of agent ¢ given its own set of information (the superscript ¢ in E? is sometimes
understood when there is no ambiguity). Then, equation (3) becomes:

exp (Uess (X (1)) = / exp (U T Bl exp | D Uers (X5 () | [T X (9 [JaXis+1) (5)

J#i s>t s>t szt

Equation (5) is a system making interdependent the statistical behavior of each agent. To solve (5) and find
the effective utility U.s¢ (X; () one needs to compute the expectations Ef exp (ZS% Uesr (X (s))) To do

so, some assumptions about the expectations formulation are necessary required. Basically, we generalize
what was said before and will consider two cases, that will be sufficient for most cases (some alternative
hypothesis could be developed as well).

We will distinguish the agents by their relation with respect to the information they have about the
others. An agent i has information domination (or strategic domination) over agent j, if he knows the
parameters, or some parameters of agent j’s utility and if 7 has no information about i’s set of parameters.
This allows agent ¢ to forecast agent j’s actions and take into account how he can influence j as explained
above in (3). On his side, agent j perceives agent i’s actions as random noises. Moreover, we say that two
agents ¢ and j have no information domination on each other, if they both have information (or both no
information) on the other one’s utility.

It is convenient for the sequel to define the rank of an agent with respect to the others in the following
way: When an agent ¢ has an information domination over an agent j one says that rk (j) < rk (i) (or
j < i when there is no ambiguity). We also set rk (i) = rk (j) (or ¢ £ j or j £ i) if there is no information
domination relation between ¢ and j.

If 7 has no information about j, an arbitrary weight exp (—?) is assigned to j. As explained above,
J

it results in simply discarding the variable X (¢ + k) in the problem in consideration. We will use this point
below. If ¢ has an information domination over j, rk (j) < rk (i) then we define:

UL (X (t+k
exp (Zk>o eff( U?(t+ )))
Blexp | Y Uess (X;(t+k)) | = N (6)
k>0 K

i
with NV;;= [ exp (Z,@O W) dX; (t).

The function Uet}f (X, (t + k)) is the i-th truncated effective utility of j, the effective utility Ue s (X, (t + k))
in which all the variables X, (t + k) with 7k (k) > rk (i) and some (depending on the precise form of the
model) of the Xy, (t + k) with rk (k) = rk (¢) are set to 0. It reflects the fact that in that case, agent ¢ has
no information about agents k with rk (k) > rk (i) and for some agents k with rk (k) = rk (¢), and as a
consequence, no information on the way k impacts j. Note that N;; depends implicitly on past variables.
To simplify the notations we will redefine:

Ul (X5 (t+ k) — 03 Ny — Ul (X5 (£ + k)

and (6) becomes:

Ul (X, (t+Ek
Ej exp ZUeff(Xj(t—i—k)) = exp Z ess { ]2(t+ ) (7)

g-
k>0 k=0 J

The parameter a? is a measure of agent ¢’s uncertainty about agent j future actions. Remark that a?

should in fact be written o7 (i), but, since ¢ will only appear in intermediate computations of Uess (X; (1)),

this dependence in ¢ is implicit. For cr? — 0, one recovers the full certainty about the agent that behaves



increasing, this behavior becomes only an average behavior. For 02 — oo,

J
agent’s action is perceived as random. Thus 0? introduces the measure of uncertainty about agents behavior,
i.e. the measure of external shocks. Concerning agent i’s expectations E}, we will also make the assumption

that all agents are perceived as independent, that is, given (X (¢ — 1)), one has:

as the usual optimizer. For O'?

BEP (X (0,1 (X (6= 1)) =TT P (X5 (0) ] (X (6= 1)

J#i

and more generally:

EfP((Xj(t—l—k))#i|(Xj(t+k:—1) 1;[13 SR (X (E+ k- 1))

Other assumptions could be made, the actions of some agents at time ¢ could be bound together, but these
hypotheses would be equivalent to consider some agents as a whole, which would mean to regroup some
utility functions from the beginning.

Ultimately, we will also assume that each agent faces an uncertainty about his own future action. This
. (1)
is modeled by the fact that in (3), we replace exp (Up) by exp (U(;Q > where 07 measures the degree of

uncertainty of ¢ about himself, as o
most case, the factor o2 can be rescaled to 1, but its presence, at least in the beginning, allows to interpret
the results more clearly.

The conditional probabilities appearing in (3), expressed in terms of the Uess (X, (t+ k)) allows to
write the conditional probablities as intertemporal sums. To find recursively each agent effective utility
Uess (X;(t)), we introduce the system of all agents effective utility in the previous formula.

Given our assumptions, (5) rewrites:

measures the uncertainty about other agents. In fact, as we will se, in

exp (Uess (X: (1)) (8)
P (X (6) ] X (6= 1), (X (£ = 1))

(
/exp( t2>EtHP( (k) | (X (t+l<:—1)))

k=0
xd (X (t+ k), dX; (t+ K+ 1)

or, replacing the expectations E}:

(4)
exp (Uegr (X (1) = / exp <i> )

i

Ut t+k
xexp [ DD ers ( [TdX;t+k), ., dX;(t+k+1)

k>0 j#i k>0

with:
U =30 B (X (b k) (X (4 = 1)), )

k=0

The system (8) (or (9) defines the functions U,y (X; (t)), and these ones determine ultimately the proba-
bilities (1) describing the system.

We show in Appendix 1 that the optimization equations of the standard utility maximizing agent are
recovered for quadratic utilities, when a? — 0 and then 02 — 0. In other words, the agent behavior is peaked
on the usual optimal path. For non quadratic utilities, the result is identical, on the condition to replace the

effective utilities Uess (X (t + k)) appearing in the right hand side of (8) by their quadratic approximation

10



around the saddle point solution. More precisely, if we were rather defining the effective utilities as satisfying:

5
exp (Uess (Xi (1)) = / exp (;}) (10)
t+ k))
xexp [ YN ey ¢ I dx; )i dXi (t+k +1)
k>0 j#i k>0

where:

U = 37 Bl (Xt + 0, (X 4 k= 1)),

k=0

is the intertemporal utility of agent j and:

Ul (X5 (8), (X (8= 1)) = =5 (X5 (1) = X5 [(Xe (¢ = D))" Ay (X (8) = X5 [(Xk (¢ = 1))

1
2
is the quadratic approximation of U(f}f (X;(t),(Xe(t—1))) at X; [(Xp (t—1))]. Here, X;[(Xy (t—1))]
is the solution of the optimization problem of Uet}f (X, (t),(Xg(t—1))) in the variable X;. That is,
X, [(Xg (¢ — 1))] satisfies:

- (axcj(ﬂUi?f (X5 (8), (X (£~ 1)))>

X5 (1)=X; (X (t=1))]

for any (X (t — 1)). Then, Appendix 1 shows that in that case, the integrals in (10) are peaked around the
classical optimization solution when ¢% — 0 and then o7 — 0.

We will not use the representation (10), but rather build on (8), since it is both more natural and
convenient. Sufficient for our purpose is to know that we can recover the standard approach - if needed - as
a particular case for quadratic utilities, and as a quadratic approximation for general cases.

X; s . X_/'(S)
ST

where « is the degree of the homogenous utility. In this case this is equivalent to set o7 = 1 and to redefine

Note also that for homogenous utilities in the X; (s), one can rescale X/ (s) =

2
0 to be equal to % If we assume that all the U] are equal to o2, thus we will replace o2 by 2. The

mtegrals in (8) include some irrelevant constant factor that are powers of o that will be absorbed in the
normalization of the statistical weight exp (Uers (X; (t))). As a consequence, after integrations (8) reduces
to:

t+k))

exp (Ueyy (X, (1) = exp (U] xexp 3037 Lot 2l

k>0 j#i

d(X;(t+k),;,d(Xi(t+k+1))

which is a more convenient representation. In that context, retrieving the usual optimization description
corresponds still to let a? — 0 (These optimization equations are in fact for the variables X/ (s), but due to

the homogenous form of the utilities, the factors in powers of (af) g cancel and one retrieves the equations
for the X, (s)).

The system (8) is solved given our assumptions on the agents information sets and the form of the ex-
pectations Ef. Given our assumptions on the expectations Ef, the computation of exp (Uess (X; (t))) will
involve only the structures on which ¢ has an advantage of information or those that are in a relation of
non domination with . Actually, as said before, the structures about which structure ¢ has no informa-
tion, are considered as random shocks and not included in agent ¢ computation, that is, if 7k (i) < 7k (5)

E!exp (Zs>tUeff (X; (s))) = 1. In other words, agent ¢ integrates only in its behavior all substruc-
tures possible paths. Its choice, for a given set of X, (s),X;(s), j < ¢, s > ¢ is exp (Uf“) weighted by

exp (Lo ULy (X (5)))

11



To solve (8) for the Uesy (X; (t)), we first rank the agents by their strategic advantages. The U.ss (X; (t))
are found recursively for each set of agents with the same rank. Second, the effective utilities just found are
reintroduced in the system of equation defining the effective utility of higher rank.

Among a set for a given rank (we use the rescaling o7 = 1 described above) (8) rewrites:

exp (Uess (Xi (1)) (11)
= /exp (Ut(i)) H exp Z Ueff )ij HdX
rk(j)<rk(i) s>t s>t
x T Elexp | D> Uesr (X5 (s) | []aX; () | [ dXi(s+1)
rk(j)=rk(i) s>t s>t s>t

The Uesyr (X (s)) with 7k (j) < rk (7) are given by hypothesis, and the Uet}f (X, (s)) are obtained from the
Ueyrs (X, (s)) by truncation. We are thus left with a set of functional equations between the Uy (X; (t)) of
same rank

The resolution depends on the model, and on the formation of expectations for rk (j) = rk (i). Several

hypotheses are possible in this case. For example:

Blexp | Y Uess(X;(s) | = 1
s>t
Uegrs (X
Elexp ZUeff(Xj(s)) = exp ZM
s>t s>t g;
Uer (Xi () x,(5)—xu(s
Elexp (> Uesr(X;(s) | = exp |, - i(s)=Xi(s)
s>t s>t J

In the first case, structures of the same rank share no information at all. In the second case, they fully share
their information. In the third and last case agents are identical: we replace X; (s) by X; (s) in agent ¢ utility

to obtain E! exp (ngt Uesr (X, (s)))
We keep the first and simplest case Ef exp (Z M) = 1 when rk (j) = rk (4). In the truncation

o
procedure, the X (s) with rk (j) = rk (¢) will then be set to 0 in the Ueff (X% (8)), and the following recursive
system of equations for the effective utilities will be:

exp (Uess (Xi (1)) (12)
. Ul (X5 (
= /exp (Ut(z)) H exp Z i 23 HdX )HdXi (s+1)
rk(j)<rk(i) s>t J s>t s>t

Once the U.sy (X; (t)) satisfying (11) (or more generally (12)) are found, we can consider the entire
system as being described by an overall weight:

PX(t+k) X () =P(X;(t+1)) [ (X (1))
and more generally, by the transition probabilities of the system over k periods:
PX(E+k) | X (#)=P(Xi(t+k) | (Xi(t))) (13)

where X (s) = (X, (s)) is the concatenation of the X; (s). Equation (13) models the random path of the
whole system and will be used in the next sections of this work. There are several ways to define (13), all

12



of them depending on some additional hypothesis. If we assume that the individual transition functions
P(X;(t+k)| (X (t)) are independent, one has:

PX(t+k)|X () = P(XE+k)|X{t+k—1)..P(X({t+1)]|X (1) (14)
= <HP(X,-(t+k)|(X(t+k1 ) (HP (t+1) |(X(t)))>

These probabilities can be computed through the effective utilities. Yet, more care must be given to the
normalization factors. We first assume that a non-normalized particular effective utility function satisfying
(11) has been chosen (recall that all such functions differ by a function of all variables except X; (¢)). Since
the statistical weight defining an agent is proportional to the exponential of the effective utility, one has:

exp (Uers (X5 (2)))
N;

PXi(@) | (X(E-1))= (15)

where the normalization factor is defined by:

N= /exp Uets (X; (1)) dX; (1)

When gathering all agents, we have to take into account that A depends on (X (¢t — 1)), as seen in (15). As
a consequence, we will write:

P(X; (1) | (X (t—1)) = e%f(f;?tv_ﬁf)t)))) »

and (14) will be given by successive integrals:

P((Xi(t+k)) [ (X (1)) (17)
- /eXp(ZZ cif (X (t 41, (X (E+1—1))) —InN; (X (t — 1)) )Hd

However, other definitions of P ((X; (t + k)) | (X; (¢))) may be more relevant. Since we are looking at the
entire system, the independence hypothesis (14) may not hold anymore while some additional interactions
or internal constraints, unknown to the individual components, become relevant and invalidate (17). As a
consequence, the effective utility should be modified accordingly. Yet, there is a simpler way to bind all
the components of the system which is again related to the normalization problem. We have seen that
Ueps (Xi (t+1),(X; (¢t +1—1))) is defined up to any function independent of X; (¢ + 1) (see discussion after
(4)). If we chose a particular form for Uesy (X; (t +1),(X; (t +1—1))) and do not impose (14), we can define
the transition function for the system as:

P (X (t+K) | (X: (1) = /eXp<ZZUeff P+, (X (t+1-1)) )Hd (1) (18)

where N’ is a global normalization factor for the entire system and the whole path between ¢ and
t + k. Such a formula distinguishes between collective and individual behaviors and the utility attributed
to the system is the sum of individual utilities. Formula (18) will depend on the particular form of
Ueps (Xi (t+1),(X; (¢ 4+1—1))) among the solutions of (11). The choice of Ue sy (X; (¢ 4+1),(X; (¢ +1—1)))
depends on the particular system studied, but one has to remind that the effective utility Ue s (X; (t), (X; (t — 1)))
encompasses all forward looking and strategic aspects of agent ¢’s behavior. Thus, all these aspects being
integrated out, Uesy (X; (t), (X, (t — 1))) should only take into account one period effect, and describe how
agent ¢’s reacts to (X; (t —1)). A coherent choice for Uess (X; (t),(X; (t —1))) is thus to impose that it
should not include any contributions independent from X (¢). Introducing such terms would actually model
a concern for other periods, and that was ruled out from the definition of Uess (X; (¢),(X; (t —1))). As a
consequence, in the sequel we will keep this choice when working with (18).

13



In the definition of the effective utilities Uess (X; (¢4 1), (X; (t+1—1))), a measure of the uncertainty

about the agents appears through the variances o2 (see (12). Assuming that all the 0? are of same order

J
as 02, we have seen that in the limit of no uncertainty o2 — 0, one recovers, at least for the quadratic
approximation, the usual optimization dynamics. The classical case can thus be seen as a particular case
of our model and we can compare the advantages of the two approaches. Usually, one writes the first order
condition for each X (), then postulates a form for the equilibrium dynamics, and solves the equation. The
difficulty comes from the fact that, even if there is no optimization on the X; (¢t + n), n > 0, those variables
enters the dynamic equations, as a consequence of agents’ anticipations and possible information domination
of some agents, and have to be replaced by the dynamic form of the solution. There is thus a circularity
that implies difficulties to identify, analytically, the coefficients of this equilibrium dynamics.

Working with statistical weights avoids computing the solution for each agent. The exponential form of
the probabilistic weights ensures that the action X; (¢) and the planned action X; (¢t 4+ n), for n > 0, will
be chosen in probability, close to their expected optimum. The process is repeated each period, with no
commitment to previous expectations. In the end, this results in modeling the all system by the overall
weight (18) and a dynamic centered around the classical optimum. The total effective utility includes the
partial resolution of the agents’ expectations and strategic interaction with others.

The weight (18) (or 17) can be used in various ways. First, as the exponential of an effective util-
ity for the system, it can be used to find the average path of the system. Actually, the probability
P((X;(t)) | (X;(t—1))) concentrates on its saddle point value which is given by the set of equations:

VxiUers (Xi(t),(Xi (t—=1))) =0 (19)

where again, ¢ runs over the set of agents. This is a usual Euler Lagrange equation that leads to the usual
linear dynamic solution for quadratic utilities. The eigenvalues of the dynamical system are in principle
straightforward to compute. The solutions of (19) are moreover different from the usual optimization paths
for a non null value of o2.

Some external shocks may also be directly included in this set up. Rather than considering:

ZUeff ). (Xi(t—1)))

as a full effective utility of the system, one can include some perturbation terms:

Z Uepy (Xi (1), (X3 (t = 1)) + X; (t) Lirex ()

where g, (t) are some random external perturbations, and L;; the response to this shocks for agent i. The
dynamic equation thus becomes:

VxiUess (Xi (1), (Xi (¢ = 1)) + Ligex (t) = 0
and in the case of linearized dynamics, the response to € (¢) is simply:

(X (t+m)) = (Xi (£) + D (i (1))

where D,y is the matrix describing the linear solution (X; (t+ 1)) = Deys (X; (t)) and the parenthesis
(€5 (t)) denotes the vector of concatenated shocks.

A second use of our probabilistic description will be more central in this paper. Rather than focusing
on the mean path approximation (18), we can come back to the transition probabilities and write them in
the continuous approximation. Actually, whatever the normalization chosen for Uesy (X; (), (X; (t —1)))
n (18), we can replace the lag variables (X; (¢t +1—1)) by (X; ¢t +1—-1)) = (X; (t+1))) + (X; (t +1)) and
identify the difference ((X; (t + 1 — 1)) — (X; (¢t + 1)) with minus the derivative 2 (X; (¢ + 1)) = (Xz (t+ l))

We then obtain P ((X? (t+k)) | (X?(t))) in terms of the variables (X; (¢ + 1)), ( i (t+ l))

e ( / DU (0. (X, <t>))>D<XZ- ®) (0

(k)=

P((X2(t+k) | (X2(1)) = /X (0= (x?
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for two given values of the initial and final state of the system (X? (t+k)) and (X? (¢)). The integrand
D (X; (t)) denotes the sum over all paths from (X? (t+k)) to (X?()) and the probability of transition
between (X? (t+k)) and (X? (t)) is expressed as a path integral between those two points. We will come
back to this approach in the third section. This formalism, familiar in theoretical physics, appears in a
wide range of models, ranging from Quantum Mechanics to statistical physics, and allows to go beyond
the "classical" average dynamics. The system may then be considered as a fully stochastic process, whose
transition functions are given by (20). Such integrals are usually difficult to compute, except in the quadratic
case. They can however yield some information on the probabilitic nature of the system, notably through
several techniques such as perturbation theory, or Feynman graph expansion. Besides, path integrals have
already been used in finance, to studying the dynamics of stock market prices for example [10].

2.2 Basic example. Comparison of the path formalism with intertemporal op-
timization

Before developing some more general models, we start with a basic example. We consider a two agents

system with time t utility:

1
uy (yr) = — (2%2 Z/t%—l)

1

1
ug () = — <2117? + 5?!,52_1 - 04$t1/t—1>

Note that this is the model developed in [4], in which a two agents interaction was considered:

U0 @ @) =~ (o (1)~ a0)” —ar (¢ = 1)

UP @) = =7 (- D) +ao (¢~ Dax (1)~ 5 (a2 (1))

and where we set v = 0, ag = 0, to focus on the method of resolution. The comments and interpretations of
the model can be found in [4]. The agents intertemporal utilities are:

Uy(y)) = Zﬁnuy (Yitn)
Up () = D B"ug (Tern)

Agent x; has a strategic information advantage. Agent x knows the utility of agent y and his impact on y
(coefficient —1) , as well as the impact of y on him (coefficient —«). Agent y has no knowledge of agent x
utility. He only knows the impact of x on itself, and this impact is perceived as the action of a random shock.
This model of interaction will be generalized in the next section. Note also that it can represent a dynamic
version of the Stackelberg duopoly model. Actually, in a Stackelberg duopoly, the payoffs are quadratic:

™ = Pqa—aq
Ty = Pg—coq

Where the price is P and c1, co the costs, ¢; and g2 are the quantities produced. Using the inverse demand
function:

P=A-—q —q
leads to:
™ = (A—Q1—(Z2—61)(11
T2 = (A*(J1*Q2*C2)
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In a dynamic version, agents would optimize a dynamical version of the payoff functions. Given that in the
Stackelberg setup, agent 2 has a strategic advantage and anticipates future actions of the first agent, the
time ¢ rewards become:

() = A-q(t-1)-—qt)—a)a(-1)
m(t) = A-qat—-1)—q() —c2)q(t)
The lag in ¢ (¢t — 1) translates the fact that agent 1 uses his strategic advantage to to match the demand
at time ¢. Up to some constant and normalization, the functions ; (¢) are similar to the model considered
previously in this paragraph, except for the term g¢o (t) g1 (t — 1) appearing in the definition of 7y (t). In-
cluding this term would need a slight modification of our basic model (inducing some time translation in
the computations of the effective utility for the first agent), but this is not our purpose here and this will be
discussed in the next section.
Back to the resolution of our example, in the optimization set up, this model is solved with standard
methods for optimization with rational expectations (here perfect information). Solving first for y;
Yt = Te—1
leads to the following effective utility for z;:
2, 1 5
51} + ixtﬁ — QX T2

and the intertemporal utility for x;:

1
UI (LL't) = Z ﬁt (237% (1 + 62) — QXL — 062$t$t+2)
leads to the optimization equation:
Ty (1 + B2) — Qxyp_9 — aﬁ2xt+2 =0 (21)

Postulating a solution of the type:
Ty = dri_q
leads to the characteristic equation:
(1+5%)d®—a—ap’d*

whose solution is:

i ()

On the other side, we apply the formalization scheme developed in the previous paragraph, and then
compare the results with the dynamic solution (22). We then need to compute the effective utilities for both
agents z and y. We start with y and consider its intertemporal utility:

Uy (ge) = > Bty (yr1n)

n

Given that y; has no information about z, it will behave according to the statistical weight defined by:

/eXp (ZB Uy (yt+n)> exp (_Utz> 1 dzeindyesni
n

n=0

exp (Uessy ()

1 TP,
/EXP > 8" <2yt2+n - yt+nxt+n1) exp (—Hanzl) [T deesn—1dyesn

n=0 n>0

The integrals

1 x2,
/exp (ﬂn (ny-s-n - yt+n17t+n—1>> exp (t;ngl> H Aziqn—1dYi4n

n>0
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give a constant result, set to 1 after normalization, so that:

2
Tt 1
/exp E B" ( yt+71 yt+n$t+n—1> exp (t(*;; 1) H A pn—1dYt4n = €xp <<29t2 ytzt—1>)

n>0 n>0

which translates in terms of effective utility:

1
(Uerry () = §yt2 — Y1 = u(Yt)

The result previously stated is retrieved: the effective utility of an agent with no information is the initial
time t utility.
Now we can compute the effective utility for agent x. Starting with its intertemporal utility:

Up () = Z B g (Tt4n)

n=0

= Zﬁ (2 T+ yt+n 1 Oéwt+nyt+n1)

n=0

n

1 .
= Z(2xt+n+ Byt-i-n 1 0‘\/5%%—1)

n=>0

where we changed the variables:
Zt4n = (\/B)n Ttt+n
Yt4n = (\/B)n Yt+n
we apply (11) and seek for a (Ueyfs,q. (4)) defined by:
exp (Uegypax (1)) = /eXP (Us (¢)) exp Z Ueffyigytm) H dYttn—1dLiin (23)

g
n=>0 n>0

where U.yy (§t4+n) has to be normalized. We set:

1,2
EXP \ Yt — YtTt—1
exp (Uessy (Y1) = (3 tN )

and impose:
[ exp Werry ) =1
which leads ultimately to:

1 1 1
exp (Uesry (yt) = E exp (2%2 — YtTe—1 + 2$?—1>

The factor \/% is a constant factor and can be discarded from the computations, so that (23) becomes:

exp (Ue e (24)) o
n=0 n>0

. Ue Jt+n . N
/exp (Uy (&1)) exp Z w H At yn—1dTsan (24)

1, 1 L.
= /GXP Z <2$§+n + §6yt2+n71 - a\/th+nyt+nl)

n=0

no 1.9 L -2
5 — X _ xr
X exp Z <2yt+" VBtntn1 + b H"l) H AYt+n—1dTi4n

o2 202
n=0 n>0
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or, when the variables at time ¢ and those at time t 4+ n are separated:

1 B\ . 1/1 . 1 . A 6. .
exp (2 (1 + 02) &} + By (02 + 5) J; + gﬁyil — o/ Biyij—1 — \;;ytxt—1>

X /exp <Z <; <<1 + 0?2) it2+n + <0_12 + ﬂ) g?—i—n) - O‘\/Bi‘t-‘rnyAt-‘rn—l - \U/QByt+n=’it+n—1>>

n>0

x [ dinsndissndie
n>0

exp (Uesr,e (%))

Now, define:

The effective utility for z; is written as:

e (Ueppa (i) = 0 (;Y< (”sz) TR )Y v ( 3G )Yt_l) (25)

1 1+ %) 0 . (0 a
X /exp 7Y;tf+n < ( 7 }/H»n - \/B}Q+n 1 Yrt+n71
(= 0" (@e9) 0
< | dijerndisindie
n>0

To compute the integrals, we use a result about gaussian integrals for a path of variables {Yt+n = ( Z;H” ) } .
t+n n>0
This result states that the gaussian integrals | | d§t4ndZiyy, are known to be equal to the (exponential of

n>0
the) saddle point value of the integrand in the second exponential of (25), with initial condition (&, 3;) and

final value (0,0) at ¢ = co. More precisely,

exp 7Yt+n ( 7 §/t+n - \/B)/t_pn 1 }/1€+n,—1
/ (Z (2 0 (F+5) 7 0
X H dyt—&-ndit—&-ndgt

n>0

= exp (Saddle point of (9))

with:
1 1+5) 0 0 a
S ==Y} ( o? Yiin — /YL Yitn_
2 t+n < 0 (# +5) t+ \/B t+n % 0 t+n—1
where the saddle point solution satisfies the initial condition given just above.

To compute this saddle point value, define three matrices A, B and C' with A symmetric, and C anti-
symmetric that allow to rewrite the integrand in the exponential as.

_ 0 a+ B 0 a- %
A—<a+; 0 )3“0—(—u+; 0 )

)

so that:

o QN‘H

A+C=2<9 O‘)andA—C:2<0
> 0 o

The matrix B is defined by:



so that the quantity in the second exponential of the right hand side (25) is written as:

1
§= 2 3 (Van (B = 4)Yern — VBV (A+C) Vi)

n>0

The saddle point equation is then:
2(B — A)Yien — VBAYign-1 4 Yient1) = VBC (YVign-1 — Yirns1)) (26)
We look for a solution of this equation under the form:
Yitn = DYiinta (27)
and the matrix D satisfies
—VB(A-C)D*+2(B-A)D—-\/B(A+C)=0 (28)

One can check that the solution D of (28) has the form:

and (28) leads to two equations for a and b:
iﬁ +1 3 1 b\/B
al—3 a 20
1 1

I
o

|
o

whose solutions are:

~ s (L e (0 200 - i 1) (04 5 4 20— e 1)
(29)
1
b = m (aﬂ +o%a— 020(\/B>
2B+ 52—/ (02B+ 5> — 208 — 02026 +1) (628 + B* + 208 — 0?28 + 1) — 0%a*B + 1
= (®+5)

VB (0—25 + 5% = /(028 + B2 — 208 — 02026 + 1) (026 + 6 + 206 — 02028 + 1) + 02026 + 1)

Having found D, we replace these expressions in the saddle point solution (27). The effective utility Ueys o (2¢)
can then be obtained by:

A 1 1
exp (Uesya (21)) :/eXp (2 (Z <Ytt+n (B = A)Yern — VBY 1 (A+C) Yeyn- 1)>> o

n>0
where Yi4, satisfies (27). The whole integrand
1
S =53 (Viin (B 4)Yirw = VBY/, (A+C) Yigna ) (30)

n>0
can then be simplified via the dynamic equation (28). This dynamic equation (28) rewrites:
(A-C)D*+2(B-A)D+(A+C)=0
or, since D is invertible:

(A+C)D'=—-(A-C)D—-2(B - A)
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the sum (30) simplifies as:

;Z (YttJrn (B A Y;‘/+n f t+n A+C Y;‘/+n 1)

n>0

= _£Ytt+1 (A+O)Y;

+Z t+n B A 1/tJrn Z f t+nAY;‘/+n 1 — Z \/> t+nC}/t+n 1

n>1 n>1 n>1

= _£Ytt+1 (A+0O)Y;

VB
+ Z en ( (B—A)Yiin — 7A(5Q+n—1 +Yirnt1) — 9

n>1
= Y, (A+O)Y;

— 7@175 (A-C) Y1 = *@Yf (4-C) Dy,

760 (}/tJrnfl - }/t+n+l>>

The second term vanishes, as a consequence of the dynamic equation (26). Then:

Z(anw A)Yin = VBV (A4 C) Vg 1>

n>0

- vy,

and (24) rewrites:

/exp <<;y; (B— A)Y; - @Y: (A+C)Yiis — @Y: (A—C) DY;)) di
d

/exp (_; (y; ((B . % (A-C) D> 1@) - gyg (A+C) Ytl) i

We can use again the dynamic equation for D:

exp (Uesy,e (2t))

(Q(B—A)—\/E(A—C)D) —(A+C)D!

and the previous relation becomes:

) | . 1 )
exp (Uesso (£)) = /eXP (4 (Y (A+C) DY) - §Ytt (A+C) Yt—l) dijy

[ (3 (0= DY) 4+ ) D7 (- DY) ) e
The integration on §; then leads to the following compact expression for Uess (z):

Uess (1) = (w1 = (DYin),) (A+C) D7), = (A+C) D7), ((A+C) D7), ((A+C) D7), (w0 = (DYioa),)
= (xt - ayt—l) Nyw (xt - ayt_l)

where the subscript « means the coordinate of a vector (or a matrix) in the x direction. The matrix N, is
defined by:

Na::r =

—~
—~

A+C)D™Y) —((A+C) D—l)my (A+0C) D—l)yy (A+0C) D—l)ym

xrx

S
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As a consequence, the full system is finally described by the probability weight:
exp (=Uess (z¢) = Uesy (y1))

« 1
= €exp (— (ﬂft - aytfl) a2 (xt - aytfl) - (2%2 - yt$t1)>

whose minimum is given by the dynamic equation:

Ty = aYi—1

Y = Ti-1
that is:

Tt = ATt—2

All computations performed, the mean path followed by agent x is similar to the classical case, but with a
different coefficient and this has to be compared with the usual resolution we obtained previously:

Ty = dwi_q

and the coefficients a and d* were given by (22) and (29).

We perform the comparison through a power series expansion in § which allows to compare the effect
of forward looking behavior in both models. Actually, as said previously, we know that both approach are
identical for § = 0. This is checked directly here. Actually, at the fourth order:

& = a+,6’2a(a2—1)+B4(2a2—1)o¢(a2—1)+0(ﬂ5)

a a+ B (a2 — 1) +o%a? (oz2 — 1)253 +a (on - 1) <2a2 + ot (02 — 1)2 — 1) B4+ 0 (,5’5)

For 02 = 0, d? and « coincide at all orders, and the usual result is recovered as announced in the previous
paragraph. It corresponds to a system with no internal uncertainty and the usual optimization problem is
recovered. For ¢2 = 1, which corresponds include an uncertainty in agent’s behavior one finds:

a:a+ﬂ2a(o¢2—1) +0(ﬁ3) =d
To the second order, both approaches coincide. The case 02 = 1 is equivalent to the case in which the
dominant agent x has full information about y. His knowledge about y’s fluctuation are of same amplitude
as his own, i.e. he knows the most that can be known about y.

At the third and fourth order, for o2 > 0, the results diverge, and a > d?, this is the consequence of
the inherent uncertainty of our model. Whatever the external signals, an internal randomness has been
introduced in each agent behavior. This induces in turn fluctuations that destabilizes slightly the system
compared to the usual analysis. Only when 02 = 0, For 8 — 0, the two solutions coincide, as explained in
the first section. The reason is straigntforward. For § = 0, in both formalization, agents only care about
period ¢, and whatever their way to produce future forecasts, perfect, ordefined by statistical weight, it will
be irrelevant.

For o2 large, the previous series expansion for a breaks down and we have to come back to:

— ; 12 12_} 2 2 _ _ 5202 2 2 _ 5202 }22 1
a = aﬁ(02+ﬁ)(20ﬁ+26 2\/(06—1—6 208 — 02?8+ 1) (2B + f° + 208 0aﬁ+1)+20a5+2
1/1 1 5 1 1/1 1 5 1
_ I 2 -2 A2 I - 2 -2 2
a(2 5 (1 a)+2a>for(1 oz)>0and04<2—|—2 (1 a)+2a>for(1 a?) <0
= «

which is the result expected under no information. This is coherent: agent = information is of low relevance
when o2 is large. This coincides also with the result for 8 = 0, since in that case agents dicard next periods
and the consequences of their own actions.
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Varying the parameter o2 therefore allows to interpolate between the full and no information schemes
or, equivalently in this context, between a dynamic Stackelberg and a dynamic Cournot game.

This example suggests two conclusions. First, our setup allows to switch continuously between a model
with no internal uncertainty (the usual optimization problem) to another model including internal uncertainty
about agents behavior. In other words, it allows to consider the quality of information at disposal for the
agents as a parameter and interpolate between full and no information cases.

Our second conclusion concerns the resolution method. From the exposition above, the standard opti-
mization method seems to yield a mere straightforward answer for the dynamics in the case of no internal
uncertainty. From this standpoint, our formalism, eventhough more general, seems tedious in the 02 — 0
case. However, his advantages become clear when the number of agents increases. Whereas solving the
optimization equation (21) becomes harder when the number of agents increases, the dynamic equation (28)
will keep the same form. This first order matricial equation will be easier to solve for some particular values
of 02, such as 02 = 1, thus providing a tool to describe analytically the behavior of the agents in a whole
range of systems. The dynamics thus obtained would differ from an optimization problem, but will remain
centered around the classical solution, and can be seen as an approximation of this one. Let us also note
that, however approximate, this "probability-based" solution is no less valid nor realsitic than the standard
description of the agent behavior.
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3 Application: Several interacting agents defined by a graph

3.1 Static model of several interacting agents.

Having presented the general formalism and described a representative example, we can now apply the above
formalism to a general class of models that fit well with our approach. These types of models describe inter-
actions between n heterogeneous agents, some agents dominating informationally and strategically others.
They are described by a graph ordering the agents by the relations of strategic domination among them (see
[5]). They are equivalent to some dynamic games models, and are close to monopoly or oligopoly models.
These models can also be used to describe dynamic patterns of decision for agents composed of several
sub-structures (see [3][4][5][6]).

We will first present the static version of this class of model to introduce the agents’ utility functions
along with the domination graph that commands the resolution. We will then develop the dynamic version
that will be used. Each agent’s effective utilities are computed, to derive the whole system’s effective utility.
Ultimately, we will consider several examples.

3.2 Strategic relations between agents

The agents’ strategic relations define the model setup. An oriented graph I" whose vertices are labeled by the
agents describe these relations. When Agent i has a strategic advantage over Agent j, we draw an oriented
edge from ¢ to j and write ¢ — j. If there exists an oriented path from ¢ to j, we write the relation ¢ — 7,
and state that Agent i dominates directly or indirectly Agent j or, equivalently, that Agent j is subordinated
to Agent i. If there is no oriented path from i to j, we write j <~ i, where it is always understood that i # j.
In the following, we merely consider connected graphs without loops.

3.3 Matricial formalism

Agents’ utilities are described by the following matricial formalism. Agents’ actions are encompassed in
a vector of actions, or control variables. The number of possible actions determine the size of the vector.
Utilities being quadratic, matrices may be associated with them.

Let X; € R™ be Agent i’s vector of control variables, and f(](»l) € R™ the vector of goals associated with the

variables X, as expected by agent i. We normalize X ](-i) to 0, so that Agent i wishes to achieve X; = 0 and

X; = X'j(l) Agent i's utility is given by:

L (%) 1 t SV, v ()
Ui = —3 XA/ Xi—3 Z (Xj S )A-jj (Xj - ) oy
‘74_<Z
. (i) (i) t o (7) (4)
=0 (3 - X)) - 30 (- XP) A0
je—i el

In the absence of any interaction, Agent ¢'s utility is given by the term

1 .
—thiAgf)Xi

The variables X; are normalized so that AZ(-? is a f; x n; diagonal matrix whose coeflicients are 1 or 0.
If Agent 's subordinate agents’ actions X, depart from X J(»’), Agent 's will experience a loss of utility of

the form :
> () (3, 5)

g

The f; X n; matrix Ag? of parameters is of course symmetric.
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The impact of Agent j's action on Agent 7's utility is

XA X, = 30 (X = XO) ADX,

g i

where j7 < i can be seen as the impact of Agent j's action on Agent 7. In our model, Agent j does not
know the agents to whom he is subordinated, and processes their signals as external ones. The second term
models the strain imposed on Agent i by Agent j to achieve its own objectives for X;.

Remark 1 Since the linear term in X; disappears during the resolution,
S Al X,
i B
JRi
s equivalent to
= () ;
3 t(Xi — XU ) ADX;
Joi

Notation 2 By convention, for the n; x n; parameters matrices Agé), we will write tAE;) = Ag?.

3.4 Dynamic version

This section describes the general model for dynamics interacting structures. We adapt the the procedure
of the previous paragraph by transforming the matricial static utilities in a dynamic context, and assuming
each agent optimizes a forward-looking intertemporal utility function, given its own information set.

The intertemporal utility is of the form :

Vi(t) = Y BEU; (t+m)

m>0

where 3, is Agent i's discount factor, and E! his conditional expectation at time ¢. Agents compute their
expectations according to the following information pattern. U; (¢t 4+ m) is period ¢ + m utility and is a
dynamic version of the static form (31), where the previous remark allows to set )N(i(J ) =o.

Uit +m) = —5X!(+m) AP X (¢ +m) (32)
—% 3 (X; (t+m—1)— XJ()) A (Xj (t+m—1)— Xj()>
jei
=2 XLt m) A (%5t +m—1)-x)
—JZXZ? (t+m) ADX; (t+m— 1)
J<i

Which is, up to some constant irrelevant term, a straightforward generalization of the static model utility
function. Actually, in a dynamic context, we consider that agent i perceives external and other agents’
signals with a one period delay.

Concatenating X;(t + k) and the vectors X, (¢t + k) for all j < 7 in one normalized column vector, we
rewrite the utilities:

Y (t+k) = <6'5 (Xj (t+ k) — X;“)jSJ

where, by convention X'i(i) =0, X;i) = X](»i), j < i. We work now with the system of variables Y; (¢). For all
1> j, 1 =j, one has the following map

X+ k) =Y (E+E)
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defined by: ¢ (ﬁng (t-i-k)) = (0,...,5% (X ()54 —X( )) 0,. O) Similarly, we define the injection

VY (t+ k) < Vi (E+ k), given by o (V; (E+ k) = (52 ( S+ k) —X;.”) ,o,...o).

When there is no ambiguity, we will still write X; (¢t + k) and X (¢ + k) for the images of these vectors by
these injections. In other words X;(t + k) = (Y; (t + k)); and X;(t + k) = (Y; (¢t + k)); are the i-th et j-th
components of Y; (t + k) respectively.

With these conventions, the utilities rewrite:

v = g Xi (¢4 ) A X '(t+k)+2j<i((Xj(t+k—1) )A( ( (k1) - X@))
t N k>0 +2X; (t +k)A( ( (t—l—ki—l) X](i))+zj>i (t—l—k)A()( (t—i—k—l))

AD o 00
- ZYi(tJrk)( ;i O>Yi(t+k)+Yi(t+k—1)<0 540

k>0 {45}

)Y;(Hk—l)

L
340

R R AT )

gAY o

+3 72X (t+ k) AY (X, (t+ k- 1))

j>i

+Yi(t+k)<

We will also add possibility for an inertia term:

X (1) DX, (t—1)

to obtain:
_ (i) 0 0
0 . Aii 0 . . _ . _
Ul = ZK(H@( i O)Yz(t—i—k)—i-Yl(t—Hc 1)(0 540 )Y;(t+k 1)
) {43}
Bzl g AW
+Y; (t+k A YoYit+ k-1
( )( gE A0 0 ( )
+ 2Kt R) A (X (4 k- 1))

J>i

3.5 Pattern of information

The full resolution of the model relies on agents’ expectations, i.e. agents’ information sets or parameters
knowledge. The pattern of information over the domination graph we propose describes how agents perform
their forecasts. Each agent knows the domination relations of the subtree he strategically dominates, but
ignores the reactivity of the subtree’s agents to external, non dominated agents. In other words, Agent ¢
knows the values of the Aiz) for i — k and ¢ — £. The remaining coefficients A,(CE) are forecasted to 0 for
this agent. Remark that under our assumptions agents do not attribute a probability to the coefficients they
forecast, but rather a fixed value.

We moreover assume that, at each period ¢, Agent ¢ knows the signals X;(t — 1) for ¢ — j and X;(¢ — 1) for
j ¢~ i by which he is affected. From these hypotheses, we can infer some results about the agents’ forecasts.
First, Agent i forecasts to 0 all the actions of agents he does not dominate. That is, for j ¢~ i and m > 0

one has:
E!X;(t+m)=0

This condition will allow to simplify some computations when computing the effective action of agent "i".
The action variables X; (t +m) for j ¢~ ¢ will be discarded.

We conclude this paragraph by remarking that In the case of oligopoly interpretation, the pattern of
information chosen ultimately determines which kind of game is played, Stackelberg, Cournot...
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3.6 Effective utility

As shown in the previous section, each agent j behaves at time ¢ with a so called effective utility Ue s (X, (t)) =

Ueys (X;) whose form is found recursively. For the less informed agents - those for which X; (¢) = Y; (¢) -
the non normalized effective utility reduces to time ¢ utility:
Uess ( ZY ADY () = VBY: (- 1) eV (= 1)+ 32X, (1) AL (X, (£ 1))
>

Section 2 has shown that (Ueyrs (X; (t))), the effective utility that determines the probability of behavior of
agents who dominate others informationally is given by (11):

oo g (50 0) = [ew (0F) I [ew | Z =5 e oy
rk(j)<rk(i) s>t s>t 7;

Appendix 2 proves that, coming back to the variable X; (¢), the non-normalized effective utilities solving
(33) have the form:

Uers (Xj(s)) = Yf (s)( ]\6” 8 >Y; (5) — 27 (s)< ]‘g f‘gﬂ >yj€ (s—1)

+ 3 287X (5) A (X (s — 1)

izk>j

with:
Y9 (t+k) = <B§ (X (k)= X0 ) (34)
: =)

where X ,Ej ) is the effective goal of j for k. Appendix 2 provides a formula for the effective goal given the
parameters of the model, and proves that U.ss (X; (t)) is given by:

Uess (Xi(0) = 3 (Xe(0) - Xf”e) N (X2 () = X0 - (XZ- (1) - x°) f‘fB (Xz» (t~1) — X0Y35)
—;(Xl )%(X (t—1)— )+;X X (t—1))
The matrices Mjy;, M;j, Ny, also computed in Appendix 2, are:
Ni = ((A=C)(D—2)+2B); (36)
~((A-C)(D-2)+2B)] (((A C) (D -2) +2B); ) (((A —C)(D-2)+ 23);)
e = ) (-0 -2 +28) " (4+0)
my = ) (-0 @-2+2m)%)  (1+0))
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where S stands for the symmetrized matrix, and with:

) A + A7
%) (D
A= VBl Lo, 40 ( “‘”"Jw ( “’“}5206”7
i T ) A(a
{kj}i>k>j0 T {jk}i>k>j
Ag? + Bi1 — \/BEE? {f (A( Dy AU)) ,312}

BA;; @ 4 (A%)) ot Bay

B = . , .
{\/B(Ag'?"'_A%))’Bb} VB <({Jk)”k<1)eff 7<6({Jj)k}j>k)sff
IB A(J) A(J) :
{kj}i>k>5 “{jk}Yi>k>j
0 A —AY
(m ) ((j) )
¢ = VB ooy | )y (an).,
- (47 - 47) A0 e e
{kj}i>k>j’ {jk}i>k>j
and
. N1
pu = o4 (A7), 47

o= o (), 0 (4 (0., ( ()., (i), )}
BAY <A§ )) A9,
_'.)eff (%)k}k<3)eff ) ( ))eff( ((]))eff (Sijg)k}m)eff )
(424, (), (), )

It is shown in Appendix 3 that the matrix D satisfies the dynamic equation:

Il
=
/N
~/
Q)
[N
S
=

B22

(A—C)D*+2(B—A)D+(A+C)=0 (37)
The notation {} used here is convenient to describe concatenated blocks of matrices such as for example
pA +(4), B

) ) .
( {7kg}k<1)eff ( {2k}]>k) ety to refer to matrices b’A Bss,... that are concatenated in

Ji’

(J) (4)
A{kj}z>k>g ) A{]k}z>k>j

a larger one, say M. The matrix M is built by concatenating the matrices BA%), Bss, that are pasted
given their indices. The dimension of M will thus be implicitly determined by its constituting matrices. For
example BA( ") has elements along the coordinates (j, 7). When several matrices have elements at the same
place in M, these elements are simply added.

Alternatively one can also represent the effective utility as:

Ueps (Xi (1) = %Xz () My X; (t) - (X,- (t) — (Y/Z.(U)i) M;; <X (t—1)— (z(l))j)

A (0= (1)) (3:0- (5))

- 1
Nii = Ni; + §Mm

with:

X; (t) refers to the discrete derivative, that is X; (t) = X; (t) — X; (t — 1).
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Remark that (35) is not in a normalized form. The normalization can be achieved by imposing that:
[ exp (U (X)) s () = 1

and this implies:

U (X0) = 5 (%000 = XO7) N (0 - X°) (33)
)

- (Xi (t) — xe A;B X;(t—1)— )‘(f”e)
-3 (- X0) T (K =D - X7) + X0 A (X - 1)
P (xe- - XY T (-1 - XY+ A (X (- 1)

2\ VB j<i VB j>i

X (Nig) ™" x ]jg(xi(w—xlmewzf‘j% (% = 1) = X7+ 37 AD (X (6= 1)

—Indet (N“)

However the terms depending on contributions for j > i may be discarded due to our pattern of information,
in which X (¢) with j > ¢ is considered as a random noise by agent i. We are then left with:

Uers (e 0) = 5 (X () = XO7) Na (e () - X°) (39)

X (t—1)— )‘(}”e)

,Z(xi(t)fj(g“e)\/é(x (t—1)— ) > X () X;(t—1))

Jj>i

M 1y - x@9) S M () - g
275 j

()7 | (300 = X0+ 30 T (3= 1) - X7) |~ Indet (V)

and this more precise form is used when needed to compute conditional expectations.
More about this point and the derivation of the normalization is given in Appendix 2. But let us now
consider an application of (39). The important point is that the effective utility remains quadratic, after

integrating both anticipations and interactions between agents.
The probability associated to that utility is then:

o exp (Ueys (Yi (1))

Remark that the effective utilities for X; (¢) depend on, and implicitly include the discount factor that
was previously absorbed in the definition of, ¥; (¢). Considering again (11) and using (4) means that (recall
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the notation X;(t + k) = (Y; (t + k)); and X;(t + k) = (Vi (t + k)),):

P ((Xj (E+ 1)) 55 oo (X (E 1)), | X (t)>

BTTP (5 6 10| (6 (04 1)) 4 (04 R

> Zyj@)(]‘gi 0 )= (M5 e

j<i \k>0
+ )2 A (vt -1y,
i>k>j
then rewriting this expression in terms of the initial variables X;, X; and including the normalization:

P (X (4 1) (X () | X (1)
1 v(j)e —1 o(7)e

= 5 (Xj (t) - X} ) (ij — Mj; (Nj;) ij) (Xj (t) - X3 )

1 (ke

D) > (Xj(t)_X )>Nkk<X ()_Xj(' ))

3 é (26 () ~ XP) MuscNig M (X, (1) - X1°)
;b - (5 () — X9 2y N M (X (1) — X)
_ (;k(%) x0) % (3, (1~ 1) x5%)

5 (- 57) 2 - 529

that is, the probability of future values X; (¢t + k), j < ¢ presents a discount behavior. The uncertainty for
future values is increased by the relative absence of concern for future periods.

3.7 Effective action for the system
Having found the non normalized form for agent ¢ effective utility in (35):

1

Uess (Xi (1)) = 5 (Xi (t) —Xi(i)e) Ny, (X (t) — X(”e) (Xi (t) —X}“e>

=% (X0 - %) T (%, -1) - X0) + K (0 AY (4 (6= 1)

i<i j>i

M;; (Xi (t—1)— Xfi)e)

%:

we form the effective utility for the set of all agents by summing over i:
> Uess (Xi(t
i

At this point some precisions have to be added. In the previous expression, one could sum over the normalized
utilities defined by:

[exp (U (X)) s (9 = 1 (40)
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Normalizing the effective utilities was legitimate when computing U.rs (X; (t)). Actually to perform its
"random" optimization process each agent was attributing a probability to each other agent’s action, so
that the normalization was needed. But now, all computations done, Uess (X; (t)) describes the utility of a
"blind" agent, since all anticipations are included in the form of Uy (X; (¢)). These agents participate to a
system composed of N interconnected parts, and for this global system the different periods are connected.
This is similar, at the individual level, to our procedure attributing a single weight corresponding to the
intertemporal utility.

One can check that imposing (40) would correspond, on average, to let all agents optimize Ue s (X; (2))
independently. In other words, the normalization condition amounts to consider independent agents. How-
ever, once the effective utilities have been computed, the agents’ forward-lookingness, computational skills
and rationality have been fully taken into account and are included within the form of the effective utility.
From this point onward, agents cannot be considered as independent anymore, but must rather be considered
as integral and "blind" parts of a global system, whose elements are interconnected through the different
periods.

In probability terms, it means that each agent utility at each period can’t be normalized independently
from the others, but only the probability defined by the all path. As such, only a joint probability has to be
defined, and the normalization is performed over all agents and the all set of periods. As a consequence, at
the utility level, we will consider the intertemporal effective utility for the system as

DD Uesr (Xi (1)

where, in the previous expression, we use the non normalized individual utilities. The global probability
weight considered, will be, up to a global normalization:

o (23 vias 0

It describes the system as a whole, whose weight relates all parts of it and all periods as related. Of course,
summing over all agents except ¢ and all periods after ¢ would lead us to retrieve Ueys (X; (t)) (plus past
contribution that would disappear in a normalization) as needed.

Remark also that this effective utility can be modified by adding also interaction terms between the
agents, that were not taken into account in the derivation of effective utility for any of them. It represents a
system where each agent has adapted his behavior given its information, but this one about the all system
is incomplete, even for the most informed agents.

By summing over ¢ the expressions in (35) and reordering the sums over agents, one obtains the following
expression for the global weight a time ¢:

Uepy ((Xi (1))
= Z (; (Xi (t) — Xi(i)e) N;; (Xi (t) — Xi(i)e> _ (Xz (t) — X'i(i)e) M;; (Xi (t—1)— _i(i)e>

)

-3 (K - x) Ajﬁ (X5 (=1 = X + 30X () AY (X (- 1)

7<1 >t

Define the X¢ as the stationary solution of the saddle point equation. They satisfy the following system

(3 ) )35 (405 1)) 35 (a5 5 35 -

that can be rewritten as:

M o ) (e Y
f VB

J#i
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It can be solved as:
- _ My; o (e My; o kye
Xi== (G | BN+ A
= VB VB
with G the concatenated matrix defined by:

(L oM\ (40 M
G”<2Nu ﬂ>5w+(1 5”)<Aij Vé)

Then define X (t), the concatenation of the X; (t) and X the concatenation of the X¢. Then, the total
effective action rewrites:

Uosr (X(0) = 5 (X ()~ XN (X (1) - X°) (a1)
()~ %) 250 (X (1= 1) - X°) + gy (X°)
1 v e Y e Y € M+O e
= S (X - X)N(X (1) - X7) = (X (1) - X°) 77 (X(t-1)-X°)
+ %XENXE *X€M+O 3 ( Xj(z)e)
with:

N = (Ni)
M = (My)
0y = AV MY ifj<i
0 = AY - MDifj>i

The second term coming from the general property of a quadratic form plus linear term:
q(X)=XAX+ XBX,
for X a constant vector. If X is the saddle point of q (X), one can rewrite:
g(X)=(X-X)A(X - X)+q(X)

The quadratic term Uy (X e) is constant and irrelevant when considering the dynamic over a given time
span 1. Its contribution to the effective utility is a constant TU,ss (X' 6) that can be discarded. However,
later we will look at a statistical set of processes with a variable time span 7. In that case this term will
play a role when comparing and average it over these processes. Note ultimately that TU.¢y ()_( e) can be
negative, which will be the most interesting case for us. It corresponds to a lowered effective utility, with
respect to 0 as a benchmark case, consequence of internal tension between the different elements composing

the system.
Having found the general form for the effective utility, we now describe several examples including different
patterns of strategic dominations.

3.8 Example: N non strategic agents

Consider the simplest example/case where N agents have no information nor strategic advantage. In this
"N non strategic agents case", which is actually equivalent to a Cournot oligopoly, the utility of each agent

N = ZB( AP (1)) + 302X (1) A (X5 (- 1))

J#
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where the individual goals of any agent has been set to 0 for the sake of simplicity. The agents being non
strategic, other agents’ actions are perceived as mere external perturbations. In that situation, X (s) for
s >t is seen as a variable independent from X; (¢). As such the integrals over these variables does not affect
the part of the utility depending on X; (¢) and, as explained in the first section:

Uepy (Xi () = = X; (8) Ay X, (8) + D 2X, (1) X;(t—1))
J#i

So that the global weight is:

exp(ZZUeff(Xi( >_exp ZZ AVX () + Y 2X: (1) X (t—1))

J#i

As a consequence the probability for the system path is centered around the minimum of:

D[ -xwa )+ 2X, (1) AD (X (£ - 1))

J#i

and this minimum satisfies:
AVX; (1) =AY (X (t-1))

J#i

for all t. This dynamic equation is the usual optimization of individual utilities. Our method thus reproduces
the classical optimization problem, including, through the probability distribution, a modeling of random
perturbations on the system. The reason is the following: the absence of any information about the others
leads the agents to behave independently from the others. Arguably, under no information, agents tend to
behave independently, inducing their actions to be randomly distributed around the individual optimums.

3.9 Example: N+1 agents. Domination of one on the others

This case is a generalization of the basic example of section one. It could be interpreted as a Stackelberg
oligopoly with one dominant agent. For the first, least strategic, type of agent, the procedure is the same as
in the previous example, and its effective utility will be its time ¢ utility:

Uer (X, (8)) = = X1 () AV Xy (1) + 2 (8) AY) (X5 (£ - 1)) +2X; (8) AR (X3 (£ 1))

we assume that A%') = Ag;-) =1, A%) = ¢ for all j and k, including j =1 or k = 1.
For the strategic agent, on the other hand, the effective action (35):

Uepr (Xi(t) = % (%) = X0°) Na (%0 (1) = X)) - (Xi (1) - X) Ajg CAEES
—;(Xi(t)—Xfi)e)ﬂj%(X (t—1) - X )+§X £) AD (X; (t 1))

is computed using the formula (36) given in the previous paragraph. The matrices M;;, M;;, N;; are computed
in Appendix 2 and listed above in (36).

We show in Appendix 5 that we obtain (we record the results for N > 1 and the case N = 1 is presented
in the same Appendix):
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N11 = (1+BO¢)+5 2NM

—% (@ (NV+ W)+ (N - 1))*

a _ 2
(B (VN = 1)+ W+ (N —2)) - 5° L ey ) N2

X

((1+28) - BW) ((1 +28) = BW + N (ﬁ (VN = 1)+ W+ (N - 2)) - p* LU ))

12
N ((1 1 28)— BW + N (B (V(N=1)+W+ (N -2) - éﬁvavszgl;(vjv'ﬁv»

((1+28) = W) ((1 +26) = W + N (5 (VN =1+ W+ (N -2)) - 5 (ﬁ%;vgmww»

avBBN (1+26 — W) 1o

My = —(Nn)

((0+20) = 6W) ((1428) = B+ N (B (N = 1)+ W+ (V= 2) - 32 (B ) )

VBN = 1) B (1428 — pIW) {2lrIOEN

(1+Ba2)+Ba2 NNV+W

Mij = - (Nll) (17 s 1)

(1+28) - W) ((1 +28) — W 4N ((v (N = 1)+ W 4B (N —2)) - VA1) ))

with:

1 2
W= 3 (1+2ﬁ 46 +1>
and V satisfies:
(N —1)° + Na? (14 )
Np 1 V2
26 (N = 1" + Na? (14 8)) + (2 + B) N (N = 1) a3 + (N = 3) N25 + (AN —2) 5+ N 1)V
+
N -1
+((N—1)ﬂ+(1+5)a25)W2+B(N—1) (N+2a>+a?8-2)W+ (N—-1)((N-1)a?8+1)
N-1
The full action for the system of agents is thus:
Ues (X5 (1) + Ueps (i (8)) = D2 (=X (0 ADX; () + 2%, (1) AG) (X (¢ = 1) +2X; () A (X (¢~ 1))
Jj<1
b (X0 - Xf”e) Nt (X (6) - X) = (xi (0 - X7) Afﬁ (xit-1) - x)

_Z( _xt )e) AjZBJ (Xj (t—1) _ngi)e>

The average dynamics is the saddle path of the previous global effective utility and is thus given by the
dynamic evolution:

()= (R ) e (6
M, = <(N11)_1M11 (Nll)_1M1j>

My = (a(l,(?.,l)t (1)01>

with:



where we denote by (1) the matrix filled with 1 in every row. We are mainly interested in the dynamical
pattern of the system and we will thus set )_(1-(2)8 = )_(j@e = 0, so that the equilibrium is for X; (t) = X; (¢) = 0.
The dynamical pattern is then determined by M and its eigenvalues, and Appendix 5 shows that:

vo— ()T Mu (N T My
a (1)-1
B —av/BNm —(1,.,1)(N -1)m
- a(l,..,1) (1) -1
with:
(28— W + 1) (o
m =

(1+28) —W) ((1 +28) - W+ N ((v (N-1)+W+B8(N-2)) — <a<NV+W>+ﬁ<N1>>2>)

(1+ﬁo¢2)+a2N%

The eigenvalues of M are:

1 1 4N (N -1
_172(a+1)i2\/a2 —2(N - 1)“4'(\/3)&
with:
((NV+W)+B(N—-1))
o ay/BN (28 =W +1) a2 NITER 4 (148a2)

a(NV+W N-1))?

(1428) = W) ((1 +28) - W +N ((v (N—=1)+W+B(N-2))— <(1<+Baj)+;§<%ieg ))
The full study of the dynamical pattern as a function of the parameters being beyond the scope of this paper,
we will merely draw the main characteristics of the results. First, the fact that eigenvalues are propotiornal
to a means that interactions between dominated agents create instability in the system. Second, when [ is
relatively small, W ~ 1—f and (26 — W 4 1) ~ 33. This implies that a grows with 3, at least for relatively
low values of this parameter. Interactions may thus become unstable when agents grow more forwardlooking
and attempt to drive the system toward their optimum. Finally, the larger is N, the more unstable the
system is, as shown by the term proportional to N (N — 1) in the square root, and the fact that a can
be proved to be of constant magnitude when N increases. Moreover, for large N, the eigenvalues become
imaginary, so that the system presents an oscillatory pattern. The interpretation is that a large number of
dominated agents produces fluctuations further amplified by mutual interactions. Under such a setting, no
single dominating agent may stabilize the system.

3.10 Example: the three structure model.

This case considers GLW model involving three agents ranked by their relations of strategic advantage.
Each agent optimizes, given its own information set, a forward-looking intertemporal utility function of
the form:

Vi(t) =Y BY'ELUI(t+m)

m>0

The forecasts by Agent i of future quantities is computed given its information set.
The utilities take the following dynamic form:

Up () = —%(n(tﬂ—l—w(t—l))z—om(t)sn(t—l)
1 22 1 e 1, 1, 1,
Vo) = —5p(1=wt=1)=F) = 37wt —1) - @) = 353 () - 553 () — 553 (0
Uo(t) = —%(w(t)—wof—%6n2(t—1)—vn(t—1)w(t)—msf(t—1)(1—w(t)—f)—nsw(t—l)(w(t)—ﬂ
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under the constraint: w + f = 1.

Note that in each of the above utilities the agent own action variables appear with a time index ¢, as
expected for utility at time ¢, whereas other agents’ action variables appear with a time index ¢ — 1

Utilities are quadratic and normalized so that the terms containing the square control variables have
coeflicients of —% or 0.

The reasons for these choices, as well as the interpretation of the variables is detailed in reference GLW.
We give a short acount now.

The utility of the body The body, being an automaton, has no specific goals, and its utility function
Ug merely describes its reaction to other agents’ actions'. Without any interaction with the unconscious U,
the body would, in first approximation, react linearly to the conscious C action, "feeding" :

—%(n(t)+1—w(t—1))2

The unconscious influences the body by perturbating its signal

—ans,

Whereas in the absence of the unconscious, the body’s optimum would be reached for

n=—f=0

This result being suboptimal for Agent U, he will tilt the equilibrium toward its own goal f .

Recall that the task performed by the conscious w is not physically demanding, and has no impact on
the body’s response n. Indeed, we do not model physical efforts per se, but rather seek to understand how
the unconscious can manipulate an existing equilibrium between the body and the conscious, i.e. the use of
body signals by the unconscious to reach its own goals. By convention « is positive, so that a positive strain
will respond to a positive feeding.

The utility of the conscious In the absence of both the unconscious and the body, the conscious’ utility
would be :

1
— (w—w)?

so that in the absence of any constraint set on w, Agent C would optimally choose w = wq > 0.
Body needs affect Agent C' through

1
—§6n2 — vnw

so that the higher is the need, the more painful is the task.

In the absence of Agent U, Agent C sets w = 0 by adjusting the feeding to the anticipated need. The
need is in itself painful since:

1
—5577,2

S0 we set

>0

'n this setting, endowing the body with specific goals would have allowed it to manipulate the conscious, which was not
our purpose here.
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The above assumption is a direct consequence of dismissing any cost to the feeding f. Here we depart from
standard models where costs, or constraints, are imposed to an agent’s tasks. Without Agent U, Agent B
and f could be discarded from Agent C’s equilibrium. Once Agent U is included in the system, it indirectly
manipulates Agent C through Agent B by assigning a strategic role to f. However we impose a binding
constraint on the feeding by considering f and w as complementary activities within a given time span, and
set f+w = 1, as previously mentioned. The unconscious imposes its goals f and w on the conscious through
perturbation terms: ~
ks (f = ) = 15w (w — )

driving Agent C’s actions away from 0 and towards f and @.

Some additional technical conditions on Uc will prove convenient. We will ensure that Ug is negative
definite and has an optimum by setting :
§—v2>0

Furthermore, excessive working combined with unsatisfied needs should induce a loss in Agent C' utility.
This is implemented by imposing;:
v>0forn>0andw>0

Furthermore, excessive working combined with unsatisfied needs should induce a loss in Agent C utility.
This is implemented by imposing:
v>0forn>0and w>0

The utility of the unconscious Agents, conscious or unconscious, build their interpretation of a situation
- and thus its utility function - through an own, specific, grid of lecture. See ([4]) for further details.

Agent U and Agent C will therefore have two completely different interpretations of a single situation. And
while Agent C will consider f and w as optimal, Agent U will consider other levels of the conscious’ activity,
f, W as optimal.

Agent U’s goals with respect to Agent C’s activity are:

—5olf = 1 = (e - @)?

To insure that Uy can have an optimum, we further impose p and v to be positive.

Since the three agents are sub-structures of one single individual, a strain inflicted by one agent ends up
being painful for all. The costs incurred are :

5 (2483 +52)

The information setup follows the order of domination among agents. For the sake of clarity we do not
present here the information set up. It will be fully described in the resolution of the general model. Agent
B, the less informed of all agents, is only aware of the strains he’s affected by. Agent C is aware of its own
influence on Agent B, and of the strains Agent U puts on him. Agent U, the most informed of all agents,
knows the utilities function of both Agent C' and Agent B.

The instantaneous utility U, (¢t + m) at time ¢ + m reproduces the model described in previous papers. We
assume that each action taken at time ¢ by any agent will only be perceived by the other agents at time
t+ 1.

3.10.1 Resolution

Following our general procedure in this case presents the same pattern as in the previous example. We
compute first the effective utility for the least informed agent, namely B, then for agent C and ultimately
for agent U. Then all these effective utilities are gathered to form the effective utility of the all system. All
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computations are performed in Appendix 6, and they result in the following..The effective utility for the
system is:

Uesy = (s (t) - (s<3>)eff) N (s (t) - (s<3))eﬁ) = (s (t) - (s<3>)eff) M;; ( :g_ B - E:;;)))):; Jf )
+ (1= () + 20w ()t = 1)+ rsp (= 1) (1= w(t) = F) +nsu (t = 1) (w(t) - F)
(@)’ —2nMwt—1)+2an®) (1 0 0)s(t—1)

Appendix 6 displays the computations leading to coefficients matrices Ny;, M;; and c and constants (s(?’))'E £

(w(g)) . The average dynamics for such system has the standard form

eff
X () MX (t—1) (43)

and the matrix M has three null eigenvalues, and the two others satisfy:

Num
— 4+./02 2 _ 2
A Vo2 (d+ fr? — bdv?) x Don
with:
Num = dafwo + (d2a + fwdd®B + dafB + fd + wa352) o?

+ (da®B — daPB? — d*aPB — fda?B + o®* + fa?p)

Den = d((bdv* = Bv* —d) o* —1* (8 = bd))
x (dofwo® + (P + fwda®B + da + fd +wa® %) o
+ (fda? — da®3® + da®B — fda’B + o* + fa’B))

where o2 is the degree of uncertainty in agents behavior defined before when designing the effective utilities.

The interpretation is similar to [5][6] : Agent B reacts to Agent C’s feeding in a 1 to 1 ratio, and Agent
C’s will react to Agent B’s need with a ratio v, so that both agents’ actions will be multiplied by over a
two-period horizon. Agent U’s action paying only over a two to three-periods horizon, it is irrelevant when
B = 0, and prevents Agent U from taking it. The myopic behavior among agents leads to an oscillatory
dynamics. Each agent, reacting sequentially, adjusts its action to undo other agents’ previous actions. This
describes cyclical and apparently inconsistent or irrational behaviors in the dual agent. These oscillations
may diverge or fade away with time, depending on the value of v. When g is different from 0 but relatively
small, the system is still oscillatory. When S increases, the time concern will have an ambiguous effect on
its stability. Agent U would tend to stabilize the system through the indirect channel, but the sensitivity of
agent C, may impair this possibility and the stability of the system depends on the relative strength of the
parameters.

However, as explained previously, our method providing an interpolation between full certainty and full
uncertainty, one can study how the parameter o2 influences the results. To do so, we compare the results for
the classical dynamics for various degree of uncertainty o? in agents behaviors. We look at three examples,
mild uncertainty o2 = 1, full uncertainty, 02> — oo, no uncertainty o2 — 0, which converges to the classical
case. The most interesting case for us will be 02 = 1, the two others one being bechmarks cases. The
parameters and eigenvalues of the model for these cases are listed in Appendix 6, we only keep here the main
results.

For 02 — 0, one finds for the system’s eigenvalues, to the second order in f3:

A=ﬂ:\/2=ﬂ:\@<1—ﬂ;(5—1/2)>+0(53)

and we recover the classical results as needed. This confirms the fact that in the case of no uncertainty, one
recover usual optimization results. For the interpretation of this result, see ([6]).
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For 02 — 00, one obtains:

A=+vV—v

and the interpretation is straightforward: this results is the same as for 2 = 0, § = 0. When the agents are
facing a full uncertainty concerning the future behaviors, it behaves with a myopic reaction: reacting only
to past signals, and not anticipating about the future.

As said before, the case for 02 = 1 is the most interesting for us, since in general it corresponds to what we
aim at modeling: agents anticipating other agents, but taking into account for uncertain intrinsic behaviors.
The computations to the second order in 3, simplify to yield the following values for the parameters:

A= £V - VT (46— 1) 40 ()

In that case, with respect to the benchmark case 02 — 0, the amplitude of the oscillations increase. The
agents forecasts others, and take into account their behavior in their action. But the increased internal
uncertainties increase in turn the internal fluctuations between the agents. The more uncertain the future
actions, the more agents react to the information at their diposal.

4 General form for the effective action

Previous sections show that each agent is described by an effective utility Uers (X; (¢), X, (t —1)) and a
probability exp (Uesr (X (t),X; (t —1))). We have seen that U.sr (X;(¢),X; (t —1)) can be computed
explicitly for a quadratic utility and is then itself quadratic. If agent’s utility Ut(’) is not quadratic, the
successive integrals defining Ue. s (X, (£) , X; (¢ — 1)) do not simplify, but we propose an approximate formula
for the effective utility that we will justify from the model point of view.

Relaxing the condition of quadratic utility, we set the following intertemporal utility:

v = -2 VO (X () + 3 (VO (G (6 k) = 1)) + 25 (¢4 k) AY (X (¢4 k) = 1))
7<i

+3 02X (1) AL (X, (1 - 1))

Jj>i

Where Vi(i) (X (t)) and V(l (X; (t—1)) are agents ¢ and j arbitrary utilities. We have kept quadratic
interaction terms (or linear response) between agents. We assume that each agent respond linearly to the
external perturbations.

It is useful to rewrite Ut(i) with the variables Y; (¢) introduced in the previous section, adding the possibility

of an inertia term e( ).

A(l) 0 —e(z) 0
= ) Yi(t+k) Y;(t+k)+Yi(t+k—1) i @ | Yit+k—1)  (44)
0 0 BAG,

k>0
0o pEAl \
+Y(t+k)<ﬂéz4§.? 0 )YZ(t-l-k—l)
; kzo B2 ; ’ B

Using the procedure given in the first section, we find recursively the effective utility Uess (X; (¢)). It is
computed trough the integrals in (11):

exp (Ueyrs (X (8))) = /exp (Ut(i)) H Hexp Z M dX; (s)dX;(s+1)

(o2
J)<rk(i) s>t s>t
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and depends on the effective utility Ueys (X (s)) where rk(j) < rk(i). We prove in appendix 7 that
Uesf (X (s)) has the form:

U (5 0) = Y0 (7 8)Yj<t>—2yj o () Be-nevg e @)
+3 02X, () AW (X (¢ - 1))
k>j

where Ve(;} (X (t)) is some function of X; (¢) that depends on the potentials Vi(l) (X; (t)) and V(z (X, (t—=1)).
This is very snmlar to the quadratic case, where an additional potential has been added The proof is similar
to the one given in Appendix 2.

Gathering the terms in the exponentials, the whole system is modeled by the probability weight:

exp Z > Uess (X (s)) (46)

(e (P00 0 )ne-ma (Y e o o)
- 2 k55 2X5 (1) Aﬂ) (Xi (t—1))

as needed to show the recursive form of (45). The fact that the effective action is very similar to the one
obtained for the quadratic case, allows to find directly the effective action fo the system as a whole (without
normalization). It is obtained by adding to the quadratic action the corrections due to the effective potentials:

M+ 0O

(X (t—=1) = X) +Veys (X (1) (47)

=

Vers (X (1) = Y VYL (X5 (1)

The inclusion of an intertemporal constraint will be modeled in ad hoc way by adding a term

Z / X ( t) dsdt

in the effective utility, for a final result:

1. .
Uepr (Xi (1) = ; —5 X (1) Mg X; (1) — )+ Z/X t) dsdt
4.1 Extensions: measure of uncertainty and optimal control

Our formalism allows to recover, in the limit of no "internal uncertainty" for the agents, the usual opti-
mization dynamics of system. But our formalism may encompass other kinds of models : actually, models
including an exogenous dynamics for a state variable which is accessible only through an indicator variable
would fit our set up provided that we extend our basic model of interaction between agents. This extension
will include a particular type of uncertainty of information for every agent about other structures which is
an intermediate possibility between full/no information.

4.1.1 Exogenous dynamics, indicator variables and Kalman filters

Consider a dynamic system for an arbitrary variable X; (¢) (the "state of the world"):
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with gaussian shocks ¢; (t) of variance covariance matrix ¥. The vector X (¢) is the control variable for an
agent "¢" that influences X (¢) and is in turn influenced by X; (¢). This type of model appears for example
in neuroscience motor control theory. Agent i has an - instantenous - objective function

X (1) ADX; (1) + X5 (¢ — 1) AP X; (6 1)

similar to the one studied in Appendix 4. However the difference here is that agent i does not measure
directly X; (¢t — 1) at time ¢, but only an indicator function Z; (t — 1) related to X (t) through:

Zj(t) = HX; (t) +w; (1)

where w; (t) is gaussian of variance covariance matrix €.

This model fits in our context providing few modifications. First, the state of the world X (t) can be
considered as describing a single non strategic agent - or equivalently as an aggregate of such agents - and
as such have no forward looking plan with respect to "i". The statistic weight associated with (48) is:

exp (= (X; (1) = AX; (t = 1) = BX; (= 1)) S (X, (6) - AX; (1= ) = BX; (t - 1)) (49)

Actualy, (X, (t) — AX, (t) — BX, (t)) is gaussian with variance covariance matrix ¥. The probability asso-
ciated to X (t) is thus proportionnal to (49).

This set up is thus encompassed in the two agents model developed in Appendix 4. Since the weight (49)
represents a probability at time ¢ , the method used to derive (35) can be applied here, and the contributions
depending only on ¢ — 1 in (49) can be discarded. As a consequence, (49) is equivalent to:

exp (= (X; (1) Z7X; (1) +2(% ) (5714)° X - )+ 2% 0) (5B  Xi(t- 1) (50)

where (E_IA)S and (E_lB)S are the symmetrization of ¥~ '4 and X' B.
Since agent j is not strategic, its effective utility (50) can be rewritten as:

(X5 () ADX; (1) +2(X; (1) e X5 (¢ — 1) +2(X; (1) AV X (£ 1)

J

with:
) = (z7'a)’
A = (5B

The effective action for agent i can thus be directly taken from Appendix 4, except that X (¢ — 1) being
unknown, it will be replaced by X; (¢t — 1|t — 1), agent ¢ forecast of X, (¢ — 1) given all its information at
the beginning of period ¢, i.e. Z; (t —1) and X, (¢ — 1).

S S
o1t (% 0) = = (06 @), YE X - 1) - ((Xz- () 5% (-1 1)) ) (V) X2 1)
(51)

with:
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o~ oo
Mij = —(Na)Te™ <A (') <(WA§;>>t>_l{—;§§ }+@t>
H:

where the matrices E, F', G are defined as a function of

—1

()
{kiYizk), . .
E = fA(J) \/B (J;)ff A{kg}z>k>j ({BAgj)—’_(A;]j))ef B22}G+ \/>A(J)> — B1»G

(52)
~(tyson)
(7) S

\/BAi; \/B 2 A{k]}2>k>j (53)

) () (6 jk}k<]>eff o)

x | 4845 + (49 B H A AD e ¢ | - BrH
~(hrnes) h

JkR<] )

_ efI 40) (")
G=H 5 Aoy (| Al (54)

and H satisfies a quadratic equation. Defining;:

2 VGRS k> Jj

( () ) -
H —H R eff A(j,) ) ] + \/B (A(-j»)>71
eff

the relation defining H' and then H is:

() -t
- (e{kj}pk)eff 7 @ 5 / !
f’A?M}Dbj {BA.M + (Agja )eff ’B22} +/8 <H — VB (A§J7 )q,f)

( () ) -1
{Jk}]>k (J)
x f’ {jk}Yi>k>j
_ DY " ) 4@ n-1)
= 8(4),,, VB (VBAPAD + ) (55)
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The matrix V; is defined such that dim (V) = dim (Ag?) =m x (m+k) (m and k are given by the

problem), and V; is the concatenation in column of a null m x k matrix and m x m identity. The matrix
( ,%1), 0) is the concatenation in column of Vn(ll) which is m x k matrix with the m x m null matrix. The
matrix V,Sf) is the concatenation in line of a k x k identity and a (m — k) x k null matrix if m > k. Otherwise
it is the concatenation in column of a m x m identity and a m x (k —m) null matrix if m < k.

We also define:

(¢m)) (a6

I
b
N
—
=
=
N———

P = vaapo-vi{ ]
s - {1 o)
e = 5(()) (42) ()

where the matrix X solves:

<(\/BX1,+B({J> )A(J)A >
(PR (o), me)) +vix) (E1) s,
= ~(s(an)) + vEx)

The solution is unique, since it is imposed to have a series expansion in § that fits with the § = 0 case.

With matrices Ny; Mg and M{? at hand, we find the usual reaction function for agent ¢ by assuming
full certainty about agent ¢’s behavior. Under the assumption of the variance of its effective action being
null, agent’s 7 action is given by its quadratic action minimum, and its response to agent j is given by the
optimization of (51)

-1 N1
X, (1) = (st (t— 1)> + (W“)\/BMng (t—1t— 1)) (56)

= EX;(t—1)+TX;(t—1]t—1)

supplemented by:

Zj (t) = HX; (t) +w; (t) (58)

with w; (t) an unknown error of (known) variance matrix 2.

These three equations, respectively for the state variable X (), the indicator variable Z; (t) and the
reaction function X; (¢) for agent i, describe the system in interaction.

We also assume, as is usually done in this type of model, that expectations for X (¢) are updated through
a linear projection ([11] 13.12.13):

Xj@lt)=X; (1t =1+ K(Z; ()= Z(t[t—-1)) (59)

with:

K o= 2050 X1 t-0)(Z,0 20 t-10)) < {E((Z0) -2, 11-0) (20 - 20| -0))}

= Pt‘t—lH (HtPtlt_1H+Q)71
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and Py,_; is defined as:
Pyeer = B (X5 () = X, (¢ | £ = 1) (X, () = X; (¢ [ £~ 1))

and where (58) has been used.
Given (58), equation (59) is also equivalent to:

X;t|t)=X;(t|t—1)+KH(X;(t)—X;(t|t—1))+ Kw;(t) (60)

To solve the dynamics of system, we proceed by finding the Kalman matrix K and the form of the expecta-
tions:
To find Py;—; and K, we follow [11] and first define an other squared expectation denoted P, given by:

Py = B (X (5) = X; (¢ 8) (X; (1) = X; (¢ 1))")
Using eq. 4.5.31 and 13.12.16 in [11]
Py =B (X (5) = X; (¢1£) (X; (1) = X; (¢ 1))
B (X (0= X; (¢t = 1) (X; () = X; (¢ | = 1))
—B (X5 () = X5 (|t = 0)(Z; (1) = Z; (t | = 1))")
< (B((Z 0 -2z 1t=1) (20 -2 t-1)"))

<B (23 (t) = 2; (¢t = 1) (X; () = X; (| £ = 1))")

)
)

or, using (58): .
Py = Pyi—1 — Pye—1 H (HtPt\tle + Q) HtPt|t71 (61)

To find the terms Py, and Py,_;, we first use (57)
X;j(t+1)=AX;(t)+BX;(t)+¢;(t+1)
and introduce the dynamic equation (56), which leads to:

X;t+1)=AX; )+ BEX, ¢t -1 +TX;t—-1|t—1))+¢e; (t+1)
and then, one obtains an expression for P, }; as a function of P; and an expression for P, }; as a function
of Py;:

Praje = E((XG(+1) = X5 (¢ +110) (X (t+1) = X; ¢+ 1))
= AB (X5 ()~ X5 (£ 0) (X (8) = X, (¢ 1)) A"+ %
= AP A'+%
which leads, using (61), to the dynamic equation for P,y
P =A (Pt‘H — Py H (H' Py H+ Q) HtPﬂt,1> A+ %

Given our system we look for a stationary solution that is P11, = P which satisfies:

1
P=A (Pﬂt,1 — Pyy_y H (H'Pyy_y H + Q) Htpﬂt,l) At 4%
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The Kalman Matrix is then given by:

K =PH(H'PH+Q)™"

Having found K, the system reduces to:

X; (t
X;(t
Z; (t

Xt

) = EXi(t-1)+TX;(t—-1]t—-1)
) = AX;(t—1)+BX;(t—1)+¢;(t)
) = HX;(t)+w;(t)
) = X;@lt-1)+K(Z(t)—-Z;t]t—1))

= Xj(t|t—1)+KH(Xj(t)—Xj(t‘t—l))+KOJj(t)
The variable X (¢t | ¢ — 1) is found by taking the expectation by agent i at time ¢t — 1 of equation (57):
X;t|t—1)=AX,;(t—1|t—1)+BX;(t—1)

We are thus left with a system with three dynamic variables:

Xi(t) = EXi(t-D)+YX;(t—-1]t—-1)
X;(t) = AX;(t—1)+BX;(t—1)+¢;(t)
X;i(t|t) = A1-KH)AX;(t—1|t—1)+(1-KH)BX;(t—1)+KHX; (t)+ Kw; (t)

= (1—KH)AXj(t—1|t—1)+KHAXj(t—1)+BXi(t—1)+Kw]‘(t)+KHEj(t)

of matricial form:

X (t) = 0 T Xi(t-1) 0
Xj (t) = B A 0 Xj (t— 1) + €j (t)
X, (]t B KHA (1-KH)A X;t—-1]t—-1) Kuw;(t)+ KHe; (t)
whose solution for dynamic starting at ¢ = 0 is:
X; () i (20 T e
X;t) |=>| B A 0 £j (s)
X, (]t s=0 \ B KHA (1-KH)A Kuw;j(s)+ KHej (s)

4.1.2 Uncertainty in observations and agents interactions

We have used our formalism to model the interaction between an uncertain exogenous medium and an
optimizing agent. The reverse point of view is straightforward to develop, in order to introduce some
uncertainty of measurement in our formalism.

For the general form of effective utility (62) in the quadratic case, introducing uncertainty in the infor-
mation agent ¢ receives from other agents j amounts to replacing past actions X; (t —1) by X, (¢t — 1|t —1).
We thus obtain

v i) = v () 8)1@-@)—2%@)(%” WO (-te-n) e
+3 2, (¢) Xk(t—l\( )i)
k>i

where Y; (t -1 (- 1)1) denotes agent ¢ forecast of Y; (t — 1) at t—1. The statistical weight exp (Uesy (X (2)))

associated to agent X; (¢) implies that the reaction function of agent i is given by:

X (1) = (Na) ™ MiaXo (= 1) + 37 (Nag) ™ My X (t (t—1) ) +3° A9 x, (t 1 -1 ) tei(t)
7<i k>i
(63)
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with &; (t) of variance (Nj;) ™"

The forecasts X (t -1 (- 1)1) and X (t —1](t- 1)Z> are obtained as in the previous paragraph
through indicator variables and Kalman matrices. We also assume indicator variables for X (¢t — 1) and
Xk (t — 1)2

Zj(t) = H;X;(t)+w;(t) (64)
Z (t) = H.X; (t) —+ Wi (t)
where w; () and wy, (¢) have variances €, and Qj respectively. For the sake of simplicity we will assume
all agents have common indicator variables. However some specialized indicators to some of agents could be

introduced. To be consistent with our previous assumptions, we assume that agent ¢ has no information
about Xy, (t) apart from Zj (t), and that:

X, (t 1 (- 1)i) = Z), (t) = Hp X, () + wy (£) (65)

a random variable of variance: .
HQkHt —+ (Nkk)_l

Up to some details, the forecasting procedure is thus the same. Agent ¢ faces an exogenous dynamic given
agents j, j < i and k is perceived as a random shock. For ¢ the dynamic of the "state of world" is then:

X () = (Nj3) ™ M X5 (6= D+ (Ngg) ™ M X (1= 1 6= 1))+ >0 A9 (=11 (8= 1)) 425 (1)
I<j i21>j7

(66)

Given our initial (first section) assumptions, the actions of agents I > 4, being unknown to 4, are discarded.

The vector X J(.i) (t) is the dynamic for j anticipated by ¢ which is different from X (¢), given the terms for
[ > i that have been discarded)). Then:

(1) 1)) = N iarox (1 — _ W (; B
X (t|(t 1)) (N;;) " M, X; (t (t—1) )+l§<: M X! (t 1] (t 1))
+ 3 ADX (i) (t ~10(t-1))

i=1>7

Note that agent ¢ having more information than agent j we have used that X (t 1] @t—-17 | (t— 1)i) =

X (t —1|@¢- l)j) in the previous expression.
As before, the actualization of forecast is given by (we remove temporarily the superscript (i) in the

forecast):
Xj(t[t)=X; |t =1)+ K (Z;(t) = Z;(t[t-1)) (67)

with:
K = EB((X0-X;(t[t-10)(Z 1) -2 t-1)")
Ap(Z0 -2 1-0)Z 0 -z -0))}

—1
= Py H; (Hj Py Hj + Q)

and Py;_; is defined as:
Py = B (X5 () = X (¢ [t = 1) (X; () = X; (¢ | £ = 1))
and where (64) has been used. Given (64), equation (67) is also equivalent to:

Xj(]t)=X; (|t =1) + KH; (X;(8) = X; (¢ [ = 1)) + Kuw; (¢) (68)
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Following the same procedure as in the previous paragraph, one finds the Kalman matrix K, by defining P,
which is given by:

Py = B (5 (1) = X, (1) (X5 () = X; (¢ £))')

that satisfies .
Py = Pyp—1 — Pyp—1H; (H;Pt\t—lHj + Q) H]t'Pt|t—1 (69)

Now, we use the dynamics equations (66) and (63) to find P, and P,;_;. Starting with (66)

X0 (1) = (V)" My (- )+ () M X (8- 1] (- 1)) (70)
1<j
+ 3 AP ( 1] (t—l)j) +e; (t)
i=1>]

and then, since

S )T Mx (t- 1 - 7) 4 Y ADXD (-1 -1))

I<j i=1>7

is known to agent 7 at time ¢ — 1 (agent ¢ has more information than agent j), then

ST Mux (=11 =) + 3 AP (-1 -1)) | -1

I<j i>1>j

= ST Mx (t71| t—l) ZA(J)X(’)( \(t71)j)

1<j i>1>j

one thus obtain an expression for P, as a function of P:

. . . t
Pty = E ((Xj@ (t+1) - XD (41 t)) (XJ(Z) (t+1) - XD (41 t)) )
- i i i i ¢ - ¢ -
= (o 1) B (30— X0 010) (317 0 - x 1)) (067 31) "+ ()
= ((ij)f M; )Pt\t ((ij)flej) + (V)
Leads, using (69), to the dynamic equation for P4, . We reintroduce now an index j to recall that the

probability P ), is computed for X; and an index 7 to stand for the fact that the expectations are computed
by agent i:

7, —1 ,J ,] 7, 7, —1 ¢ —1
Py, = ((ij) M; ) (Pm , = Pl H, (H]tPt|tJ i+ Q) HipPy! 1) ((ij) ij) + (Nj5)
Given our system, we look for a stationary solution, P;,); = P, which satisfies:
. . . . _ . ¢
Pl = ((ij)_l ij) (P“ — P4 H; (Hj P Hj + Q) lHJt‘PZ’J) ((ij)_1 ij) + (N

The Kalman Matrix is given by:
K% = PP H; (HLPY H; + Q)7

which produces the forecast

X (1)

XO(¢] (0= 1) + K9 (7,0 - 2 (¢] (1= 1)) )
= X (e1 =)+ K9H (30 - X0 (2] (- 1)) + K Hyw, (1)

J
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which, using (70) and (65), is equal to:
xP (@) = xP(e1e-0T) - KV (20~ 2 (¢ ¢ 1))
= X (£ =)+ KV H; (N T My (X0 -1 = X0 (6= 1] (¢ - 1))
+K Y Hj (w) (8) +&: (1)
= (Nt My XY (t -1 1)i> +3 (V) My (t -1~ 1)j)

I<j
£y A(J)X(l)( |(t71)j)
izl>7
K H (Njg) ™ My (X0 (0= 1) = X0 (£= 1] (¢ = 1))

+KHj (w; (t) + i (¢))
= K“H, (N;-) My X (¢ —1) + (1 - K™ Hj) (Nj;) ' My x (t—l | (t—l)i>

+3 IXW (t—1| (t—1) ) S ADHX (1) fw(t-1)

I<j 21>

+KYHj (w; () + & (1))

and, supplemented by the three equations:

Xi(t) = (Na) 7 MaXi(t=1)+ 3 (Vi) My x D (t 1 (t- 1)1') (71)
+ ZAg.-QXk (=11 i<1)i) te(t)
- (J\Zj)zl My X; (t—1)+ Z (Ni) ™" My x Y (t = 1)i)
+3 A (X, (¢~ 1)Jjwk (t—1)) +e(t)
e
X0 = g T M X (= 1)+ >0 (Ngy) T M X (=1 (- 1))
+ 3 ADx® ( 1] (¢ Kj1)j) tei(b)
- (z\;:)ijl My X0 (6= 1)+ 30 (V) ™ M X (8= 1] (6= 1))
+ > AP (X (£ - 1) J:jl (t—1))+¢; (1)
iS5

X2 (@) = x5 (tle-1) K (20 -2 (¢ - 1))
= KPH (N T MaX (= 1)+ (1= K (V) XD (=1 - 1))
+ 3 (Nu) My X[ (t -1 (- 1)j)

p<l
+ 0 AD (H X, (t—1) +wp (t— 1)) + KPUH, (wr (1) + &5 (t)

j=zp>l
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leads to the dynamic system:

o
X @
X (¢ o)
X{i (t1@7)
(Nyi) ™" My (Nii) ™" My 0
o { () o (1™ w1
- AV H, { K”IZ(J()NM) M } { (1= KU9H;) (V)™ My } {VG) ™ M, }
iy H - (Ngiay) My, v e

KL H, (Ng) ™ My, ~ My,
e T

1-— Kj’lHl) (Nll)
X; (t— 1) Z;m (Hka (t—1) +wp (t—1))
Xg) (6 =1) z>l AD sy (£ 1) +¢; (8)
| xG(-rre-vY) |t T y
{7} Disis; A wi (6 =1) + K Hj (w; (¢) +&: (1))
X0 (t (-1 ) oo A; wy (t— 1) + KOV H, (w, () + 2 (1))

5 Transition functions (Green functions)

5.1 General form for the transition function

As explained previously, the mean path dynamics, i.e. the mean time evolution of the interacting agents, is
obtained as the saddle path solution of the effective action of the interacting system. This saddle path is
relatively easy to compute since all anticipations and forwardlookingness have been absorbed in the effective
action. However we have also seen that (20) the path integral of the effective action allows to model the
stochastic nature of the interacting system. It provides more precise results about the agents actions’
fluctuations and their transition probability between two states, thus allowing to represent the stochastic
paths associated to the system. Moreover, Because this approach will also prove important when we shift
to the field representation for a large number of agents, this section will detail the form of the transition
functions, and their interpretation.
To do so, let us start with the system as a whole. As in (20) we define:

)

My

the concatenated vector of all the X; (¢) with ¢ running on the set of all agents. Moreover, Ue ¢ ((XZ ), (XZ (t)))

is the total effective action found in the first section (see (41)):

1 - _

expUsss (X (£)) = exp {_ (2 (X () — X°) N (X (1) — X°) — (X () = X°) M (X (t — 1) - )‘(6))}

O+M
VB

where we redefined as M. The quantity:

X (t+k)=(X7 (t+k))

P((X°(t+k) | (X°(t) = /X exp (/ Uess (X (t),X(t))) D(X (1)  (12)

i(t):(X?)

is the transition probability from a state (X°) of the global system at time ¢, to a state (X°) at time ¢ + k.
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To understand better this quantity, it is useful to use a continuous time representation. To do so, we
first rewrite the quadratic effective utility in a convenient manner. In the formula (41):

M
VB

Decompose M = M® + M4 where M® and M4 are symmetric and antisymmetric respectively. Then, since
Uess (X (t)) will be summed over ¢, rewrite the first contribution to Y, Uess (X (t)):

Uy (X 0) = = (3 (X (0 = X) N (X (0= X7) - (X (6 - X) 2 (x (0= 1) - X))

25 (X (t)—X°) N (X (¢) — X°)

_ Z<4 (X(t)XG)N(X(t)X€)+i(X(t+1)Xe)N(X(tJrl)Xe))

Z:(X(t”f(t“) —X6>N(X(t)+§(t+1) —X"’)+i(X(t+1)—X(t))N(X(t+1)—X(t))

On the other hand, the second contribution in Uess (X (t)) can be transformed by expressing the symmetric
part of (X () — X¢) 2L (X (t —1) — X°) as

VB
S
(X (t) - Xe)T( (t—1)—X°)
(XMW +X(E+1) NAMIXB X+ o) 1 B M5
- ( - X)\/B< 5 X) T D) =X (0) 2 (X (0+1) = X (1)
Ultimately, the remaining term in Uy (X (t), X (t))
A
(¥ ()~ X) T (X1=1) - X*)
can be rewritten:
_ MA _
(X)) —X)—&= (X(t—1)—X°)
1 7@1“ - 1 Coy MA
= §(X(t)—Xe)ﬁ(X(t—l)—Xe)+§(X(t)—Xe)W(X(f—l) X°)
A A
_ %(X@)_Xw(X(t_m_;‘(e))%(xu 1)—)_(6)+%(X(t)—X6)M—\/B(X(t—l)—X€+(X(t)—Xe))
_ X +X(t_1)__e MiA _ _Ye _Ye M7A X(t)—i_X(ﬁ_l)__e
= < 5 X)\/B(X(t 1) — X°) + (X (¢) — X°) ﬁ( 5 X)

since M4 is antisymmetric. And thus,

(X (t)—X°) NG (X(t-1)-X°)
_ B M7A XH+X(¢t-1) o
= (X{)=X(t-1)) 75 ( 5 X)
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Gathering these terms allow to write ultimately:

;Ueff(X(t)): (X(t)+X(t+1) Xe> (NMS) <X(t)+X(t+1) Xe)

’ VB 2
1 VS
7 (X (1) =X (@) (N+\/B> (X (t+1) - X (1))
_(X(t)—X(t—l))]\\;[B(X(t)Jr;((t—l) —Xe)

We can then switch to a continuous time formulation of the effective action by using the mid point approxi-
mation between X (t) and X (¢ + 1), that is replacing W with X (¢) (and ¢t is a continuous variable)
and introducing

Xt)=X@{t)—X(t—-1)

so that Y, Uess (X (t)) becomes:

/ [(X (t) — X°) (N — ]‘j;) (X (t) - X°) + ix () (N + i%) X (t)+ (X (t) - X°) Aj;f( (t)| dt

If we add a potential Ve (X (¢)) with:

Vers (X (1)) = DO Vi3 (X5 (1)
then (we include the factor (\/B)_l in the definition of M and M4):

Usr (X (1) = / (ix () (N + MS) X (1) + (X (£) - X) (N = MS) (X (1) - X)  (73)
(X () = X) MAX (1) + Veys (X (1)) dt

and the path integral defining the transition probability between two states is:

P(X't+s|X%t) (74)
X (t+s)=X" 1. . _ _
= /exp / > <X () (N + M%) X (t) + (X (t) — X°) (N — M®) (X (t) — X°)
X (1)=X0 —~ \4

(X () = X) MAX (1) + Vers (X (1)) ) DX (1)
External perturbations - shocks - may be added by the mean of a linear term X (¢) J (¢) often referred to
as "the source terme". It describes the linear response of the system to a general and arbitrary external
perturbation. The form of the transition function, or Green function, in (74) allows computing, analytically

for a quadratic effective action, or as a series expansion (see below) when V.;y (X () is introduced, the
stochastic pattern of a system deviating from its static equilibrium X*©.

5.2 Transition function for the quadratic case

Putting aside the perturbations V (X; (¢)) + X (¢t) J (t), but keeping the quadratic potential term which is
relevant for usual dynamic systems, the Green function associated to

/t AU (X (1) = i)‘( () (N + M%) X (£)+(X (t) — X°) (N — M%) (X (t) — X)+X (¢t) M* (X (¢) — X°)

(75)
is obtained in a way similar to the discrete case arising in the individual agent problem (basic example of the
first section or Appendix 2 ). Since the effective utility (75) is quadratic, the computation of (74) reduces to
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a saddle point computation. We thus need to compute (75) for a classical solution X of the Euler Lagrange
equation :

%(NJFMS) X () + ((M“”)t - M(A)> X (t)—2 (N — M%) (X (t) — (X)) —0 (76)

That will be inserted in the action:
_ (iX () (N + M5) X () + (X (t) — X°) (N — M5) (X (t) — X°) + X (6) M* (X (t) Xe))

with initial conditions:
X(t)=X%and X (t+5) = X!

and the exponential of the result, after a suitable normalization, will be P (X Lt+s] X0 t).

/0 AT (X (1))

- / t (iX (8) (N + M%) X (1) + (X (8) = X°) (N = M%) (X (1) = X°) + X (1) M* (X (1) - X@)) dt

t

— EX (t) (N + M%) X°(t)

- /t (iXC (t) (N + M%) X (t) — (X () — X°) MAX(t) — (X (t) — X°) (N — M%) (X°(t) - X6)> dt
0
Given, the equation of motion for X ¢ (t), the second term becomes
/ t <ix () (N + M) X° () — (X° (£) — X) MAX® (1) — (X° (£) — X°) (N = M) (X° (t) - Xe)) it
0
/0 @ (x° (1) = %) (= ()" = ar4) X2 ) +2 (N = M) (x° ) - (X))

— (XE() = X€) MAX® (1) = (X° (1) = X°) (N = M%) (X° (1) - X)) dt

-3 [ e -5 () a0) X 0)

= 0

since M) is antisymmetric and we are led to:
quad c 1 c Se S\ e t
dtUeff (X7 (1) = — [(x° () = X°) (N + 215) X2 )]

To find this last expression one needs to compute X ¢ (t). We rewrite (76) as

X(t)+AX (t)+ B (X°(t) - X°) =0

with:
A = <;(N+MS))1((MA)t—MA):—4((N+M5))1MA (77)
B = —<;(N+MS)>_1(N—MS)

and set (X°(t) — X¢) =exp (—4!) X' (t) so that X' () satisfies:

I
o

2
(’;) X' () + X' (¢t %X’ (t) + BX' (t)

|
o

X' (t) + (B - ’f) X' (t)

o1



Diagonalizing ATZ — B allows to find 4/ %2 — B and

Now we can use the initial conditions:

to find the coefficients o and S3:

and ultimately, the classical solution is:

R

v (X) = a+p

X°(0)
X° (1)

4 ()55

(X° (s) = X°) = exp <_

1 (3) = e (-4) (o (/5o (/5 - ) )

2

Therefore the statistical weight we are looking for is:

0
1

4

| vt e @)
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which can be written:

t
| @i e

URICI) ) PR h( 7 Bt>' to8 || -(%)
)

_w (N + M) COSh( Y

S (e e R e

The normalization can be now introduced, as usually done for propagation of quadratic potential:

1 b
P(y,t+s|xz,t) = ————exp (/ dtUgJ'f;fd (X° (t)))
/ M
det (?) 0
Where M is the matrix defined by:

t

t J rz— (X rz— (X
/0 AT (X< (1)) = R

y— (X y— (X

This is a direct expression of the propagation kernel for a time span of t. We will give below an example of
computation for the transition function P (y,¢ + s | x,t) in the two agents model previously studied. However
before doing so, and to ease the interpretation, it will be useful to separate this expression in two types of
contribution.

5.3 Interpretation: harmonic oscillations around the equilibrium

In the previous expressions for fot dtU g}‘}?d (X< (t)), a change of variable:

(N+MS)( ~)

(XC (s) —X)/ —U . X¢(s) — X
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where U diagonalizes ATQ — B, ie. ATz — B = UAU™! leads to replace the relevant quantities in
t uad c
fo dtUgff (X (t)) by:
s
W#) ~
s\ s\
o o M ([
2 2
NESTOANE NESTOANE
B — — y (N—MS) y
2 2
A2
——-B — A
4

so that the effective quadratic action becomes:

[amocer - -30-) o] - ) o
Lo %) [tanhA(At)} (v %)+ {(y' - X)) (thA(At)) (« - X’)]
=2 (o0 (%) 1) dn * s (0 (-3) 1)) - %)

The last term in the right hand side represents the interaction between structures induced by the interaction
term A. It can be neglected if M4, which measures the asymmetry between the various agents, is relatively
small with respect to the other parameters of the system. If we do so, the three first terms on the right
hand side describe a sum of harmonic oscillators whose frequencies are given by the eigenvalues of A. These
oscillator are not the initial structures, but rather some mixed structures involving all the initial agents.
They represent some independent and stable patterns arising from the interactions of the system.

This formulation of the effective utility allows in turn to model the system in terms of deep - i.e.
fundamental - independent structures whose internal frequencies are given by the A; (). The combination
of their fluctuations, plus some interaction leads to the apparent behavior, as an interaction between cycles
of different time scales.

5.4 Example of transition function

We will illustrate the computation of the transition functions using the basic example from the first section.
The exponential of the effective utility for the two agents’ system is then:

exp (— > Wegs (@) + Ueyy (w)))

t

o 1
- Z (ze — ayi—1) % (ze — ayr—1) — Z (2%2 - yt%zl))
t t

e’ 1
= €exp (‘ Z (%xf - axtyt,l) - Z (2%2 - ytxt1>>
o 1
(_ zt: <2ax? + 5%2 — QTY—1 — ytmt1>>
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where a was defined in (29):

1
" 2a3(N +B)

The effective utility has the form of (41) with:
v = ()0 (3 4 )= (19)
M5 = (ﬁa ?),MAz(SI 31) (s1)
The diagonalized transition function (80)
f et on = =5 (-%) ] (- %)
3 (%) [y (- %)+ [( ) (nian) ()
|t (oo (7)) s i (o0 (7) 1)) (-4

can now be computed. The matrices A and B are given by (77) and (81) :

(1+Nﬁ+Na2ﬁ+62—\/(Nﬁ+52—2aﬁ—Na2ﬁ+1) (N6+B2+2aﬁ—Na2B+1)>

a -1 a—1
- S\ agA - 1 5 0 7
A = —4((N+M5) M4<1;a k) I
gty saalecn)
— —2a+4aa—a“— —2a+4ac—a®—
- 8(a—1) (a+1)(a—1)
—2a+4aa—a2—1 —2a+4aa—a?—1
1 o\ g 1 lfa 7t 1 _lt4a
B = —(2(N+M)) (N—-M°)=-2 Lia 2 _lta ol
2(2a+4aa+a2+1) 8aa(a+1)
—_ 2a—4aa+a?+1 T 2a—4daa+taz+1
8(a+1) 2(2o¢+4aa+a2+1)
T 2a—4daa+ta?+1 2a—4aa+a?2+1
2 6at+4daa—a 21 a+1
i _B= ( 2—2a+4aa 1a2 1 —SCLZZ 2404—5—4aa2 0412 1 >
4 8—204—4—4(11:(;—042—1 2—;;—}-2504 aaz_ 1
The change of variables (79) is
N/ N + MS ~
(x°(5)-X) =v % (x°(s) - X)
with:
v 1 1
o —i«/aa iw/aa
aa+L
(N + M9 \/—lX—i— aa+1X+aa 1 %(a—i—l) X;g2 +1
9 = 5 1 loa+4+1
2 \/ﬁ /1X—|— aa+1X aa+1 %(a—l—l) QXJ;(2 +3
for X = \/a2a2—2aa+a2+2a+2

and the diagonal matrix A is defined by:

12 \/2 1+a2—(6a+4aa+4a\/@+4\/@) 0
\/=— —B=UAU" with A = 1+2a—4aata’
4 0 \/2 1+a?+4av/aa+4/aa—(6a+4ac)
1+2a—4aa+a?
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For o« > 1 close to 1 the interaction term

|- 0) (o (-5) =) smnas * s (o2 (7)) 1)) (&= 9)]

between the two oscillators is negligible, since A is close to 0 so that (exp (—%) — 1) << 1 for any finite

span of time. Considering « close to 1 is reasonable since it describes mutual interactions between the two
agents that are of the same order of magnitude.
We can check that for relatively large degree of uncertainty N and for a close to 1, a is of order «, and

1+a’+4a/aa+4/aa—(6a+4ac) d?2 1+o¢27(6a+4ao¢+4a\/ ac+4y/ aa)
1+2a—4aa+a? an 1+2a—4aa+a?

the two eigenvalues 2 are positive with:

\/21 + a? — (6a + daa + dav/aa + 4y/ac) S \/21 + a? + dav/aa + 4/aa — (6o + dac)

1420 — dao + o2 14+ 20 — dao + o2

In our range of parameters the smallest one is close to 0, and the other one is of order 1.
As explained previously, computing the transition function between two states reduces to evaluating the
exponential along a "classical" path:

1 t
P(y,t+s|wz,t) = ———=rexp (/ dtUg}L}ld (x° (t))>
det (%) 0
and, given our assumptions, fot dtUg}‘;d (X€ (t)) reduces approximatively to

/ e w) = -2 (%), | (V- %),
L%, wa)} (- %) + [(yf %) (mﬁm) (« - X)}

where A; is the eigenvalue:

A \/21+a2— (6 + dac + day/aa + 4y/ac)
1 =

1+ 2a — daa + 2

The subscript 1 assigned to the vectors represents their coordinate along the eigenvector corresponding to

A;. This eigenvector describes a mixed structure of x; and y;.The transition function for (y’ — X' ) =0
1

exp (-éx (tanlf(llht)) m)

A short time approximation looks like a Brownian path with transition function exp (—%) which describes

a diffusion process without interaction. However this approximation is not correct for longer time scales,
and the diffusion allows for transitions between far states.

and (:r’ - X' ) = z is proportionnal to
1

5.5 Non quadratic contributions, perturbation expansion

Up to now we have described the classical - or mean value - dynamics of the whole system of interacting
structures, as well as its associated random diffusion process in the case of quadratic utilities through the
transition function P (z,y,t) . For non quadratic corrections, the interaction potential V (X; (¢))+ X (¢) J (¥)
can be introduced as a perturbation. It allows to describe G{u” (z,y), the Green function for the whole
system, as a perturbative series in V (X; (¢)) + X (t) J (¢).
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External shocks can also be introduced through X (¢) J (¢). Both term are now included in V,¢5 (X (¢)).
The computation of the Green function P (X Lt+s] X0 t) is computed by decomposing

(X1t+s|X0 ) (82)

X (t+s)= _ _
= /exp/ ( X () MSX (1) + (X (t) — X¢) (N — M%) (X (t) — X°)

X(t)=X0

+X (1) M* (X (1) = X9) + Vegs (X () D(X (1)

[ e ( L e o o)+ v <t>>)> D(X (1)

X(t)=X0

(t+s)=X"*

exo  (Vepr (X (t)))) in series. One then finds P (X', ¢+ s | X°,¢) as a sum:

and expanding exp ( f X

P(X't+s|X%1) (83)

/ (Z;exp ( / z(;j; U (x <u>>du> ([ vrex (u))du)">D<X )

X (t4s)=X"
/ Z;;L . II dui/exp</X ) Ug}‘]?d(X(u))du> TI Vers (X () | D(X (2)

ui,t=1...n (H)=X° ui,t=1...n

X(t+s)=X
— Z;'/K o H du; /exp</ Ug;?d(X(u))du> H Verr (X (1)) D (X (t))

uq,i=1...n X(H)=Xx0° wi,i=1...n

This expression can be simplified by using the convolution properties of:

X (t+s)=X"
exp (/ Ug;f;fd (X (u))du)D(X ) =P (X', t+s| X%

X (£)=X°

which are, in terms of integrals over X (¢):
Py (X' t+s]|X°¢t) = /PO (Xl,t+s \ X’,t+u) Py (X' t+u| X%t)dX’

and more generally, for arbitrary u;,7 = 1...n, with u; < u; for ¢ < jand t <wu; <t +s:

Py (X' t+s|X°¢)

= /{Po (X' t+ s | Xp,un) < H Po (Xit1,uitr | Xiﬂi)) Py (X1, u |X07t)} H dX;

i=1..n—1
As a consequence (83) becomes:

X(t+s)=X
[ ( / Uz}‘;%X(u))du) TI Vers (X () DX (1))

X(t)=Xx0° wi,i=1...n

= [ T R (X0t 5| Xon) Vi (X ()

i=1..n

X ( H PO (X,;+1,ui+1 | Xi,ui) ‘/eff (X (Uz))> PO (Xl,ul | XO,t)}

i=1...n—1
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and the propagator we are looking for becomes a series of convolutions:

P(Xx't+s|X%1)

/ (;i'exp (/}:::j:a_ Ug}b}ld( (u))du> (/t“fs Vi (X (u))du) n) D (X (t))

X (t+s)=X"

(84)

_ / Zfb, /+ I dw / exp</x . U§;;d<x<u>>du> [T Vers (X)) | DX @)

ui,i=1...n (t)*XO ui,t=1...n

= S T an T X (0 e ) Ve ()
T Ji<u<tts

us,i=1...n i=1...n

X ( H Po (Xig1, w1 | Xiyug) Vegy (X¢)> Py (X1,t+uy | Xo,t)}

i=1..n—1

This series can be understood a series of Feynman graph without loops.

For each n, draw n + 1 lines connecting ¢, u1, us..., t + s. Label each point u; with Vess (X (u;)). This
graph represents the propagation of the system between ¢ and ¢ + s. During the intervall of time u;, u;41, it
propagates "freely" from X; to X;;1, i.e. with probability Py (X;41,t 4+ w1 | Xi,t + ;). Then, at u;41, a
perturbation occurs, of magnitude Vefs (X (u;41)), and the system propagates again freely between u; and
u;+1. The total contribution to P (Xl, t+s| X9 t) coming from this graph is then:

Py (X' t+ s | Xnsun) Vegy ( ( H Py ( z+1,ui+1|X¢,Uz')Veff(X)>Po(X1,t+U1|X0)

i=1..n—1

The overall transition function is an infinite sum over all possibilities of perturbations at w;, where the
u; are the times at which the perturbation occurs, and X;, the points where they occurs.
Let us remark that the previous series can also be obtained through a Laplace transform by defining:

G (2,7) = / dtexp (—M) P (2, y,1) (85)

In that case, the convolutions in time - the integrals over the u; - are replaced, after Laplace transform, by
products of terms. Defining the free propagator:

GS (z,y) = /dt exp (—At) Py (z,y,t)

the laplace transform of

1
Z—,/ 11 dui/ I dxi {Po (X"t + 5| X un) Vesr (Xn)
v Jt<u<t+s

u;,t=1...n 1=1...n
X ( [T Po(Xipn,wiga | Xiyw) Vegg (X )) Po (Xi,t+u | X° t)}
1=1..n—1

n (84) becomes:

_Z /H dX;GS (X1, X0n) Vers ( ( H GO (Xis1, X)) Veyp (X ))G,\( Xit1,X%)  (86)

i=1...n i=1..n—1

which is easier to compute. The graphical interpretation is similar to the one developed for (84), Except
that the time variable has disappeared. We rather sum over perturbations regardless their time of occurence.
The n** term occurring in (86) correspond as before to n + 1 segments of "free" propagation, perturbed n
times by external influences or shocks. ultimately, all these perturbation terms can be formally added, before
retrieving the time representation P (z,y,t) by inverse Laplace transform.
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The green function G (x,y) not only eases computations : besides its meaning it will prove useful, for a
large number N of agents, to compute the transition function for finitely lived agents whose probability of
transition between = and y is a process of random duration ¢, with Poisson distribution of mean % It then
describes the mean transition probability for a process with average lifespan of % and A is a characteristic
scale for the system with a large number of agents. We will come back to this point later.

6 Introduction of constraints

Up to this point, no constraint has been included in the behavior of the agents. For usual models in
Game theory, such as simple oligopolistic models, or independent interacting structure models, this is not
a problem. It may however represent a limitation for producers/consumers models, or systems including
global constraints in the interactions between independent agents. We will now consider the introduction of
constraints, in an exact way for simple cases, or as first approximation in the general case.

To start with an example, we will consider the introduction af a budget constraint for an economic agent
optimizing a quadratic utility. We will then extend the result to IV agents with quadratic utilities and bound
by linear arbitrary constraints. We will finally suggest an approach to the general case of arbitrary utility.

6.1 Example: Single agent budget constraint

Consider, as an example, the quadratic utility of an agent whose action vector X; (t) is reduced to his
consumption. Successive periods are linked through a current account intertemporal constraint of the form:

Cy = B, +Y, — Byyy (87)

where Y is an exogenous random variable, such as revenue in standard optimal control models. The discount
rate is discarded here for the sake of simplicity. It will later be reintroduced in the context of a large number
of agents described by a field theoretic formalism.

Since successive periods are interconnected through the constraint, when Cy is replaced by the state
variable By, the probability weight previously studied becomes:

exp (U (Co+>. U (Cs-i-i)) = exp (U (Bs +Ye = Bop1) + 3 U (Boyi + Yy — Bs+i+1)> (88)

>0 i>0

This measures the probability for a choice Cs and Cs4y, ¢ = 1...T with a time horizon T, or alternately
the probability for the state variable B to follow a path {Bsy;},. starting from Bs. The time horizon
T represents the expectation of the interaction process’ remaining duration at time s. It should depend
decreasingly on s, but will later be supposed to follow a random poisson process. As a consequence, the
mean expected duration will be a constant written T, irrespective of s. Integrating over the {Bs;} i~ yields
a transition probability between B, and B,iq written (Bsy1||Bs), the probability to reach B,i1 given Bs.
It is equal to:

T
(Bota]|Bs) = / [[dB.siexp (U (Bs + Yo = Bog1) + 3 U (Bogi + Yayi — BHHl))
=2 >0

Computing (Bs+1]| |Bs) rather than the transition function for Cs does not change the previously developed
approach. It merely requires that it be applied to the state variable B rather than to the control variable
Cs. In this case, due to the overlapping nature of state variables, the probability transition (Bsi1]||Bs) now
measures a probability involving two successive periods, so that the probability for the path {Cs}i>0 has to
be rebuilt from the data (Bsi1||Bs).

To do so, consider a quadratic utility function of the form U (Cs) = —« (C’S — C_')Q, with objective C
(or, should it be non quadratic, its second order approximation). Rescale it, for the sake of simplicity, as
—a (Cs — C_’)2 — —C2. The constant C' can be reintroduced at the end of the computation. The transition
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probability between two consecutive state variables thus becomes:

<Bs+1‘ |Bb> = /H st+i €xp (U (Cé) + Z U (Cs+l)>

1>0

T
= /Hst+iexp ( (CQC)2Z(CQ+LC)2>

=2 1>0

T

[ Besie ( (By+ Yy — Boay = C)F =3 (Bosi + Yori — Bosinr — C)2>
=2 >0
1 2
= exp *(BerYs*BsH*C')Q*f (Bs+1+Z(Ys+iC)> (89)
>0

where we have imposed the transversality condition B; — 0 as s — T . The number of periods T is the

expected mean of the process duration. -
If Y, ; is centered on Y with variance o2, > 0 Ysti will be centered on Y with variance To?, and the

integration over Y4, yields:

2 T
/HdYs+i exp —% (Bs+1 + Z (Yoys — ) gi Z spi —
2

>0

T T
/HdYS/H exp —% (Bs+1 + Z (Yo — (C— ) ai Z YS/“

i=1

with Y/, = Y,4; — Y. The exponential rewrites:

T 2 T
1 & o 1
o - CHES oA R ) IRES ol
i=1 i=1

1 ., 9 T T
= exp (-T (Be1 =T (C-Y)) - 7 (Ba1 =T (C-Y)) > V- <a2 ) > (i) )

i=1 i=1

and the integration over the Y/ ; leads to a weight:

2

exp (—; (Bs+1—T(C_’_Y))2_T( s+1 C Y Z s+ ( 111)
= exp (;(BSHT(C}/))?JFT(UZZ_T)(BSHT(CY))2>
= exp <_T4i02 (Bsy1 =T (C - Y))2>

We can now write B,41 as a function of past variables:

5+1 Z YG—H - Z Cs—i—L (90)

1<0 <0

[M]=

o)

1

.
Il

and, along with the expression By + Y, — B,y — C = C, — C, write the global weight (89) as:
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1 _
exp —(05—0)2—m S Vi =Y Copi —T(C-Y)

<0 <0

2

1

exp |~ (C—O) 2 [ S Veri = YO T (O V)

<0 i<0

for a large enough time scale, so that 7' >> ¢2. Recall that terms in the exponential depend only on past
variables, and do not modify the statistical weight. This statistical weigh can thus be written:

2
T+1 T - 1 _
exp | — (T) Cs—mc—m ;YSH_KZOCSH_T(C_Y)
2
T+1 1 _
2
T+1 . 1 _ _
= exp| - <T> Co=¥ =7 %(Ysﬂ—y) —;(Om—y)
For T' >> 1, the last expression reduces to:
2
_ 1 _ _
exp | = | G =¥ — Y Yeri=Y)=> (Copi —Y)
i<0 i<0
and defining C, =C, — Y, we are left with:
2
~ 1 N ~
exp | — Cs - T ZYeri - ch+i (91)
i<0 i<0

To define the global statistical weight for the system over all periods, we can now sum the exponentiated
terms in (91) to obtain the weight:

2
T

exp | =Y Com g [ Ve =3

s=1 i<0 i<0
This weight describes the variables:
A 1 N A
Xs:Cs_T ZYs+i_ZCs+i
<0 <0

as gaussian and independent. It can now be written differently by remarking that:

Xs - Xs+1
A 1 . A - 1 N N
= Cs - T ZY@—H - Z Os+i - Os+1 - T ZY@+1+1Z - Z Os+1+i
<0 <0 <0 <0
~ N 1 /7~ N
= Cs —Csq1 + T (}/;+1 - Cs)
T—-1 4 A 1.
= 705 — Us *}/s
T +1+ T st
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It then allows computing the density probability of:
T—-1 4 A 1
—Cs = C; =Y
T +1+ st
by writing:

T—-1. 4 1.
/eXp (-X2—-X2,4)0 (XS — X1 — (TCS —Cyy1 + TYS+1>> dX,dX, i1

T-1. A 1. 2
= /exp (Xf — <XS — TCS —Cs41 + TYS+1>) ) dX,

= exp| —

For T large, %C’é ~ (. This describes a brownian type process for C’s, with variance 2. This brownian
motion is constrained to X7 = 0 through the constraint:

X7 =Cr— ZYT+Z'_ZCT+¢ :ZYT-H‘_ZCT-H:O
i<0 i<0 i<0 i<0
so that the overall weight becomes, in the C, representation and in first approximation for T large:

2
exp | — Z (C’S — C’S+1 + ;?s+1> — Z}A/TH - ZOT+1 0 ZYTH - ZCT+i

<0 1<0 i<0 i<0

" N 2
. . 1. 2 dico YT+i — Do Ot
~ exp |- <cs —Co1 + TY5+1> f ( h ) (92)

g

with 02 << 1. The second line allows for small deviations from the overall constraint.

Formula (92) is straightforward to generalize for agents with varying horizon. Actually, if the time horizon
at time s is T — s, the statistical weight (91) at time s becomes:

és - T 1_ s Z Y9+i - Z CA’S-H (93)

<0 <0

exp

As before, defining the variables

Xs = és_Tl—s ZYS-&-’L'_ZCA’S-H

1<0 <0

The expression (93) shows that the X, are gaussian and independent. Computing X, — (T_S_l) Xot1

T—s
yields:
T—s—1
Xs — <T—s> Xst1
A 1 N A T—-—s—-1 A 1 . «
= Cs— T+ ZYSH - ch+i - (T—s) Cot1 — A Z}/s—&-l—&-i - ch—‘rl—‘ri
1<0 <0 i<0 1<0

= G- (T Gt gy (B - 1)

T—-—s—-1 A A 1 -
<T$> (Cs —Cop1+ TsYs+1>
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which implies that the probability density for C, — C’S+1 + ﬁffsﬂ can be computed by:

—s—1

T-—s 2 T—-—s5—-1 A A 1 - 2
_ _v2_(_- 2 | = _ -
/exp( XS (T—S—l) <XS ( T_s )(CS CS+1+T—SYS+1)> >dXS
~ ~ 1 v 2
(Cs - C(s—‘,-l + Ti_s}/s-&-l)

() (1 (=)

T . 1
/exp (7Xs2 - Xs2+1) 5 <<T> X X9+1 <C§ - Cs+1 + HKQ+1>> dXSdXS+1

= exp| —

. 2
This describes a brownian type process for Cy of variance (Ti;:) (1 + (T - 1) > For T large,

2
(T:C;fl) <1 + (T = 1) ) ~ 2 and one recovers the brownian motion, for s << 7. This brownian motion

is constrained to X = 0 through the constraint:
Xy =Cr — ZYT+1' - ZOT+i = Z?T+i - ZCVT-H =0
i<0 i<0 i<0 i<0
so that the overall weight in the C, representation becomes in first approximation for 7' large:

exp [ =) (C Cop1+ 77— T ! s+1> > Vo= Cryi | || | D Yrei—D Cru

<0 <0 <0 <0

R R 2
. 1 .\ (ZicoYr4i = 2icoCrti
>~ exp —Z (CS —Csq1 + 1—'—SYS+1> — ( - ) (94)

(2

The second line allows for small deviations from the overall constraint. Under a strictly binding constraint,
o << 1.
In the continuous version, we can replace the sum over s by an integral. Formulas (92) and (94) become:

exp ( / dsUe/ <C))

N A\ 2
a1 .\ (Jasvi- Jasc,)
exp ‘/ds (dsCS+HY;+1> - o

exp (Ueff)

The first term means (discarding the contarint) that d C +7— Y§+1 is gaussian of variance 1. Thus, if Y9+1 is

considered purely random, one can consider that C is gaussian with variance 14+ Var (ﬂ}/erl) = B >1

N2
(for T large, we can consider 3 as constant) and replace the first term of U/ by 3 (%C’s) to obtain:

. N2
2 dsYy — [ dsC
expUF = exp —B/ds <c§iés> — (f ” Jds ) (95)

6'2

As a consequence of (92), (94) and (95), the introduction of a constraint is equivalent to the introduction
of non-local interaction terms. The non-local terms may, in some cases, be approximated by some terms in
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the derivatives of Cy. Actually, remark that the quadratic terms

1
= > C.C,

51,52

can be approximated by a sum of local terms through a Taylor expansion of Cs,. Indeed, writing the n -
arbitrary - lag contribution:

1 1
? 2051081*71 = ? Z 081 (Cslfn - CVslf(nfl) + Cslf(nfl) — ..t Csl) (96)

introduces derivatives of Cj,. For example, for n = 0, the term % Esl Cs, Cs, shifts the quadratic potential,
and for n = 1 the expression:

1 1
? 2081051*1 = E Z (CSl + C151*1)2 - (Csl - 05171)2

becomes, in the continuous approximation:

= [eras- o | (jscsyczs (97)

Similarly, (96) can be written in the continuous approximation as a linear combination of terms of the type:

1 —~
p:

with integer coefficients a,. Integrating by parts and neglecting the border terms, we are led to a sum:

1 - » [ d®
p=1
p even
As a consequence, the interaction term % > s, Cs,Cs, 1 reduces to a correction to the quadratic term. We
will see later how to deal with the whole contribution % > s,.s, Os: Cs, when considering a large number of
interacting agents in the context of a field formulation. Note also that the series of terms in (98) could be
considered perturbatively. However, we will rather work in the sequel with formulas (92) and (94).

6.2 Case of N>>1 agents

Until now, computations in this section were performed under the assumption that the constraint included
some exogenous variable Y. For a system of N agents however, constraints are more likely imposed on
agents by the entire set of interacting agents. For example, in the previous paragraph, the variable Yy in the
constraint (87) represented the agent’s revenue. In the context of N interacting agents, this variable depends
on others activity, or in our simple model, on their consumption. Actually, in a system of consumer/producer,
the others’ consumption generates the flow of revenue Y;. In other word, agent i revenue Y depends on
other agents’ consumptions C? - or possibly C?_, if we assume a lag between agents actions and their effect.
More generally, for a system with a large number of agents, the revenue Y, may depend on endogenous
variables that can still be considered as exogenous in agent i’s perspective. Thus our benchmark hypothesis
in this section will be that agents are too numerous to be manipulated by a single agent. Therefore the
procedure developed in the previous section to introduce a constraint for a single agent remains valid and
can be generalized directly. Again, we will impose a constraint for each agent and encode it in Y, or Y.
First Y will be considered as exogenous by the individual agent and thus (95) will apply. Then (95) will be
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modified to take into account the fact that Yy depends endogenously on other agents. Assume for example
that Y = ; 052-6’2]_)1 for the i-th agent. The last term in (95) for the i-th agent can then be replaced by

(Jasvi® - fasci)’ (e - ) i)’

2

o2 o

Thus the interaction terms for an agent ¢ in (92) becomes:

(f s - fdsCl . s o
= Z / / e o) dsdthZ / / aiCO ey dsdt + / / cWeMdsdt
J

(99)
To sum up, the introduction of several agents translates the constraints as some non local interactions
between agents, and each agent constraint is shaped by the environment others created.
Summing over all agents yields a contribution to the system’s statistical weight:

~ (i A\ 2
[ sV — [dsCi 1 - o i
( - ) =D / / S adag, eV — 20t 0 | dsdt + / / oo dsdt
%7 k

= 72/ / ((Za?ﬂfﬂ%) C@Cﬁ”) dsdt + / / cOC dsdt
ag
%, k

and consequently, for the system as a whole, including the constraint leads considering the term in the
effective utility:

1 . . . 1 ) .
= Z// <Z akak — 2a;> COCD dsdt = = Z/V (Cg),ct(”) dsdt (100)
0,J k ij

Writing the constraints in term of a potential terms V' (Céi), Ct(j )> allow taking also into account, when

necessary, some non linear constraints modeled by the form of the potential V' (C’s(i)7 Ct(j )). Gathering these

results leads to the global statistical weight for the set of agents in the continuous time version:

exp (U°//) = exp Zb’/( CZ) ds——Z//C’C’dsdt——Z// C’(” cy dsdt

(101)
Keeping only the first contributions of inertia terms % I [ CiCidsdt as in the previous paragraph, formula
(97) would lead to:

exp (U1) = exp (_Z/‘;‘;(o;)%s_ ,8+— //(ds ) (102)
Z// dsdt

where o and 3 are constants depending on the expansion of Y, [ [ CiCY and the parameters of the system.
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6.3 Quadratic effective utility with constraints, general case for large N

We can now apply these methods to the more general model of interacting agents with quadratic utilities
presented above. Recall the form for the effective action without constraint (35)

) = (505 % (5.0 - X09) - (5.0 X0 t% (-5
— JZ:Z (Xz (t) — Xi(i)e> ]\\f% <X (t—1) Z)e) + JZ:ZQX X, (t—1))

It is found recursively by starting from the less informed agents. Including a linear constraint can be done
in the following way. Assume as before a constraint of the form:

Xi(t)=Bi(t)+Z;(t) - Bi (t+1) (103)

where Z; (t) is other agents’ exogenous influence. Due to the large number of agents involved in the inter-
action process, we suppose each agent may at best influence those surrounding agents on which it has a
strategic advantage. We can therefore assume that their weight in the whole set of agents is negligible. As
a consequence, the term Z; (t) being the other agents’ influence, and beyond the control of any agent, it
must be considered exogenous.. Once this is specified, we can then introduce in the effective utility a term

X; (t) M; (Et(i) . Zi (s)) with B Z; (s) = Z; (s) for s < t and E”Z; (s) = constant for s > t , where M;
is found recursively, which yields:

U (X0 0) = 5 (X0 = XY i (X ) = XO7) = () - ) AfB (Xi (1) - X{°)(104)
—; (x: () - x) ]‘jgj (2 (6= 1) - X0 + gzx X, (t—1))
+ Z Xi () K (Et(i) 3z (s)>

and apply the methods presented in Appendix 2 to find Ueys (X; (t)) given the Uesyp (X (2)), J < i .
Note however that we have included agent ¢ constraint by replacing X; (¢) = B; (t) + Z; (t) — B; (t + 1),
and imposed the transversality condition B; () — 0, t — T'). For detailed computations and results, see
Appendix 4.

The matrices are given by:

Ni = (P'((A-C)D)P+2(B- A)),.

(105)

~(P'((A=C)D)P+2(B - A) ' (P (A= C)D)P+2(B - 4)) ) (P (A~ C)D) P+2(B - 4)) )

+(PL((A=C)D)P(Ng) (P (A= C)D) P+2(B = A)) ™"+ PL((A~C) D) P)
M = (V) ((PH(A=C)D)P+2(B-A) 7" (4+0))

+ (P! (A= C) D) P(Ng) (P' (A= C) D) P+2(B - A))_1+Pf((A—C)D)R)
My = (Vo) ((P'((A=C)D)P+2(B - A) ™ (4+0)).

ij

M; = (PH(A=C)D)P(Ng) (P (A= C)D) P+2(B = A))"" + P! ((A-C)D)P)
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Kl(;) = ( Nii + M;; Mij ) (Aéﬁ]))ef +BA(1) Bao,

. s 777
Bt,,2
{ 2 \F } 9 (D) 949
C{kjyk<i eff {kj}i>k>j

B — i
== (Ny5) 1Ki(j) <Z

<1
X . (3) [€)) . .
9 B Clkjrhk<j —1 7 7
{(A%’) o B v () }(Nm Kz%-) (zj@EﬁstJ—(s))
¢ eff

where D is the solution of (37) and:

P- (5 8)e-( )
7 = (5a=mm)

1; = identity matrix for the block j < ¢

The effective utility thus obtained includes the constraint 3, X; (¢) KL(;) (Et(z) Yo Z; (5)) that mixes the
agent action with some external dynamic variable, that may include the contribution of the whole set of
agents perceived as an externality, as in (99). Note that, compared to (92), a quadratic but non local in time
term X; (t) X; (s) arises in the effective utility. The reason is that we have considered the same approximation
as in the example of the consumer with a budget constraint (the first example of the previous paragraph)
and kept only in these quadratic interactions the most relevant terms, X; (¢) X; (t — 1). Appendix 8 shows
however that the full analog of (92) as well as an exact effective utility with constraint could be retrieved,

for a total result of:
1

g O60) = 3 (00 X07) N (30— X0 = (3 %07) M2 (3, ) - 5090
(0)

—Z(Xi (t)-)‘(}”@) ]‘\% (Xj (t—1)— X{ )+Z2X (t) A (X; (£ 1))

i<t J>i
+ZXi(t)Ki(;) (Et(z')ZZj >+ZZX (zn X (1)
g s j<i s<t

that includes the quadratic terms >~ ;3> _, X; (s) eE§’7L)X¢ (t) that were, in (104), reduced to the "one lag"
approximation.
6.4 Non quadratic utilities with constraints

We conclude this section by considering some constraints within the context of non quadratic utilities. To
do so, we start with a simple example and consider the budgent constraint (87) for a single agent:

Co=B,+Y, - By (107)
At time ¢, the agent’s statistical weight has the general form (88):
/Hexp (U (Bs + YS - BS+1) + Z U (BSJri + Y;+i - Bs+i+1)> dBSJri (108)
i>1 >0

Performing the following change of variables for ¢ > 1:

Beyi — Bgyi— Z Ysij
j=i
Bsyi+Ysri — Bsyiv1 — Bsgi — Bsyiy1
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the statistical weight (108) become:

/Hexp U(Bs+Ye = Bay1) +U | Bay1 = Baya + 3 Yari | + > _ U (Bayi — Bayig1) | dBoyi (109)

i>1 i>1 i>1

Except for the case of a quadratic utility function, the successive integrals

/ [Iexp | U | Bexi = Basa + > Yepi | + > U (Bogi — Bovita) | dBays (110)

i>1 i1 i>1

arising in (109) cannot be computed exactly, . However, we can still define a function U (B, 1) resulting
from the convolution integrals (110):

exp [ U | Boy1 + ZYsH = /GXP Ul Bsy1— Bsy2 + ZYeri + Z U (Bsti — Bstiv1) H dBsy;
i>1 i>1 i>1 i>1
(111)
The function U can be approximatively computed - we will comment on that later in the paragraph - however
its precise form is not needed here. Instead, we use the general formula (111) to write (109) as:

exp | U (Bs+Ys — Boy1) + U | Bo1 + ZYS-H' (112)

i>1

Here again (see the first paragraph of this sect'lon), we can get rid of the variables Y;; by considering them
to be gaussian random variables centered on Y for ¢ > 1. The transition probability for B, is obtained by
integrating (112) over the variables Yy, :

/HdYs+i exp | U(Bs +Ys — Bo1) + U | Bog1 + ZYs-i-i - % Z (YVoyi — 57)2 (113)

i>1 i>0

This expression can be simplified. Actually, in the gaussian integrals:

. 1 _
/Hd}/s—i-i exp (U | Bs+1 + Z Yori | — o) Z (Yoyi — Y)2 (114)

i1 >0

the variable } ;_; Ys1; has mean TY and variance T'o?. As a consequence, if we assume 1" large enough so
that VT >> o, then
Y Yoy~ TY £VTo ~TY

i>1

in first approximation. This allows to simplify (114):

S Vsiexn [0 [ B+ Yoo | = 53 (Vi = 1)’

i>1 i>0

~ exp (U (Bs+1 + Tl_/))

so that, using the constraint (107) to write B,y as a function of the past variables:

-Bs+14_ji:}g+d = ji:};+i__EE:C%+i+_j£:};+i

i>1 i<0 i<0 i>1
&~ E Yoti— E Csypi +TY
i<0 i<0
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the weight (113) results in:

/HdY;_H exp U (B + Y Bs+1) 5+1 + ZY;.H - ; Z (Y;.H — Y)z (115)

i>1 >0

= exp U (Bs‘ + }/s - Bs+1) + U Z Y9+i - Z Cs—i—i + TY

<0 <0

ZYSH - ch+i +TY

<0 <0

We can consider that the term:

has relatively small fluctuations with respect to its average TY, we can approximate U by its second order

expansion:
2

ZYsH—ZC’S“—I—TY ~C —vy Zys+i—zcs+i+37
1<0 1<0 1<0 <0

the values of C' and v depending on (111). Then, up to the irrelevant constant C, (115) simplifies to the
second order approximation:

exp | U(Be+Ye—Bop1) =7 | D Yepi— Y Capi +Y (116)
<0 <0
2
= €xp U ZY9+2 ZCG+1+Y
<0 <0

a result similar to the first example of this section. The constraint can be introduced as a quadratic and non
local contribution to the utility U (C). This result is not surprising. The constraint being imposed on the
whole path of the system, the inclusion of its intertemporal quadratic expansion enforces the constraint on
average, as needed.

Ultimately, the system statistical weight (116) can be summed over all periods, to give:

exp ZU( ’YZ ZY5+Z Zos+z+y

i<0 i<0

2

We can modify the previous expression accordingly, as we did in the case of a quadratic utility, when the
variables Y, 1; and Y depend on the interactions with other agents. The procedure leading to (101) can
therefore be followed and yields the statistical weight for a set of agents with non quadratic utilities and
constraints:

exp (US7) = exp —Z/U(C’ ds——Z//CZCZd dt — 72//(10](1@—*2// (ct,cf) dsat
(

117)
In (101), the first terms represent the individual utilities, the second and the third model the constraint
binding the agents, and V' is an arbitrary potential of interaction between agents.
Let us close this section by quickly discussing the form of the function U defined by (111):

exp (U Bon +3 Ve | | = / exp (U | Bor = Bia+ 3 Vaus | + 3 U (Busi — Burisn) | [[ dBoss

i>1 =1 i>1 i>1

(118)
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These integrals can be approximatively computed with the saddle path approximation technique devel-
oped in the first and second sections. The saddle path result is not exact for a non quadratic utility, but
constitutes a sufficient approximation for us. The saddle path (118) for the function inside the exponential
can be written as a difference equation B,; with ¢ > 1:

U’ (Bs+i — B8+i+1) U’ (Bs+i—1 - Bs+i) =0fori>2
and:

U'(Bsy1 = Bat2) =U | Bay1 = Basa + Y Vayi | fori=2

i>1

Once the saddle path By, is found, it can be introduced in (118) to yield:

exp | U Bey1 + Z Y, =exp | U | Bss1 — Bsya + Z Yori| + Z U (Bs+i - Bs+i+1)

=1 i>1 i>1

and a first approximation for U is thus:

U | Bsy1 + Z Yeri | =U | Bsy1 — Bsya + Z Yori | + Z U (Bs—',-i - Bs+i+l) (119)

=1 i1 i>1

Some corrections to the saddle path can be included if we expand the RHS to the second order around the
saddle point by letting -
Bsyi = Bsyit1 +0Bsyi

and then integrate over § By ;:

exp | U | Boy1+ > Vayi (120)

i>1

= exp |U | Bey1 — Bojo + ZYSH + Z U (Bsti — Bsyit1)

i>1 i>1

X /exp U// Berl - Bs+2 + Z Ys+i (6Bs+2)2

i>1
+ Z U" (Bs4i — Bstiv1) (6Bsyi — 5Bs+i+1)2> H do By
i>1 i>1

The log of the integrals in (120) will yield some corrections to (119), but we will not inspect further the
precise form of these corrections.

7 Fundamental structures and non local interactions: toward large
N systems

The system studied until now had a relatively small number of interacting agents. To later adapt the
formalism to a system with a large number of agents, two points have to be developed. First we will justify
the need for non local (in time) interactions between an arbitrary number of agents, even without constraints.
Second, it is useful to come back to the Laplace transform of the Green function, and give a more accurate
account of its necessity.
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7.1 Fundamental structures and non local interactions

We have found the transition functions for quadratic effective utilities. The potential term acting as an
interaction term was developed perturbatively and provided an expansion for the transition functions for
any interaction potential. In the following, we will show how some simplification may arise and reduce the
system to sums of independent subsystems, called the fundamental structures.

To do so, rewrite the action (73):

Vs (X®) = [ (iX (8) (N + M) X (8) + (X (8) = X°) (N = MF) (X () = X) + X () M* (X (1) - X°)

+Vepp (X (1)) dt
and rescale the variables:
VN+MSX(t) — X(t) (121)
(VN 315) " (VETE) - )

-1

(\/m)_l(NfMS)@/m) — (N = M%)

where v/ N + M5 is a square root obtained through the Jordan form of N + M* obtained through the Jordan
form. The matrix v N + M¥ is symmetric. Consequently, the effective utility rewrites:

—%X () X (1) — X (t) M@ (X (t) — (X)) - (X (t) — (X)) (N — M%) (X (t) — (X))

= S (FO+ M (x @) - (X)) (X 0+ MO (x 1) - (X))

~(rw = (9) (v w = (u) () (x 0 (5)

The fact that M) and (N - M3 ) can be simultaneously diagonalized by blocks - for example if (N - M*S )
is proportional to the identity as will be assumed here - leads to a sum of independent subsystems:

= A (Ew s () (ro - (1)) (o + (40 (xo - ()
(0= (2)) (v =29, - () (7)) (20 - ()

- S (S (o~ (9))) (w2 (50~ (5)))
- (B - (2) (00209, = () (7)) (R - (%))

where (M ,EA)) and (N - M5 ) ., are block diagonal matrices, whose blocks are written respectively M IEA) and
(N - M*° ) .- Change the coordinates according to the eigenblocks of A. Each X (t) defines an independent

structure, or equivalently the whole set of {X k (t)} are of different type or species. These species correspond

to mixed structures, combinations of several agents or substructures. In a psycho-economic perspective, they
account for both conscious-unconscious structures. Note that it is a vague reminder of the Lacan/Mobius
strip. We will call these mixed structures, the fundamental structures. Remark that if each block is itself

diagonalized so that (N — Ms)k — (M,EA))t (M,gA)) — Acy then, by a change of basis
1/ ~ . - 1 N .
=5 (s 0 = 507 0) (K (0= 31sXer @) 5 (Xor 0= (7)) oy (e 0= (7))
(122)
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represents a sum of n independent structures, each having its own fundamental frequencies given by A.;.
This translates the independence of these structures in terms independent oscillations.

Remark also that, in a more comprehensive setting, the appearance of M, ¢ reminds of the evolution of a
system on a curved manifold. The connection of this space is tracked in M, ¢ and takes into account internal
tension inside an independent structure. This tension induces a non trivial, i.e. curved, trajectory. The
apparent coherence of motion reflects the independence and internal coherence of each of these structure.
Inversely, a break down in coherence, i.e. continuity of the motion may come from a singularity in the metric.

Once the fundamental blocks or structure are isolated, they evolve independently. This is the mark of the
stationarity or stability of the system. The only interactions are local and internal to each block, tracked by
the curved classical trajectory.

For psychological agents/structures however, the local in time interaction may not be relevant. Actually,
for this type of models we are rather interested in "structures to structures" interactions, independent
from any causality. By this, we mean a type of interaction involving the global form of each structures.
Mathematically, it translates into a non local interaction involving the whole dynamic path of each interacting
structure: i.e. the interaction cannot be reduced to time to time action/reaction schemes.

Besides, we saw that for models including a binding constraint between agents, these constraints where
not local, but involved all periods as a whole. In large scale models, each agent participate to others’
environment. As such, in this case also, interactions are seen, not as time to time action-reaction scheme,
but rather as global.

Large scale or global interaction between structures must therefore be introduced in our formalism. They
may take several forms, and describe inter and intra species inter-relations. These interactions will be added
through constraints representing long term, and not local in time, interaction.

Thus, whatever the kind of system consider, be it a large N economic system, or a large population of
structures with long-term interactions, non-local in time interactions have to be added to the system. We
have shown above that these interactions have the form:

> / Vi (X1 (1) ... X (8n)) ds1...ds,

where the variables X (s;) define the control variables of a fundamental structure "i" and V,, stands for any

potential of interaction (including the case of a linear constraint). We will see later how the formalism can
be modified to account for these terms when the number of agents is large.

7.1.1 Green function as a kernel of operator

Alternatively, the Green function can be described through an operator formalism that will prove useful for
a larger N. Using the generic effective action (73):
1. . _ _ ) _
Uepr (X (1) = / (4X () (N + M%) X (1) + (X (t) — X¢) (N — M%) (X () — X°) + X (t) M* (X (t) — X°)
+Verp (X (1)) dt
and rewriting it to include M# in the kinetic term.
1 /. _ _
vr @) = | (4 (% )+ 2 (v + 21%) 7 () (X (1) — X)) (N + 05)
X (X (t)+2 (N +MS) " M4 (X () — Xe))
— (X () = X) (N = M5 = (M) (V4 M5) T MA) (X () = X) + Veps (X (1)) dt

The transition function associated to this functional is known satisfy (see [12]) :

%P(x,y,s) =V (M(S) JrN>_1 (V+ (MA) (z — X))

(= X) (V= M5 = (M) (N M%) M) (- X
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A Laplace transform of the above equation replaces the derivative in times by a multiplication by «, and
G (z,y,a), the Laplace transform of P (z,y, s) satisfies:

Sa—y) = (—v (M) + N)_l (V + (M) (z — X)) (123)

+ (= X°) (V= M5 = (M) (N + M%) 7 M) (@ - X9) +a)
xG (z,y, @)

Namely, the propagator G (z,y) (85) satisfies (123). It is thus the kernel of a differential operator, and as
such satisfies:

G (z,y.0) = <—v (M) + N) (V4 (M) (2 - X)) (124)
(o= X) (N = M5 — (M) (N + M5) T M) (2 X)) (- y)

As an example, if we were to specialize to the fundamental structure k that appeared in the previous
paragraph and whose effective action (122) after change of variable was

_% (Xef (t) — Moy Xey (t)) (Xef (t) — Moy Xy (t)) + % (Xef (t) — (ym)ef) Ao < Xof (1) - (Y(l))ef>

one would obtain the green function as the inverse of a differential operator for each fundamental structure.
More precisely:

1 ~ 5 - 1 /4 - A -
67 = =5 (V) (V= ey (K= (X)) + 5 (e - (X)) der (%= (5),)
5 (Vi) (Vi £ Xk ) T3 (X L) Aer (X i
Ultimately, and more generally, the analogy between non quadratic utility and the dynamic on a curved
variety mentioned above leads us to consider the possibility of Green function in a more general form:

G_l = % (VZ) Miq (1‘) (ijja ({,C) — M’!E) + % (.’E — (Y(l))) N ({E — (?(1))) (125)
where m;, () is the vielbein associated to the metric Mi;1 = Mj,Mjq. This possibility would stem from non
quadratic utility contributions included in the coeficients m;, (). The idea remains the same however: the
internal tension inside each structure induces a kind of "curved" trajectory.

The utility of representing the green function as the inverse of a differential operator will appear in the
next section, but the idea is the following: for a large number of agents, a different point of view is necessary.
Rather than describing an assembly of N agents, it is more useful to consider a medium constituted by
the assembly of agents, in which we can study the actions and interactions of an agent with others. The
Green function previously described participates to this description. The second order differential operator
associated to G~! will model the basic displacement operator, i.e. the diffusion process, associated to an
agent in the surrounding.

8 Half Phenomenological model for interactions between large
number agents

We now use the results of the previous sections to transform the formalism in a collective representation, in
terms of fields, that will allow modeling systems with large number of agents.

8.1 Transition toward field theoretic formulation. Laplace transform

The results of the previous section can be summed up as follows. We described a set of several individual
economic agents by a stochastic process defined in a space whose dimension depends of the number of degrees
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of freedom, that is number of state variables, of the system. For the sake of the exposition, we will choose a
simplified version of the model developed previously, in its continuous time version. Each agent’s behavior
can be represented during a time span of s by a probability weight for each possible path of actions. For a
path z (t) of actions - such as consumption, production, signals - for ¢ € [0, s] , the weight is:

exp <_ / (O(:y <x; ) + K (2 (1) dt>>

where K (x(t)) is a "potential term" whose form depends explicitly on the agent’s utility function, or any
other intertemporal function the agent optimizes.

The term %2 (t) represents an inertia term that may be induced by the externalities, the agents’s envi-
ronment, or some constraint function in first approximation. We may associate to this probability weight
the probability of transition between states x and y, that is the sum of these probabilities for all possible

paths: ~
(z,y,s /D:z: exp ( /:0(:)_: <:E22 )+ K (z(t)) dt)) (126)

It represents the probability for an agent to reach y starting from x during the time span s. It is the
probability of social mobility - moving from point x to y - for an agent in the social space. Written under
this form, the probability transition (126) is given by a path integral: The weight in the exponential includes
a random, brownian motion, plus a potential K describing the individual goals as well as social/economical
influences. It can be seen as an intertemporal utility whose optimization would yield the usual brownian
noise plus some external determinants.

Now we can consider interactions between N agents in two ways. The first one is local. Interactions
between agents are direct: an agent’s action implies a reaction at the next period, and the weight associated
to the system has the form:

z(s)=y P2
exp | — / Z 5 0+ Z K (x; (t)) dt + Z ai i (1) &5 (¢)

z(0)=z

The quadratic interaction term x; () ; (t) between agents could be generalized by a potential
Vi(wy (t),21(8), @i (8), & (1), ..,an (8) & (2))

This type of interaction describes strong interactions as well as possibly strategic domination relations
between agents.

This inclusion of local interactions can be set in a more compact form. By concatenating the agents’
actions in one vector X (¢) whose dimension is the sum of the dimension of the x; (t). The total weight for

X (t) has the form:
exp <_ / j:))_;y (;X (0 MX (1) + K (X (t))> dt) (127)

where the matrix M encompasses the terms with derivatives (inertial or interaction terms). In other words,
the whole system can be described by a single path integral in a space of configuration which is the sum of
the individual configuration space, reflecting the strong interaction between agents.

The second kind of interactions is non local in time and may arise in two cases. The first one arises from
constraints agents impose on others. In standard economic models, the consumption function is subject
to the budget constraint, itself determined by a flow of income. This flow of income depends in turn on
the overall agents’ behavior. This implies interactions between the system’s various agents. Besides, when
forward looking behavior and usual intertemporal optimization are accounted for, the resulting interaction
becomes non local. The action’s effective utility then becomes:

z(s)=y 2
exp —/ Z% —I—ZKSUZ dt—i—/ZVa:Z ,x; (s)) dsdt
x

(0)=x
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and the potential term V' (z; (t) , z; (s)) reflects the interaction through the constraint and the potential term
V (z; (t) ,x; (s)) reflects the interaction through the constraint.

The second case where non local interaction may arise in our context comes back to (127). The effec-
tive utility may, in some cases, be diagonalized in some fundamental structures, and written as a sum of
independent terms:

%X (HMX () + K (X (1) =) (;Xk () My Xy (t) + K, (X (t)))

k

Since the probability weight of the system is a product of each structure weight, these structures have
independent dynamics. However, one may want to include some previously neglected interactions. Since each
structure has a long term persistence, one may assume that the whole set of agents shapes the environment
of each agent, considered individually. This type of interaction may be modeled by constraints, or more
generally non local interactions.

Including these types of interactions yield the following effective utility:

—Z( MXk()+K Xk >+Z Z V Xk1 81 .,Xkl (Sl))

=1 kq,.

and the path integral:

S /1. )
exp —zk:/o (QXk (t) My Xy, (t) + Ki (X5, (t))) dst, +zl:/0<s <ska V ( Xk, (51) 0 Xy (51))

15451

x DX (81) .. DXy (50) (128)

where the potential terms include all possible non local interactions between the several fundamental
structures. This type of model includes the several cases mentioned just above. The local interactions are
included in a system from which some fundamental structures emerge. Then the non local interactions and
constraints arise as non local interactions between these fundamental structures.

Our aim would now be to deal with such models, but for a large number of agents. However, since
the number of variables X, (t) increases with N, (128) becomes intractable when N becomes large. As a
consequence our formalism needs to be simplified or modified to deal with a large number of agents.

We can do so by first supposing that the agents involved in (128) are not so entirely heterogeneous that
they would have different effective utilities. We rather expect agents to belong to broad classes or types.
Inside each class, differences arise from the internal uncertainty present from the beginning, from interaction
terms among a class, or with the other classes. It is these internal uncertainty and interactions that will
provide statistical differences results among the various types of agents.

Second, since (128) describes an interaction process with a duration - or agents’ lifespan s -we might
assume that this duration, for a large number of agents, may vary among interacting agents, or group of
agents.

To model this, we use the single agent transition function P(z,y,s) and compute its Laplace transform:

Gk (z,y,a) = /exp(fozs)/Dz (t) exp ( /xj::);y (z; )+ K (z (t))dt)) ds

This expression models the transition function between x and y for an agent whose lifespan is a Poisson
process of average é It fits well for a large number of agents whose interaction duration varies among the
population. The Poisson law has the advantage, among others, to describe a memory-free process. So that,
at each period, the same law will model the probability for the remaining time of interaction. Describing
the system in terms of G (x,y,«) is a step toward the modeling of large N systems. It models a mean
transition function for a set of agents with random lifespan duration (or more generally, the duration of the
interaction process), where agents are themselves unaware of the length of this duration.

The green function Gk (z,y,a) is the one worked out in the previous section for an arbitrary effective

X

utility, along with a kinetic term ; (t) induced by interactions, inertia, and or constraints. We quoted

75



previously that Gk (z,y, ) can be seen as the inverse of an operator. Actually, it is the laplace transform
of P(z,y,s), with P (x,y, s) solving the usual laplacian equation:

I P(ays) = (;v - K(w)) P(.y.5)

As a consequence its Laplace transform G (z,y, o) satisfies:
1
(-37+a+ K@) Gx (e = () (129)

Considering the description in term of Laplace transforms, the path integral to consider for the whole set of
agents becomes:

[exo(-as)ds [ exp (— > / ! (;X () M X (1) + K (X, <t>>) dsi (130)

+ Z/ V ( Xk, (51) s Xiy (51)) | x DX (51) .. DX,y (50)

0<s;<s k

Or, if we consider different average lifespan for the various agents:

/HGXP (—ais(i)) ds; /eXp (— Zk:/o (;Xk () My X (t) + Ki (Xi (t))> dsk, (131)

0<s; <sp

+ Z/ V (Xpy (51) 5000 Xy (51)) | X DX1 (51) ... DX, (50)

ki

Up to the Laplace transform, (131) is the description we adopted in the previous sections. The third
adaptation we have to perform on the model starts with formula (131). Indeed, the sum of potentials
> f0<si<s(7¢> Ykt V (Xky (81) 5., Xk, (81)) accounts for interactions between several types of agents,
some of whom may involve numerous structures. Our description being statistical, it should average over
interactions involving a variable number of agents of various types, which would allow to describe both the
interactions of a large number of agents in average, and the evolution of a small number of structures in the
whole set of agents’ environment. This can be performed by resorting to the following device: rather than
considering (131) directly with a large number of agents (that is a sum for £k = 1,..., N with N large), where
among the sum, the agents are divided into few classes of identical agents, one will sum over systems with
variable number of agents from 1 to NV — oo. Consider a single type of identical agents. We will generalize
the procedure to different types later. The so called Grand Partition Function for a set of N interacting
individual paths associated to the partition function (131):

ZN' H/exp —as; /D:p, exp( Z/ :: . ( (t) + K (x; (¢ ))dt) (132)
- Z Z / (_( Vie (4, (t1) ...xqy, (t1)) dtq...dty

Up to the sum over N, this is the - Laplace transformed - transition function for a system of N identical
agents interacting through the potentials Vi (z1 (¢)...zx (t)). We assume arbitrary interaction processes
through the potentials Vi, (z1 (t) ...z (t)), with A standing for the maximal number of agents in interaction.
Recall that the Nth term in (132) computes the transition probability between {z;},_; 5 and {y;},_; »
for a system with N agents during a time interval s.

As said before, the sum over NV implies the possibility of interaction processes involving a variable number
of agents. The N! reflects the fact that agents are identical in that context.
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Some difficulties arising from the computation of (132) can be avoided by considering the potential
K (z (t)) as a source term. To do so, we follow the presentation of [7]. and adapt this one to our context.
Starting with the simplest case of no interaction, i.e. Vi (21 (¢) ...xx (¢£)) = 0, the function of interest to us is:

ZN|H/eXp —asi /mz exp< Z/ o y( )+K(xL())dt>> (133)

i(0)=x;

Each of these integrals being independent from each others, the results for (133) is:

1Y zi(s)=yi / ;2 1N
Z N H/exp (—as;) /Dmi (t)exp | — Z/ o <2L (t) + K (z; (1)) dt) = Z N HGK (x4, Yi, @)
N =1 i Jei(0)=zi N =1
(134)
N
which is a mixed sum over N of transition functions for N agents. Each product % H Gk (zi,yi, ) com-
i=1

putes, as needed, the transition probability from {z;},_;  to {y;},_; » for N ordered agents during a
process of mean duration é Thus the sum can be seen as a generating series for these probabilities with
N agents. However, between identical agents, order is irrelevant, so that the probability of transition of the

system from {z;},_, 5 to {yi},_, y is the sum over the permutations with N elements of the terms on
N

(134) rhs. Since these terms are equal, the "true" probability of transition is H Gk (z;,y;, ). The whole
i=1

problem at stake is to recover the case with interaction (132) from the "free" case (133). The benchmark case

interaction contribution (133) can be recovered using the following method. Using the functional derivative

with respect to K we write:

57 x“)ZN'H/eXp —as; /Dzz exp< Z/ :)S ) ( )+K($L())dt>)

N
N

— %: % H/exp(—asi)/'Dl‘i (t) exp (—Z/:(;:y (x; (t) + K (2 (t))dt>>

i—1

ziq (8)=Yiy
x{—Z/ s (zs, (t)—acil)}

i i1 (0)=m4,

where § (x;, (t) — x;,) is the delta of Dirac function. By extension, this generalizes for any function V (z;, ),
to:

/dacilV(acl1 Z N H/exp —as;) /Dxl ) exp ( Z/JCM(S)_M (af (t)+ K (x; (t)) dt

i Jzi(0)=z;

- Z;ﬂl]__\][/exp —as; /Da:l exp< Z/l(oﬂ y< )+K(zz())dt>>
x {Z / (::y AtV (z;, (t))}

?

7
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and for any function of several variables, to:

Z N H/exp —as; /D:cl exp( 2/1(08) " ( (t) + K (z; (t ))dt>> (135)

xi(s)=

X Z Z / x“ (tk) Ty, (t;g)) dty...dty,

k>211,. (0) z
5 B
= D [ dey. ..dx; Vi (240 s
g?%&)/xlﬂkmx”wm>mmﬂ

XZN'H/GXP —as; /Dml exp( Z/wl;s 5 ( )+K(xl())dt>>

To find (132) from (133), the next step is to exponentiate (135) as
| N
Zﬁn/exp(—asi)/Dxi (t)
N T

1
A

X exp Z/Z(O_Il ( ) + K (1 ())dt)—z_: Z / Vi (e (b) i, (£)) db et

4] J
= exp <—/d$i1...dxika (T4, ...1,) K (1)K (Sﬂzk))

XZN'H/exp —as; /Da:l eXp< Z/(O);y< )+K(xl())dt>>

In other words, using (134) one finds the partition function for the system of agents in interaction:
LN
S i1l [ exp(-as) [ Doito)
N Ti=1

xexp [ = /I o (””; (t) + K (; () dt)

i i(0)=xz;

(s)=v:

zi(s)=
/ 1‘11 (tl) &gy, (tk)) dtl...dtk

k=211,. 1(0)_1

5 5 15
= exp <_/dled$zkvk (m“mlk) oK (x“)éK (:L'ik)>K:0 X %ﬁEG}( (asi,yi,oz

This would allow to compute the transition functions, or average quantities for interactions processes in-
volving all agents. However, there exists a more compact and general way to compute the same results
and, eventually, to obtain more results about the nature of the interacting system. This implies a switch
in representation from the N agents’ system to the collective surrounding description of these N agents.
We can actually infer from (129) that the determinant of operator Gx whose kernel is Gk (z,y, ) can be
expressed as an infinite dimensional integral different from the ones studied up to now:

(det (Gg)) ' = / exp (—qf (z) (-évQ +a+ K (x)) vl (x)) DYDY (136)

where the integrals over ¥ (z) and W' (z) are performed over the space of complex-valued functions of one
variable z. The function W' (z) is the complex conjugate of ¥f ().
The formula (129) is simply the generalization in infinite dimension of the gaussian integral formula

(det (M)) ™! = /exp (-X (M) X")DXDXT
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where (129) is used.
Introducing a source term J (x) ¥ (z) + JT (z) ¥ (z), we claim that:
J (

Jexp (=¥ (z) (—iV? +a+ K (2)) ¥f (z) + J () OT (z) + JT (2) ¥ (z)) DYDYT
Jexp (=¥ (z) (-iV? +a+ K (2)) Ut (z)) DYDYH
= exp (J (x) (—;VQ +a+ K (x)) JT (x))

= exp(J(z) Gk (z,y,a) JT (z))

This comes directly when changing the variable ¥ (z) — ¥ (x) + J (x) in the numerator of (137).
The terms in (133) can thus be recovered from (137). Actually, the transition function for N agents
(137):

(137)

N
H Gk (i, Y, @) (138)

providing that N, in (134) accounted for a chosen order among agents, and that we multiplied N! to restore
the identity between the agents, can directly be written as:

al B 5 B 5 5 .
1L e = (st (e eV @ex v sie]

Consequently, we now have an infinite dimensional integral representation for the transition functions for N
agents:

N
H GK (:Eiv Yi, &
=1

B K&J(éx“)cﬂ 63: > <5J(% (m (z1y) )L_ﬁ

T (2,

Jexp (=¥ (z) (- 1V2+Q+K( ) Ui (2) + J (2) ¥

' [exp (=¥ (z) (-iV° +a+ K (z)) ¥
1

V?+a+ K (z) 0 (z)) DYDTT

) (T )]

‘ta+ K (x)) U (z) + J (2) Ot (2) + T (2) @ (x)) DUDY!

=0
T (z)+ JT (2) ¥ (z)) DYDYT
t(z)) DYDY

fexp( \I'($)(

[(oreyart
Jorlcw(e

The normalization factor

N)M—\H

1
[exp (=¥ (z) (-1V? + a+ K (2)) U (z)) DUDYT

is usually implied and will thus be - whenever possible - omitted in the formula. The transition functions
are computed by taking the derivatives with respect to J (z) and J1 (z) of

/eXp (—\D (x) (—;VQ +a+K @;)) U (z) + T (2) 0T (z) + T (2) @ (m)) DUDYT

However, the source term is also usually implied and only reintroduced ultimately, at the end of the compu-
tations. As a consequence,

/exp (—11/ (x) (—;vz +a+ K (m)) o' (:v)) DYDUT (139)
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will describe the same system of identical non interacting structures. We will use this representation occa-
sionally.
On the other hand we have seen how to introduce interactions between agents. It amounts to make an

operator act, namely
5 )
i1 Kk

on the transition functions. In other words, the quantity

5 )

X /exp (qf (z) (;VQ +a+K (m)) U (z) + J(2) OF (2) + I (2) © (z)) DYDY

allows computing, by differentiation with respect to the source terms J (x) and J' (z), the transition functions
for a system of N interacting particles. The action of the functional differential operator can be written:

0 )
exp <— /dxil...dxika (X4y---Tiy) 5K (5) " K (%k)) (140)

X /exp <\1: (2) (;VZ +a+ K (z)> ot (z)) DYDYt

_ /exp <_q, (@) (—;VQ fatK @)) U () = U (25,) 0 (1,) Vi (25,o5,) O (21,) . 0T (g;,-k)> DYDY

The above formula can be directly extended by considering all types of interaction process involving k
identical agents where k > 2. We can sum up the previous development by asserting that the quantity

/exp (—\I/(a:) (—;vz’ +a—|—K(a:)> o (2) (141)

=0 @) Y () Vi (@) O (25,) 0T (2,) + T (2) OF () + T (2) U (2) | DEDET

k>2141,...1%

computes, by successive derivatives with respect to J (z) and JT (x ) the transition functions of a system
of infinite number of identical agents, with effective utility X; (¢) (—3 V24 K (x )) Xi (t), and arbitrary, non
local in time, interactions Vi (X, (¢1)...X5, (t5)) involving k agents with k arbitrary. The constant « is
the characteristic scale of the interaction process, and é the mean duration of the interaction process, or
alternately the mean lifespan of the agents. The transition functions are given by:

Gx ({zi} {vit. a) (142)
B) b 5 § 1_,
- |z <yi1>) Nsremaim) [or(v@ (37 e K@) v
—Z Z (zi,) O (23) Vie (24, ooy ) O (25,) 0T (23) + T (2) OF (@) + JT (2) U (z) | DIDTT
k>211,...9 J=Jt=0

and Gg ({z;},{v:},) is the probability of transition for N agents from a state {z;} to a state {y;}.
Remark that this formulation realizes what was announced before. The switch in formulation induces that
the transition of the agents, i.e. their dynamical and stochastic properties, takes place in a surrounding.
Instead of computing directly the dynamic of the system, we derive this behavior from the global properties
of a substratum, the global action for the field ¥ (z). By global action we denote the functional, or action:

S(\If):/dx U (z) (—V2+a+K ) +Z > W (i) (w0) Vi (i) U (2,) 0T (2,)

k>2141,...1%
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The infinite dimensional integral (142), the so-called "path integral", can be written as a shortcut when the
source terms are omitted:

/exp (=S (¥)) DY

This point of view is usual both in quantum and in statistical field theory. The latter, that is the closest
to our approach, deals with system with large degrees of freedom. To reach an analog degree of formalism, we
built the notion of effective utility, starting from interacting and strategic agents. This notion has then been
used to find the action functional for a field describing a large number of structures. The individual features
of the effective utilities render the action functionals more specific than their analog physics. Moreover, the
physics and the symmetry laws generally at stakes in statistical physics ultimately constrains the form of the
global action. These constraint are not present here, and we will see that the form of the problems involved
by the systems of socio/ eco interacting agents lead to very different forms of global actions than the one
studied in physics. These symmetries are absent here. Besides, systems of socio/economic interacting agents
lead to very different forms of global actions than those studied in physics. However, some basic ideas and
principles remain valid and will conduct the use of this formalism.

The first application of this formalism asserts that in the expression

A
S(P) = / % (U7 (z) (VP +a+ K (z)) ¥ (z)) dx—i—/z V (21, 2p) O (1) OF (1) .0 (2) OF (21,) doy...dzy,
k=2

(143)
the contributions of the potential V' (x1, ..., z)) to the computation of the two points Green functions can be
obtained as a series of Feynman Graphs. This one represents also the "sum over all histories" and will yield
the statistic "fate" of a single path through the various interaction processes These graphs actually compute
how the path of single agent is perturbed by interaction processes with one, two... and more agents. Each
of these interaction processes will contribute in probability to the transition of the agent from one state to
another. That is, the series of graphs models the environment impact on the trajectory of a structure.

More generally, n points correlation functions give the probability of transition between 2 sets of states
for n agents: given a certain process with n agents and initial values, it yields the probability value for the
outcome.

The second application of the formalism of statistical physics is the possibility of non trivial vaccua and
phase transition. The system (143) can be studied independently from the system of agents it represents.
The functional S (¥) may present some non trivial minima, and these minima modify the properties of the
correlation functions of the system. The field ¥ for which S (V) reaches its minimal value describes the phase
of the system. Given the parameters of the model, the phase may change and confer different properties to
the system. The properties of individual behavior will then depend on the phase of the system as a whole.

Both possibilities will be studied in the next sections, but before doing so, we will conclude this section
by generalizing our results to the models developed in the previous sections.

Remark that the first term in (143):

1

5 [ (0@ (T ot K@) @)

can be identified with: )

5[V @ (EF @) ¥ @)

Besides, Gk (z,y) is the Green function for the effective utility of a single agent, or a single subset of several
interacting structures, or some fundamental structure.

As a consequence of the previous discussion, the formalism may be generalized for curved space of
configurations that appeared in the previous section, and which represents the most general form of quadratic
effective utility. Actually, consider a single interacting system with effective action (73), in which we now
include the term derived in (41) and previously discarded:

U (X @) = [ (X0 @+ %) X0+ (X (0~ X) (¥ = M%) (X (0 - X

+ (X (8) = X) MAX (8) 4+ Veys (X (1)) + Ueyy (Xe)) dt
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The associated Green function G (x,y, a) is the inverse of a differential operator given by (124):
G (z,y,0) = (—v () + N>71 (V+ (M) (z — X9))
(= X0) (N = M5 = (M2) (N + M%) T MA) (2= X) 4 Ungy (X9) +0) 8 (2 — p)
and then G (z,y, a) satisfies:
d(x—y) = (—v (2 + zv)*1 (V+ (M4 (z — X°))

(= X0) (N = M5 = (MA) (N + M%) ™ MA) (2= X) + Ungy (X°) +0)

xG (z,y, @)
Gathering the potential terms

(2= X°) (N = M5 = (MA) (N + M%) 7 MA) (2= X) + Ueps (X) +a+ Vs (@) = m? +V ()

allows to write the effective utility and associated inverse Green function as:

G (a,y) = =V (M) + N) (V + (M4) (z — X)) + V (2) (144)

with: -
m? = o+ Uepy (X°) (145)
note that m? can be positive or negative, depending on U, ys (X e) - « is always positive, but we keep this

notation by analogy with the mass term in field theory.
Formula (144) leads to the field formulation of large number of interactions:

s = [5(v@ (-7 (4 8) 7 (T4 O @0 X)) £t 4V @) ¥ (o)) do

+/Z Z (i) W (23,) Vie (4, i) OF () 0 (2,) day...day, (146)

k‘>2 ’Ll

If we change the coordinates (z — X¢) — VM ®) + N (z — X¢) to normalize M) + N to 1, we have:
_ Loy 2 (A) Ge 2
S(¥) = 3 Uh(z) (-V2+ VMW (2 = X°) +m* + V (z) ) ¥ (2) ) do (147)

—I—/Z Z (i) W (23,) Vie (24, oo, ) OF (24,) 0T (25,) dezy..dy,

k>2iq,..

That describes a set of fundamental structures over the whole relevant time span, as well as their potential
temporal realizations.

The first contribution describes the dynamic of a set of identical structure whose fundamental state - or
classical solution - is bended by its own internal interactions and constraints as explained in the previous
sections. The second term represents the possibly non local interactions between agents. Each interaction
type creates a surrounding constraining the individual structures.

8.2 Introduction of several type of agents

The previous paragraph has introduced a field theoretic description of a large number of interacting identical
agents, or structures. To differentiate between fundamental structures, one introduce the different species,
either by diagonalizing the initial system and replicating it, and then adding non local interactions, either
directly by introducing some original bricks and their interactions. Each of these types corresponds to a
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field living in a space whose dimension is given by the dimension of each block X} (t). We denote them
k) (X' k) The coordinate Xy describes the space, or variety, of characteristic variables of the fundamental

structure k.

The treatment of these several species is straightforward given the previous paragraph. Without inter-
action, each fundamental structure is described by a quadratic action similar to the ones described in the
previous paragraph (see (144)). Recall that:

/eXp (=S (¥)) DY

computes the probability weight for a system. Gathering the various systems of identical fundamental
structures, the path integral to consider reduces to the product of the weights of each system of fundamental
structures. The non interacting blocks Path Integral is then:

/1;[1)\1/ (%) x
o (5 e ( (-39 (0 o (07 0) ™ (90 (3 (), )) v ()9 ()

where () inchues 1 (i — (%) ) (W6~ M) (e - (%) ).

The inclusion of the interaction potential between fundamental structures follows the same previous steps
and leads to the decomposition for the full action of the system with an infinite number of agents divided in
M type, or species, of structures:

s, )
>k (5907 () 90 (3= 07) (7= 22 (= (5),)) -+ v (50)] ()

v (f) ) T e () we (50) s

1<isn

intra species interaction

R a1 I R G

m kyi...kpy N1--Mm J 11<zn <n

inter species interaction

The variables X ,(f) are copies of the coordinates on the fundamental structure k. The intra type/species in-
teraction terms describes then the interactions between several structures of the same kind. The inter-species

(in,)

interaction term rather involves coordinates X s, on different manifolds, and describes then interactions
between different types of agents. The potentiaf Vik1,n1)...(km nym) i0VOLVEs 1y copies of structures ki,..., ny,
copies of structures k,,

8.3 Computation of Green functions. Graphs

We start with the system composed an infinite number of agents of one type, whose action is described by
(146). Without interaction, we have seen that the Green function for 2n independent variables through (142)

G(IJ( ({wi}l...n7{yi}1.4.n7a) (149)

B 5 5 5 5
a K“ (i,) 01 (yil)) <5J (2i,) 0.J7 (yz‘n)>
/ exp (—\1/ (z) (—vz + VM@ (z— X) 4 m2+V (m)) Ut (2) + J (2) O () + Jt (2) @ (x)) mmﬁ}

J=Jt=0
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The superscript 0 has been added on G% ({x;}, , ,{vi}, ,, ) to denote the Green function without inter-
action potential between the different agents. Equation (149) can also be rewritten as :

exp (7\11 (z) (fVQ +vMA) (z—X)+m*+V (x)) \al (3:)) DUDY!

And the left hand side of (150) can be rewritten as a product when there is no interaction potential (see
(138)), so that:

Z H G(I)( (xij’ya(ij)7a) = /\IJ (xil) \IIT (yi1) N (‘rln) \IIT (yin) (151)

ocoy j=1
exp (—\1/ () (—v2 + VM@ (z— X 4 m2 4V (a:)) vl (x)) DYDY
This is known as the Wick theorem (see [13]) and is the basis to compute perturbatively the 2n points Green
function when a potential is added to the action.

Now, consider the full 2n points Green function including an interaction potential as in (142), but with
the general action (146):

Gk ({ml} ’ {yi}aa)

B KaJ éa) m(zyil)) <6J (im o fy>)
x /exp <—\IJ () (—v (2 + N)_l (V+ (M) (z— X)) +m2 +V (m)) v (2)

=0 @) W (@) Vi (@) O (23,) 0T (2) + T (2) OF () + T (2) @ (2) | DEDWT
k>241,...05 J=Jt=0

Exactly in the same way as for the case without interaction, the 2n points Green function can also be
written:

Gk ({zi} Avit,0) = /‘1’ (i) OT (yiy) - (3,) T (y3,,) (152)
-1 _
X exp (—\I/ (x) (—V (M(S) + N) (V+ (M) (z— X)) +m?+V (x)) Ul ()
=0 (@) W () Vi (@) O (2,) 0T (2,) | DUDET
k21,0 i,
and given the Wick theorem, this can be computed in the following way as a function of the Green function

without interaction G?( (xi, Yo (i) a).
Actually, expanding the exponential term containing the potential Vj (x;,...z;, ):

exp —Z Z W (23,) .0 (25,) Vi (4, 020,) OF (2,) 0T (25,)

k>2i1,...0k
= /Z H {ij (ngj):rgff)) [\If (xgim) LU (xif])) VAl (azif])) Rl (mng)ﬂ dxz(fj)dmff»}
J J J J
1=0 k;>2
1<5<!
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And using the Wick theorem, contributions like:
/\1/ (@,) OF (yi,) . (23,) T (ys,) exp (—qf (z) <—v (M<S> + N) - (V+ (M) (2 - X)) +m*+V (a:)> ot (zbsé)
/ IT {Ve, (2% ali) [w (25) v (al) 0t (o0) 0t (20))] dal)dall) } DODET

1< <!
for a given sequence {k; > 2}, j = 1,...,[, are equal to:

n
Z Z Z Z G (xiamwl)’yia'(nﬁl)’a) G (xiam)’yia'(ngw%)

n1=0c€0,,0'€0, 6E€EC ks k
; WTEIIT i al)
<J

<1
0 0 0
XGK (xi(,(lwxlaa) GK (yif,/(l)7x27 ) <$ia(n1)ax2n171aa) GK (yia/(nl);x?nua)
N
0 (k) (k ) (kj) (kj)
H Gx (zap—1, T2p, @) H {ij ( i dz; " ...dx; Iy
p=ni+1 k;j>2
1<5<!

where N = 23:1 k; and with the convention that the contributions are null for 2n; > N. The Green
function is obtained by summing over [ from 0 to co and over the sequence {k; > 2}, j = 1,...,l . Remark
that the sums have to be performed only on sequences corresponding to connected graph, as explained just
now above.

Actually, these integrals have convenient graph representations. Draw the 2n external points labeled by
(kj) (ki)
1 Tk

@, then for j =1 to [ draw [ vertices with k1,...k; legs and labeled by Vj;, (axz ) Then draw 2n lines

joining the external vertices to the legs of any internal one. Then link all remaininJg internal legs together
in all possible ways labelling them by the points they are joining, such a way that the resulting graph is
connected Finally link all remaining internal legs together in all possible ways, and label them by the points
they are joining, in such a way that the resulting graph is connected. This gives a series of graphs, each
providing a contribution to Gg. The contribution of any graph is computed in the following way:

(km’zly 1 ) 7 w(kmizj ) ’ 04)

For each internal or external line, associate a factor G% (mi" , x£212n1—1 ), a) or GY% (a:nz Tig
—

where the variables in the function G represents the points the line is connecting. Then multiply by the

factors Vi, (xffj ) ng] )) associated to the internal points. Then integrate the results over all internal points.
J

The fact that only contributions corresponding to connected graph is explained for example in [13] but can
quickly be understood as follows. Recall that the path integrals for n-points correlation functions like (153)
have to be normalized by dividing by the "zero point" correlation functions:

/ exp <_q/ (z) (-v (M<S> + N) TV (M) (- X)) +mP v (@) ot (x)) (155)
/ IT {ve (e07al?) [w (a02) v (a2 wt (20 0t (o02))] dal)anll? | DODWT

1<y <l

and the contributions to (155) given by (154) are precisely given by (any) product of graph made of cycles
(due to the fact that there are no external points). These contributions cancel precisely the non connected
graphs in (154), that is those containing themselves cycles.

The method of graphs computations can be useful to find corrections to the individual propagators G9.
However, given the particular form of our model, it will often be more useful to use some other aspects of
the collective field representation, as will be explained later.

This formula can be generalized for interactions beween various types of structures. Starting from (148),
a computation similar to the previous ones yields the following contributions to the transition functions
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Gk (({z:}, Wi, > {zi} s A¥i) ,a) for 2ny points of type 1,...., 2n4 points of type A:

np

A
1B 3 3 3 l CORR ) I (156)

B=1 [(n1)g=00€0ng,0'€0ny 6E€ET2Ng (510oman V=6 U Tgk])’t(kj)
1<5< 1 'k
0,B
X X G270 x5 ; oz)
K ( ZC’("B),yZUI("B)7

Np
0 0 0 0 0
X GK (xia'(l)’x17a) GK (yig/(l)a*r?vo‘) GK (zio(n1)7x2nl_17a) GK (yig’(nl)"ranO‘) H GK (x2p—171‘2p7a)‘|

p=ni+1
l
(iny) (in; )
<11 {W(kl,nl)...<km,nm>}p ({xkj ‘ d{ay, |
1<in; <y 1<in; Sy

p=1
with Ng = 25‘:1 (np), where (np), is the number of copies of the species k appearing in {(k1,71) ... (km, nm)},
. The Green function is obtained by summing over [ from 0 to co and over the sequences {(k1,n1) ... (km,7m )}
p=1,..1

p7

8.4 Non trivial vacuum, phase transition (one type of agent)
8.4.1 Principle: Vacuum value and Green function

The previous perturbative computation relies on a development around the Green functions of a system of
non interacting agents. However, this expansion may not be valid in (142). The effective action arising
in the exponential of (152) may have a non trivial minimum ¥, (z) in some cases. Changing the coor-
dinates (:E — X’e) — VM) + N (x — Xe) for the sake of simplicity, the Green functions are then better
approximated by expanding;:

S(W) = / % (qﬁ (z) (fv2 + VM@ (z— X°) +m2 4V (x)) v (z)) dz

+/Z > U (@) (@) Vi (@) O (@) 0T (20,) daoyday,

k>2i1,...05

to the second order around Wy (). The Green function is then recovered by computing the integral of the
second group of terms over ¥ (z), plus higher order contributions. The possibilities of non trivial minima
Uy (z), depending on the parameters of the model, is related to the phenomenon of phase transition (for a
short account see Pesh). Given the particular form of action functional S (¥) involved in this context, its
minima are quite different from the one obtained in usual models in field theory. However, the principle
remains the same. Assume a non zero minimum ¥y (z) for

W () (fv2 FUMW (z— X) 4 m2+V (:17)) ot (z)
=0 (@) W () Vi (@) O (2,) 0T (2,)

k>211,...9%

ie.

= | (@ (TN X otV ) ¥ @)

0N @) W () Vi (@) O () 0 (2,)

k>21iq,...05 U (z)=V¢(x)
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Then, expanding

S(U(z)) = —U(x) (fv2 +VM@ (2 X +m2+V (a:)) o' (2)
0N (@) W (@) Vi (i) O () 0 ()
k>211,...1%
with:
U (z) = Vo (2) + 0¥ (2)
yields:

S (Wo (2) + 00 () = S(Up(x)) — oV () (—v2 +VMW (3= XY +m2 4V (g;)) sut (z) (157)

— Z Z Z(S\I} SL'Z \IJO 1’11) ..\ifo (iCZJ) \I}Q (mlk) Vk (sc“xlk)
=2141,...1% 1%j
+higher order terms in J¥ (xlj)

where the hat over ¥ (xlj) and its conjugate ¥t (ml]) means that these terms are omitted. In other words,
the potential term in the individual action has been shifted from K (z) to

A

k=2i1,...i5 i;

yielding a change in the individual Green function and in turn, in the individual effective utility. The
influence of a large number of interactions induces a non trivial collective minimum: it shifts the individual
behavior. Actually, the new individual action term:

—ov (.’IJ) —*VQ + o+ K Z Z Z \Ifo LL'“ .‘i’o (.’I}Z‘j) \IJO (.’L‘lk) Vk (.’I}Z‘1 .’Elk) (158)
k=211,...1 15

X Wl (@) W () 0 (a:,-k)) 50Ut (z) da, ..., ..,

modifies the inverse of the Green function by some "constant", independent from §¥ (), inducing a damped
or extended dynamic. In other words the individual fluctuations can be frozen or magnified, justifying the
use of the term phase transition. We will see below that the presence of a non trivial minimum may also
shifts the equilibrium values for individual agents.

Remark that the higher order terms in (157) model the effective several agents interactions in the new
phase at stake after expansion around Wq (x). These results fit with the change of representation implied by
the use of field theory. The study of the set of agents as a continuum substratum leads to modifications of
individual transitions as a result of the fluctuations from this medium.

8.4.2 Shift in equilibrium values

The second consequence of a phase transition is the shift in equilibrium value. The expansion around a non
trivial vacuum leads to a quadratic term (158) that impacts the agent’s effective utility. Actually, considering
the reciprocal link between individual dynamics and collective fluctuations, we can assert that the form of
the effective action impacts the effective utility. Facing a phase transition, the correction term in the effective
action (158) would lead to an individual effective utility of the form:

- (1) + K (2 (1) + V(2 (1))

o ‘ﬁgj
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k=21i1,...0k 15
dezldejdxzk

This effective utility has a new saddle point x with respect to the individual case, which satisfies:

) .

— (K (z)+V(x(t ) =0

= (K@) +V (@ ®)

As a consequence, the possibility of phase transition, i.e. the existence of non trivial minimum ¥, for S (¥ (z))
depending on the parameters, induces a shift in each agent’s individual equilibrium. The collective system
impacts directly the individual ones and prescribes a different effective potential from the one describing
initially the system at the micro level.

8.5 Several possibilities of Interactions

Having described the formalism of collective fields and its possible use, we now detail two examples of
interactions between fundamental structures.

8.5.1 Reciprocal interactions between identical agents
By reciprocal interaction we mean the introduction of a symmetric potential of any form:
14 ($i1 y Lijgy oens I'Ln)

between agents of the same species. It models the mutual influence of these agents when none of them have
a strategic advantage over the others. The graph expansion for the Green functions with this potential is
given by (154) with a single type of agent, i.e.Gx ({z;},{vy:}, @):

GK {xz} {yl}ﬂ (159)

/ Z /GO Tiy, T )GO (yh, (12), )...G(}( (mln, (l;nmll) )G% (yzn, (ZW),a)

cP2n €{11,.00n }
l17 don€{i1,.vin}

1 1 1 m m m % j
(90,20, oY (2, 2, ., ) I 6% (4,49, 0)
" (m’),((r,sg
z( 7) Uk
( ) {Pkk }k 1,...2m

(1) (1) (1) (m) (M) (m)

Tig 0T ip 7T 71 7’2

xd:cgll)dasg)...d:rgi), ...dzl(»:")dmggq)...dxl(.;")

The various individual propagators GY% (mil , xglll), a) ... can be obtained through Laplace transform of the
general formula (78). However for later purpose it will be more useful to use a different way.

We consider G% for an individual effective utility of quadratic form. As shown in the previous section,
if we neglect the curvature effects for individual fundamental structures, and if we consider a system of
coordinates where the potential is diagonalized (see (122)), the inverse propagator for block k (i.e. i1 or ig)
is:

—1 2 .
(Gk) = =Vi+mi+ (@) = Yerr) M)y (i) = Yegs)
m3 can be positive or negative depending on the parameters of each fundamental system (see (145)). The
kernel of this operator can be computed through its eigenvalues and eigenfunctions. Actually we can cast
the previous differential operator in the form:

—Vi+mi 4 (), — Yerr),) (Mg (), — (Yers),)

S0 @) (m+ (nr 3) ) 2 0)
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Such an operator has a kernel (i.e. the Green function) such that:

~Vi+m?+ ((z4)), — (Yeff)k) (Ad)y, (i), — (Yeff)k) I ((xi),) = /G((ﬂﬁi)k s (Wa)i) f ((ya)y) d (yi)y,

for any function f ((x;),). For such operator, the Kernel can be written in terms of its eigenfunctions:

@) (4 (nh 5) 40 v (160

where 1), is the nth Hermite polynomials, times a gaussian term with shifted variable (z;), — (Yer )

= (42t () o (-512)

where the H, (ahv) are the Hermite polynomials. Some details are given in Appendix 9. The Green function

can thus be found directly and is given by:

_ % (@) o, (2)
G (2,y) = ; m

Applying this results to our problem yields G (z,y):

1

VTt (@0 = (ern)g) A (@ — (orn)y)
1 *
20 Gy )

(GY%) (x,y) = (a] ly) (161)

This form of Green function is useful to deal with (154). Actually, the infinite sum here can be truncated
if we assume in first approximation that only a finite number of "harmonic" n participate to the dynamic
of the system. This kind of truncation, or cut off, will also be used below. We can insert formula (161) in
(154). Defining:

/ H Vi, (mlJer,f:ll R S D kj)

k?]'22

><1/1q1 (miou)) 1/’;1 (xl) 77/}qz (yia/u)) ¢22 (IQ)
X'.'¢q2n1—1 (xia(m)) ¢22n171 (x2"1_1) qunl (yiﬂl(n1)> w:;2n1 (J?in) dxl"'d'r?”l

N
X H 1/}% (xzpfl) /(/)Zp (x2p) dx2p71d1’2p
p=ni1+1

‘/{k]‘22,1gjgl} (xi(,(l)ayiﬂ/(l)---axig(nl)vyi,,/(nl)7q17 seey qN)

one uses the permutation symmetry of the Vi, to write (154) as:

n
E § E 0 0
GK (xig(n1+1) ) yia/(n1+1) ) a) GK (mia(n) ) yig/(n) 9 Oé)

n1=0c€0,,0' €0y 6§ETIN

1
m? + (qp + 3) (M),

N
XV sone ey (xio(l)ayia/O)~~~7xio(nl>7yia/(nl)vq2n1+17~'~7QN) X H
p=1
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with k; = 22:1 kj. Then summing over [ and the k; yields:

Gk ({zi} {yi},a) = Z Z Z Z Z G% <!17i0<7,1+1),yial(nlﬂ),a) G (mig(n)ayia/(n)vo‘)

=0 kj>2 n1=0c€0,,0'€0y 6ET2N
1<5<!

X Z ‘/{kgz‘lgjgl} (xid(l)ayid/(1)~-~7$i0(n1)7yi‘,/(nl)aQ1,~-~7QN>

N:Z_ljzl k; 1
X
pl;[l m? + (QP + %) (Ai)y,

8.5.2 Non reciprocal interactions

We want to model an interaction potential where one type of agent imposes a stress on another one to drive
it towards, or push it away, from a certain equilibrium position.

It is useful for agents with strategic advantage models, such as those presented in the second section. We
assume two types of agents, the first one imposing a strain on the second one. We choose:

V (i, ziy) =V (asi2 — a?(il))

12

(i1)

where 7; " is the objective function set for i3 by i;. We will later consider an example with

V(i,zi,) =9 (%‘2 — igil))z

The formula for the Green function (156) simplifies, since the first agent is not involved in the potential, and
the Green functions reduces to a product of Green functions for both agents:

G (i} Ay, s oo (i} Ay D), @) = G (L} Awid)n, @) Gx (Hai}, {yi}),, @)

The function G(Ko) (({x:} ,{yi}),, > @) is the free Green function with 2n; points for the first type of agents,
since there is no potential for this type of agent. while Gk (({zi},{y:}),, ,) is the Green function with

2n, points for the second agent. The function G (({2i},{yi}),, ,@) includes a sum of contributions given
by (154) for a potential depending on one variable only.

n
0 0
E E : E : E : GK (zia(nlﬂ)7yia’(n1+1)7a) "'GK (mio(nwyigl(n)’a)

n1=0c€o,,0'€0,, 6€EO k;
DoconConser o mmres(Lu, {00))
<J<

0 0 0 0
XGK (xia(l)awl,a) GK (yial(l)axQ,a) GK (xia(nlmenlfl,a) GK (yigr(nl)vxanaO‘)

IT 6% Gomporamee) TT {1, (o — a0 )

p=ni+1 kj=2

N = 25‘:1 k;. However, since the potential depends only on one variable, these contribution can be summed

to produce a free Green function shifted by the potential V' (xiz — 55(“))

(G) ™" = =VE - mi + (@) = Vers) () (@) = Yerg) +V (2, — 310)

Thus the system describes a free effective utility for the first agent, and a potential, effective utility for the

second agent, that is shifted by a term driving it towards or away i:gil), given the sign of V (3% — 555;1))
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8.5.3 Local interactions between different agents

Until now, non-local interactions between different agents were considered. These interactions were modeled
by the following general form for the potential:

/ Z V ( Xk, (51) o0 X, (51))
0<s;<s k1)<~~7kl

whose field theoretic equivalent are:

However, some local interactions term may be needed:
> /v (Xp, (), .0y Xiy () ds (162)
K1,k
or, alternately, interactions with a lag, whose standard form is:
> Z / V (X, (s=1),.0, Xp, (s — 1)) ds (163)
i ki,...

and its generalization:

Z > /V(X,- (8), Xp, (s = 1), .00, Xp, (s — 1)) ds (164)

They model interactions between agents that propagate through time. They differ from previous non local
interactions that describe a structural environment created mutually by the whole set of agents. The field
equivalent of (162) and (163) can be found in the following way: since the description through field theory
does not include the time, we introduce for each agent a new counting variable ©; (s). This variable will be
described by the following weight in the path integral:

/ exp | - / m DO (s) (165)

202

so that, for small ¢, the variable © (s) is peaked around s: © (s) ~ s + € where ¢, is a random noise of
variance ¥2. Each agent will thus be described by the following set of variables:

Y (s) = (Xi(s),0i(s))

On the field theoretic side, it means that the field ¥ (z) has to be replaced by ¥ (x, ). Moreover (165) is
turned into the following kinetic term in the field formalism:

/exp —/(9(82)192_1) DO (s) — V' (z) Vg. (9°Ve — 1) ¥ (2) (166)

Then, considering first the interaction term with no lag (162), we rewrite this local action (162) as
/V (Xky (8) 500y X, (8)) ds

= / V ( Xk, (51) 5 ey Xi, (81) H(5 i — Sit1)dsy...ds;
{0<si<s},_q

¢

/ V ( Xk, (51) 0 Xiy (51)) Ha O (si41)) dsy...ds; (167)
{0<si<s}, 4

=1,...,1
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The last approximation corresponds to a quasi-local action. Rather than interacting at time s, agents interact
at time s plus or minus some lead, or lag, of order 1. Rather than considering a delta type interaction, and
given that we consider some uncertainty about the exact instant of interaction, it can be more convenient,
and correct to smear the interaction time, and consider the following form for the local interaction:

/. V(Xp, (51) 4 00s X, (51)) Hexp (- (O (s:) _19? (si+1)) ) dsy...ds; (168)

The field equivalent of (167) and (168) are directly found. For (167), one has:

> / V ( Xk, (51) 500y Xy (51)) Ha (O (s5) — O (si41)) dsy...ds;

ki,....k; g
— /‘P i) Y (W) Vie iy -w) T () YT (s,) dys, -..dys,

with:
Yy = (9617 91)

and -
Vie (Wi -9i) = Vie (@i, o) [ [ 6 (00 = 0ig1)

which can be simplified as:
/q, (z5,,0) ..V (z4,,0) Vi (24, ..23,) O (25,,0) .. 9T (24,,0) day, ...dx;,dO (169)

And for (168), we obtain similarly:

L p N2
/xp (Wir) ¥ (yi,) Vie (2, i) Hexp (-W) Ut (y;,) O (yi,) dyi, ... dy, (170)

We perform the field description of (163) and (164) in the same way: consider first the simplest case of a
quadratic interaction term with a lag:

> [ XX, -1

4,3

This can be approximated as:
Z/XZ- (s) MX; (s —1)
,J

_ Z/X () MX; (s; — 1)8 (s — 5;)

1

%Z/Xz (si) MX; (s5) 0 (0 (si) — 05 (s5) —1)

As before, this models an interaction delayed in average by a lag. The lag in interaction time may vary
between agents, with a deviation of ©¥. The corresponding field term is given by:

1
5 30 [ X ) DX (556 (5) — 0 (57) ~ 1)
1/7\7
— %/\I/T (1'1,0) \I/T (1’2,9 — ].) 1’1M£L’2\I/ (1’1,0) \ ((EQ,Q - ].) diCldxgdg
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or, if we smear the delta function:

(01 — 6 — 1)°

1
5/\1” (xl,el)\IJT (1‘2,02) leM{EQ €exp (— 192 > \Il(xl,ﬁl)\lf(x2,02) dx‘ldl‘gdeldeg

More generally, if we consider a non linear reaction function for each agent, as in (163), we obtain the
following correspondence, first for a two agents interaction:

> [V X - 1) ()

(161 — 02| — 1)°

1
— 5/\IJT (ml,el)\lﬁ (mg,ﬁg)V(Jcl,xg)exp <— 192 > \I/(a:1,91)\11(x2,92) dx1dzodfdb,

and then for the general potential (164):

[ @) i) ¥ 03 Vi3 [T o (—W) (172)

0i,, — 0:,)°
< ] exp (—(”192")> U () T (i) 9T (y3,) dydys, ... dys,
i'ff).#i'ﬂ

In addition to the interaction term, the introduction of the counting variable 6, modifies also the Green
function of the fields. Actually, replacing:

U (z) — U (x,0)
and using (166), amounts to replace the kinetic term:
U (@) G (2,y,0) ¥ (y)

by:

Ul (2,0) (Vo. (9°Vo — 1) + G (z,y,0)) ¥ (y,0) (173)
and this can be evaluated in the following way: In time representation, the sum of the two terms in (173)
amounts to define the Green function of the system including the variable 6 as:

Go (z,@w,y,ﬁy,s) =G’(9$,9y,s)G(:c,y,s) (174)
where G (0, 0,, s) solves:
gé (04,0y,5) = V. (0°Vo — 1) G (05,0, 5) (175)
s

Since (165) defines a brownian motion with drift, the solution of (175) is thus:

0,—0,—5)*

G (0,0,,5) = ——

and then (174) becomes:

0,—0,—s)>
exp (_( - 25092 )

Nores >G(w,y,8)

G@ (xaewayveyvs) =

After Laplace transform, one finds:

0, —0,—5)2

Nz ) * G (z,y, )

G9 ($50I5y79y7a) =L
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where "+" denotes the convolution operation on « and £ the Laplace transform. Given that:

(gy,gm,S)Z (01/*91)2 s
E exp (7 25092 ) L exp (7 2502 - 2192) (921 _ 01>
= exp [ L2
V2mst V2msi P 92

exp (f\/ 20092 + 14‘9y1;01|> <9y B H_t)
= exp 7z

/2009241
192

one obtains ultimately:

* G (z,y, ) (176)

0, — 0, o0 (V2 + 1052
92 > /2092 +1
192

Note that for ¥ — 0, the "theta part " of the Green function
(01/ _ 91> exp (— V 204192 + 17'93’19_29“)
exp | —

192 /2a9241
192

exp (—a ‘ey —0.) H (ey —0z)

Go (xa 0s,y, vaa) = exp (

reduces to

where H (6, — 0,) = 1 for y > x, and 0 otherwise. This result corresponds to the Laplace transform for the
transition function of a straight line: ¢ (6, — 6, — s) as needed. In that case, (176) becomes:

Go (2,04,y,04,a) = / dsexp (—as)d (0, — 0, —s) G (z,y,s)
0
= G(z,y,0, —0;)exp(—a (0, —0,)) H (0, — 0.)

If G;l (x,04,y, 0y, @) has the usual form o+ O where O is some differential operator depending on y, then:

A~ 0
<O—|—68>G(a:,y,s)20

and as a consequence:
0A+i Gy (x,0 0,,)
agy 0 y Uy Yy Uy,
_aGG (13,93:7%9@/7 Oé) +G (LU, y:o) J (9y - 055)
== —OZGG (x79$7y791/7a)+5(y_$)6(97!_953)

which leads to: 5
<O+ —_— +a> Go (x,0z,y,0y,a) =0 (y—x)0 (0, —0;)

00,
and then:
Gyt (x,0 Oy,0) = OA—+—cv—|—i
2] yUxy Y, Uy, - 60y
= G;l(%y,a)—i—a—ay
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Gathering (172) and (176) yields the general form for the field action of identical agents with local interac-
tions:

/ U (2,0,) Gy (2,00,9,0,,0) ' (4,6,)

1 N
52

/\I;T (xh ) 91’1) v (mnvgn) Vl xll xlz {H \Iﬁ ‘rlka Zk (xikaaik) exXp <_
1=1 (i1,000i1) sivn i

l
{ H exp ( Oi — O )} H dx;, db;,
=1,n

This can be generalized to the case of N types of agents, described by fields ¥; (x;,6;) and interactions
V(xil7"'7xiz)7 2 < l g N

N
Z/\III ($179x7)G51 (xlvgwnyl’eyzva) lI/']LL (ylvqu)

N
1 0
+§ Z Z / \I/;,fl (iy, 0ir) Vi, (@iy, 00,) Vi (@5, -3, ) { H \II (i, bir,) Wiy, (i, b)) exp <_ (

=1 (il sl ) yim Fln

1
X { H exp (—wim — i )} H dx;, db;,
m=1n=2

8.6 Introduction of constraints

When agents face constraints, like the budget constraint for example, some additive terms have to be added
0 (148). Recall that, for a set of interacting individual agents, a linear constraint binding the agents implies
to include, in the effective utility, a term of the form (101):

1 T T 1 T T
(2 (2 (3 ]
= % /0 CSdS/o Cydt — -2 % /0 /0 C.Cldsdt (178)

where Agent i is defined by an action C%, and T and & are some parameters of the model. As explained
when (101) was introduced, 62 measures the uncertainty about the future, and more precisely, the possible
deviation from the constraint. The time T is proportional to the characteristic time scale of the interaction
process. As explained before, we assume that each agent estimates at each moment the remaining duration
of the interaction process by a Poisson process of mean T'. We also assume that among the set of interacting
agents, the statistical mean of the estimated duration reaches the true value s. That is, we suppose unbiased
estimations. We will inspect less restrictive assumptions at the end of this paragraph, and show that this
does not modify the result. The parameters 2 and T are not indepedent, and we may expect a deviation
from the constraint proportional to I'. The higher the time of interaction, the higher the possible deviation
from the constraint.

If normalize & to be equal to one per unit of time, so that 62 = s, the fluctuation term with respect to
the duration of the interaction process, we are left with the following expression for (101):

1 s s 1 s s
"Z/ c;ds/ Cidt — 72/ / CiCldsdt
s =" Jo 0 § =7 Jo Jo
and (101) can be generalized for any type of vector of action X* (s) or constraint:

([ o ) - [ mexie x @ ase (179

and a; ; describes the interdependence of two different species through the constraint.
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The second term in (179) has already been described in the field theoretic formulation. It amounts to
include a potential:

—al,g// (\11(1” (Xl) XM (Xl)) (\W)T (Xg) X0 (Xg)) dX,dX,

in the global action. The first term requires some additional computations. We compute the Green function
of the individual agents with effective utility including a term:

e 2 ([ 00

as in (101) with # = [, plus some individual potential:

— / Y K (X
We start with:

/exp s /Dz, exp< Z/:) (2.02()+K(m1())dt)i</05dslcs(j)> /Oscsids>

and neglecting the potential K (z; (t)) that can be reintroduced as a perturbation term, one thus has to
compute:

G(z,y) = / exp (—as;) / Du; (t) exp (Z /m (;:y <1'22 (t) dt) — é ( /O ) dslcg?) /O ) c;'ds> (180)

K2

which is the Green function for an agent under constraint. It can also be written:

G (z,y) P(0,s,2i,y;) <exp (; (/OSX(U) du) (/OTX(U) du>>> (181a)
= U L (A ([ o) ([ o))

Where X (u) a brownian motion starting at x; at time 0 and reaching y; at time s and

(o ([ 300) ([ x))

is the expectation value of exp <% (fg X (u) du)2) given the process X (u).

The appearance of the factor P (0,s,x;,y;) in (181a) comes from the fact that in (180) the measure is
not normalized, and (180) is computed for the measure of a free Brownian motion. Thus the global weight
for the path starting at z; at time 0 and reaching y; at time s is not equal to 1 but to P (0, s, z;,y;). We
compute G (x,%) in Appendix 10, and show that, when o < «, s being of order é, and individual fluctuations
measured by % are negligeable with respect to the mean path % over the all duration of interaction, one
has in first approximation:

Gtamar = € [(ow (L[ xwan) ([ xwa))) ] g




These assumptions are quite always satisfied since a = %7 with T the mean duration of all interaction
processes. We furthermore expect the sum of fluctuations on this period, i.e. the sum of the fluctuations on
the global time span, to be lower than one, or equivalently, the fluctuation per unit of time o to be lower

than % By a similar reasoning, we assume that the fluctuations over the all time span, measured by %

or equivalently by o+/s, are lower than the mean value of the path, i.e. Zﬂ The formula (182) has an
interpretation in term of individual agents fluctuations. Actually, in (182) G (o, x,y) satisfies:

G(a,z,y) = /exp < <a+ (x;y>2> s> (wds (183)
exp( -2

This is easy to see: G (a, z,y) is the Laplace transform of the usual brownian transition function 7

with « shifted to (a + (“'y) ) By a change of variable:

(o +(5)7)

/

§=———%5
@
we have:
exp | — (z—y)*
e 0-2 s/
: (G
G(a,z,y) = | exp(—as) ds (184)
o+ (4
(@r57)
(et (=44)%)
Up to the factor — , which is constant with respect to s, this is the Laplace transform of a gaussian

path with variance:
o 2

O
(o (527°)
Recall that there is usually no inertia in the standard models of utility optimization under constraint.
This amounts to setting 0> — oo in our formalism, to model no other interconnection between periods
than the constraint. Recall however that (182) was derived under the assumption that o2 << (%)2 As a
consequence, the introduction of the constraint leads us to describe the individual agent following a brownian
path with (o’ )2 << 1. Considered at the scale of the overall processes - i.e. compared to the unit of time
which is much lower than s - this variance (o’ )2 is of order 1, and the agent is described by a brownian path
with variance of order 1. The introduction of the constraint has thus transformed the individual dynamics
into an apparent brownian noise. This replicates the usual result in classical consumption smoothing theory
(see [14] for example).

The field theoretic counterpart of the Green function G (a,z,y) is obtained by finding a differential
operator whose inverse is G (o, x, %) or equivalently, a differential equation satisfied by G («, z,y). Appendix
10 shows that G («,x,y) satisfies:

d(z—y) = %2 <V2_2a+(9;y)>_2(($+y)2 373

ot (552)°) Q(a (2u)? \/—ﬂ,

z=y a4+ (2t2)? 2
71+}O_! 2( +(2)) (2(z+y)H(zy)H( 2<a+<‘”;y>>1 G (o, z,y)

(o))" =
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and the term in brackets is the operator whose kernel is G («, x,%). The Appendix 10 also shows that, given
our assumptions, this reduces in the limit of small fluctuations, to:

2
0(x—y)= (U;V2—2<a+(x—2~_y) ))G(a,x,y)

Reintroducing the potential K (z), the field theoretic formulation of the problem for a single type of agent
with effective action (178) reduces to describing the set of individual agents by the effective action:

/exp (—\1/ (z) [(G‘ (,,9)) "+ K (x)} of (x)) DIDYT (185)

which discards temporarilly interactions among agents. Of course, when we remove the constraint, G (o, z, y)
reduces to G (o, z,), and (G (o, z,y)) " = —1V?+a+ K (z), as in the previous cases. In developed terms,
the exponential in (185) becomes:

2 x4y )2 2 2 z—y 2
o (2) (—aQVQ+a+(2?)>+ o (@ f)Q 3+ ~ ol I
7 2(a+(=2)°) { | 2(a+ (=) 2(a+(52)") 1T
L [252] yf2 (o (252)°)
+0? 3 X
2(a+ (52))
H(z—vy)—H(y— 2
X (2(a?+y) (@ y)g y x)) 2<a+(x42-y>>_1 + K (z)| ¥(y)
In the case of 0 << 1 considered here, in which individual fluctuations are relatively small, it remains:
o? r—+vy 2
T (2) _7V2 +2(a+ <2> U (y) (186)

This form of propagator has a direct interpretation in terms of constraint. The first term ensures that the
mean of  + y is centered on its expectation value, which is null here by normalization. The second term
ensures that x and y are equal in means. Both contributions thus describe a smoothing behavior, which
is characteristic of long-run binding constraints. The path for X (s), apart from a white noise contribution
€ (s), is constant in time:

X(s)=X(s—1)+¢€(s)

We also recover the results of (98) and its subsequent formulae. For z — y << 1, we recover the series
expansion in gradient:

oty

Ul () <V2—%)5($—y)—(272—2 —
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Then, introducing the constrained propagator (186) in (148) yields:

f({@“}f_l‘.y)

2
k
2
(D (2
XV +XE
o+ (2 >

~ ~ 2
XM - X ot (< i » »
T (2) (4) (k)t @) g (k) (@)
e = () v ({0 ) TT e () v (&)
k n 1<i<n
constraint, individual level intra species interaction

Y Ve, <{X£")} )ﬁ [T w® <X,S")) o) <X,S"))
1<in; <n; ) ; .

m ky..kpy N1...Mogp

inter species interaction

# 3w [ (00 () R0 (R,)) (907 (R) K0 (K, ) d X,

k1,k2

constraint, collective level

Appendix 11 shows how to generalize this result in presence of a discount rate and we show that in that

case, two regime appear: the first one describes the field action in the approximation = >> 1, which means

that the time span of interaction is long enough for the discount rate to be effective:

; ({W)} ) (187)
k=1...M
— ;;/d)z]gl)d&i?)\y(kﬁ <X£2)> H(VX,Q“) (vff,i” Y0 (X]gl) - (X)k)) v (X;il))}

2 (X',i”) o2 r2 1 92
2 o (1) r k (1)
+6Xp T—Fl In (OL—<1+W> le(cl)_Ferk VX£1)+4U27’> \If( )t (Xlg )

constraint, individual level

+ZZV ({X@} > 11 \I,(k)f( )\I,(k) (X<))

1<i<n

intra species interaction

YOS v <{X]5)} o ) ﬁ I ot (X;E )) p (k) (ng))

m ky..kpy N1...Mgp j=1 1§inj<nj

inter species interaction
_ . . (1) (2) . . .
S0 (900 (20) (exp (o 4m) 6 (1. %2)) S5 ) wio) (22) ) ax(ax?
w1 (X)) 1Ly G (X0 5@Y) X HKE ) g (@) gxWax®
X f f eXp T' + 2 T') ( ko ko )) 2 < ko > ko ko

constraint, collective level

+

The second regime describes the field action in the approximation = << 1, which describes the impact of
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the interest rate for a short time span of interaction. In that case, appendix 11 shows that:

o ({w)} > (188)
k=1...M
S [ () [(5 ) (77 (6 (5)) v ()] (507 )

xM (2) k >(2)
+ 0%V =% | e®r (%)
%,_/
constraint, individual level

S ({7}, ) TT v (30) e (50)

1<isn

intra species interaction

YOS v <{X,SL)} N )H [ w® (ngz)) o k) (X,Sz))

m ky..kpy N1...Mp i 11<7n <ny

inter species interaction

> < S o @) Xay XL (2 S (1) (2
o 1 (9805 (50) (o (- 0+ 157) 6 (342, 52)) 5555 ) woo (512)) P
+ ~ . A c(1), £ (2) . . A
<[ [ (xp(’w (%) <exp r+ 38T G (X1, %2)) W) (k) (X,i’)) dxHax®
constraint, collective level
L R 2 R R WL @\
OV -%7) = S| TV (X -%P) -2 a+ <'f ; k

(3 + ) (£ 4+ 552)
12

ey o2 2 ) o\ 2 ey 0@ 2
302+2<a+<xk;xk) (X - %) +3,2 a+<Xk§Xk>

1—1r X

0 - %20

X o 2
¢ (14 ()
4<a+ (X*‘ ;X’“ > > o2
(X0 + X2 (%0 +5%7) 2v2a | X0 - X+ 0
T

12 oo

We conclude this paragraph by inspecting other assumptions about the expected time horizon T'. Assume
that agents have some hint about the true duration s, and, as a consequence the Poisson distribution is no
more accurate. These informations translate into the fact that T' depends on the time at which it is evaluated.
For example T (v) = s — f (v) where f is a slow varying and increasing function. Under this hypothesis, the
quadratic term due to the constraints becomes:

exp ( /0 ) <S_1f(v)x () Ov X (u) du> dv>

and since f (v) varies slowly, one can approximate f (v) by its mean over [0, s] in the integral:

100



/O (1X(v)/UX(u)du> dv
~ /0< /X du)dv—lms/< /X du)dv

The term % fos ( fo du) dv is the one we dealt with before and < ( ) can be considered as a pertur-

bation. Since % varies Slowly, it can be approximated by o f (E) Where = is the mean duration process.

We are thus left with:

o) = el {o s ([ o) ([ 3000))) =252

1
[
@
k)
ko)
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=
Q
N
w
\_/

(=) »

where the notation : exp (1—af(1) a(}) : denotes the ordered product, i.e. all the derivative are set on the

right after expansion. As a consequence, the introduction of a varying time horizon shifts the mean path

(%ﬂ) to %/%w but all the previous results are kept, when this shift is included.
9 Examples

9.1 Consumers/Producers with current account constraint
9.1.1 Case 1: One type of agents

We consider N identical agents that are consumers/producers. Each of them is producing one good that

is consumed by other agents in constant proportion.The production/revenue Ys(i) is proportionnal to other
agents consumption (plus some exogenous constant flow):

vo=3 f(c@)+v (189)
J
with Vf = 1. Each agent is facing the C.A. balance constraint:

o = B9+ v - B,

A ACH R

which rewrites, given (189):
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We have seen that, with such a constraint, we obtained the following weight (102):

exp (U47) = exp Zz(cggl 0O) - LY Yo+ Ly 3 abey

1 81,52 %, S1>S2

Here, the consumption variable was shifted by subtracting its optimum, i.e. as before —C? stands for
-« (C’S — 57)2 and Y; for Y, +Y. As in the previous paragraph, &2 is proportional to T, the time horizon,
and we normalize 62, so that 2 = 7. When we consider a large number of identical agents, we can follow
the procedure given above (see (99), (100), (101),(102)). The main point is that Y; is endogeneized. The

effective action in the continuum approximation is:

exp (U1) = exp —Z </ (CZCS)) ds + — /C(l)C(’)dsld@) +%Z//C§“Cg)dsld82
i %

where some constants have been normalized to 1. To write the field theoretic equivalent of this expression,
one has to recall that the time horizon T" may depend on s, the duration of the interaction process. We show
in Appendix 12 that this dependence implies the following field action functional:

2
r—y

g

Tty
(7V2+%+$2)5($7y)+( 2) +2 U (y) dedy

o2

S(U) = /\Iﬁ(z)

f02
T (x

Remark that, since the variable x stands for C — Y — z, x is not constrained to > 0. If no inertia is
initialy present in the description of the agents, the field functional S (¥) reduces to:

(z) dz / U (2) UF (2) (2y) ¥ (y) T (y) dzdy

2
r—y
o)

S (D) /dx\If ) (2? + ) Ul (2 /dxdy\lﬁ [( 22) +2 T (y) (190)

B
J Ot (2) U (2)

ith €2 = <. As a consequence of (190) one can directly compute the graph expansion for the Green functions.
In first approximation we can replace the denominator of the second term in (190)

/\IIJr (z) U (z) dz

by [ GY% (z,z,a) dz, where G% (z,y, ) is the Green function of the operator:

(—02v22+05+$2>5(93—y)+ (w;y)Q (191)

For 0% << 1, G% (z,z,0a) ~ ﬁ and [ GY% (2,2, 0)dx ~ Tz Then, redefining

dz / U () U (2) (zy) O (y) O (y) dady

fo?
J Ut (z) Ut (z) da

— f
we can apply (154) which yields the two points correlation functions:

Gk (xayaa) = G(I)( (‘T Yy« ) (192)

+y (- ' G% (@,y1,0) 131G (Y1, 92, @) Yoy G (Y21, y, )
1>0
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As explained before, the term (%)2 in (191) induces a smearing in the behavior of the agents, due to the
constraint. The contributions in (192) can be summed so that:

_ —1
GYK1 (LE, Z/:Oé) = (G(I)() (LE, y:“) + f217G(I)( (:E,y,Oé) Yy

and thus Gk (z,y,«) is the Green function of the operator:

2

2G (2,y,0)y = G (2,9, 0) ((z;y)z_ (I2y)2>

N2 . . . . .
and that the term (LQ?’) can be neglected under our basic assumption of low fluctuations, the inclusion of

the interaction with other structures modifies the smearing potential (%ﬂ) by:

(x + y>2 (1+ f2G% (z,y,a))

v2 2
<—022 +a+ x2> d(x—y)+ <m—|—y> + f22GY% (z,y,0) y

Now, given that

2

Inserting this result in (184), leads to model the apparent behavior of the agent as a brownian path, whose
variance is modified from:

/N
Q
+

—~

w‘+

SN—
SN—

to )
()" =

o
(a+ 1+ f2G% (2,y,0)))
In other words, the variance of the movement is reduced by the presence of other agents. The interaction
reinforces the effect of the constraint and imposes smaller variations for the individual agents.

9.1.2 Case 2. Several types of agents
If we consider several types of agents denoted by greek indices {a...}, we can define C’s(i)’a
of agent ¢ belonging to type a. The constraint becomes:

Cle = Bl 4 Z (f 5 (C(]) 6) + Y) B(‘leoé
8

as the consumption

the coefficients f,s define the fraction of consumption of an agent 8 spent in the good produced by agents
of type a. They satisfy:
> Nafup =1
(0%

where N, is the number of agents of type «a, so that ) N, = N with N the total number of agents. As in
the previous paragraph, the effective utility for the system becomes:

exp (Ueff) = exp —zi: (/ ((Cl </C( > >+;§//C§i)’a ;ﬁ:fagct(j)’ﬂ dsdt

Which leads to the field theoretic description (see Appendix 12):

S ((¥a)) (193)

TatYa )2

_ Z (/ dzo U1 (24) (-V2 + 22 + ) U, (z0) + /cl;z:oéclya\lfT (Ta) [( ;2 +2

[0}

e Sl ] [ o)

o (Ta) dzy op
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As in the previous paragraph, we can approximate . [ Ul (z4) ¥s (24) dzo by

Z/\I/Jr Zo) Uu (q) dag > /GK Toy Ta, @) dTg,

where Gk (z,y, «) is the Green function of (191). Following the same computations as those following (191),

one has:
E Ul To) Ve (To) drg =~ am
~ / « ( ) ( ) /2

where m is the number of different types of agents.
The two points Green functions associated to (193) can be computed similarly to the previous case. In

term of graphs, the term fos [[ V] (24) 2aWa (z4)] [f \Il;g (xg)zp¥g (xg)] implies that vertices a with two

legs are connected to vertices 3, o # 8 with two legs through a line labeled f,3. The factors f,o can be
absorbed by x4 — v/ faaTa- Keeping only connected graphs, one finds:

Gx (mm)’y(a)’a) = G (xm)’y(a)’a) (194)
3D G (29,58, 0) y 6% (51 55 @) 8y G (5 5 )
>0

where fl(a) includes the modifications to GY% (z,y, a) due to the interactions with all other type of agents:

E(%)
fl(oz) _ Z (fw)k Z Fasofoss /G (ayl— k)HG (B8 (Brs-Bi—))
k=0 Bk

where fig (51, '“7ﬂl7k) is the number of times [ appears in the set (ﬂl, ~--7517k) and with

G = /y§6)G(I’<( 2.08,0) 6% (17,97, 0) G (52007 ) gyl
For foo =1, and thus f,g = 0 for a # /3, so that one recovers the one type of agent case:
G (zm)’y(a)’ a) = (%) (xm),y(a),a) 1@ (xm),y(a),a) (@

For foa =0

0 re
FO =S fapefas, ¥ /HG«MB(BI B1)
Brriby

*1

J S tusstct (57 0)
where * denotes the convolution product, and (194) becomes:

Gk (x‘“),y(“),a> = Gk (w(“)7y(°‘),a)

+Z(71)l ZfozﬁG(l)( (x(ﬁ)ay(ﬁ)vc)Z)

>0
x G ( )y, )yf")GO ( ) s, )yéo‘)myl(o‘)G% (y(“) y( ), )

That can be summed as:

G}l (m(a),y(a),a) =G! (zo‘,y(o‘),a)
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9.2 A business cycle model

In this section, we consider a model of several identical agents, but identify the saving variable B, with the
stock of capital used in the production function, as is usually done in standard business cycle models. As a
consequence, the overall budget constraint becomes:

/ (¥ () — i (s)) exp (—rs) ds

Assuming no capital depreciation apart from a random term e (t) of variance 2, the capital dynamics is
given by: '
Ki(s) =Yi(s) = Ci(s) =6 (Ki(s)) +e(t) (195)

where § (K; (s)) describes the depreciation of K; (s). We also endogeneize Y; (s) and treat this variable as a
function of capital: Y; (s) = AF; (K; (s)). The inclusion of an exogenous interest rate modifies the first part
of the individual statistical weight. Appendix 11 shows that formula (92) and/or (94), become:

- g@,mW)Q con (- (-0 (-0

S S

which is equal to, in the continuous limit and neglecting the border terms:

exp (—/ds (¢.—r(c.- c))2>

We will modify this expression with a linear disutility term, that reflects the standard decreasing marginal
utility. Considering a utility function of the classical form

1
-z

Cs ° -1

1
l—5

U(Cs) =
whose approximation expanded around some minimal value C for the consumption is:

U(C,) = (cs—é) —%(03—0)2

we can rewrite: ) 1
~ o ~ g =N\ 2
(c:-¢)-3(¢-0) =5 (€.~ 0+
with C = C + % For a variable interaction time 7°, this implies an additional term fﬁ f =—Cy f ds in

the action. It is equivalent to a shift —Cj in the field quadratic term, for an overall weight:

exp (—/ds (Cotric.—0)) - Co/ds)

We can now include also the Capital dynamics equation (195) in the statistical weight. Introducing a
parameter for the fluctuations of Cj, the overall statistical weight thus writes:

+ C()
w2 V2

exp _/ds (C's—v"(cs—@))2 /ds(Ki (s) — (AF; (K; (s))—C’S—(S(K)))Z

Besides, the global budget constraint:

[ ((6) = Cexp (-rs)ds =0
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can be expressed as:
/ (Kz (s)+¢ (s)) exp (—rs)ds =0
or as:

/ K; (s) exp (—rs) ds = — / £ (s) exp (—rs) ds

|14

The last term has variance —i which implies that the overall constraint can be included in the global weight

2
through a term:
_ 2
2r .
= (/ K; (s)exp (—rs) ds)

S
[ exp(—rs)ds

with:

r =

/f(i (s)exp(—rs)ds = [K;(s)exp (—rs)]OT + /rKi (s)exp (—rs)ds

—K; (0)+ /TKi (s)exp (—rs)ds

if the transversality condition is satisfied. At the lowest order in 7 or r, the contribution is approximated by
K; (0) and can be neglected. The overall weight to be considered is then:

. 7/d8 (Cs+r(05—é))2 +Co/d87/d8 (Ki(s)—(Ai(s)Fi(Ki(s))_CS)_(s(K)>2

w? 2

We also include a dynamics for the technological factor and its interaction with the stock of capital:

L\ 2
exp —/ds (il\;) + (4, — A)? —’Y//Sv<stAi (s0) H (K (si) , K (7)) K (s5) dsjdsi

where A is an average technological factor. We consider A >> 1. The last term describes the value
added by capital stocks accumulated in the different sectors. The function H (K (s;), K; (s)) is a distance
measuring the impact of sector ¢ on sector j. As such, it is symmetric and satisfies H (K, (s;) , K; (s;)) =
H (K (s;), Ki (s))-

We also assume that the various sectors’ A accelerate the dynamics for K; (s). It is equivalent to
introduce a term of the form:

_7//_ ZAJ' (85) H (K (s5), Ki(si)) Ki (si) dsi

<s; j

Overall we end up with the following statistical weight:

ol /ds (Cit)+r(Cils)-0)) Lo / . (196)

o2

V2

. 2 o
- Z/ds (Ki (si) — (Ai (s0) Fi (K (s5)) — C (s3) — 0 (K; (52)))) 16202 (sy)

<o | =) [ s (&SO)HAASZ-)A)Q ] 57 Ay () H (0 57) K 50) K () s
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we also assume that the rate faced by each sector has the form
ri = Ay (s:) Fy (K (s1)) + e

That includes an exogenous (or minimal) interest rate, plus some individual determinants depending on the
rate of returns, environment, technology... of each sector. That is; r; is defined by the marginal productivity
in the sector plus some collective effect r..

The field theoretic formulation of the system given these assumptions is presented in appendix 12. We
first show that choosing the usual linear depreciation function: § (K) = ¢K, the field formulation of the
system has the form:

UK, C,A){ —w? F 10 +(A7A)272(07AF(K)+5K)i
' “acr T oAz U oke oK

+2 (AF' (K) +r.) (C - C) % +¢*(C - 0)2} U (K, C,A)

+ / U (K, C, A) (o + 24F (K) + (re — 8) — Co) ¥ (K, C, A)

1
+’Y§/‘I’T (K1,Ch, Ay) OT (Ko, Cy, Ag) {AsH (K1, Ko) Ky + AH (K2, K1) Ko} ¥ (K, Cy, A1) U (Ko, Cy, As)

We then show that under the assumptions that the rates (AF’ (K)+r.) and 6 — AF’ (K) are slowly
varying, a first rescaling in the field:

1 (AF' (K) +r.) (C — 0)2> U (K,C,A)

U(K,C,A) = exp (2w2

UH(K,C,A) = exp (2;2 (AF' (K) +r.) (C — c)2> U (K,C, A)

followed by a change of variable:

K' = C—-AF(K)+ 46K
i — (5—AF'(K))i
0K 0K’

and a second rescaling in the field:

\i’(K/’C,A) = exp<—2y2( (K’)2 >\IJ(K’7C,A)

0— AF' (K))
. K')? _
UH(K',C,A) = ( U(K' C A
( aCa ) eXp <2V2(5—AF/(K))) ( 7Ca )
lead to the following partition function.
. 9?2 1 92 02 —\2
S(\Ij) = /\I/T (K/’C7A) {_W2w — P@ — V2 ((5— AF/ (K))Z aK’2 + (A—A)
AF' (K) +7.)? ~ K')? -
+<§2+( ( Z+T)>(Cc)2+( 2) +ozCo}\If(K’,C,A)
w v
+’Y%/‘T’T (K1, Ch, Ay) U (K, Cy, Ag) {ArH (K1, Ko) Ky + A1 H (K, Ky) Ko} U (K7, Cy, Ay) U (K5, C, Ay)
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We will replace ¥ by ¥ in the sequel. The action S (¥) may present some non trivial saddle point. To
inspect this possibility, write the saddle point equation %S (T) =0 as:

2 1 0 0 T
{-=*502 om0 AP GO 5+ (4= A (197)
!/ 2 /2
+<<2 W) (cfc’*)2+(f;) +aCo}\II(K,C,A)

/ (K, Cy, Ag) {H (Ky, K) Ky} U (K, Cy, Ag) AU (K, C, A)
/ (K, Ca, As) {H (Ka, K) As} W (K, Ca, As) KW (K, C, A) = 0

Now, let:
\II(K, Ca A) = \/77\:[/1 (Kv C7A)

with ||¥; (K, C, A)|| =1, so that (197) can be written in function of ¥y (K, C, A):

2 1 92 .
AF' (K 62 B K/2
+<§2 ((wl”)) (c_c)2+(y2) +a—Co}\I/1(K,C,A)

- / U} (K, Co, Ag) {H (Ko, ) K} U, (Ko, o, Ay) A, (K, C, A)
o / U} (I, Cy, Ag) {AgH (K, K2)} Uy (I, G, Ay) KUy (K, C, A) =0

Then, a solution for 7 # 0 may exist. For such a solution we can actually compute (197):

+ 2 82 1 82 2 ’ 2 82 =\ 2
S(v) = nv (K,C,A)S —w @_P@_V (6 — AF' (K)) 8K/2+(A_A)
AF' (K) + 1) e, (&)
+<g2+((wg+1¢)> (C_C)2+(y2) +O‘—CO}‘I’1(K’C’A)

+’2YT]2/\IJI (Kl,C’l,Al)\I'I (KQ,CQ,AQ) {AQH (Kl,KQ)Kl +A1H (K27K1)K2}\I/1 (Kl,C’l,Al) \Ifl (KQ,CQ,AQ)

= ; 2/‘I’T (K1, Cr, Ay) Wl (Ko, Oy, Ag) { Ao H (K1, K3) Ky + A H (K, K1) Ko} Uy (K1, Oy, Ay) Uy (K3, Ca, As)
< 0

Which is below S (0).

The solutions of (198) are studied in appendix 12 for the usual form F (K) = K¢ with ¢ < 1, and for
the particular case H (K», K) = 1. We also assume that (5 - ngf(“l) > 0, so that the rates of growth are
small relatively to the depreciation rate.

We show that for:
[ amKe(1—¢) ynKe(l—¢)
6F5K51+4+\/7+26 TaekKe— )_
[AnKe(1—¢) ¢
ynke €
6—T3eKe—1 +4

1 _
Co>a+\/2w? + (F+r.)° + o+ (- A=K

and:
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Solutions of the saddle point equation exist and have the form:

< /;722 + (’f—;,;f)2> (C _ 1—\1)2

= Hp, (C—=T1))exp | - B

\Ijnl ,n2,n3

_ 2 r— 2
XHp, (A—T3)exp (_A(A;;;)) Hy, (K' —T3) exp <_2 ((5 (_ngslgi)—l) V2>

where n1,n9,n3 are positive integers, the rate 7 is defined by:

) (K' = C)+ AR (1—¢)\" " Ty —Ty)+ K5 (1—e)T5\" "
. A _ e ~el = c
T <(‘E 5 Acke1 Fre=els §—Taeke1 +

and I'y, I's, I's are defined in appendix 12 as:

I, = (C),Iy=(K'), 5= (A)
, J(K'=C)+AK®(1—¢)
B = < 6 — Acke—1 >

where the brackets denote the expectation of the quantities in the state ¥;. Appendix 12 shows that for a
certain range of the constant Cy, the saddle point for n; = ny = ng = 0 is stable.

To inspect the transition functions in the various phases of the system, we come back to the initial set of
variables and set ¢ = 0 for the sake of simplicity:

S(\If)z/xIJT(K,C,A){_w283;2 LT a2 2 (o Ap ) srim)
72% (AF' (K) +1c) (C = C) + (a - co)} U (K,C,A)

% / (U1 (K,C,A) ATT (K, C, A)) (V1 (K,C,A) KT (K, C, A))

In the phase where the minimum is reached for ¥, (K,C, A) = 0, this action can be used perturbatively
to compute the correlation functions. In the phase where ¥, (K, C, A) # 0, the field has to be shifted by
U, (K,C,A): ¥ (K,C,A) — VU (K,C,A)+ V¥, (K,C, A). The appendix shows that under our hypotheses, a
good first approximation for the action in the phase where the saddle point is ¥y (K,C, A) # 0, is :

/qﬁ (K,C,A){ —=? 0 1 —? ” +(A-4)° —2i(C—AF(K)+§K) (200)
T 0C? )2 DA? K2 0K
<20 (AF (K) 4 1) (C— ) + 5 (T) M + (o - co)} (K, C, A)

The difference between the two phases manifests thus as a difference between the "mass term" in the actions
(199) and (200):
m; = o — Co

and 1
In the phase with a non null fundamental, the mass term mo is greater than my, which implies reduced
transitions probabilities compared to the other phases. In both phases, one can use as before the expansion
around a minimal level: _

5 [ € : K- K
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with: B o
A=A Ay =13

Neglecting the interaction term, the Green function for phase i = 1, 2 satisfies:

f_{l_i{)+5(KK)+(5K+C)>

2 1P, P , I
{w2602>\28A2V 8K27287K <CC(AK +€A7

—2% (AieK=' +r.) (C-C) + mi} G(K,C,A,K',C" A" =6 ((K,C,A) — (K',C", A"))
Appendix 12 computes the Green functions for each phase. In Fourier representation:

G- /exp (il (C— C) +ilie (K — K) +ilaA) G
The Green function factorizes as:

EAi
T Ki-e

. K+ C _
G =exp —ile G
0
and G satisfies

1 0 _. 0 eA; 0
272 712 212 —9] — _Ke §— —= ? -
{w ZC + )\2 A +v K K 81(; 8ZA + Kl-c 8lK

o 9 _
=2l (AZ'EKE_I —l—rc) 9o + mi} G(K,C,A,K',C",A") = exp <_Z¥l2xl)

whose solution is:

_ 1
G = /eXp (—’I’I’LZ‘S> exp (—2 ZliHi,jlj —ZZJ&) ds

%,
with:
J, = (C” — C’) exp (—2 (/L'Ef(eil + Tc) 5)
) (c'—C) Ak c4;
— / —_— — - -

J2 - (K K 2Ai€RE_1 +7e— 0 * 60— I’?f—zs P ( 2\ Rl_s |

(C/ _ Cf) exp (_2 (Aigke_l + 7‘0) S) + K ’

+ 24K 41,6 § — s

J3 = j3 =A

a b ¢
H = b d e

c e f
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and:

w? (exp (4 (rc + l_(a_lf_lis) s) — 1)

“ = 2 (ro + K= 1A;e)
2
fo= FS
c = 0 B -
b o= w?exp (2(8 + 1) s) w?exp (4 (re + K71 Ase) s)
N (rc—6+2f§'5—1flie) (6+re) 2(7“6—&—[?5—1/_11'5) (rc—5+2f(5—1/_1i5)
o2
+2 (6 +7e) (re + Ko Aze)
Ke (exp (2 (6—[?5_1&»5) s) — 1) 2K
e = — — —5 + 3 —— S
A (6 — Ko Ase) A (6 — Ko Ase)
2
_ _ v _ gre—1 g,
d = 5 (5 - f(s—lflis) + a4 exp (4 (6 K Alg) s)
2K (exp (2 (5 — K= 1A,e) s)) 2k R
o 2 = T \3 + 2 = vy 28 + 2 = vy 3
A2 (5 — K= Ae) N (5= K=1Aie)°  2)% (6 — Ko Age)
w? n w? exp (4 (TC + K’E*lflis) s)
2 ((5 — I_(E_lf_lia) (04re) (rc + I_(s—lf_lig) 9 (Tc + K’Eflflis) (Tc — 54+ 2K571AZ_5)2
w?exp (2(6 +7c)s)

2 (re— 0+ 2K Ae)? (5 + 7o)

1/2 N § K’2e
2(6— K==1A;) 22 (65— [2571;11,5)3
@ ((re+ 2K Aie = 8) = (6 - K= Aie)”)
2 (r + Ke=1Ae) (6 — K1 4) (8 + 10) (re — 6 + 2K~ Ae)

ay, =

+

Appendix 12 computes the Green function and its Laplace transform for m, relatively large: m; > 6, r., K1 A;e.
We find that the two points green function between (C’, K', A’) and (C, K, A) is:
G(C,K,A,C" K" A s)
((c-0)—(C'-C)(1-2(a4B)s))”  ((K—K+°E+C)_((K'~K+E+C) (1 -205)-2(C'~C)s+24'K"s))"  A2(A-A')°
exp | — 4w?s - 4(y2+ 2K2¢ 4 32 )q - 4s
32a2 T 3GatpIA )

I 2e 2
4\/”?22 (”2 + %oz + 2(2%515)(3) 3
where:

a = 06— K14

B = 2141‘8[?571 —|—7‘C — (5
o+r. = 2a+p
AeKsV +r, = a+p8
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and its Laplace transform, i.e. the propagator, is given by:

G (07 Ka A7 Cla KI7A,7mi)

((c—c")+2(c’'=C)(atp)s)”  ((K—K')+2((K'~K)atsK+C+(C'—C)—A'K®)s)® A2 (A-A)?
eXp | — 425 - 4(1,2+2f<26+ 3w?2 )S - 4s
— /exp (—=my;s) Aa?  2CatP)P ds
2 2[{25 3?2
4\/71'1;_:2 (V2+W+m>5
(at8)°(0'=C)* | ((K'=K)a+sK+C'—A'Ke)*  [(G_cr)? (K—K"))? N2(A—AV)?
exp | —4/2m; + + o — L1 +
( \/ Z - (4355 + %) = A e ‘

\/Qmi + (a+ﬁ)2é§'—é)2 n ((K'—K)a+(c'—C)-A'K*)?

2K 2¢€ 3 2
Vi +2<2f+5>ﬁ)

(a+8)(C=C) (C'=C) | (K~ K) ((K'~ K)o+ 0K + '~ AK)

2 2K 2¢ 302
2 (V2 + N2 + 2(2042@)6)

X exp

2w

The interaction term

2061 C A W (K, Co M) (Aaks + K2} U (K1, Cr A1) U (2, o o)

modifies the Green function. Appendix 12 shows that the Green function is modified at the first order in ~
as:

G(C,K,A,C K A,s)

exp (—<<C—c>—<C'—c><1—2<a+@>s>>2 (KR40 ) (K= R+ 252C ) 1-205)-2(C"~C) 5424 K7s))’ v(A—A/)z)

4w2s 2K2¢ 3w?2 - 4s
_ 4(”2+A2a2+2<2aﬁﬁ)5)5

w? 2K2¢ 3w?
4\/7TA2 (”2 pEbereins 2(2a+5)@) s
X exp (—’V <A2K1 + A1K2>)

where:

0
0 0 0 0 0 758
= ('X@)f0 0 & |XO+(AX){ 0 0 152 AX
0 s> 0 is‘? is2 —%Kas‘3
0 0 %53
+2('AX) | 0 o0 352 X (0)
0 %82 —%K553

and that the modified statistical weight becomes:

exp (— (" (AX + MX (0)) H' (AX + MX (0))) — v (*X (0)) (Rs — ((*M) (2R2 — Ry))) X (0))

with:
0 0 s 0 0 %53 0 0 0
Ry = 0 0 1s° ., Ry 0 0 15> ,Rs= 0 0 &2
21—453 isz 112K553 0 %52 f%K‘fsS 0 s2 0
a+p 0 %as?”y
M = 1 a — Lbesty? Lps?y — K*



where:

b 5 ( 2 2K% 3w? )
= v
Maz  22a+p8)p
2
c = P
and:
H = (H'47R) ' =H-HyRH
as 0 fiacs‘r"y
= 0 bs —Lbesty

0 f%bcs‘ify chrﬂKgcQsE”y

Appendix 12 also shows that trajectories correspond to an average path with initial conditions X (0) and
X (0) given by:

1 0 0

5 €
X(s) = | 5%+ 5o 1+ gpes’ —3KPatagin +1 550 | X(0)
0 5 1
P)/GKaAQ
s 0 0
6 5 4 e _,.6 g
+| gs’a— 557 - 7147405,412 s+ 765322 3K®s® — gK°sPa+ 724?%2 + '731}505182 X(0)

0 ics vy s

and with A given by an initial condition. The corrections due to the interaction being the terms of order ~.
Appendix 12 shows that the first order correction in 7 to a trajectory, written 6 X (s), with initial conditions
X (0) and X (0) is given by:

0 0 0
cs® cst $3 cesd
0X () = 7| wor e e + 556 X (0)
0 Greaz 0
S 0 0
7cs® cs® bs* 3K°cs y
Y| “Taw0az G047 2aKeAT T ieoaz X (0)
0 Sr s
The interpretation is the following. Given that:
00K 4
OK (w) _ es®
OK (0) 4842
K bs3 Keesd
a( (u)) _ 57 " cs >0
9A(0) 6K<A2 90
0 (0A (u)) B cs3 =0
dK (0) T GgKcA?

The interaction between capital and technology stocks produces a synergy effect. Due to this interaction
term, both stocks increase faster. This effect is proportional to the initial values of the stocks. The higher
these individual values, the faster both stocks increase. Moreover, the polynomial time dependency of the
elasticities shows that the accumulation dynamics is faster than a linear process.

This accumulation is however reduced by fluctuations in technology stocks that are measured by A2\%.
The higher these fluctuations, the slower the accumulation process.

The initial direction of the system, given by the terms proportional to X (0) amplify this synergy effect.
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Actually, given that:

5
8(5K (u)) _ ° o
0K (0) 6042
00K (u) bs? 3K¢cst
oi) ~ Tuxwe ez 0
9004 () (6A (w) = v5>0
0A (0)
4
06AW) _ ot
0K (0) 24

a system that had started initially to accumulate both capital and technology stocks will accelerate faster
compared to a system that was at first in a constant equilibrium.

The effect of the initial value of consumption is ambiguous. First, technology improvement, measured by
the dynamics of A, increases productivity, and hence rates of return. It is thus optimal for agents to increase
their savings and reduce their consumption. Capital stock thus reacts positively to an increase in C (0), as
shown by its elasticity with respect to C (0):

(0K (u))  Tes®
ocw) V72042

In other word, a high level of consumption in the initial period is an indicator of a high level of wealth. The
accumulation process induced by the agents interaction favours a redistribution of wealth towards capital
stock. Since the elasticity of consumption with respect to its initial value, %((S;)), is null, any increase of
wealth is transfered to the capital stock.

Second, any initial increase, in the rate of consumption impairs capital accumulation, since:

0 (0K (u)) Tcs®

oc(0) 144047 ©

Initial increases in consumption will be smoothed over the whole time span, and will eventually slow down
reduces the accumulation process.

We end up this section by presenting an other application of the field formalism. We compute the
modification induced by agents’ interactions on the individual dynamics. Consider a two agents dynamics.
Without any interaction, the transition probability between a state ((K1,C1, A1), , (K2, Ca, A2),) and a state

((Kl, C1, Al)f , (Ko, Cy, Az)f) for the first one, and and for the second one, is given by the four points Green

function:

((Kh C1, A1) 5 (K2, Ca, As);, (K1, Cry Av) g, (K2, O, Az)f>

G
= G((Ky, O A, (K, Oy, o)) G (K1 Gy Av) (K, o, As) )

Thus, the agents’ transition probability is the product of individual transition probabilities. The two agents
are thus independent. Appendix 12 shows that in presence of the interaction term:

2 [0 A) W (B2, Co ) [ As K + A K2} U (K, O, A1) 0 (K G Aa)
the four points Green function is modified, and has the form:
G'y ((Kla Clv A17 8)1' ) (K27 027 A27 S)i ) (Kh Cla A17 s)f ) (K27 027 A27 S)f)

= G((KlaCLAl)i7(K2;02aA2)ia(K1701;Al)f,(KQ,CQ,Ag)f) exp (—7/<(tX1 (s1)) MX> (32)>d31d32>
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where:

0 0 0 . 0 0 Lg3 0 0 0
_ _ EAX. 6 _ _ AX
= y('Xy)| 0 0 s? X1+7( 5 2) [ o 0 Xi+v(X) | 0 0 21
0 s2 0 0 0 7%[(553 %53 0 f%Kfsg

The transition probabilities for the two agents are now entangled, due to the interaction. Appendix 12 also
shows that the trajectory for one agent is modified by other agent’s path. We write 6 Xo_1 (u) the correction
of agent 1’s trajectory due to agent 2, and §X;_5 (u) the correction of agent 2’s trajectory due to agent 1.
Appendix 12 shows that:

s 0 0 0 AX 00 0\
6Xo1 () = WHM/ Xo(wdu=~| 0 0 0 22 +y[ 0 0 bs | X,(201)
0 fes® 0 —teKes® 0 es O
, 0 0 0 AX 0 0 )
6X10(u) = 7HM/ X, (w)du=~| 0 0 0 5 iyl 0 0 bs | Xy
0 %CSS 0 —écKes3 0 ecs O
with:
x, = %0 ;L Xi ()
2 2

Formula (201) allows to find the dependency of an agent behavior on other agent’s path. The elasticities

are:
9 (85/{121 (g;)) = 8éiél (Ej))) = 5 > 0 (and other elasticities with respect to X5 are null)

which means that the average technology of agent 2 impacts positively the accumulation of capital for agent
1, and that the accumulated stock of agent 2 accelerates the technology improvement for agent 1. Agent 2
participates to the environment of agent 1, and both its capital and technology stocks influence the other
agents.

The value of these elasticities are proportional to the time span of interaction: the longer the agents
interact, the higher the level of final stocks. The elasticities with respect to the initial direction of agent’s 2
path may seem counterintuitive.

9(0A (w) _ 1 ..
084, (0) fécK 53 <0
(54 (u) _ 1

aCs () = 6083 >0

The technology stock depends negatively on other agents’accumulation rate. In fact this apparent result is
the consequence of the acceleration of accumulation process for both agents and our choice of representation
of a path as function of the average value of the path X5: since the dynamic follows an accelerating pattern,
its representative curve is below the average X, most of the time. As a consequence, the accumulated stock
are below the linear approximation in Xs. The term proportional to % is thus a correction to this linear
approximation.
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10 Interactions between Fundamental Structures and Phase Tran-
sitions. Non trivial Vaccua and integrations of structures

10.1 Interaction between similar Fundamental Structures

In the two previous examples, no phase transition appeared. The constraint implied a single vacuum for any
parameter of the system.

In our context, multiple vacua may arise only if the fields considered are defined on a space of at least
two dimensions without constraint, that is when agents’ actions are multicomponent. Actually, in that case,
we saw that the effective global utility functions (see (144), (145) (125)) have the form:

Usss (X) = —%X(t) (M) 4+ N) X () - X () M (x (1) - (X)) (202)

- (X (t) — (X)) (N - M<S>> (X (t) — <X>) + Veps (X (1)

Recall that in the second section, we noticed that a constant term has to be added to this effective
utility. It was discarded when looking at the dynamics of a single system. However, now that we consider a
large number of such systems, this constant has to reintroduced. Actually, recall that our model considers
interacting copies of the same system, each system interacting over a variable time span s, previously denoted
T. For such systems, we sum over the possible time spans through a Laplace transform. In that context,
adding a term sUeyy ()_(e) in Ueyy (X) leads to shift a by Ueysy ()_(e) after Laplace transform.

Recall (123) that the Laplace transformed Green function becomes, without the potential V,ys:

G (z,1) = <—;V<(M(S)+N)1V+M(A) (;«-(X)))
+ (2= (%)) (N BYEESTRYETE +N)1M<A>) (- (X)) +a) 5z — 1)

Then, adding the Uy ()_(6) term and letting y = (3: — (X)) leads to the field action:

1 1 ~1
S(V) = i/qﬂ (y) <2v(M<S>+N) V 4+ yMAV + m? (203)

+y (N ~M® 4+ MW (M<S> + N)A M(A)> y+V (y)) ¥ (y) dy
A

—I—/ZV(xl,...,xk)\I/(xl)\IJT (1) .0 (x3) OF (21) oy ...dy,
k=2

where V (21, ..., ) is any interaction potential between the various agents, and where we set:
m? = (a+ Uess (X)) (204)

As said in the second section, Uy (X' 8) can be negative. It is a direct consequence of costly, in utility
terms, tensions between the components of the considered structure. Then, depending on the parameters of
the system, m? can be positive or negative. We nevertheless keep the notation m? by reference to the usual
mass term in field theory.

The possibility of a non trivial minimum for S arises from two possible mechanisms. To describe this two
possibilities we first assume V (y) = 0, in order to focus on the effect of the interaction term V (x1, ..., x).
The first part in S (U):

1 1 -1 -1
/ 3 (w (v) <2v (M<S> + N) V +yMAV 4y (N - M + MW (M<S> + N) M“”) y+ mz) v (y)) dy
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will be expressed in a diagonal form. Consider the concatenated vector (z, p)t with p = V the "momentum"
we can rewrite:

1 —1
<2v (M<S> + N) V4 yMAY 4y (N ~ M 4 M<A>M<S>M<A>) y+ m2)

: MO 4+ N M@ » ,
(p, @) ¢ 1 +m
— (M(A)) N — MO 1 pr(4) (M(S) 4 N) MA) T

Now, given that we can decompose the matrix

M) 4+ N M@
( — (M@ (N—M(S> + M@ (M) +N)’1M<A>) )

as:
M®S) + N MW
— (M) (N — MO 4 MA (MO 4 N) M(A))

< — (M@W)' (11\4<S> +N) (1) )

M® + N 0
x 0 (N — M) 4 MW (M) 4+ N)™ M<A>) — (MO (M) + N M@
x( L= (M® 4 N) (M) )
0 1
1 0 M) 4+ N 0
— (M) (M) £ N)T" 1 0 N — MO 420 (MS + N) ™ M@

(1 e o) )

we define the change of variable

(2)- (3 oo ;)

which satisfies [2/,p] = [¢/,p] = —1. We can thus rewrite the differential operator K as:

1 -1 -1
K = <—2v (M(S) + N) V4 yMAY 4y (N — M 4 M@ (M(S) + N) M<A>) y+ m2)

— A M(S)+N 0 @ 2
= (2,9 0 N — MO oA (M(s)_’_N)flM(A) o +m

which describes a set of coupled oscillators. A second change of variables allows to diagonalize M%) + N =
ODO! and to obtain K in a standard form. We let:

(o) =(O€Mtow$*m><§>

- ( @ (\/M<S)O+ N)_l ) ( (1) _(M(S)HY)I (M) > ( ;j )

This change of variable preserves the commutation relations between xz and p and leads to the following
expression for K :

1 0
o t _ T 2
K= (w1,p1) ( 0 \/M(S>+N(N—M(S)+2M(A) (M) 4+ N) 1M(A)) ME N ) < P >+m
(205)
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Thus, K may present some states with W (y) # 0 and S (¥) < 0 in three cases. First, if M(®) + N has some
negative eigenvalues, second if

N =M 2@ (M 4+ N) @

presents some negative eigenvalues, or ultimately, if the term m?, which represents the internal tension
between components of a fundamental structures is negative and large enough to lower the minimum of
S (¥) to some negative value.

The two first possibilities are similar, and differ from the third one. We will focus on this last possibility.
Actually, the two first possibilities represent an unstable system that will quickly break out, and thus no
stability can be achieved. The third possibility rather describes a milder instability with a certain persistance
in the dynamic system.

However, this latter kind of instability may be turned into a stable minimum, through a mechanism of
interaction between similar structures.

Consider for example, that we add to K an interaction potential modeling the simplest form of long term
interactions between two fundamental structures:

V (y1,y2) = U (y1) U (y2)

where U (y) > 0 and such that the minimum for U is reached at y = 0. We assume that m? < 0 and that K
has a finite number of negative eigenvalues, which means that the first eigenvalues of the harmonic oscillator
are lowered to a negative value by m?2.

We also assume that the matrix elements of U (y;) between the eigenfunctions of K are positives. This
is often the case for standard examples, if we choose U (y1) = (y1)' C (y1) with C definite and positive.
Actually, up to the perturbation term yM AV, K is of harmonic oscillator type. For such operators, the
matrices elements of (yl)t C (y1) are positive.

Given the sign of U (y1), it models an attractive force between two types of similar structures (note in
passing the analogy with neural activity, where neurons, firing together, tend to bind together). The saddle
point equation including this potential is then:

0= KW (y) +2U (4) ¥ (y) / (¥ (42) U (92) ¥ (1)) di

We show in Appendix 13 that for a potential of large enough magnitude and peaked around the minimum
of K, the saddle point presents a non trivial solution which is a minimum: ¥ (z) = \/n¥; (z) where ¥, (z)
has norm 1 and satisfies:

(U] K [¥y)
(U1 U [¥1)

The vector |¥;) is a combination of the eigenvectors of K with negative eigenvalues, so that (U] K |[¥;) < 0.
Moreover the norm of ¥ (z) is:

Uy (y) = KU (1) U1 (y)

1 (0| K|
1 (K| 1>2 50
2 (0| U [P1))
Appendix 13 shows also that the same results hold if internal tensions are modeled by a more general

potential V (y) than a simple shift m? < 0. It is sufficient that the potential V (y) has a negative minimum
of large enough magnitude.

10.1.1 Example, the three agent model

In Appendix 6, we show that the effective action for the three agents model is given by:

Uers (X (1) = (X (1) = X) (N - M) (X (1) - X) (206)
%(xo X (t— 1)) (N + M) (X (1)~ X (1~ 1)) — (X (1) - X) MA (X (t - 1) - X)
+(X =X (N = (= M)%) (X - X°) - (X - X)X



where the matrices and vectors involved are defined in section 1 and Appendix 6. The vector X is computed
in Appendix 6, and represents the equilibrium value reached by the three agents’ system. The vectors XQ(Q)
and X€ represent the goals, i.e. the desired values for X, for agents 2 and 1 respectively. Due to these
competing objectives, the equilibrium X is a combination of these two vectors. Appendix 6 shows that:

X=X+ (N-M%"" ((N + M%) X°¢ % (M) X2(2)) (207)
The term in bracket in (206):
Ues (%) = { (X = %) (N + M5 = (M = m)*) (X = X°) = (X - X ) m'X |

represents the loss in utility due to the competing goals between the different elements of the structure. Even
if, globally, it is optimal to stabilize around X, each sub-component experiences a loss from the difference
between X and its own goal. As a consequence, at least for some values of the parameter, this term is
negative. Actually, assume that, due to its strategic advantage and the magnitude of the stress it can impose
to its subcomponents, the third agent is able to drive X close to X¢. Then:

Ues (X) = = (X - X)) u'X (208)

and given the definition of M’, this last term measures the loss experienced by the second agent when X,
i.e. the equilibrium value of X (¢) is away from )_(2(2), thus Uess (X) < 0. Then, the term (208) induces an
instability in the system by lowering the lowest eigenvalue of the Green function. To get more insight about

this phenomenon, we computed the matrices involved in U.sf (X (¢)) for § — 0:

Uesr (X (1) = (X ()= X) (I - M%) (X () - X) (209)
+§<X(t>fX<tf1>> (T+ M%) (X (1) =X (t—1) = (X () = X) M* (X (t - 1) - X)

+(a-an Xl)t (m'a —2m) (1= )7 x,)

Appendix 6 shows that the operator appearing in (205), except the mass term:

1 0
- t Z1
K =(@1pm) < 0 VAM® (N = MO 4+ 280 (M 4+ N) ™ MW) V) ) ( n )

has positive eigenvalues for a range of parameters of relatively small magnitude, so that the stability is
preserved. We also show that, as previously said, competing objectives between the components of the
system imply the possibility of a constant term

((1 M) Xl)t (MM — 2M) ((1 M Xl)

of negative sign. The stability may also be impaired by any internal negative potential in the direction of
the lowest eigenvalue of K. As one could expect, this direction corresponds to a state of maximal strain
imposed by agent 3 to agent 2. These states may be more easily turned into an unstable one than others by
some perturbation.

However, as explained in the previous paragraph, any positive interaction potential between different
structures, and pointing in the direction of instability may restore the stability to produce some composed
states. Thus, this is the relative instability of such states that makes possible, in an indirect manner, the
aggregation into integrated structures with more degrees of freedom.
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10.2 Interaction between different types of fundamental structures
10.2.1 Non trivial saddle point, effective action and integrated structure

The whole procedure of the previous paragraph can be generalized when different types of structures interact.
Having chosen a system of coordinates such that the field action ultimately takes the form:

sw) = [5(vlw (5@ MOV DV ) B w) a0

A
+/ZV($1,...,%)\1}“ (1) O) (21) .0y, (24) U] (2) dzy...day
k=2
In (210), operators of the form

1
Ki= (—2 (Vi)? = yM{VVi + yDyy + V (yk)>

appear. If some of them have negative eigenvalues due to a negative minimum of V (y;), and if the interaction
potentials V' (x1, ..., ) are positive, then the saddle point equations:

0 = (—; (Va)? —yMANV; + yDiy + vy (y)) Vi (y) (1)

A
+ ( 8 /ZV (@1, ey i) Uy (21) \Iljl (1) .9, (x) ‘I’Zk (k) dml...da:k> U, (y)
oy (y) ) o

may have non trivial minima. This possibility is studied in Appendix 13. We show that for a potential
V (z1, ..., x)) oriented towards the lowest eigenstates of the operators K;, the whole system has a non trivial
minimum with S (¥) < 0. This minimum is a composed state made of the lowest eigenstates of the K; along
their directions of instability. In the rest of the paragraph we will detail this statement and its implications,
in particular the form of the composed state and its interpretation in terms of integrated structure.

To do so, we need to precise some notations. In the sequel we will write \IIZ(O) (z;) for the lowest eigenstates
of the operators K; and \Ill("i) (z;) for the other eigenstates of the ;. We can write a composed states in the
following way: Assume that the potential connects p; copies of structure 1, po copies of structure 2 and so on

until p,. copies of structure r. Thus, we can write the potential V' ((:zcl)p1 yeees (xk)p7‘> with p1 + ... +p. =k

where (mq;)pi represents p; independent copies of x;. In other words, (xi)pi is a coordinate system for F; X ...
x F; with F; the manifold of states for structure ¢. Given these notations, a composed state for the various
structures writes as a sum of eigenstates:

Z a(nl)pl7(n2)p27"')(n7')pr |:\Ijgn1) (.1:1):|

(nl)pl ’(712)1,2 yees(nr)

| (xl)]pl W) ()]

P1

where [\Ilgn’) (mz)] is a product of p; copies of eigenstates for structure i:
Ppi

[ @] =0 () B (@) (),

Pi

The interaction involves then p; copies of the i-th structure. We will also denote, as a shortcut for identical
copies of the lowest eigenstate:

[0 @] = (@) 0 () - (),

Pi
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To precise the condition on the potential that allows for a non trivial saddle point, we write the potential

\% (gzrl)p1 s oo (xr)pr as a kernel in an operator formalism, whose form in the eigenstate basis is:
14 ((xl)pl PEEES) (xr)pr ) (yl)pl 50y (yr)pT> (212)
= S Vot W @] [0 0] e @] [ w)]

P1 P1 Y4 DL

(nl)pl ,(n2)p2 ,...,(n,.)pT

o [ ()] | ()

Pr Pr

where the coefficients Vi, ) (o) .. (n,) are defined by:
r1’ p2 N pye

[\yl(’“” (xl)] 1% ((xl)pl (gcT)pr)m)

P P

{Wﬂ (xr)] [xpl("l” (xl)}

Voot = [ [ @] o [0 )]

x {‘I’gm) (961)] [‘1’1(7”) (xl)}

p1 Y4 Dr PL

Our hypothesis is that the potential localizes around the ground states of each structure. This translates in:

(214)

i

Vinn),,(n2)y ens(nn),, << V(0,1 (0),, (0, 1 sSOME (123), 7 (0),,

where (0), denote multi-indices with all their components set to zero. Actually, this condition means that
in 212, the terms proportional to the tensor products of ground states:

0 @] (e )] [ o] (e ] < [0 @] [0 )]

P1 p1 b1 Pr Pr

dominate, as required. As a consequence of the assumption 212, the matrix elements of 213 rewrite:

1% ((xl)pl e (@), (W), 5o (y,«)pT)
= ool @] [ @] e @] e ]

(n1)
+ Z Vi), (n2)y, (), [‘I’l ' (361)}

(nl)pla(W‘?)pQx‘-~7(”7‘)pr7
not all (n;), are null

... [\115"*) (:cr)} [‘I’gnm (yr)]

Pr Pr

], o],

@] [ ]

pi

o ()]

P1 y2

with: Vo = Vo), (0, (0),. >> Vinn), (n2),, cco(nr),,,

Appendix 13 shows that under some conditions on Vj, a non trivial saddle point exists and satisfies:

/V ((ml)pl feees (xk)pk) [\111 (z1) O] (xl):|

|0 () ] (1)

p1

P
0 = Kz‘I’l(yl)‘f'(a\I/;r(y)
[\yk (zx) U] (mk)] d(z1),, ...d (xk)pk)

D1 Pk

i )+ o ([ (@00, s, ) [ 2 9] o)

p1

(w0 W] )] [0 (@) 9 ()]

pi—1 Pk

d(z1),, ...d(mk)pk> T, (y) (215)

Considering the correspondence between the micro and the collective interpretation of the system, we
can wonder about the implications of this non trivial saddle point at the individual level of effective utilities.
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To do so we consider the second order fluctuations of the field action around the saddle point. Coming back
to the system described by (210):

s =[5 (w0 (50 -V uD V) ¥ ) do

A
+/ZV(x1,...,mk)\I/i1 (1) UL (21) W5, (24) U] (1) doy...day
k=2
we can describe these fluctuations around the minimum by decomposing:
Uy (21) = Wy (1) + 6 (1)

where W; (2;) satisfies (215). Let (\ill (xl)) be the concatenated vector with components ¥; (;). The second

order variation for S () is then:

sSw) = S ((\iJl (ﬂ))) +/Z5‘I’; (z1) K169 (2) (216)
/ Z (5\1}T ((z1) a {ZV<$1 Jor s (xk)pr)
INCTIED

« [@1 (xl)]pl [‘1’1 (xl)]pl X [\i/l (xl)}

Ln,l#n,0m,8, k=2
<[ @] [#@] ox (@] | [E@)] c[be)] [He)]
X [xp (mT)LT [@1 (yr)}pr d(@1),, d @),y -d(@), d@),, —dGn),, _,-d (yr)m}

x5, ((xl)ﬁz) d(zn),, d (ZUl)ﬁ

where the indices «;, 3; and «,, run over the copies of x; and x,, so that a; = 1, ..., p; and the same for 3,

and o, = 1,...,p,. The implications of the phase tansition at the individual level can be understood starting

from the effective action (216). Each term of (216) is the field counterpart of some effective utility term.
The first contribution in (216):

l

/Z(s\lfj (LL’l) Kléllll ({L'l)
l

is simply the action describing a non interacting set of structures - the initial structures from which the
model was built. The second term in (216) can be interpreted as a potential for these individual initial
structures. Actually, for a given structure I:

3 /W {ZV (@), 5 (@), ) x 91 (xl)]pl o (xl)]pl 7 (xl)}pl_l 9] ()]

LBy

| )] B )] d@),, (), (x%} 0w (1)) d (@), d (@), = Vi

can be integrated over the (z,)  with n # [ to yield:

Pn

Vim S [0 (@) U (@ () 000 (G005, ) d ey, d o

al’ﬁl
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with:

y© ((xl)m (@) ) / {

[ o] [#60)]) G, wde,, -t |

Since the two structures (z;),, and (;)g involved in this expressions are identical, the potential can be

2

considered as symmetric, and, up to a symmetrization factor p; (p; — 1), reduces to:

Vi= [ow] @V (w,1) 004 ) dady
This term has a straightforward interpretation. It represents a non local auto-interaction of structure [ with
itself, as the constraints studied in the previous section: interactions with other structures globally sum up

and produce this overall binding on structure [. Mathematically, it corresponds to modifying the effective
utility of structure [ by adding a non local potential:

[ a— [ vy caiwya+ [ x) s

This potential Vi (z,y) differs from V}(e (x,y) because it includes some corrections depending on the char-
acteristics of the system. Interactions involving the copies of the same structures (z;),, can nevertheless be
assumed to be "quite" local, so that these copies interact at the same point. In that case:

Vi = / 50! () VI (2,2) 60, () da (217)
and this local interaction corresponds, at the individual level, to replacing [ Uess (X; (¢)) dt by:

[ Uess i@+ [V (Xi(e). X (9) deds

Some non local corrections can be added if we approximate the non diagonal contributions of Vl(e) (z,y) by
some additional derivative terms:

[ @V @) 691 0) dody
/ 5UT (2) V9 (2, 2) 69, () da + / VU] (z) W' (z) 69, (z) da
+ / (5\112r (x) Wl(e () VU, (x) dx
+ / Vou! (z) Zl(e) (x) Vo, (x)dx

and those corrections add some inertial term to the effective action. They have the form:
[wO ot @as [ w20 o s a

Having interpreted the two first contributions in (216), we can turn to the third type of term:

/Z 50l ((2n), {ZV(ml pro s (@),

an,B
x| (xl)}m ot (xl)}pl x|y (a;l)]plf1 ki (xl)}pl x| (xn)L" (9, ()]
X [\1/ (xr)]

pr

123

ZA:V( Jpr oo (@), ) % [0 (xl)]pl o (xl)]pl o [0 (”)]p,fl (9] (20)]
k—

pi—1



for I # n. As before this can be integrated over all the variables, except (v,), and (wl)ﬁz to obtain:

Vo= 32 [0 (@) VS (@), (01)y,) 80 (G0, ) dan), d ),

OénuBL

A
Vi (@n)a, - (@0)5,) = / {Zv (@), s @0),,) (218)
o [ (a:l)]pl_l o] (xl)]pl X [Bn )] [ ()]

pn_l

X [qf (mr)} | [qfi (yr)] (@), el (@0), g (@), (1), A (U)o ...d(yr)pr}
As for the derivation of Vl(e)7 the symmetry existing between the copies (z,,), on one side, and the copies
(1) 5, on the other side, allows to simplify, up to some symmetry factor p;p,:

Vi = / 3, () V) (2,) 00, (y) dzdy (219)

From the perspective of the individual initial agents, this term has no equivalent. Actually, an interaction
between two different structures should involve, at the field theoretic level, a quartic contribution, i.e. having
the form:

/ 50, () 00, () 601 (y) 3] (y) dady

Being of order 2, the potential (219) must be interpreted as an individual, non local, contribution to some
effective utility. However, the variables involved in (219) belong to the coordinate spaces of 2 different
structures, n and [. Consequently (219) can be interpreted as a utility contribution for a single integrated
structure "nl", differing from "n" or "I", and absent from the initial model.

The fact that interactions should be non local describe a "non causal" dynamics for the whole set of
interacting structures: in the field formulation, the set of structures acts as a global environment for the
others. The existence of a non trivial minimum at the field theoretic level, i.e. the fundamental state,
translates in the emergence of an integrated structure at the individual level. Its behavior breaks the causal
dynamics of the initial structures as individual systems. The integrated structure emerging from the non
trivial vacuum has to be understood as some "average" or typical structure, and the system of agents is in fact
an assembly of such integrated structures. They interact together, through non local effective potentials. At
the individual level, this leads to a non local self interaction for the representative structure of the assembly,
the non locality modeling the action of the environment created by the set of structures on the representative
one.

10.2.2 Effective utility for the integrated structures

To conclude let us model an effective utility for these integrated structures. Looking back to (219) leads us
to consider extended coordinate systems to model an integrated structure. Define the concatenated vector:

Xt (t) = (Xn (t) aXl (t))

This concatenated vector models the extended, or integrated, aspect of the structure "nl". To find an
effective utility Uess (X, (t)) for X,,; (t) and include the different contributions relative to the structure
"nl", we first study its field theoretic counterpart. It gathers contributions proportional to K; and K, in
(216) plus (217) for n and I, and (219). This results in effective action written S™:

- / SOl (z1) K69, () + / ST (xn) Knb6Wy () + Vi + Vi + Vi (220)
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Since V,,; mixes some structures, our aim is to find an action S™ (U, (21, 2y,)) depending on an "extended"
field U, (z, x,,) of the two variables x; and x,,. This will yield the same Green functions as those computed
with S™. To do so it will be sufficient to compute the four points functions and we will explain why in the
sequel. Recall that the four first contributions of S™, when considered as field actions for two independent
structures, yield a Green function that is a product of the two independent Green function:

G (xlvyl) Gr (znayn) = (Kl + Vl)_l (Kn + Vn)_l

To compute the Green functions of S™ we include Vj,; in the following way: we first rewrite S™ in a more

convenient form:
gt — ( o, (1‘1) >T K, +V V(E) ( oV, (xl) > (221)
0y, (20) Vai Ko +Va )\ 0% (22)

Ao Kl + V}(e) ‘/2(;)
V(e) Kn + Vne)

n,l

and define:

From this set up, the computation of the four points Green function is straightforward:

G(xl(?),m;?),x}”, <1>) <(5\1/,) (q;§2>) (5%)*( )5\111( )5\1/ (5}>)>

For (221), the function G (:rl(z) mgf), (1) %1)) is given by:

(w0 (47) 00 (o) 9, () 90 (a2))
A~

A1 (xf2>’x§1)) A1 (ng),xgp) At ( o) (1))

Moreover A~! can be computed to yield:

()

with:
X = ((Kl V) v (K v) v,fj?) 7
voe () v (e v) ) (10 )
Z = - ((K + V) =V (K + ) B mff}) B Vi (m+ @)

T o= ((Kn+v,§e>) Vi (k+ v ) v};)

and one obtains straightforwardly:

G(zl(Q) =@z <1>,z53>) = <5\1/l ( )) 5\1/n*(x )5\111( )5\1: ( >)>
= () v () V) (o)

<(K v €>) Ay, (Kl + Vl(e))_1 sz?) B (fdfﬁf#’)
+<(Kl+v< ) - >(Kn+v,§e>)_1v;3>>lwf;> (1r<n+1/,§€>)_1 (P 2)
!

" <(Kn N Vée)) e (Kz n Vi(e)>71 VZEZ)>_ v (Kz n ‘/Z(E))il (xg)’xl(l))

n7
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From this result one can derive the following identity:
—1 —1
((Kz + V) =V (K + V) V}f?) N ((Kn + V) =V (i V) Vifi))
T

.<(5\IJZ)]L (ml@)) (5\1171)T (xg)) oy, (wl(l)) ow, (%(11)>>
- 5 (331(2) _ xl(l)) 5 (xf) _ xg)) n Vl(e) (Kn + Vée))_l (ml(z)xg)) Vrfi) (Kz + Vl(e)>_1 (ﬂcf),xl(l))

ne

,n

+V (Klﬂ/l(e))*l (2. 2) v (Kn+v,§e>)71 (a220)

n

which implies that:

/ { <1 + (szff (Kn + ‘/7@)1) (g;l<2>7 x) (Véi) (Kl + Vl(e))l) (x53>, xl>> _1} (222)
() =i (1w v) ) ety (104 Vi) =09 (K7W ot}
G (az}, x, acl(l), xg)) dr)dz, dx,dz.,
= 4 (:cl(Z) — :cl(l)) 1) (azf) — xﬁP)
which leads ultimately to the expression for the four points Green functions of S™:

¢! (a2, ol aD)
- / { (1 + V) (Kn - V;a)*l v (Kl + Vl<e>>1) - (%(2), 2@z, wn) }
x { ((Kl + V) =V (Ka+ V) - vn(j)) (a1,

. ((Kn FVO) =V (K v Vlff)) (2,0t } dwiday

)

If we consider Vl(z relatively of small magnitude, a first approximation is:

61 (o0, f00) = (10 VD (o s v) V) () o)

(o V) v (4 49) D) (082.08)

= / Vi) (K + V) - (22,20 ) VIS (R + er))fl (22,2
{ (i) v (0 09) 02 e

x ((Kn + V) =V (K + ) - Vlf,?) (2 2)) } dyday,
(K0 + V) (2, 2f7) (Ka+ V) (22, 200)

v (Ko + Vn@)_1 Vi (o, aV) (K + Vi) (22,20)
_ (Kl n Vz(e)) (wl@),wf”) V) (Kl L Vl<e>)*1 v (:cﬁf),arﬁf))

) (o) VD (50, 587)

12
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Since the first term does not mix the coordinates x; and x,, it describes the two structures independently.
The three first terms on the contrary introduce the interactions that induces the integration of the two
structures into one.
Having found the four point functions for S™, let us turn to the interpretation in terms of integrated
structures. In this interpretation, the four point Green function
G(a:l(2) @ xl(l),xgll))

r¥n

has been defined to satisfy (222). The form of the Dirac function in the RHS, ¢ (xl(2) - :cl(l)) o (ng) - ngl))

has been chosen so that G (ml(z), a:g?), ml(l), mél)) is in fact a two points transition function in the coordinate

6 o) = (o2,9). (o100

This function should thus be the two points Green function for ¥,,; (z;, x,) to recover the same result of the
initial effective action S™. As a consequence, we directly find the required effective action for W, (2, z,,)
that computes this Green function:

5 (W) = / ol (22, 0@) 67 (o 22,0V 2l0) oy (of,20)) defP de@dafVaz)  (224)

rn rYn n

space (xy, Tp):

This formula a-posteriori justifies, the need for the four point Green functions of S™. Note that, using the
previous approximation (223) we can also write:

st = [l (o) { (K4 ) (0 v0)
Vi (R Vi) (K4 Vi) = (i V) VD (V) TV

_y© (961(2), %(11)) v (wﬁf)vﬂﬂfl)) } v, (xgﬂ,xgﬂ) dz® dz® eV daV

l,n n

This formula defining the effective action for an assembly of integrated structures may be set in a more
readable form if we consider some approximations. We assume the following form for the operators K;+ Vl(e)
and K,, + V,Ee) (which implies that W(e) and V,fe) are locals)

¢ 1
KotV = =5 (V)" = Vi)
1
Kn + V,,,Se) - _5 (vn)z - Un (l'n)

as well as a low inertia:
(V)® < <U(wm)
(Vn)? < < U, (z,)
These further simplifications yield:
S (W) (225)

1 1
= o) (5T ) (907 = 303 @) (V)" = U 00) U (o) = 2V, Gan0) VS o) ) W o) i
[ (of2,2) VD (o2 V) (o2 ot (o72) D Pty )

Ultimately, it is straightforward to find a first approximation of the effective utility for an integrated struc-
tures which corresponds to (225):

/ (;Un (X (5)) XF (5) + 5U: (X (5)) X2 (5) + U (X0 () U (X, <s>>) s

—2 / V(X0 (5), X (5) V. (X0 (5), X (5)) ds — / Vit (X1 (s1), X (52)) dsydss
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where le is equal to Vl(z) Vn(i) plus some inertia corrections, similarly to the derivation of Vl(e) (see (217).
This mixed utility presénts some local aspect as for a usual utility in the concatenated control variable
(X1 (s), X, (s)). It presents also non local contibutions resulting from the constraints this agent imposes on
itself through its subcomponents and its environment. Note also that the inertia terms X? (s) and X2 (s)
are factored by variable contributions. This models the non trivial trajectory for the structure in the space
(X1, X,,) as a consequence of internal interactions between the structure’s subcomponents.

10.3 Extension: Several type agents, effective field action
10.3.1 Principle

In the previous section we have studied the possibility of emergence for an integrated effective structure
that was absent from the initial interacting system. The integrated structure includes several previously
independent structures and possess characteristics of its own, that were not present in initial ones. However
taking an other point of view and studying the aggregation of several different elements can be interesting in
some cases. Rather than aggregating all types of structures, one may integrate the behavior of one or some
of them. so that its influence only appears as a substratum for the dynamics of other structures.

It amounts to consider a system with one type of agent less, but with a modified action which takes into
account the interactions with the suppressed agent as a global modification of the system. This representation
fits well for systems with "hidden" agents if, for some purposes, we are interested in the behavior of one (or
several) particular types of agents. By integrating out the remaining types of agents, one can focus on the
dynamic of a certain class, given an integrated landscape.

The general principle is the following. Consider the computation of the path integral

Jer(s({o), )P (e}, (220

where we take the most general form of action:

1 ) (227)
= 2 o (5 () [0 (7 0? (= (5),)) it v ()] 9 (1))
X (), ) I e () v ()

1<i<n

intra species interaction

YOS v ({X,SL")} - )ﬁ [ vt (Xlgln)) ok (X;SZ"))

m ky..kpy N1...Mpp j=1 1<inj<nj

inter species interaction

and partition M as M = M; + M,. We aim at getting rid of the structures My 4+ 1...M. To do so, the
integration over {\P(k)}k:Mz—i-l“.M in (226) can be performed using the methods given in the previous
paragraphs (by graphs, saddle point approximation, or both). Though it is usually impossible to get an
exact result (we will give below examples for which it is), in principle, the integrals over {\IJ(
will leave us with:

k=My+1...M’

o (s (b)) 20 25
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where:

Sers ({q](k)}k—l...M1>
) Z/ka <<—;\Il(k” (3) [(90) (v - 210 (%0 - (X)k)) Ve (%,)] 90 (Xk>>>
+§:§juﬁf({X“}rQQ) I v (x7) o (x7)

k n 1<isn

5 E v ()T e (e ()
T 1<in, <n;

m ky..kpy n1-.. j:ll<z71 <ng

The individual potential Ve// Xk) is also affected. Actually, in the integration process, interaction terms
involving only "integrated structures" plus one "non integrated one" leave us with the modified individual
potential Veff (X k), and implies a modified individual behavior. Besides, the interaction process between

remaining structures is itself modified by its surrounding.

10.3.2 Example: two types of agents

To be more precise, consider a simple two agents model, with a one dimensional space of configuration for
each agent: the propagator for a block (i.e. a fundamental structure) k (here k will take two values, i1 or
i9) is:
2 2 Y Y
Vi +mi A+ (@), = Yers) (M) ((#), = Yers)

where the matrix (A;), is p X p and the mass term being defined by (see (204) for example):
m?® = (a+ Uesy (X))

Depending on the parameters of the system, m?2 can be positive or negative. Moreover, we consider a non
reciprocal interaction term:

V (@i, 25,) = 6 (x - ﬁ““) (229)

i.e. this models a strain imposed by type 1 agents on type 2 agents. This choice introduces conveniently
an asymmetry between agents. Thus, we do not expect the same results for the effective actions of the two
agents: the landscape created by the dominating agent is different from the one created by the dominated
one. This fact will appear while considering the possibilities of phase transitions.

Gathering the potential (229) with the propagators for each structure yields the action of the two agents
system:

.’,Eil

S (W (@)) = Wi (@) (=92 +md + (20 = (Fers),, ) A (w0 = (Vers),, ) ) ¥, (@)
Wi, (i,) (—V2 +m?, + (% — (Yers), ) A, (% - (Yeff)iz)) Ul (21,)
15 / Wy (2,) W, (2,) (0, — 200 / dzi, U, (22,) W) (22)
Two possibilities arise from the general method developed in the previous paragraph. One integrate the

behavior of one of the two structures, and inspect the implications for the remaining one. We will start by
integrating the behavior of the second agent and find an effective action for the first one:
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Effective action for the first agent We consider the initial action of the second agent:
Wi, (33;2) (_VQ + mi22 + (xiQ - (Y/eff)- ) A’iz (‘xiz - (Yeff)» )) \Ijj (x’té)
+5/dxi2q/i2 (miz)‘l’l'; (xlz) Lig — /dxll i1 ‘7311 i1 (xll)
= Uy, (zi,) (—V2 +m?, + (% - (Y%ff)i2) A, (% - (Yeff)ig)
s ,_A(i1)2 das. U, NOT (2O (2
+ Liy $i2 Liy ¥iy (3311) i1 ($11) 12 (3312)

Up to some normalization that we will reintroduced later, the integral for the exponential of this expression
is straightforward and yields:

exp (—\I/Z-2 (z4,) (—V2 + mi + (mi2 — (Yeff>iz) A, (:Ei2 — (Yeff)iz) (230)

+6 (a: —:i"(-il))Q/dm U, (24,) O (2,) 00 (2 ))) x DUy, (24,) U1 (21,)
12 12 1 F 1 1 71 11 12 12 12 12 12 12

<det ((—V2 + mi + (371‘2 - (Yeff)iz> Aig (xig - (Kff)@) + 6 % B i(“) /d%l1 “ a:“ ($i1)>>>_1
exp (—Tr (—V2 +m2 + (xiz - (Yeff)ig) A, (xiz - (Yeff)iz) +0 (% 55(; )) /dx” (i) \IJI1 (wil)))

This term can thus be reintroduced in the action for the remaining field ¥;, (x;,), and thus the integration
over the second strucure field leads to an effective action for ¥;, (x;,):

Seﬁ (\IIH ('Tn))
= S(\Ijh (xll))

. . i\ 2
+T'rIn (—V2 +m;, + (mig - (Yeff)ig) A, (miz - (Yeff)i2> +4 (9% - ;%521)) /dxil\llil (x4,) \III1 (m“))

Recall now that the spectrum for the operator:
_VQ + mzzz + (‘Tlé - (Ye.ff)i2> Aiz (miz - (}V/eff)iz) (231)
is given by
1
(n - 2) (As,) +ms, (232)
We assume that the eigenvalues of the diagonal matrix A;, are positive to ensure the stability of the system.

The trace of (231) is
1
5 (0 5) )+

n

Here we have used the notation (n+ %) (A;,) to write the product between a vector of m half integers
(n1 + %, B %) and the p eigenvalues of A;,.
Actually, as explained in Appendix 9, the kernel of (231) is

=S (m + (n ) () v
Then:
Tr (—V2 +m2 + (a: - (Yeff)h) A, (m - (Yeff)iz)) - /G(w,x) dz
et fer )

n
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due to the orthonormality of the eigenfunctions v,, (x), and (232) follows. As a consequence, for an operator:

. . G\ 2
<—V2 +m122 + (-’Ei2 - (Yeff)iz) AiZ (l'ig - (Yf—iff)b) +90 (xiz - l’g; )> /dwill:[/il (iC“) \Iljl (.’b“))
which is quadratic in potential, the spectrum is similar to the spectrum of (231) and can be found by writing:
<—V2 -+ mi + ($i2 — (?eff)b) AiQ (.231‘2 — (Yeff)iz) + (5 Q:Z2 _ j;(ll /d$11 i x“ ;rl (3311()2>3)
= V4 mi

Aiz (}V/eff)i2 + @E;l)éfda?“ \Ijh (xh) \II;[I (.13“)
Aiz + (5fd1’11\:[/“ (xll) \I/;fl (xll)

A, Y/e ) +§,‘5l1)(5 dzi, ¥, (x4, \I/j Ty
y ((Ahw/d%% (o) 0] (%))) . (Yers),, +,70 ) <T )V, (i)
Niy 40 [ dai, U5, (24,) V5, (23,)

+ | zi, —

5Ai2 f dwhqjil (mil) \I/;fl (xil) (( > ) . j;(“)>2
Ai2 + 5fdx21 \Ijil ('T'll) \I]L (wll) <!

This is again an operator with quadratic potential, with an additional positive constant and a shift of
variables. Its trace is then similar to (232):

Tr <1n ((—V2 +my, + (% - (Y/fo)i2) A, (% - Gf@ff)iz) +9 (x“ - j(“)) /dm“‘l’il (i) L, (wil))>)
Zln (( ) (Al2 + S/dm“ i (i) \I,;rl (xi1)> T 6N, [dxi, Vg, (z4,) \1;:[1 (z1,) ) ((Yeff)b ) jgil)r)

Aiz + 6fdxi1 \I/il (mll) \I’; (xil

for n integers. As a consequence:

Sef' <\IJ7;1 (wil)) = S(\II (.’L‘“))

+Zln << ) <AL2 4—5/033511 i (i) L (%)) +m,

5Ai2 fd’ril i1 (mil) \I/;rl (mil) ((Y/ ff)» . .f?(“)>
Ai2 + 5fdx21 \Ijil ('T'll) \I]L (mll) ‘ " "

) ; Ay [ dwiy Wiy (w0 ) U1 (20,) (o NN
(n5) 8 deiy Wy (i) W (o) 5 25 et ((Vegy),, — 207)

1
1T (n+ 1) Ay + 2,

We can now come back to the problem of normalization mentioned before. We showed before that for
normalization reasons, (230) has to be divided by its value for a null interaction potential. As a consequence,
we can normalize this sum by subtracting its value for a null interaction, i.e.:

exp (_‘Iliz (i) (_V2 +my, + (xiz - (Yeff)z'z) Ai (mi? B (Yeff)lé)) v, (:%))
x DUy, (z3,) ¥ (24,)

= exp (—Tr (—V2 + mi + (a:i2 — (Yeff)zg) A, (331‘2 — (Yeff)iz)>)
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whose value is: )
£l Yone)
by virtue of (230). This value has thus to be subtracted to Sy (¥;, (;,)), and as a consequence, one has:

Ser. (Wi (z3,)) (234)

1 t OA; fd(l?i ¥ (zl )\I}jl (SUL ) . A(i ) 2
(n + 5) g fdxil \I/il (ZC“) \Ilil (37“) + Aigjisfda:; ‘I/; (z;)‘lfjl (111) ((Yeff)m - .737;21 )

1 1
F |1 1) At

However, this sum does not converge in n. This is a standard phenomenon when dealing with infinite
degrees of freedom. Several methods exist to rule out this problem, and usually in physical problems, methods
of renormalization are used. Nevertheless, we can use here a more simple solution. Actually, for a system
in interaction, all frequencies of oscillations need not always be assumed to participate to the dynamics. At
least we can assume high frequencies to be quickly dampened. As a consequence, the sum in (234) will be
regularized in a realistic way if we introduce a cut off in this sum. It amounts to assume bounded frequencies
for the field ¥;,. We assume n < N. Moreover, for later purpose we normalize the field, by introducing
[ dw;, W, (2:,) Ul (2;,) =7 and rescale

11
\Ijil (mll) i \/ﬁl:[/'bl (m'Ll)

with now U;, (z;,) of norm 1.
Ultimately, the effective action for agents of type 1 is thus:

. ~ i 2
(n+ 3) 0+ oz ((Veps),, - 31)

(n+3) Ay +mi,

Ser. (Wi, (i) =18 (¥s, (2,))+ > In [ 14

n<N

(235)

Effective action for the second agent Reversing the roles and integrating over ¥;, (x;,) will yield the
effective action for ¥, (z;,). Skipping some details from the previous paragraph procedure, the effective
action for W, (z;,) is obtained as:

Ser (Wi, (x1,)) = S (Ui, (3,)) +Trin

= S(Wi, (23,)) + Z/d%% (2 = Fers) ) o (i = (Fes),))

1 (2
x In ((n + 2) Ai1 + m?l + (5/d$12 (.Z‘iz — j£;1)> \Ijig (.]ji2) \I/;rZ ($i2)>

= S, (z,)) + Zln A v2 —|—mzz1 + (ZUi,l — (Yeff)?) Ay (azil - (Yeff)h)

As before, we normalize this expression by subtracting some reference quantity:

(o )

which leads us to:

. 2
fdxlé (xiz - ‘%Zl)> \Ijiz (1'22) \Isz (wZQ)
(n+3) Aiy +m3,

S€f~ (‘Illé (xw)) =5 (\Iliz ($Z2)) + Zln 1+46
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As in the previous paragraph, we regularize this quantity by allowing only a finite number of Fourier com-
ponents, n < N. The result is then:

fd‘rh (wm - 95@1)) \Iin (Ilz) \I]-irz (1722)
(n 5) Ail + mzzl

Sef. (Wi, (23,)) = S (Wi, (3,)) + Y In [ 146
n<N

Normalizing the field ¥, (z;,):
\Il’iz (wiz) - \/ﬁ\p’iz (.’1312)
will yield ultimately:
fdxiz (wm ‘%(Zl)) \Ili2 (zlz) \I]IQ (3312)

S€f~ (\Ph (miz)) = 7]5 xn In |1+ 775
T;V (n 5) Ag, + mi

10.3.3 Possibility of phase transition

The interesting differences between the effective actions Ser. (U;, (z;,)) and Sey. (¥, (4,)), are embedded
in the possibility of phase transition in each case. This requires to study the possibility of a minimum for
Ses. (Wi, (x;,)) and then for S.r (V;, (z;,)) with n > 0. This possibility depends on the parameters involved
in each effective utility. A detailed study is performed in Appendix 14, and the results are the following:

First agent: We consider several cases, depending on the parameters of the system.
For ¢ > 0, if:

1
§(A¢2) m; < 0
n+ %)+ ((Yers), B
1(Ai1)—m?1+52( 2) 1(( )i 22) < 0
2 n<N (n + 5) (AW) + mi,

and if there is an 7, such that
25 . N2
(n+ 3y o4 el o ((Yeff)» *i(‘”)>
A; E) - 7 2
(Ai) —mi + ) (Riy +m0)° — —z >0 (236)
n<N (n+ 5) (Aiy +0mg) +m3, + 5 lﬁg;;o ((YEff)i2 - ) )
then there exists n; # 0 such that

U (25,) = /iy ({f) ' exp <_V2‘Ex2)

is a minimum for the action S.y. Remark that, since the RHS of (236) is increasing for n, > 0, the
condition (236) is fulfilled for some values of the parameters. As a consequence a non trivial vacuum exists.
Implications of this result have been explained earlier.

For 6 < 0 the conditions are simpler. If:

1
5(/\@)-771121 > 0
Y, 5011)
1 ((Yeff)m &, )
—(Ay))—m? +6 < 0
2( 1 7;\] )Am—I—m

then there is n # 0, such that \ﬁ\II,E?) (2;,) is the minimum of Sey. (¥, (z4,)).
For all other cases the minimum for S.¢. (¥;, (z;,)) is reached for 7 = 0 and no phase transition occurs.
The possibility for several minima is the consequence of the strain imposed by the first agent on the
second. Given the values of the parameters, the first agent may adapt to the behavior of the second one and
lead the system toward an other equilibrium.
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Effective action for the second agent Appendix 14 shows that the expectation value (¥;, (z;,)) is null,
and then, that no phase transition occurs. This is the consequence of the asymmetric potential of interaction
between the agents. If actions of the first type of agents are integrated out, for reasons such as different
time scale for these actions, or large fluctuations among the first type of agents, the second type of agents
integrate these behaviors as an external medium and only one equilibrium is reached. The characteristic of
this equilibrium is studied in the next paragraph.

10.3.4 Consequence of phase transition

We can now inspect the consequences of the phase transition for the two agents. For the first agent, two
phases may appear. Consider its effective action where the notation [ dwz;, U;, (z,) \IJ;T1 (2;,) = n has been
reintroduced.

Sef- (\Pil (xil)) = S(\Illl (xh)) (237)
1 .\ . T . Ay f‘imil‘I’il(mil)q’Il (111) ¥ ~(i1) 2
+> |1+ (%) 8 dia W (w0) Wi, ) Niy 40 [ dwiy Ui, (23,0 (21,) ((Yeff)i2 i )
(n + %) A, + mfz

We will compute the second order approximation of (237) for of each of these phases.
In the case of a trivial background expectation ¥;, (z;,) = 0, the second order expansion of Sey. (¥;, (x;,))

<n + % + ((Yeff)iz - :E'Ezl))2>

(n+3) Aip +m,

is:

Sef- (mil (xil)) = S(\I/“ (.’E“)) + Z

n<N

In the phase where the minimum of Sey. is reached for a field W9 (x;,) # 0, we shift Wy, (z;,) — U5, (2;,) +
WY (2i,), which leads to:

Sef- (\Ijll (:E'Ll)) = Sef- (\If?l (‘T'Ll)) + S(\Ijh (‘TH))
2 . i)\ 2
(56004 9+ ((rr), -2 )

. 2
5(n2)(n+4)+6Ai, W ((Yeff)i2 —555;1))
m§2 +Aiy (n+%)

/dxh\llil (wll) \IJ; (xil)

n Z /dffil‘l’u (zi,) !, ()

n<N

(mf, + A, (n+3)) +1

+ Z /d.’E“ (‘I’il (-’If'il))T lI/il (mil)

n<N

. (i1 2 Ay ?
(5 (n+3) +6A;, ((Yeff)iz - &, )) (A2+7,25)2>

X . (i1) 2 2
- _gl\
2 [ | 126 (n+ 1) +n20A, (o), =) +(m2 4 As, (n+ 1))
n 2 n 2 In2+Ai, i2 b2 2
A Y (1)) 2
+ 42 (& 2770)° (<Y€ff)iz - xgzl))

2
(Y/e )Z 7531(11'1)
26 (n+ 1) + 7726Ai2<;f7721m22> +m2 + A, (n+ b)

The interpretation is the following. In both cases, the effective action for the first type of agent is shifted by
a quadratic term in ¥, (z;,) of the type:

v e 9t o) [ (9 G00) (o )+ 0 ) (02 ) 1))
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Coming back to the individual behaviors, we have seen in the previous paragraph that it amounts to modify
the utility of an individual agent by a constant term. In other words, the introduction of surrounding type
2 agents does not change the equilibrium value. However the introduction of this constant quadratic term

dampens the oscillations around he equilibrium. In fact, this shift in the action corresponds to a shift in m?

719
or, equivalently, a shift in «, the parameter which measures the inverse of interaction duration for type 11
agents. It means that integrating the behavior of second-type agents is equivalent to reduce the duration for
the interaction process of type 1 agents. Type 1 agents spend time controlling type 2 agents, which is a loss
of time/energy. As a consequence type 2 agents act as stabilizers. The dampening effect in the oscillation
depends on the phase of the system.

Now, switching to the effective action for the second agent:

doo (2 — 2OV 0 (2 VO (2
f Liy \ Lig xig 12 (xlz) (2 (mm)
(n+3) Ay +m,

S€f~ (\Iin (1‘12)) = S(\I’w (3312)) + Z In|1+4¢

n<N

We have seen that there is no phase transition (i.e. the minimum of Sey (U, (24,)) is for ¥;, (x;,) =0). At
the second order approximation, the effective action Sey. (¥;, (2;,)) is then:

. 2
S dais (20— 30") Wi, (@i) U], (o)
(n + %) Ail + ml21

Sef- (\Iliz (3712)) = S(\I/lz (1512)) + Z

n<N

S, @)+ | Y 0 [ (o0 = a0 i, (1) ¥, (1)

n<N (n + %) Ail er?l

Here, the situation is different with respect to type 1 agents. Coming back to the individual utilities

corresponding to this collective field, the first order correction due to agent 1 is to shift the effective action
N2

by a term ¢ (miz - .f?Zl)) : the attractive (for 6 > 0) or repulsive (for § < 0) potential. The only consequence

for the second agent is thus a shift hat for the second species is shifted is the frequencies of oscillations

4]

A'Lg — Ai2 —|— Z

n<N

depending on the sign of d, fasten ou dampened. The center of oscillation is also shifted as a combination
of (Yeyy), and "

agent is shifted. By a computation analog to (233), the shift in the equilibrium value is:

. In terms of effective utility it means that the equilibrium value of the second type of

Ay (Yers),, +a(V (anN W)
(Yers),, —

)
Ai, + (anzv (+)A+m>

As a consequence, the background initiated by the first type of agents modifies both the system’s equilibrium,
which is shifted towards the goals of the first agents, and the frequencies of oscillations around the equilibrium.
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11 Introducing macro time scale and aggregated quantities

This section studies the possibility to define aggregated quantities in a system with a large number of agents.
These quantities have to be relevant at the scale of the whole system. The field formalism is appropriate for
this since it allows to connect micro and macro scales.

To do so, we start with the probabilisitic description of a system with N agents whose effective statistical
weights is (131):

ZN;H//D% exp Z/ < )+ K (z; ( dt> Z Z / Vi (22, (£1) oz, (t)) dty...dby

k=211,.
(238)
The expectation of f; > i (t) dt can then be computed by adding a linear potential J;x; (t) to K (x; (t))
and by taking the derivative at J = 0 of (238):

/ exp ( < / Zx > (239)

_ ﬁ 1 oxD (— s 7. (1) ex -3, fsi (af t) + (K (z; (V) + Jx; (t))dt)
= (8J (; N! L1:|1:/ p( l)/D z(t) p( Zk 2211 i Si Vk (xh (tl)...xik (ik))dtl...dﬁk >>>J_O

yees

The quantity >, x; (¢) is the aggregated value of the quantities z; (t) over the set of agents,. We will explain
later why we integrate this quantity over the whole duration of the interaction by integrating for ¢ between
0 and s.

To switch to the field representation, we need to compute the Laplace transform of < fos YT (t) dt>:

/ exp ( < / le > (240)

2SI TT Lo ot [ Dot [ =S da (5 @0+ (5 (@ () + Ja (2)) ) i
(3J @N'U/ pien) Do p(—z;?_Qz“,_.ik Ve o, (1) et )t ) )

Which amounts to compute the average, over time, of < fos > (t) dt> with a mean duration process of é

Now, switching to the field formalism, the RHS of (240) can be computed by using the field theoretic
action:(148):

s({w®} ) (241)
3 [t ((-5v (50) [0 (947 (5 (5),)) i v (5] 02 (52) )
<{X’§i)}1<i<n> [T v (£0) w0 (20)

1<is<n

intra species interaction

YOS v <{X]51)} o ) ﬁ [ vt (X;SL)) o k) (X,SZ))

m ky..kpy N1 My 7j=1 1§inj<nj

inter species interaction

In the line of our general formalism, different types of agents have been introduced. To replicate the result of
(240) we have to modify the potential in the field formalism. Actually, the introduction of J [ 3=, z; (t) dt
in (240), or more generally of J [ > i, Tiy, (t) dt if several types of agents are considered, translates at the
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field level by replacing V (Xk> by V (Xk) + JX in (241). As a consequence, the aggregated quantity
Jexp (—as) ([ 3, i (t) dt) ds is directly given by:

/exp(—as) </0 Zx (t) dt> ds
= (a (oo (s (b, ) e e foon () e () axc ) w5}, )

And the quantity < f; o (t) dt> can be recovered by the inverse laplace transform of the previous quantity:

zeom)
= ! ((;}/exp (=s ({v™ (%)}, )
P [ () g () i) o {ue (5, )

Remark that the field formalism allows computing an average quantity over the all duration process,
<f0 dt> but that we cannot differentiate the quantity <f0 x; (1) dt> with respect to s to get:

<Z o) = (o o - ({o (xk)}k:m) [ (5 10 (1)
S R CO) W) P

Actually, in <f05 Yoz (t) dt> the bracket term, the expectation over the path depends itself on s through the
weight appearing in (238). Thus, the field formalism

However, remind that T = é can be seen as the mean time for the process of interaction between the
agents of the system, one can interpret f exp (—as <f0 dt> ds as the mean quantity X = oz (t)
aggregated over a period T. This a static view however, smce nothing in the interaction process makes a
difference between two different time span, T' and T” except the fact that a different length of the process
will yield a different result.

Three different and non exclusive ways connect our formalism with a dynamic evolution of the macro
quantities X (7). The first is to assume that all parameters in (241) depend exogenously on T. It repre-
sents the evolution of interactions, technology, or any quantity external to the system. The evolution of the

parameters may imply some phase transitions in the system. The second way is to consider each individ-

ual agent’s equilibrium values as given. This comes as an external condition: (f( )k = 57 (X (T -1)),

J=0

J=0

(rewritten also ()_( (T - 1))k for the sake of simplicity). The third way, which is also the more usual and
more direct, comes from the inclusion of constraints that encompass some exogenous quantities. For exam-
ple, a budget constraint includes the average endowment Y at time ¢ for an agent. We can consider this
average endowment to be given by some past average accumulated quantities, say X (T — 1) and to replace
itby Y — <% (X' (T - 1)) which is proportionnal to X (7' — 1). For several types of agents, the average

NT
endowment Y}, for the type k can thus replaced by Xy (T — 1). The contributions of these terms, that are

like Y X, k, are linear terms and can by themselves be integrated in the constants <X ) .

k
The first of these ways is exogenous, the two others are endogenous. Combining these posibilities allows
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to reintroduce some macro time dependence leads to consider the effective action:

s({v},_, ) (242)
VAR X N _ X .
- Z/ka ((—QW(W (Xk) [(vk) (vk — MY (Xk — (X (T - 1))k)) +m2 (1) +V (Xk,T)] y(o) (X,Q))

3 (0 ) JL e () w0 (30)

1<i<n

T Ve, ({ A’g;n,-)}lginjgn] )H H gkt (X( )>\p(k)(A(J ))

m ki..kp, Ni...Ny, J 11<7,n<

where now some exogenous dependencies in T have been introduced in the interaction parameters, through
the interaction potentials and in m} (T"). To point the relation with more usual models of statistical physics,
these exogenous variations are usually responsible for phase transition of a system. As explained above the
macro quantity (X (T - 1)) i satisfies a recursive equation:

), = (o (o (-5 (000 (8)),, )+ S f w0 () 5w () s
PO )]

The exploration of such recursive system is left for future works.

11.1 From micro to macro relations

Would some micro relations between some quantities be stable when switching to the macro scale 7 Consider
at the micro level a quantity that can be written:

ziy (8) = h (i (1))

where z;, (t) is the control variable at time ¢ for an agent of type k, and compute its aggregated version over
the duration of the interaction process:

Then, similarly to (243):
@~ (o (o (5 ({0 (1)), )+ S w0 () () w0 () i)
PR ()] 24

We also need the aggregated quantity corresponding to the x;, (t):

Zy = /OSZ% (t)dt

i

O (g (Lo (- (o ()}, )+ o [ (5] () w0 () atef
S S GO A )
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A consequence of (244) is that if h is linear, h (X' k) = ~X; with ~ an arbitrary constant, then after

aggregation (Z) e = N ()_(k) and the micro relation is preserved at the macro level. However for a more
general relation this is not the case: Actually, computing the derivative in (244):

@)= (f ([ (o) (%) w0 () e exo (5 ({00 (50)),_, )2 (%)), )

and using the definition of the interaction Green function:

o= ([ 109 e (s (o0 (9], ))od (9], )

(Z)k = /h () G (z,x)dx (246)

yields:

To compare with (X), we can specialize to h (z) = z to write:

k
(X), = /xG (z,x)dz (247)

and the comparison between (246)and (247) shows that the relation

(2),, =h((X),)

is not valid for a general function h. Only if translation invariance is present in the model, that is G (z,y) =
G (y — z) and thus G (z,z) = G (0,0), then some simple macro relations can be found (normalizing G (0, 0)
to 1). Actually, in that case:

(2), = /h(z)dm
(X)k = /xdm

Assuming that the lower bound is equal to 0 in both integrals, we change the variable u = 72 in the first
integral to get:

_ (X)),
(Z)k = / h(z)dx

However, in the models at stake in this work, involving effective utility of harmonic oscillators plus interaction
terms, the translation invariance is not preserved, and no simple macro relation can be found.

11.2 Effect of phase transition on aggregated quantities

Aggregated quantities are given by average quantities in the field formalism, and as such, they should be
affected by phase transitions occurring with the parameters evolution. To inspect this phenomenon, we start
with the expression for an aggregated quantity:

= (g (o (9 (00 (0], )+ [0 (5 v ()i o foo ()

(248)
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Assume a non zero vacuum expectation value for the W(*) (Xk>, denoted \I/(()k) (Xk>, write W) <Xk) =
\I/ék) (Xk) + oW (k) (Xk> and expand the exponential in (248) to the second order in §W(*):

s({e9 (%)) Y+ / PO (%) Xew® (£,) d%y (249)
) T2
= s({w? (%)} )+ a / v (%) Xwl (%) af,
k

(k) (v
i Z /(5\1,(/%))1 (sz) 5;5)({%0 (Xk>k}k—T1M) Sp0) (Xkl) dXy, dXe,
k1,k2 (5\:[/0 ! (Xk1> ) (\If(() 2)> (Xk2)
k

+higher order terms in Sw k) (Xk)

In (249) {\Il(()k) (Xk) }k .y depends implicitly on the Jj through the first order condition that defines the
saddle point: T

05 ({\Ijék) (Xk)}kzl..‘M> + Xl (X—k) —0 (250)

o(wf) (%)

The first order condition (250) can be used to compute the J dependency of the two first terms in the right
hand side of (249). Actually:

% (S ({\pé’“) (X’“)}k:L..M) + ng/\I;(()k)T (Xk) PRI (Xk) ka>
_ 05 ({ i (Xk)}k 1. M) X (X ) AT (Xk)
o) (%)

+ / g (Xk) X, uk) (Xk) AX,

_ / w0 (%) Xewl) (%) ax,
and (248) becomes at the second order approximation:
(X (D),
~ [ui(x )m<k> (%) dxi
</5\IJ Xk Xkaxp )df(k>
{\I,( ) } -

e e
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where we define for any field dependent quantity A ({5\11(’“) (Xk> }k:L“M):

(a({ow® (Xk)}k_l‘..M»{@gk)(m)}
= [alfr () )

xexp [ — sut2))" (%, 625({\11(“ (Xk>} h=L.. M) sU) (X, ) dXp, dXp, | DIT® (X,
(-5 /6y () s ot oo ()

Equation (251) can be further simplified, since the quantity

cER) -

can also be found by using again the first order condition (250). Actually, differentiating (250) with respect
to Ji and then letting Ji = 0 yields:

s ({u (xk)}“M)) (awé‘” (%) ) K b (%) =0

5 (wgk>)T (%) o (w5 (% 9

k=1...M

which implies:

1

(a\pg’“) (Xk)) = (5525 ({0 (%)}, ) ) Kald) (%) (253)

(3" () (w49) (%)
so that (252) can be expressed as:

aik(&l,(k (({ )(()é’“})(>)))

B G ) ),
L s, ) S 6 ) )y e
(wé'f“(mo)wsm<m>a<wak2>>*<xm>)( 08 () () (o >> )

From this relation, one can deduce that, in the quadratic approximation, i.e. if interactions terms in
S ({\Ilék) (Xk)} > are relatively low compared to the quadratic contributions, the last term in (251)
k=1..M

can be neglected, and one is left with:

(X (1)), = /\pg’“)f (%6) 2wl (%) d X + </5\1/<W (%) Xnow® (%) ka>

{\Pék)()%k)}kzl...]ﬂ
(254)

In most cases the second term in (254) is centered around the equilibrium value (X )k (see (241)). The first

term in (254) is the macro quantity (X (7)), evaluated in the phase defined by the state w{¥) In other
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words, the aggregated value ()_( (T))k depends on the phase of the environment. When there is no phase
transition we get:

and the aggregated value matches with the micro equilibrium value. But when a phase transition occurs, we

rather have:
(X @), = (%) + / e (%) Xew (%) ay

and the system’s interactions have moved the system to an other equilibrium.
If we were to consider the last contribution to (251), this term would represent a correction due to the
fluctuations of the environment, that depend themselves on the phase of the system.

12 Conclusion

This work has investigated the dynamical patterns of a system with N heterogeneous economic agents. For
a small number of agents, relaxing the optimizing behavior for a probabilistic description centered around
the optimal path allows to deal with some otherwise intractable systems. The classical optimization solution
can be retrieved, in some cases, as the average dynamics of our formalism. Moreover, this probabilistic
treatment can conveniently describe the fluctuation patterns of agents’ behaviors. The transition functions
of the system are computed by path integrals. They describe the system as a random process, whose
fluctuations are deviations from the classical path. For large N, collective behaviors are better studied by
switching to a field formalism, as usually done in statistical physics. Techniques of perturbation expansion,
non trivial vacuum and phase transitions yield some insights about the relevant quantities of the system.
Some aggregate or effective structures absent in the initial micro description, may appear, and become
relevant at the collective level. A phenomenon of emergence is thus possible.

Moreover, our formalism allows interpreting the influence of the dynamics of the system as a whole at
the individual level. This approach presents some circular features. On the one hand, while resulting from
the individual relations, the macro scale cannot be reduced to a sum of individual systems. On the other
hand, individual behaviors are shaped by the environment.

Our work ends with a short inspection of the aggregation issue in our context. We show that some
aggregated quantities can be retrieved from the field formalism. We introduce a macro time scale that
should allow to derive an approximate dynamics for the macro quantities, based on the field formalism. This
extension is left for future researches.
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Appendix 1

We show that, as claimed in the first section, that our probabilistic definition of the agents behavior encom-
passes the usual optimization behavior in the limit of no uncertainty. For 02 — 0 and then o? — 0, we aim

J
at showing that (9)
U
exp (Uogs (X (0) = [exp

i

xexp [ Y Ueys (Xi (0 + 1) A{X; (t+ K}, d{ X (t+ R)}

k j#i J

is peaked around the classical optimization solution, where:

U =37 8, (X (4 m), (X (40 = 1)), )

n=0

is the intertemporal utility of agent j and

0% (X5 (0), (X (6= 1) = 5 (X (1) — X5 [(Xi (6 = D)) Ay (X () — X, [(X (6 — 1))

with X; [(Xy (¢t —1))] is the solution for X; of

0= (g Utns O 0. Gttt = 1)

X5 (0)=X;[(X (t—1))]

for a given (Xj (¢t —1)). The function Ueff (X; (t),(X; (t —1))) has been defined in the first section as the
i-th truncated effective utility for agent j.
To do so, recall first that in the classical set up, agent i optimizes:

= B 0l (X (b m), (X (640 - 1)),,)

n=0

knowing the impact of X; () on (X (t+n —1)). Then, agent ¢ optimizes Ut(i), taking into account that
the agents j about which agent i has the knowledge of their behavior, act by optimizing a certain utility
function U% (X; (¢), (Xi (t = 1))). Thus, the (X (¢ + n — 1)),_, are not independent variables, but depends

eff
on X; (t — 1) through agent j first order condltlon.
9 )
U t),(X;(t—1))=0 255
0 ey (X5 (1), (X; (t—1))) (255)
The classical solution of optimization problem for agent ¢:
9 56 _ ¢ _
aX()U Enzmﬂ Hn( (t+n), (Xj(t+n—1))#i)_0
becomes, using (255):
_ 9 o
0 = sxt (@05 1),) (256)
8X +n— 1) 0 (4)
E! X X; -1)._,
" n;z]: aX r an(t+n—1)ut+"( st m) (X ¢+ n=1),)
and the X; (t +n — 1) satisfy:
) .
— ot @) (x. (4 —
0 = Ez an (t) eff (XJ (t) ’ (XZ (t 1))) (257)
0

_ WUBH (X, (), (X; (t—1)))
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One can find ( B t( T ) from this relation by differentiation:

_ 0X; (t) 0 o ;
0 = g (axk (t— 1)> 9X; (¢ — 1) 0X, (1) (Ue(f)f( (1), (X (t— 1))))

0 ) ;
+WW (Ue(f)f (X5 (t), (X, (¢t — 1))))

which yields:

: 2 -1
(%) = ;(an(t—anaxj(t) (Ué})f( (t),(Xi(t1))))>

e (U (5 0. (X = 1))

and 82( X(t(t)” ) is found recursively:

0X; t+n Z i(t+n) 00X (t+n—1)
0X; ( 8Xl t+n—1) 0X; (t)

the sum is for [ # i since the X (t), X; (t') are independent variables on which agent ¢ optimizes.
Now, we show that we recover these optimization equations when the uncertainty in our description goes
to 0. In the weight:

(i)
exp (Ueys (X (1)) = [ e (Z) exp (258)
xexp [ YD Ve (X5 (0 ) d{X; (t+k)} s d{X (t+ k)
k  j#i ]
(4) k
eXp(Ueff(Xi(t))):/eXp (lfg) xexp [ DD Uets (X (44 1) X (t+ )}, d X (8 + R)}
? k  j#i

GiVGI'I that U(fff (X, (t+k)) are positive, for o2
solution of:

5 — 0, the path localizes around the maximum of U tf Iz

Uty (X; (¢ + k) =

so that X (t + k) is set to X [(X} (t + k — 1))] which is solution of the saddle point equation for Uej[f

0= Uty (X 0+, (X e+ k= 1))

< 0
0X; (t+Fk)
That is the value of X (¢) that are solutions of:

o
mUeff (X (s),(

X (0)=X;[(Xk(t=1))]

Xi(s—1)))=0fors>t

Solving for the X (s), j # 4 allows to express recursively all the X; (s), j # ¢ as functions of X (), X, (s),
s > tand X; (t—1), j # i, then, the integrations reduce to a sequence of integrals on the X; (s), s >t
Ultimately, for o7 — 0, the path localizes around the solutions of:

0

= U for k>0
X, (t+ k) ¢t "
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where the X (s), j 75 i for s > t have been replaced as functions of X; (t), X; (s), s >t and X (t — 1), j # 1,
which yields for k& >

0 = 8X-(at+k)u§i) (X,; (t+ k), (X;(t— 1))#1-)
n— 0 i
+n>zk+2§j: t—|— Uﬁnaxj e (XeG+m), (X (6 +m— 1))

This is the sequence of optimization equations, as planned by agent 4 at time ¢ with X; (¢ + k) satisfying

0 Ul (X (t+ k), (X (t+k—1))) for k>0

0= ox, v my ers

as needed. As a consequence, the result is proved.
Note that for quadratic utilities:

0X; (t) -1
(an(t—1)>:(A“) Aj
and
Uers (X5 (), (Xa (= 1)) = 3 (X5 00+ (A3) ™ Age (X (6= 1)) Agy (55 (0) + (A3) ™" Age (X ¢~ 1))

= Upr (X5 1), (X; (t—1)))

and the result rewrites as:

(4)
exp (Ues (X 1) = [ exp (Z)

xexp [ 3N Uy ( Hk)) d{X; (t+k)},, d{X; (t+k)}

k j#i J

which peaks on the optimization solution for a? — 0 and then a? — 0, as claimed in section 1.
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Appendix 2

As recorded in the text, we rewrite the utilities in terms of the variables Y; ()

‘ t XiO)AYX )+ (X -1) - X
by _ ;5/(Z< () AD X, (1 ((. ¢y )1

i<i

+ ) 2X () A (X (tl)))

j>i

(7,
2oV (A g)m(t>+mt—1)<8Miﬂ})m(t—l)

5 A .
v L e TN Y-+ Y 2% () AD (x5 (- 1)
pray 0 >

expected utilty at ¢t.We will also add possibility for an inertia term:
~Xi (1) el X (¢~ 1)

Each agent j behaves at time ¢ with a so called effective utility Ueys (X (t)) = Ueys (X;) whose recursive
form for the non normalized Uesy (X)) is assumed to be:

49 0 . . ©) ©)) .
Ues (Y (s)) = Yj(e) (s) ( ( Jjo)eff . Yj( ) (s) _2yj( )(3) ( Jjo)eff ( {Jk}l:)<3) eff Yj( ) (s—1)

+ ) 2X( D (X (t—1))

izk>j

where Yj(e) has been defined in (34):

v = (5% (0 - X0) )

The normalization of exp (Uess (Yj (t))) is obtained by letting (we omit temporarily the superscript (e)):

c / exp (Uess (¥; (1)) (d (¥; (£))) = 1

writing:
t
sarn = (00 (), ( 3 agmen-((),, Chnal, Jien) ) (49,
i>k>j
x (Yfe)() (49)., (Z A -1 - () (B, )w—n))
i>k>j
t
_ i;jA;Jngk (t—1) —( (eg))e” (eg)k}m)eff )Yj(t— 1)
X (Agg]))eflf DZR;A DX (t—1) — ( (5?) . ({{JJL}N)E” )yj(t— 1)
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yields the normalization factor (introducing again the superscript (e)):

% = exp Z;}f;j AW X (t—1) + ( (%)) i (eg)k}Kj)eff )Yj(e) (t—1)
< (42) 2 AR -0+ ( (), (Fnar),, )V €1

and the normalized effective utility becomes:

t

v oo = (voos () [ aixe-n- (D), (Do), -] (49)

izk>j

@ () | X A= ((4),,, (D), e

e
i>k>j

Given the definition of Yj(e) (s) one can concatenate all the vectors v (s) for ¢ < j to form a vector

j
(Yj(e) (s)) and given the definition of Y; (s) one can write:
j<i

(Yj(e) (8))j<i = (Yi(s)jci + 67 t( X=X )j<i

where the subscript j < ¢ means that we only concatenate the component vectors of Y; (s) for j < ¢. This is
Y; (s) without its component along i. Concatenate this vector with (Y; (s)),, that is adding the component
along ¢ one obtains a composed vector:

7o) = (@ (1) )
We will also need to define:
i) = (0060 i+ 5 (X7 )

The normalization factor has to be added to the global weight (i.e. the normalized effective utility) to be
taken into account for agent 4 is then (in the sequel, the sum over j < i is always understood):

_ ; X (8) AL X (1) = X () e X0 (0= 1) + X, (¢ — 1) AV X (¢ - 1) (m)
Vs 02 = 20 Z( X, (1) AS) (0,0 1) + e 09
+ZpX () A (X (t - 1))
(0 1 L g0
- zm<t><A5i ﬂji;)n(t)wm(t)( % 21‘(‘;3 )wn
t>0 27

0 0 0 0
+ZYj(8)(t)<0 (A%))eff) ERAEY {((j) )ff} R

>0 lkjh<y

L 0 0
+65Y¢(t)<2AQj) {249 }) (t=1)+ > 2, (1) A (X; (= 1)
3

{kj}i>k>j G>i
(3)
> By Bj ) > (e) < 0 0 ) (e) - 0 By, ()
+Yit< Vo) +v© (1 VY yv© )+ 7 ¢ ' Y
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where, by convention Yj(e) (t) has been extended with a null component in the coordinate ¢, that is: Yj(e) (t) —

0
( Yj(e) ® > Then, Uess (Y; (t)) can be written:

(l) 0 0
0 (e) ) (e)
Uess (Vi = > Vit ( 0 AW )K-(t) +3 V(1) ( 0 ( A(,J)) B )Yj t) (259)
t>0 3J t>0 11 ) esf
(3)
15 Bi1 Bl ) ~ ~ 0 By, ()
"‘51‘25/1'75( Yi(t)+Yi(¢ Y9 (t
(t) (Bly)! Bl (t) () ( ‘3)) Bg) ()
(1) (1) 0
1 —€.:. 24, -
v (o M ) vie- st 0 AT
0 0 2A{Jkg}z>k>j}
0 0

+8:v 70 | (01005) VIOt — 1)+ 2K, () AY (X5 (¢ - 1))
{kj}k<g eff j>i
We aim at writing Ue s (Y; (t)) under the form:
) AE:) + Bi11 Bis ©
U. v : v (¢ 260
1 ( = > B, {( A9, oAl B} (t) (260)

t>0 27

—e(?) A(.l.
2y i Y (©)
+282Y,;" (¢) AW ) 4G Y, (t—1)
J? {kjyk<j eppARIYi>E>]

+3 02X, (1) AT (X, (¢ - 1))

7>

where:
By = ﬂAE? <A%))e_flf Aﬁ) (261)
B = {oa) (49) ] aRs (49 (1)) ((4),,, (Bhrss),,, )]
BAY () (A(J)) N A;J]'C)’

B22 = ﬁ( (.S.JJ)) eff (Sli]])k}k<ﬂ>eff ) (Ag;))e;f( ((J)>eff (F{Jj)k}k<J) eff )
S
3 (4 (49). (), (D), )

. A\ —1 .
B, = BAY AF.J.)) N AW (262)

B’y = ,6’( (%?)eff (eg')k}k<j)eff )t(A%));f( (G%))e” (eg‘)k}k-q)eff )

s = o (4 (), ()., (Gha),,,)
. A\ —1 ; s
Bg) =F (A’(“jj) (Agjj))eff( (6%))61”1‘ ( gjj)’“}MJ)eJ"J“ )>
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with M® = 1 (M + M?") for any matrix M, and where we have defined:
Yi(e) (s) = ﬁ%t (Xj (s) — (X](i)e))j<i

For a vector ()_(j(i)e) to be determined. Given the form of (260), is the equilibrium value of (259) when

X, (t—1)=0for j > ¢. Thus, X'](i)e is found as the solution of the first order condition %Ue” Y;(t)=0
when X; (t — 1) =0 for j > ¢. This equation yields:

0 ez L [ 0 g :
(8 oty )30 (0 o ) (5= ( (a8

1 ( By B e 1 0 By ’ @)
+6? ( 11 12 )X-Ze-i- t X_ze
(BL) B, )70 T2\ (BR) BY )

s
1 0 By (X(”e ( 0 ))
9 3 3 i 7 (d)e
2 (352)) B§2) ! (Xj )
s
(i) ORI , 0 0 ,
1 —eai 24y (e _ (i) 3 , ‘ o (i)e
+52 < 0 Oj ) (Xj Xj ) + B; 2A§‘Ji) {2Aijlc)j}i>k>j} j
0 0

+6% A (-@6_< 0 )>:
0 {(6?133'}%]‘)6”} j ( J(a)a)

The constant terms in this equation are

v ; )(~Z + () 9 -(j)e
(1) J. \J
0 BAjj ! 0 (A“ )eff + B2 ( J )

S
0 BY

0
sl oy ) ()
0
0

Q) @) i
+4% ( g“ 2/(1)” ) §)+5%

() ) (o)

and the equation for X j(-i)e becomes:

AE? + B B2
(4) (7)
Bi, {(Ajj)eff—’_ﬂAjijZZ}

1 1] 1] .
1 -(i)e
A2 G a0 ) ) ° (XJ’ )
Ajit + 45 2 ({ (6{kj}k<j>eff ’A{kj}i>k>j}>

(@ (@) (@)
= (( A o ) + 6 ( Y )) (%)
0 ’BAjj Aji 0

0 , 0 1 0 BS) 1 0 S
+ <0 (Agﬂj))eff—kB”zz >+2 (Bg))t Bég) +5 0 ({(ef[ﬁj}kéj)eff}) ( (_ -



with solution:

-1

. . N\ S
R ey
X0 = (A%)) + ,BAU ,Bay, (263)
eff
Bia, 25 (A7)
{kJ}k<J ff {kj}i>k>j

X

i e (3 i
A9 - B {B;QWA,Eﬁ} (xs

B®)*
( 122

0 5 0
+ B®)* . . BO® & (e
() {(A‘gy)eff,Bm 2, v (i) } ((Xj )
eff

Including the terms X; (t) AEE)Xl- t), Xt )A(Z) (X; (t—1)) and Uesy (Y;) at t. Using Y;(t —1) —
Y; (t — 1), by extension of notation (Yj)eff — (0, e (Yj)eff , O) in the sum

>4 Z( () AR X (1) = X (1) D X5 (8= 1)+ X (6 = 1) AR X (= 1) +2X (1) AT (X (2= 1)) + Ueys (5)

t=0 J<t
+> 02X ( X;(t—1))
J>i
Z Al('f') + Bi1 Bis
= Yi (t) ) (i) Y (1) (264
t>0 Bis {(Ajj>ej»f+BAJ77BQQ
O 24
1 2 1]
+02Y; (1) (”) (”) () Yi(t=1)
2457 4~ (E{kj}kgj) off 240 s ke
_ (o 2 (Z _
;23@@ ( ])ef +3 2, (1) A (X (1 - 1)
j>i

3 o (), (W), Jre

t>0 \izk>j

X (A§§)>;f1f Z A(J)X ( (E%))eff (Egc)j}k<j>eff )YJ (=1

izk>j

The second lower part of Y; (¢) includes all substructures of X; (¢). Then A%)j} (written latter as Ag.? for
the sake of implicity) is a Block matrix including all interaction between j and k for j and k < 1.

(4

{35

(7) (4) : : . (4) ) . .
yt (A ) it <A{kk}k<j)eff) matrix obtained by letting A{jj} + (Ajj )eff in place (j,7) and

(A?k )k}k<j) .y in place (k, k). The bracket denotes this operation for the all collection of j substrctrs. Same

. ) (9) )
operation for { ((A{Jk}k<]7 A{ka}k<j>eff ) A{jkj}i>k>j> }
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Define also

@ _ (40)
A = (af)
) _ (W !
“Ukyizk = (e{kj}p k)
and rewrite:
e 240 —ef? oAy
0 ) ) = @), 40) (Bees)yy (Bhrni).,
245, {_ G ’QA{kj}P’DJ'} i A G
eff A LAV )
{kjYi>k>5 " {jk}i>k>j
0 ALY — A
+ @) G ’(eijk)j}kéj)eff (Eijz')k}»k)eff
- (45 - 4) »: e
J J
A{ka}i>k>j’ 7A{jk}i>k>j
The two first terms in (264) can thus be rewritten as:
v A§§) + Bn B Y. (0
i (t () (@) it
Bi, {(Aj_j )effJFﬁAjj,Bm
@ 240
+1/BY (t) oq@) J_ (e(j) ) 5 40) Yi(t-1)
ji {kiYh<s) opp 7 S RIYI> k>
AZ(-Z:) + B11 By
= Yi(t) ; ) (M) Y; (t)
Bi, (Ajj>eff+ﬁAjj’B22
VB ad @) AZ(;) " Agi))
—5 (Y; (t) = Y; (t—1)) AD 4 40 _(E{'m‘};w)ﬂ”’ _(e{jk}; k)eff’ (Y; (¢) =Y (t—1))
Jr e 40) 40)
{kj}i>k>5 " {jk}i>k>j
—l® AD 4 AD
7 ) L)
— e(j). . — e(j.) ]
+@Yz‘ (t) () ) ( {ka}k@)e”7 ( {ik}s> k)eH’ Y (¢)
2 Azl + AL 3 N2
AD A
jri>k>j {jk}i>k>j
49+ 49
) | ()
+gyi (t—1) AD 4 4D *<€{ka>2re<j)eff7 7<6{ij}2]> k)eff7 Y (t—1)
Ji 7t A(j) A(j)
{kjti>k>j> " {jk}i>k>j
0 ALY —AD
) ()
PVECLO XD | ) o)y sy || viw
Ji Ji A(j) 7A(J’)

{kjYisk>5 ~ M jk}isk>j

As a consequence, discarding the terms quadratic or linear in Y; (¢t — 1) since they are absorbed in the
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normalization at time ¢, the sum in (264) starting from ¢ 4 1 is then:

AD 4 By — VB {VB (4 +4D) . B}
(1) ()
>_Yils) (), 40 ﬁftjf - )“’f f<;>B22 Yi(s)
s>t {\/B (Aji + Aﬁ ) anQ} /B 7(6%]‘};@‘)6”, 7(6{%}212 k)eff
() (49)
’A{ka}i>k>j7A{]jk}i>k>j
VB e AR + A7
B (D — (D)
—5 (Yi(s) = Yi(s - 1)) A 440 ( {k]};gj)ﬁff’ ( {J’“}2J>k)cff’ (Yi(s) = Yi(s—1))
si T A4 o)
{kj}Yi>k>5 “{jk}i>k>j
0 4D _ 4
) i
(D o
+3 VB (Yi(s) ~ Yi(s 1)) (A9 — ) (Coses)oss (Bhrmneps | | ¥igs-1)
s>t J J A(j) _A(j)
{kj}i>k>j7 {jk}i>k>j
—2+/BY; (s). (Y + (Yj)eff)
i} A + A7
VB (e () /_>
+7Yi (t) A0 440 ({kj};\f)eff7 <{J’€}21/k)eff7 Y (t)
g g A(j) A(j)
{kj}i>k>j " {jk}i>k>j
1
= D 5 (Ni(s) = Yils = 1) A(Yi(s) = Yi (s = 1)) + ¥ () BY: (5) + (Yi () = Vi (s = 1)) CYi (s = 1)
s>t
1
+§Yz‘ (t) AY; (1)
1 . .
~ Y S (Yi(s) = Yi(s — D) A(Yi () = Yi (s — 1) + (Yi(s) = V) B (Vi (s5) = 9,V
2
s>t
(Vi (3) — Yi (s — 1)) CY; (s — 1) + Y; (t) BY: (1
1
+5Yi (1) AY; (1) (265)
o AY + AY
7( ) ) 7( ) ) 9266
A = ) ) {kith<i), Clikyiz k),
VB A0 4 40) A i Rl i (266)
I g A(J) A(J)
{kj}i>k>j " {jk}i>k>j
AD 4 Byy — /B {VB (4D +49), B}
(2) ()
B BAjj + (Ajj )effyB22
WA al) Blf [ ey )
G A(J% A(j) :
Vi kjYi>k>g0 T {jk}i>k>]
0 AW _ 40)
) v v
C = \/B < ) ) (eiﬁj}kgj)eff 7(6({]j)k}j>k)eff
— [ A\, _A> 2 ’ 2 )
I g —A(j) A(])

{kj}i>k>j " {jk}i>k>j

The sum includes the potential at time ¢ but not the inertial term.
The effective action for Y; (t) is computed in the following way: it is know ([?]) that for a quadratic
weight as the one obtained in (265), the integral over future variables Y; (s) localizes around the classical
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solution of motion starting at Y; (¢) and such that Y; (s) — 0 for s — oo. That is, to compute the integrals
of (265) on Y; (s) it is enough to minimize (265) on the Y; (s), s > t with Y; (¢) as initial condition and to
compute (265) for this solution.

The equation for the classical solution of (265):

S-S i) = Yils = D) A(Yi(5) = Yi (s = 1)) + i (5) BY; () + (¥i (s) — Y; (5 — 1)) O (s ~(397)

YL (1) BY: (1) + 5Yi (1) AYi (1)

is of the usual Euler Lagrange type:

(3@ () — Yi(”) A(Y; (s +1) — 2Y; (s) + Y; (s — 1))+2Y; (s) BY; (s)f(YZ- () — y.“)) C(Yi(s+1)=Yi(s—1)) =0

(2

(268)
and its solution is of the kind:
i (s) = DY, (1) (269)
We show in Appendix 1.b. that the matrix D satisfies:
(A-C)D*+2(B—A)D+(A+C)=0 (270)
We also give a recursive equation for D in this appendix.
We now compute each term of the action
1
S Vils+ 1) = Yi(s) A(Y: (s +1) = Vi () + Vi (5) BY (5) + Vi (s + 1) CYi (s)  (271)

s>t

along this classical solution to find our effective utility. We to first rewrite the first term in (271) as a discrete
version of the integration by part:

S L) Vi) A (s +1) - Yi(s)

2
= Y S Mi(s ) ~Yi(s) A (s + 1)~ i (5)
1/ 1
= WA (E+) = Yi()+ 5 D Vils) AV (s+1) = 2Vi (5) + Yi (s — 1))

s>t

We gather all these contributions with the second term in the classical action (271) and use (268) as well
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as (269) to find:.

S Wi+ Vi) AN s+ 1)

2
s>t

—Yi(s)) +Yi(s)BY; (s)+Yi (s +1)CY; (s) +

5Yi (1) AY; (1)

= SV AV (s + 1) = 20 (5) + Yi (s — 1)) + Y5 ) BY: () + Yi (s + 1) OYi (9

s>t

FSYiO A (4 )

2 2

= DSV A(¥i(s 4 1)~ 2 () + ¥i(s — 1)) +

SV A 0+ 1) = Yi0) + Y5 (4 DOV 0) +
~ SV AWI(E+1) = Vi) + Y+ DY)+
= VDA (1) - Vi) + 5 (1) -
= SV ((A-C) (D= 1)Yi(t) + 3¥i () AYi (1)

To find the effective utility for agent ¢, that is Uers (Y; (t)), we also include the time ¢ contribution that was

CYi (1) + LYi (1) A (1)

Yi (1)) CY; (1) +

Y (5) BY: (s) — 3 Vi (s + 1) O¥; (s)

Ly, ) avi (1

=Y, () AY; (1)
~Y, () AY; (¢)

(272)

first discarded in our computation and consider the intermediate effective utility:

Ui (6) = 5

Y; (1) ((A-C)(D -

Y; (t) ( Al ‘
+Y; (¢ (1) (4)
0 AT+ [ AY
BA;; ( 3J )eff

+> 02X ()

>

X (t=1))

This is still not Ueys (X,

Before doing so, we can simplify Ué?} (Y;

e
st i,
Ju Jrk<j eff

D)Y: () + ¥ (1) AY (1)

24()
A(])

Yi(t—1)
{kj}ti>k>j

i (t)) since it depends on the X (¢) that should also be integrated out.
i (t)), by neglecting the contributions depending on ¢ — 1 only

(we will use the notation ~ each time we neglect such terms):

Ui} (Vi (1)) = ¥ () (A~ O) (D

A(i) 0 ( )
Y t it . ) Y ’Ll- A
+Y; (1) ( 0 gAY+ (A%)) ., ) () + V8 ( 241 {_ (€<J>

(1) AD (x

+> 02X (t)
Jj>i

= Y(A-O)(D

Xj(t-1)

D) i (1) + 5 ¥ () AY; (1)

S 1) 2B (1) — Vi (1) AY: () +

(273)
A@
Y (t—1)
() i
2A{jk]}z>k>7} )

{kj}ksj) eff

Vi () (A+C)Y; (t—1) + > 2X; (t) X (t—1))

J>i
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Since C' is antisymmetric, this is also equal to:

U (Y (t) =

and then:

Uty (Yi (1) ~

%Y()((A—C)( _1)+23)Yi(t)_%Yi(t)(A_C)Yi(t) Yi(t) (A+C)Yi(t—1) (274)
+ZQX £) ALY (X (t — 1))
%Yi(t)((AfO)(Df2)+2B)3@(t)+E()(A+C) i(t—1)— Y+Z2X X;(t-1)
%'()((A—C)( —1)+2B)1€(t)—%(Yi(t)—Yi(t—1))A(Yi(t)—E(t—l))+Yi(t)CYi(t—1)
+3 02X, (1) AL (X5 (- 1))

J>1

Yi(t) (A= C)(D—2)+2B)Y; (1) + Y; () AY; (£ — 1)+ ¥; (1) OY; (t— 1) + > 2X; (1) A (X; (¢ — 1)

7>

N | m\)—l

(Yi(tH((AfC)(D%H?B)’ (A+0)(Y; (tfl))))
x((A=C) (D —2)+2B)(Sﬁ-(t)+((A—C)(D—2)+2B)’ (A+0) (V5 (t—l))))
+3 02X, (1) A (X5 (1 1))

7>

Now, the Integration on X; (t) for j < i yields:

Uoss (X)) = 5 (F 0+ (A= O) (D=2 +2B)  (A+O) (Wi - 1)) (279)
x(%)(}@() <<A—0><D—2>+2B> (A+C) (it -1))).

+Z2X X;(t—1))

5 (0, Mis (Vi (0= 1))+ 1) — ((m (1)) My (Y; (¢~ 1)), +T)

i (VG (1), (N i+ 22X (0 45 (X, (= 1)

where the matrices used in the previous expression are given by:

Ni = (A-C)(D-2)+2B); (4~ C) (D -2 +2B), (A~ ) (D -2 +28),,) ((A-C)(D~2)+2B),,)

Mi = (Vi) (A=) (D=2)+2B)"" (4+0))

My = (Vi) ((A=C)(D=2)+2B)7 (4+0))

i1

j

and where the "T" means the transpose of the expression in the same parenthesis.
It can also be written in a form reminding the continuous time description:

Uess (Xi (1))

- _%X (t) My X; () — (Xi (t) — (Yi(l)>t) M;; (\}BXJ» (t—1)— (Yi(l))j) (276)

+% (Xi (t) — (ffi(l)>i) (]\7“) (Xz (t) — ( ) ) +Z2X X, (t—1))
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where we defined: _
Xi(t) = (Xi(t) - Xi (t —1))

and where the matrices used in the previous expression are given by:

Ni = ((A=C)(D=2)+2B),; - (A-C)(D-2)+2B),; ((A-C) (D—2)+23)jj)_1 (((a-c)(D-2)+2B),)
My = ((A=0)(D=2)+2B) " (A+0)) (V) ((A-C) (D=2 +2B) (4+0))

My = (Vi) (A=) (D—2)+2B) 7 (4+0))

Nii = Nu+ My

Adding up all effctv weight for all structres leads to consider the term

>3 2 (t) X (t—1))

i >

= 23X (1) AyX; (- 1)

with A;; = A if j <4, 0 otherwise.
By the same trick as before it leads in the continuum to the result:

ZX (1) (/Lj + (Aﬁ)t> X, (t—1)

Later in the sum on ¢, +X; (t) <A (Aﬂ.)t) X;(t)+iX;(t—1) <A,-j + (/Alﬂ)t) X;(t—1) will re-
placed by X; (¢) (AU + (A )t> X (¢t) for an overall weight:
_% Z X, (t) (Aij + (Aji)t) X; (1)
R (s + (4) ) 250 - 5 0 (A - (45)) %00
- —7ZX A%, (¢ +ZX ADX (1)~ 5 3 X0 AGX; (1)

The total effective action is then:

L0k 0 (K0~ £) b, <Xf 0= (), + 4 (0 - () () (0 - (59))
WZX ADX; (t +ZX () AYX ,,ZX () AVX; (1)



We want to rewrite the quadratic terms in a form that will be useful when looking at the continuous

approximatio. Introduce:
X (t) = (X (1)) and( 1)) ((fv(l))i)

and rewrite the various terms in the previous form:

(- (00650,

N_xw%@N*F@%)

The second term is a derivative that will cancel when integrating on t. We are then led to:

~ —%X () MX (t) + % (x@0) - (D)) (W) (x @0 = (¥Y0)) + X 0 ADX (1) - X () MX (1)
where:

i = (it + A9) 8 = (%) 41 = (a8, - 349

Since the symmetric part of M cancels when integrating over ¢, M can be considered as antisymmetric, and
M and A symmetric. We can write:

—%X(t)MX(t)+%(X(t)—(Y(l)»(N) X (1) = (YO)) + X (1) ACLX (1) — X (1) MX (1)
= 5 (Xo-wrx )i (o -wrx o)+ g (xo - (7)) (%) (o - (7)) x 0 (7) x 0
where:

N = A 4 NN
= N
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Appendix 3

The quadratric action has to a classical solution whose Equation is:
A(Yi(s+1) = 2% (5) + Vi (s = 1)) + 2B (Yi(s) = V) = C (Vi (s +1) = Vi (s = 1)) = 0

The solution of this second order difference equation with initial condition Y; (¢) is:

(vi(s) =¥ M) = D= (vie) - 7,1V) (277)
where the matrix D satisfies:
A(D*-2D+1)+2BD-C(D*~1) = 0 (278)
(A-C)(D-1)*+2(B-C)(D—-1)+2B = 0
(A-C)D*+2(B—A)D+(A+C)=0 (279)
writing B = A + § one obtains:
(A—C)D*+20D+ (A+C)=0 (280)

The unicity of D is granted by the problem at hand. We look for a solution whose [ expansion is obtained
recursively, and whose first term is identical to the one obtained for § = 0 in the inltlal problem. To do so,
we can find, at least, a recursive solution to this equation. Rescaling A — %, C — f’ D can be obtained

as a series expansion in v/, Y (\/B)n D,,. Equation (280) becomes:

(oo}

S0 (1—2(\/5)"Dn>2—2<5+\/B(A—0)) (15 (v5)" 0. +2(5 4 v

=1

(A-C) (ZDan - k>+251) ))2(51+\/B(A0))+2(5+\/BA)

k=1

<\/B(A o)+ i (\/E)n ((A ys) (Z Dan_l_k> + 26Dn> + 2\/551)1) +2/BC

k=1

n=1

/\
,’L
Q
+
iyt
/—'\
v
/\:

(A+C)+ f: (V5) ((A s) (f: Dank> + 25Dn+1) 426Dy =0

k=1

As a consequence, the first term is
51 A+C

2

Dy =—0" 14-0) <ZDan k)

and
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Appendix 4

To solve the class of models presented in the text, the equation (280) can be cast into the block form:

- AD AV + B B
0 = VB| (Gors),r G o " oo (@) <1‘2> D
A% {W’A?j‘)k}i>k>j} Bi, {5Ajj + (Ajjj )eff ’BQQ}
Jr\/B A.gji‘) {_(E@k};@)eﬁf7Af{JJ‘_)k}i>k>j}
with: B F
=G i)

is the block decomposition of D imposed by the matrices e
In most systems, the "per se" inertia egz) is null. If moreover Ag»? = 0, that is agent ¢ is sensitive to his
substructures goals, but not directly to their actions, one can find F and F' as functions of the other matrix

blocks. Actually, given that in that case (280) writes as:

() 40)
AD...

i )

0 . Av(i) , AY + B By
0 = VB 0 {(E{m‘}f k)eff7AF{]];)j}i>k>j} D* + B, {514%) n (A%))eff’Bm} D
0 0
+v/B A9 {(6({§>k}21c<j)effAg)k}bbj}
one can divide the equation (280) in two blocks:
AD
0 = VB {(Egv)j}j; k)eff A9 } (GE+ HG) (281)
2 ALk Vi k>
AY 4 By Bz

E 0
+ i j + /8( j )
Bl {BA§-;+(A§-§-))€”,322} (G) VB
and:
AW
. 1/‘7
0 = \/B {-(E%ﬂc)j}pk)e” A } (GF+H2) (282)
2 )

{kj}i>k>j

AD 4 B Bis 0
(1 F (7)
+ @) 4 (40 ( ) +VB | [ (B 40
Bi, {5Ajj + (Ajjj )eff’Bzz H P s ALKy ks

The first one (281) allows to find E. Actually, the two equations of (281) yield:
-1

( () )
— | € .
{kjtizk ), ; i B ;
9 L ) Aijk)j}i>k>j <B§2E + {BA;J‘) + (A§§)>efj. ) 322} G+ \/BA%)>

(283)

(GE+HG)=—| /B
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and

(9)
i ( {k]}g>k) P
0 = (Az('z‘) +B11> E + B12G — \[A(J) VB D) F{ch)j}z'>1c>j
x (B{zE + {,BAg.? +(49)) » ,BQQ} G+ JBAE—?)
so that:
(o) Ty
3 J J €
E (A )+Bll) \[A \/B fﬁ Af{jk)g}z>k>7 Biz (284)
(o) B
iYizk), ; j
x [ VBAG | | VB —— Al ({5A§.;)+ (49) . » }G+ NG A(”) ~ B1»G

normalize AE—? =1, and use that (Agjj))

can be considered as symmetric.

eff
G) (4 ! (?J)k}Pk)eff
B BA;j (Ajj>6ff 2 ATk
By = ﬂAJ) (A(J))f AEJ?)
@ (4D E AW
TR 4 (Ajjj)effAjjk’ )
> ) 1 - EJJ' izk),

322 _ ﬂ <{m’”eff A{jk}}l>k>]}> (A%_))eff ({(’“}Qkff

{Jk}7>k)pff A(]

(e ()., (1

({
qe

(AE? + B11) - Aﬁﬁ)

It

(cfy521)
{kiYizk eff A(J
2 {jk}i>k>j

(4)
3i

(A

0\ ! ( jk}j> )@
(A§;)>eff ({ {k} et A({J]k}z>k>]

(e

() ) N
{kj}izk eff
2

)
{kj}i>k>j

_ G (ADYE 40 o
_ (1_5/1”. (Ajj)effAﬁ +Bll) —1

Thus, the expressions for F simplify as:

( €))

{kJ}J>k)
2

-1

(4)
{kj}i>k>j

({849 +(a2) .

161

( bj}ﬁ k)(,ff A(]

L

( )] J> )p
} + {WW A{]k}z>k>]

€

{jk}i>k>j

2

1 —1

t
B12

Pa}

( <{Jk}J> k)eff A(])

)
/)

2 {jk}i>k>j 2 {jk}i>k>j
) . . N —1 )
(%) (4) (J) (4) (J)

{jk}i>k>j

)

G+ fA(”> —B1,G

(285)



Similarly, the second block (282) leads to:

— (elyson)
0 = 3 M § RN©))

2 {kj}i>k>j

(?%k)
J <J -
+V/B vA?j)k}i>k>j

(GF + HQ) + Bo F' + {5145'? + (A%))eff,Bm}

yielding (GF + H?):

~ (i), -
757 .
(@) = — | VB A0

( ) )
i . {_]]c}k<_7 .
x | BloF + {6A§'j) + (A%)>eff ’B22} H+ /B f’A?j)k}Dkx'

and after coming back to (282), the expression for F:

-1

)
) ( {]’“’}P’“)eff
VBAY | VB LAY

2 {k]}7>k>]

{Gk}Yi>k>j — B2t

x {BA§§)+ (A%.)) " }H+\[ M _AY)

The resolution of the problem is thus reduced to a system of two remaining equations:

(VBADG + (A7 + Bn) ) E+ (B +VBAGH) G =0

(\/BAZ(?)G + (AE? + Bn)) F+ (Bm + \/BA§jf)H) H=0

where F and F are given in (284) and (53).
Multiply the second equation (290) by H~'G and compare with (289) one obtains:

FH 'G=EFE

This can used to write that:
(GF + H2) H'G = (GE+ HG)

and, using (283) (287), one is led to:

—1
{jk}z>k>] H™G

(Jj
st (s (49) o v B g

= (Bng + {514%) + (AS-?))Eff 7322} G+ \/BAﬁ))
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(287)

(288)

(289)
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and using again that FH G = E:

(9)
/B ({Jk}k<J)ef'f A9 e = /pad)

9 ' jkYi>k>j

One can thus express G as a function of H:

( g)k}k<J)eff ) :

()
2 GRS k> AjZ (291)

The all problem then reduces to find H. To do so, one uses (286):

( () )
€{kitizk . ; ,
0 = VB +,A%}i>k>j (GF + H?) + By F + {BAE.J? + (A%.))eff,BgQ} H (292)
- (¢ ?L}k ).oss
J <J ;
+VB ’A?j)k}i>k>j

which is, after expanding the terms involved in this equation:

() G )
7 j> J <J . .
eff 1) N UVRIERISeff o 4(9) €))
Vo 2 s Alkjyisk> »Afikyisk>g Aji + Bz |(293)
(o)
) N WRIIEE ()
x [ A B A{k]}1>k>j
()
(@) 4 (A4 J <J CNURIRSI epr ()
g {BA- +(43),,, e H+\f s Afkyisksg (| — Bl
()
Jj iz
eff 4() 2
+VB A{Jkg}z>k>j H
() i )
(4) €) URM<I ) cry ()
+ {/BAJJ T (Ajjj ) o f }H +V8 A kyisks)

This equation completes the resolution by yielding H. However it is simpler to solve if we cast it into an
other form through a change of variable. Actually, using (291) and (53), equation (286) can be organized in
the following way. Regroup the terms proportional to F' and let:

((y) ) !
MRS epp16)

- G\~
H =H 2 kN>R +\/B(Ajjj)eff
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then:

( () )
{kjtizk
eff 40)
\/B{Q A{JkJ}z>k>g (G+ Boy) F
( €) ) (4 1
— e .

{kiYizk) crr () ({7k}k<7) FoAG) o

= (\/B va{kj}i>k>j H f’A{jk}i>k>J‘ Aji

- (GF{JI;)‘} ‘>k> 1
THIZE eff 40G) AG)) T 4W)
2 VI kjYi>E> ) ( ) I

- (ef{Jk) } k) ( %J)k}k ) - 1
Jjti= ., . J <Jg . . . — .
eff 40) eff 40) () ()
2 »Afisass (| H 2 P Ajkyizh>j +VB (Ajj )eff A

_ (e(j) )
N\ HAkibzk) AW

(J
9 {kj}i>k>j A
A

{kJ}J>k f )

9 {k7}1>k>7 {kj}i>k>j

(9)
1
A(J) + ﬂ)
eff

- (G%}DQ n }

(9)
— (e
({kﬂ}ﬂ>k>eff Jk}J>k N UMIFR eff (@) ! () -1
- 6{ 2 A{kg}z>k>y A{]k}1>k>ﬂ (H N (Ajj >eff>
= (Dhnes)
J <J
eff  40)
X 2 A{]k}z>k>]
The remaining terms
() (i)
B2k epp 4 G) 2 (4) () IMRST) efp 4 (5)
VB 5 Afgyisess (H +{5Ajj + (Ajj) o B22}H+\F s Afiisk>j

can also be factored:
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() )
()., () 2 @) 4 (40
VB 9 A{kJ}l>k>J H” + 4 BA;; + (Ajj )eff’BQQ H (294)

- (€g)k}k<j)€ff

(9)
+\/B f’A{jk}i>k>J’

( () )
N oy )
2 {kj}i>k>j

g <{BA§? =(45).,, ’322} (H - (A%))eflf> i ﬁ))

( () )
NS gy 0
2 1A GkYi>E>)

VBH (H’— (A%));flf) L M A

2 {kj}i>k>j

And (294) becomes:

—1

(9)
. . ( {k]}j>k)e
0=vB  HaAPAD | TR A
X (({BA@ +(49) 322} (H’ = \/B(A(”) 1 ) + f)
37 37 eff ’
( ?’*)J}Pk)eff () o) (Eg)k}j%)eff ®) ' @) !
- 5 9 A{k]}z>k>J (Ajj )eff 2 A {jk}i>k>j <H - \/B (Ajj >eff>

—1

)
N1 - (E{kj}pk)e ;
+V/BH (H/ \[(A( )) >+ %’A%wm

eff

X <{ﬁA§? + (A%))eff ,BQZ} <H’ . (A%))e—flf> N \/B)

or equivalently:

{k j >k
0= (VBH'ADAD +1) { TS AD e

<({oa + (42),, 2 f;>* )+ i)

(J)
{Jk}3>k -1
1 4(3) 4(9) ) N WHIER eff Al H' ()
VoA A (43) ( A kyisrs ( VB (45 )eff)

{Jk}.]>k "ff ) , () -1
+V/B (H’ _ AD ey ¢ | (= VB (4 )eff

(J)
eff
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f (({J)"}Pk)eff A(J) / A(j) -1 : . n—1 £
actor by —— Ak H — \/B( 5 )eff on the right, multiply by (H’)" " and fac-
tor by <\fA(])A (H')_l) on the left yields:
O—([A(JA(j)+ )1)
. -1
(9
<6{"7}39’“>eff 46)

2 Yy kjri>k>g

) !
; . -1\t ( {Jk}]>k> .
x ({ﬁA§j> + (A;jj))eff 7322} +VB <H/ ~ /B (Ag.aj)) ) ) fwﬁlg)k}mn

eff

(R ) (1)

or, which is equivalent:

(4) _
({JW}QM)- {k7}l>k>7 A(Z (A%))eff ,B22} + \/B (H' — \/B (A%))eflf> 1)
( ({JJ)’“}P") _NUBPE epp 40
X B) Afyis k>
() V(A ) -

For later purpose, note that the transpose of this equation shows that (H’ )t is solution for the same equation.
Given the unicity of solution when g8 — 0, (H’)t = H’, thus H' is symmetric.

This equation, once solved, allows to find E, F, G by (303), (53) and (291), and then the dynamical
matrix D from which we derive the effective action, as explained in appendix 1. The dynamical matrix D is

then: ) -
p-75(6 r)

We now include the coefficient ﬁ in the definition of E, F, G, H.

Havmg found D, we recover the matrices needed to compute the effective action, by finding an expression
for £ (A—C)D+ QB) However, since,
((A-C)(D—-2)+2B)
= ((A-C)D+2(B—-A4)+2C

and C' is antisymmetric,

(A=C)(D-2)+2B)° = (A—C)D+2(B — A))°

0 TN(E FY\, (A B2\’
0 © G H By As

[ TG+A, TH+By \°

= oG+ By OH+A,

Which can be rewritten:

(A= C)D +2B)°

DN =
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with:

r = /BAY

0 = \/B _(6?]27}2%)5”7 gi)j}i>k>j
A = AY 4By

Ay = {BA%.) + (Ag.g))eff : 322}

and Agf) normalized to 1. By construction, A; and Ay are symmetric matrices. Given (303), (53), (54) (293)
and (295) it yields:

-1

_ (e(j.) )
VRIRST) egs )

I'G+A, = \/BAE?)H 9 {jk}i>k>j Aj(‘jz:) + 41 (296)
@ ( @Y ) 40
— AY (H_\/B(Ajj) )Aﬁ + A
eff
(9)
, N\ -1 - (e{jk}kgj) ,
_ (4) () eff  40)
'H = Ai? (H/ - \/B (Aj]j )eff> 9 ’A{]jk,}i>k>j
B ( ) ) _ ( () ) -
€ - €. .
{kitizk ; {ik}k<yj ; .
_ eff 40) eff 40) )
oG = D) ’A{jkj}i>k>j H 9 ’A{ij}i>k>j Aj]i
- (6%7]'(7)'} ‘>k) 1
_ TIIZ%) eff o 40) M\~ ()
= 05 A (HI -V (Ajj )eff> Aji

o\ -1
Since H’ is symmetric, as explained before, and since (A%)) i is symmetric by construction, then I'G 4 1
e

is symmetric and moreover IH = (©G)". Moreover,

(6?12 } k) 1 (E?)k}k )

Jtiz ; S\~ Jk}k<j ;

i eff 40) o 2 ) eff 40)

o = 92 P kjYi>k>j ( - \/B( j )eff> 2 ’A{jk}i>k>j

is also symmetric. As a consequence:

s _
(A-C)D+2B)” = OG + By OH + A,

N =
N —

((A—C)D+2B):( LG +A TH+ Bz )

and:

-1
((a-c)(p=-2)+2B)%)  (a+0)

B T, — (TG + Ay) " (TH + Bia) x Ty (00
- *(@H+A2)71 (@G+Bgl) X Tl TQ ® v
[ =G+ A) T (TH + B1a) Yo® — (DG + A1) ' (TH + Byy) Tl

- Ty ® T,
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where:

T,

((FG + A]_) — (FH + Blg) (@H + Ag)_l (@G + B21))71
Ty, = (@H + Ay — (OG + Bay) (TG + Ay) "' (TH + B12))71

The matrices intervening in the effective action (275)

Ni = (A-C)(D-2)+2B); —(4-C)(D-2)+2B), ((A-C) (D -2 +28),) ((A-C)(D-2)+2B),,)
= TG+ A, — (TH + Byy) (OH + Ay) ' (OG + Byy)
M = ) (-0 0= +287) 4+ )

= —(Na)(TG+ A1)~ (CH + Bi») (@H + Ay — (OG + Boy) (TG + Ay) ™" (TH + B12))_1 rt

My = (V) (A=) (D—2)+2B) 7 (4+0))
= —(Na)(TG+ A1)~ (CH + By») (@H + Ay — (6G + Byy) (TG + Ay) " (TH + 312)) et

Where the various matrices are given by (296).

When Al(g) is (m + k) x m (that is, AZ(-;) has more rows than columns), one can go further in the resolution
and obtain more tractable relation than (293). The reason is that in that case, the dominating agent has a
number of action variables greater or equal to the number of substructures. This over determination creates
some symmetries (possibilities of switching the way of action to get equivalent results).

These symmetries reflect in the following way: Consider k& matrices V; | = 1...k where dim(V}) =
dim (Ag?) which is mx(m + k). Each V] is filled with 1 in m places and 0 elsewhere, such that rank (V}) =

Coming back to (289) and (290), we multiply the first equation (289) by (V;)" on the right allows for
expressing H as a function of G.

(\/BA(”G + (A R Bn)) EW)' (Bu - fAU)H) )'=0 (297)
(fA“)G + (A“) + Bu)> F+ (B12 + fA‘”H) =0 (298)

—1 . .
Then multiply the first equation by (G (Vl)t) and (290) by H~". Then, since (\/BA,(;)G n (Agp + Bn))
is a square matrix one obtains:

B (Gm)t) " =ru

Given (52) and (53) it is equivalent to:

(o2, ) 30 o)

- (ef{j‘)k}k< )
_ (1) () IRRST ) epy 4 () -1
= ({BAjj + (Ajj )eff,BQQ} > +B - 9 A{]k}z>k>j H
that is:
¢ 1 - (Gf{j)k}« )
(9) N\ _ IRKST ) epp 4 () —1
(i) (@) = 0 o Ay
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That expresses H as a function of G:

i - (G()) ((V,A;;>)t>l ~(hees).y )

D) A kYi>k>j

With E, F', H expressed as functions of G, the all problem consists now in finding G. However, given (291):
-1

—(e(j? )
UMW) eps () A0

G=H 2 k> k> ji

one obtains:

¢ = (¢wm)) <(V5A§§))t) L

X1 (a9)

Nt —1
with X = (VIAE?)) (G (Vl)t> . Then, the all system reduces to find (G(Vl)t)7 or equivalently X

which appears to be a more convenient variable. With that choice of variables, H rewrites:

—(e(j.) )
1 URISI ) ey 4)

H=X" D) Pk Yi> k>

However, the independence of H in [ yields k — 1 constraint equations, that ultimately reduce the free
parameters to (G (Vl)t). Actually when [ # m:

H

(') <(V1A§§))t) - _(6%”%7A<j>

2 {jk}i>k>j

)

= (cww)) ((VmAg))t)_l MAQ')

9 P jkYi>k>j

that is:

(¢wm)) = (¢W)) <(VzA§-§f))t)1 ((WLAZ‘-?))t)

If V,,, is partitionned in two matrices:
Vi = (V,;”,V,,(f))

and Vn(ll) is transverse to V; (by transverse we mean that the 1 of the submatrix V,S) are not in the same

columns as the 1 of V}), the constraint allows to express rank (V,SP) parameters of V; in function of (G (Vl)t>

that remain the parameters to determine:

(6 (vi00) ) = (¢mr) ((leEjf))t)_l (((v00)49)')

This allows to find G as a function of (G (Vl)t) Actually,

(6 (via)') = () (wa) ) (((ve0) 43
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| o (1) = ((uag)) () )

-1 ‘
allows to compute G (AS)) \/BAE? in the following way:

V-1 ,
Partition G' and (AEZ)) \/BAZ(-;) along V,\") and V:

¢ = (o((0) (o))
(c(u) (con))
VBAY) = ( ;) >\/BA§§)

where Vl(l) is defined by V; = (0, Vl(l)).
As a consequence:

(VBADG + (AL + Bn)) = <\/BA§§>X‘1 (A9) + (4l +Bu)>

and the equation (289) becomes:

<\/BA§§I>X1 (Agjf))t+ (A§?+Bn)) (D) + (Buz + VBAJH) G (W) =0

which is equivalent to:

(VBADx (49) 4 (42 4 50) ) B0 (G 0a) (299)
= — <B12 + \/BAE;)H)

( ) )
RIS ) oty AV

() yv—1
— | Biz +V/BAY X~ 5 Cyisksj

9 {jk}i>k>j

1 - (é{j')k}k< >
_ (BA(” (AU)) +/BAD X ) ST erp q)

Use the expression for By; multiply by V; and simplify by (WAE?):

(Vx— (ag) + (va@) " vi (14 ) (a2) | a9) B (60)) " a0

G L _(eg‘)k}k@‘)eff )
_ (5(AJ)f +/BX™ ) 5 Ak,
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given that:

-1 ) - (Eggj}pk) TN -
t t j - e) j
s (con) " = A [{ 2 e a0
. B . -1
x (({BAE»? (A7), B}) G (VD) + V345 (sz) ~ BoG w) (¢my)

. -1
)
I NS (e{kj}j>k)eff e
= ij B) » Al kjyisk>j

(), o) 59
_(6@ )
—(ﬂAEjf) (AV.))];) VUMM err q0)

73 2 VRS k>
~(lyion) -
4 BIZE) err () (i) ()
= A3 9 ’A{kj}i>k>j (({ﬁAjj + (Ajj )eff ’BQQ}) + \/BX)
- (€§j‘)ic}k< ) 1 1
IBIEST ) eff o 4 (h) G\~
2 s Aikyisk>j —h (Ajj )eff
(D)
(E{J"“}Kj)eff )
o T
Equation (300) becomes:
_ () -t -1
(6 (A” )eff * \/BX )
EESNONG)! O\ " 40) 4G)
- (\/BX (49) A9+ (1+ﬂ (4 )effAji AY ))
~(lyson) -
TIIZR) eff o 4(5) (4) (4)
X f’fl{jfcj}»kn (({ﬂAH + (Ajjj )eff 7322}> + \/5X>
- (€§j'l}k< ) - 1
IRIRNST S eff 4 (5) O
X 5 Afikyisksj -8 (Ajj )eff
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that is:
(5 (A(’) e > (301)
<\//§X +,8 ):)A“ A(’)—H)

—1
{k3}1>k)e i |
L ) (), )50

(J)

{Jk}k<J>eff ) @)
% 2 P AGRyisr>g -5 (45 )

-1

This quadratic equation for X, when solved for X, allows to find the all matrix D. Actually, collecting our
previous results:

(cw) = x*(via)’

¢ = x! (AF?))t

ij

( {Jk}k<’)<’ff AV

-1
H = X 2 {jk}i>k>j
(i) h
Jjyizk), i j
g = |v5a® L A g <{5A§.j>+(,4§;>) » Bzz}GJr\fAm) — B12G
- (cfs) )

B () BIZR) epp 0 ()

F = \/BAJ fﬁl{j}q}»kx
AD 4 (40) H++/B ({j)k}k<J>eff AY) BiH
x| ds jj+( jj> » + T2 SRk (] T P12

Note for the sequel that since the equation for X can be rewriten in a symmetric form. Actually, set

Y = ﬂX—lJrﬁ(A(J) flf

the equation (301) is turned to:

(e ?mpk)eff ) - (i) () Y -
- — Ak BA;; + (Ajj )eff s Baa ¢ ) V0 (ﬁ - \/B)
(ralag+1) (Bhrnes)ers o0 - M)
({ P A{]J)k}z>k>a}> -8 (Ajjj >eff
or, simplifying by Y:
~(Bnn) G) - () ) Y !
- — Ak BAj; + (Ajj )eff B o )+ VB (ﬁ - ﬁ)
(Aﬁ)AEj) + Yﬁl) (&, ) -t -1
({727“ A({Jg)k}z>k>g}> - B (Ag']j)>eff
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which means that the two matrics in the left hand side are each other inverse (up to a minus sign). One
thus also have:

(5) -1
- "{kjmk)e, G) (%) ) !
({H’A{jkj}i>k>j}> <<{6Ajj + (Aj; )eff’322}> +VB (% N \/B) )
T I - D
({M’A{?k}bkw}) -5 (AJ’? )eff

whose transpose is (we recall here that Bas is symmetric by construction, as well as Ag-? by assumption
of the model, and (A(j.)> by construction):
93 ) epy

,(Emj J’>k>e _ -1 i _ t 3
e | () ({0 (00),, ) 959 )
(a4 + 097) | .
C 7(€f{j~’l')k}k<j)eff ) G\
ARk -8 (Ajj )eff

and then Y is also solution of the problem, which in turn implies that X is also solution of (301).
However, since we look for the unique solution X corresponding to the perturbative solution in powers of

Nt —1
3, one deduce that X is symmetric, X* = X. Moreover, since X = (VZA%)) (G (Vl)t) , one can also say

A
that X! = (G (Vl)t> <(VZA§§)> ) is symmetric. This is useful below.

Having found D, we recover the matrices needed to compute the effective action, by finding an expression
for 1 (A —C) D+ 2B)”. However, since,

(A-C)(D-2)+2B)
= (A-C)D+2(B-A))+2C

and C is antisymmetric,

(A=C)(D-2)+2B)° = (A—C)D+2(B — A))°

cu)(h 1))

<FG+1 TH >S

Which can be rewritten:

(A—C)D +2B)°

N | =

Il
I/
N
o o
@ -
~——
N

oG OH + A
with:
_ (4)
I = /BAY
(4)
— | € -
<{kJ}J>k)eff )
® = VB g Ak
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and Ag) normalized to 1.

IG+1 = /BAY X! (Agjf))t+1
- ( E{J)k}k< )
. _ J J eff :
g = \/BAZ(';)X ' f"‘l({%}okn
(?’“)J}P’“)eff BERON
ec = VB fA{kJ}Z>k>J X <Aij)

Since X ! is symmetric, as explained before, then I'G + 1 is symmetric and moreover I'H = (@G)t.

Moreover,
(e %&3 Vo) g ~ (Fhpees)
JYi= . 7 <J .
foAG) -1 eff 40)
OH = f ’A{jlcj}i>k>j X 2 ’A{;k}i>k>j
As a consequence:
1 s 1 ([ TG+1 IV:4
5((A—C)D—|—QB) _2((A—C’)D+QB)_( oG @HJrA)

and:

((a-0)(D-2)+2B)%)  (4+0)
LA ~(PG+1)"'TH
(rG+1)-rH (©H +2)" 6G) x (0H +A-0G(IG + 1)71FH>_1
—(0H +A)'eG

X ((FG +1)-TH(OH +A)"" 96‘)71

(00
o v
- TG+1)"'TH ~-(IG+1)"'TH
—1 —1
_ x(@HJrA—@G(FG—H)’lFH) o x(@H+A—@G(rG+1)*1rH) v

(@H +A-OG(IG 1) FH)_1

(@H FA-OG(IG+1)7! rH)_1 o (@H FA-OG(IG+1)7! FH>_1 v

The previous expression can be concatenated again.

H Gvt(vr)~'et

X~ let
(@H FA-OGIG 1) PH)

(\/BAE?G + (AE? + Bu)) V) (312 + fA(“H) V) =0 (302)
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() !
— | € N
. ( {k‘]}j)k)e ; i . .
o (\/BAS) ((\/g{ : ff’A%WM}) ({,BAg,j) i (A%))eff ,322} G+ \/BA%))) - BlgG)

(303)
(TG + A1) (TO (A2G +T") — B1»G) = — (B2 +TH) G

V(TG + Ay) (TOT (MG +TY) — BioG) (V)" + Vi (Bie + TH)G (V)" =0

(VIT) (GT + 1+ By, D) (07 (82G +TY) = BI,G) (Vi)' + Vi (Bia + TH) G (Vi)' =0

(GT +1+ Bj,I) (@-1 (AzG (V)" + (VzF)t) - B|,G (Vz)t) + ((VEFY1 (VilBYy) + H) GW)' =0
(GT 41+ By, (@—1 <A2 + (viD)* (G(Vl)t)_l> —~ B{1> + B, =-H
(TG + Ay) ™" (TH + By»)
= —TG+A)™" <(FG+A1)F <@1 (AQ + (Vi) (G(Vl)t>l> - Bgl)>

- T (@‘1 (AQ + (WD)’ (G(Vz)t)1> - Bil)

= —(TO7'(AG+T") — B12G)

OH + Ay — (OG + Bay) (TG + Ay)~ (FH+B12)

1
= < (GT + 1+ Bj,T) (6 <A2 + W) l)t) ) - Bil) + Bil)

+(6G + Byy)T ( 1(A2+ ) G ) BH>+A2
- ( (GT +1+ B4y T) (@ (Az + ( z)t)l) - Bh) + Bh)
+0O (GT + B4 T) ( 1<A2 ) B§1>+A2
- < (A2+Vl ) (con') ) BH+BH>+A2
= i) (o)
= —O'H!

N —1
By =0(ay)) T

(TG + AT (071 (MG + 1) — B1L,G) (V) + (B, +TH)G (V)" =0
(TG + Ay)T (@—1 (A2 4T (G(Vl)t)1> - B{2> +T (B}, + H) =0

OH + Ay — (0G + Byy) (TG + Ay) ™! (TH + Byy)

OH + Ay + (OG + Byy)T (e—l <A2 + I (G(Vz)t) ) - Biz)
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o) [(Gr + Ay) (@—1 <A2 + (VD) (G (Vl)t) 1) — B12> + (VD) N (ViBi2)

—1
+ (@G + Bgl)F (@_1 (AQ + Ft (G (W)t) ) - B12> + AQ
OH 4+ Ay — (0G4 Byy) (TG + Ay) ' (TH 4+ Byy) = —H™!

(TG + A1)~ (TH + Biz) (OH + Az — (6G + Bar) (TG + A) ™ (TH + B”))_l
— —(TG+Ay) " (TH+ B,)H (69
— (TO7! (AG +T") — B1,G) H (01"
— T (@‘1 <A2 + (WD)’ (G(Vz)t>1> - Bil) H (0"
= T(07' (A +O'HY) — By H (0

- T (@*1 (A2H (G)t)71 + 1) - B H (@t)A)

And ultimately the matrices involved in (275) become:

-1

Ni = ((A=C)(D=2)+2B), — (A= C)(D-2)+2B), (A=) (D-2)+2B);,) ((A-C)(D-2)+2B),,)

= TG+ Ay — (TH+ Bys) (OH + A) ' (OG + Byy)
My = (N--)((((A—C)(D—2)+QB)S>1(A+C’))H

= (V)T (07! (a0 (6) "+ 1) — B, H () )T
My = ( (A-C)(D-2)+28) " (4+0))
= ()T (07 (Aol (09 4+ 1) = BLH(0) ') ©f
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Appendix 5

For the strategic agent, the matrices defining the effective utility are given by 36, with, in this case:

(1) (4)
A = \/B( A(l)_?_A(J) {AA](CJ])TAJ?JZ}>
10 + BAf) (49)) CAW VB (A + Af )+{ﬁA<J> (49 ) 1 }
b= AW 4 40) A0 (40 401 ( A5 + 45 )
\/B( 1+ j1)+<{5 ij ( jj)eff m}) \/B{AECJJ),AJ)}

0 A AP )

¢ = \/B< (A() Am) {Ak]7 Au}

As described in the text, we need to find the expression for the matrix D, and the effective utility for the
dominant agent will be deduced from its expression. The matrix D satisfies the equation:
1+ BAW AW BAD AW
0 AP v W 40 JELAD 40 0 0
VB O | D+ @ 40\ (5AJ37 4 ) VB {A’W Aj } D+VB | 40 @My | =0
0 {Ajk} (ﬂA.j A.k) ) =1 Ajl {Akj }
o 5A(2) (A(.j})) A(.j)
l 73 eff k

J J

(304)
To solve this equation, we partition this matrix as:

E F
D= ( e >
and applying (284), (53) appendix 1.b allows to find all the parameters as a function of H:
) @) - (1 N aa@ (4D 40 i) i) 4G)
oo <\/BA% ((\/B{A{ka}bbj}) <{6Ajj) A 04y (AJ?Jf )eff Aji }G +VBAG )) - BAY) A5, G)
) ) @) 4 A) ) (4@ ) 3 ()
(\[AJ (\[{ {jlw}l>k>a}) ({IBA + A gAY (AJ ) » A }H+ f{ Mbbj}) BAD AY )

G¢=4a ({Agj)k}1>k>]})_l A;z)

The problem reduces to find H and H satisfies (293), whose expression, given our assumptions about the
parameters A%) = Ag) =1 in this particular case:

0= <\//§ {A({QJ}MN} ({A%}Dm})’l AY + le> (305)
(0 () (0 (02). 15 ) - )
+\[{ {kj}1>k>]} H?

ofpa + (49) B f i V{80,

Given our hypothesis concerning the agent’s interactions, we can use the following normalizations A%) = q,

Ag‘_]])k}1>k>_l =(1) - 81 where we denote by (1) the matrix filled with 1 in every row. As a consequence, one
can find the inverse of {A{ka}l>k>J}'

) -1 N-2_ 1
({A{jfw}wbﬂ}) RS i e Ll ey SO G
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AD A0 = 2 (1), N number of agts. Al(;)Ag.j,;) = ((N—=2)(1)+0;x). As a consequence we compute
some intermediate quantities involved in (305):

(544 (49) ,, Ba} = {48840 40) <1433 050720

({Ag‘)’c}bm}) - Nl— 7 (D)= ()

and

({Ais}) 4% = (57 0= 6w) el
a(}\&—l) ,.,1)" = Noil a,..,1)"

BAY ({AF{JJ)k}Z>k>J}) = Ba (1) (1) = 6jx) = Ba (N —1) (1)

We look for a solution for (305) of form:

H=\/BV (1) + /W

We first solve the case for N > 1 and consider N = 1 as a particular case.
Using first that all the matrices involved in (305) commute leads to:

0 = (VA {AG s }) AL A
(AR )™ ({5 (42),,, b1+ V3 {8hs00,) -5 {8k} 1))
VB LA s | H
+ {Mﬁ? + (Aj(i-))eff : 322} H+v/B{AD 05 }
And this expression can be factored ultimately as:
= (v (o)) o) 4740 0) ({245 (47),,, Pt 3 {500
(AR 1815 (V305 ) A2 {80

Replacing then for the various expressions involved in (306) yields:

0 = ((,3 (V (1) + W) <N11 (1) - ((m)) +,3> o2 (1) + 1)
X ((L+28+ BN =2) (1)) (V (1) + W)+ ((1) = d;x)))
+B((1) = 855) (V. (1) + W)* = B2 ((V (1) + W) + (1) = 51.)) @ (1) (1) = &30) (V (1) + W)

and this leads to a system of equations:
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0 = (2B+1)W —pW?—1)

o:v“ﬁ (N — 2)N4<

Va2 25 (V (284 1)+ BW (N = 2) +1) — Va2B* (V + 1) >N3
N -1

~Va2p? (V - %) (N —2)
V2B +a2B2(V-W)(V+1) =V (W=-1))

2
i ( —a’f (V - %) (V (28 +1) + W (N —2) + 1) + Va?B (8 — W) (N — 2) + Va2 g2 ) N

Q2B (W (V+1)+ (W =1)(V-W))—B(V2-2VW)

+< +a2(b’—ﬁW)(V(2ﬁ+1)+BW(N—2)+1)+VB(N—2)—oﬂB(V—%) (W (28+1)—1) )N
+(V2B+1)+B8 (W2 =2VW) +a? (B —BW) (W (28 +1) — 1) + BW (N — 2) + o*B°W (W — 1) + 1)

which reduces to:

_ 1 _ 2
W—ﬂ<1+2,3 N +1>

and:
B (N =1+ Na2(1+p)
0 = Ng N1 &
25(( 1)? + Na? (1+,6’))+((2+,6)N(N—1)a26—|—(N—3)N2,8+(4N—2)B+N—1)V
N-1
+((N—1)6+(1+B)o¢26)W2+B(N—1)(N+2a2+0426—2)W+(N—1)((N—l)a2,3+1)
N -1

Once V, W, H are recovered, one can ultimately find the other matrices that determine the dynamics of the

system. For G, one has directly:
— ©) ()
G = H ({A{jk}i>k>j}) Agz
NV +W ¢
1,..,1
O{\/B N _ 1 ( ? ? )

For F and F we use need the expressions for the matrices involved in the problem:

A0 ({A%Qj}i>k>j})il = a(l,..,1) (Nll (1) - (5jk-)>

1j

" B4 ({4 s }) = B (1) (1) = 856) = Ba (N = 1) (1)
Then E and F are given by:
E = /BAY ((\/B {48 }) - <{BA(1) + 49, 8AD (A )_flf A;f,g} G+ \/BA§§)>) —pAP A%a
= (L) (((1 F20 BN ~2) () ay/Fy o= (1, 1)t> +/Ba(l, ... 1)t>
—Ba(1,...,1) (1) = 3,1 aﬂ% (1,..,1)°
- J\?ﬂ (((1 +28+B((N—-2)N)) aﬁjv‘_/_NJ + \/Boz> — Ba?\/BVN?

—1+NV(1+8)
(N -1)?

N
= Ny/Ba?
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P ([A (\f{ {i)J}1>k>J}) ({ﬁAUJFA(a) BAﬂ(A(a))f A(J)}H+\f{A(ﬂ)k}1>k>J}) BAD AD )

= 7 (1 ) (U284 BV =2) W) VBV (1) + VB (1) = 830)) = Ba (L, 1) (1) = 456) VBV (1)
- (1,...,1)(Na_1((1+25+5 N)\/BVN + /B (N )—ﬁa(N—n\/BVN)
_ (1’”"1)\/BO[N71+NV(1+B)

N -1

The case N = 1 has to be considered separately, since for N = 1, {A(j ) } = 0. We can however

{kj}i>k>j

recover the solution by letting {A(j ) } = ¢, and considering the limit ¢ — 0. We look for a solution:

{kjYi>k>j
H = /BW. (306) becomes:
((BW (7" +8) > +1) (L+BYW + &) + BeW? = B (W + €) oW
or, when reorganized in W.

2

<ﬂe — 2B+« (,B + 1)) w2+ ((ﬂ +1) (BQQ + 1) +a?p — a26262) W +e (ﬂozz + 1) =0

Looking for a solution W = ew, yields by a first order expansion in e:

0= e(w ((ﬂ—i— 1) (Baz—i— 1) +a2B) +a?B+wid?B(B+1)+ 1)

and the solution w = fﬁ, which allows to recover the solution obtained by solving directly (304):
_ VB
= ——€—0
B+1

B1°

" ( ( {A&E}Dm})* ({BA AP, pal (49) » A§J,3}G+ m@)) gAY A(”G)
- (a( (1+5 G*‘\fa))—ﬁaeG)—m

o= ( (j) A({jk)]}1>k>j})_1 ({5‘4;? +A(]) BAj; i (A(])> eff Aﬁ)} H+ \/B{A({Jj)k}bkw}) 5A(j)A(J )
(a(e) ((1 +5)H + \/Be) —BaeH) -0

Having found the matrices E/, F', G and H so that the dynamic matrix D for the first agent is known, one
can find the effective action. We use the general formula (276) developed in the the previous section:

Uegs (X 0) = 5 (X)) = XO7) N (X0 = X0) = (3,0 = X07) T2 (X (0= 1) = X[ o)
- ; (%) - %) A\% (x5(t-1)- X)) + JX;ZQX 1) AD (X (1 — 1)
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where we have introduced some objectives X (z)e XD¢ for the first agent. In the text, these objectives are
set to 0, since we want to focus on the dynamlcal pattern of the system rather than on its equilibrium. The
matrices M;;, M;;, N;; are computed in Appendix 1, (36). They are:

Ni = ((A-C)(D-2)+2B)5 — ((A-C)(D~2)+2B)] (((A—c*)(D—2)+QB)fj)_1 ((a=-c)(p-2)+2B))

M = ) (-0 -2 +28)) a4 0))

i

My = ) (-0 0-2+2m) " (a+0)

j

where the superscript S denotes the symmetrization of a matrix. We first need to compute the symmetrized
matrix (A — C) D +2(B — A))°. Since C is antisymmetric,

(A-=C)(D—-2)+2B)° =((A—C)D +2(B — A)*°

As before, we start with the case NV > 1, and we will consider the case N = 1 later. For IV > 1, the relevant
matrices are:

0 AY a
(A-C) = \/B< 0 {A<§;)} ) = ﬂ( 8 (1(’1'5"_1)1 > (308)
0 0
e = ( b))
- Na? N71+1\1V(21+B) (1,..,1) aN71+N7\/1(1+,6’)
b= ( =i aN)V/leVUZLl.).J)t V(l)—HI/IV/ )

1+ BAY A(]

gAY + A(.j.))
( ) ( 77 77
ﬁAz] A f { j )

< 1+ﬁa BN -1)(1,..,1) )
L., 1) (1 +26)+6<( 9 (1))
And we find:

(A-C)D+2(B-A)

_ ( (14 Ba?) + Ba? NAYEL B(1,..;1) («(VN+W)+ (N -1)) )
N Ba(NV4+W)+(N—-1)1,.,1)" B(V(N=1+W+(N-2))(1)—8W +(1+28)

The inverse of this block matrix is given by:

N

((A—C’)D+2(B—A))_1:<

N~
~—

with:
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NB%(a (VN + W)+ (N —1))*(28 — BW + 1) -
(1+28) = W) ((1+28) =W +NB(V (N —1)+ W + (N —2)))

+ (1+ Ba?) —

NV +W
2N
(O‘ N1

y = (1,._’1)(( <B(V(N—1)+W+(N— 2)) — 52(2‘ﬁ§¥++%févwv?vi) ) a(NV+ W)+ (N 1)))

—BW + (1 +28) 1+Ba2)+ﬁa2NNV+W
e e (Q(Navfwli“zwll)w)<1> NV W) +(N=1)
o ( —ﬂW+<1+2g)+B A ﬁ(1+ﬁa2)+ﬁa2z\ﬂv¥%¥v )

-1
roo ((Brer-n e o) - g el ) )
—BW + (1+25)

These terms involve the following quantity:

T = <<B(V(N—1)+W+(N—2))—52(((;?;;)1[/;;%\71\&;?/ > (1)+(1+26)—6W>

o _ 2
(307 001y (v -2 - s Y

((1+28) — BW) ((1 +28)— W + N (6 (V(N = 1)+ W + (N — 2)) — g2 La@WVEW)+(N_1D) ))

(1+Ba2)+Ba2 N XEY

<(1 +28) — BW + N (ﬂ (V(N—-1)+W+ (N -2)-p3? é‘ﬁ?ﬁjﬁ&tjﬁ%&}}v >>

(@428~ 6w) (1428~ 4w N (B0 (V1) 4 W 4 (V- 2)) P el )

NVIW
1+Ba2)+ﬁa2NN7:rl

Omne can compute (((A —C)D+2(B—A)"'(A+ C)) by using (308). Some blocks are involved in the
computation, that are:

xﬁ(a(VN—i—W)—&—(N—1))(6(V(N—1)+W+(N—2))(1)—6W+(1+2ﬁ))_16(a(NV+W)—|—(N—1))

= (1,.,1)NB (a(VN + W)+ (N —1))*
BV IN-DFW+N=2))(1) — (1 +26) =W+ NGV (N —1) + W+ 5 (N —2)))]
(1+28) = BW) (1 +28) = BW + NB(V (N — 1) + W + B (N —2)))
x (1,..,1)"

—(1,...,1) (Ba (VN + W) + (N — 1))
X (B(V(N=1)4+W+(N=2)(1)—BW+(1+28)" B(a(NV+W)+ (N -1)(1,.,1)"
B2 (a(VN 4+ W)+ (N —1))?
(1+28) = BW) (1 +28) = BW + NB(V (N = 1) + W + (N - 2)))
x[B(V(IN=1)+W+ (N —-2))N>—((1+28) — BW + NB(V (N — 1)+ W + (N —2))) N|
B NB2(a(VN 4+ W)+ (N —1)) (28— W +1)
(1+28) = BW) (1 +28) = BW + NB(V (N = 1) + W + (N - 2)))
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NV +W
N -1

7(1,..,1)tﬂ(a(NV+W) +(N-1)) (ﬂ N (1+ﬂa2)) Ba(NV+W)+(N-1))(1,..,1)

- (1+Ba%+wﬂﬁNNV“V

And as a consequence, the blocks involved in (((A —~C)D+2(B—A)""(A+ C’)) are:

(((A —C)D+2(B-A) M (A+ 0))11

o _ 2
(307 =1+ w6 ) - s o

(1426 = 5) ((1428) = B+ N (B (N = 1)+ W+ (V= 2) - 32 (B0 ) )

« _ 2
((1 1 28)— BW + N (ﬁ (VN =1)+ W+ (N -2) - 5 éjﬁ;;@tﬂw)) N

((0+28) = W) (14+20) = B0 4+ 8 (B(V (V ~ 1) W4 (¥ - 2)) = 2 L0000 )
B(a(NV+W)+ (N -1))
xv/Bo (14 Ba?) + Ba2NZHY

aV/BBN (1428 — W) {SUOWEO )

((0+28) = W) (14+26) = B0 + 8 (B(V (8 = 1) W+ (¥ - 2)) = 2 L0000 )

((A-cyp+2(B-a) " (A+ 0))17

(¥ -1)
((0+28) = ) (14+20) = 00 + 8 (B(V (V — 1) W4 (¥ - ) - % L0000 ) )
2NV W)+ (N -1))7)
(1+ fa?) + fN VW

2 (@(NV + W) + (N —1))°
_((1+25)—ﬂW+N<ﬁ(V(N—1)+W+(N_2)>_B (1+ﬁa2)+ﬁa2NW>>>

- 1,.,1)

X ((ﬁ(V(N—1)+W-|—(N—2))—ﬁ

(a(NV+W)+ (N —-1))
b (1+ fa2) + a2 NIEL

(a(NV+W N
(V= 1) (1+26 = BW) 35 iy

- 7(1731)5\/6

((1+28) - W) ((1 £26)— BW + N (/3 (VN = 1)+ W + (N —2)) — 6> {20V 1 ))

The matrices involved in (307) are then ultimately obtained as:
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NV +W
N11 = (]_ +ﬁ0{2) + ﬂa2Nﬁ

—B2(a(NV + W)+ (N —1))*

a(NVAW)+(N-1))?
(B @ =1 W (= 2) - P O ) e

X

((0+26) = ) (14 28) = W4 3 (B(V (N = 1)+ W4 (- 2)) = 57 (200 ) )

_ 2
N ((1 1 28) — W + N (B (V(N =1+ W+ (N-2) -5 <ﬁ(févavz>++vg$z(vjv”§ll}”>)

((1+28) — W) ((1 +28) — W + N (5 (V(N = 1)+ W + (N — 2)) — p2La@V+HW)HN_1)7 >>

(1+Ba2)+ﬁa2N7N1¥flw

aV/BON (1+28 - BW) (ST awew
My = —(Nu) =

((0+20) = 6W) ((1428) = W+ N (B (N = 1)+ W+ (V= 2) - 32 (B ) )

VB(N = 1) B(1+28 — W) {20y

1+B02)+Ba> N S+

Mlj = - (Nll) (17 s 1)

(1428) -W) ((1 +28)-W+N ((v (N-1)+W+B(N-2)— <g<fﬁ{;)@]@<yg;§g >>

Having found the matrices Ny1, My, and My, the full action for the system of agents is:

Uers (X5 () + Ve (Xi (1) = 3 (=X (0 A5 (0) 42X (1) AT (X (¢ = 1) +2X, (1) A7) (X2 (1 - 1))
+% (Xi (t) - )‘(Z(i)e) Ny (Xi (t) — XZ_(i)e> _ (Xi (1) - Xi(i)e) % (Xi (t—1)— Xi(i)e)
: j<i (Xi © - Xi(i)e> A\/j% (Xj (t=1) - XJ('i)e>

Then, the mean dynamic, saddle point of the previous global effective utility, is given by the dynamic
evolution: ' 0
X-(t)—Xi(")e) i [ X=X <Xi(f—1)>
! = v(2)e + M.
( X; (t) Lxe-1) - xW 2L X5 (t-1)

o (Nu) T My (Ny) T My
My = < 0 0

N YT

On one hand, the previous equation leads to an equilibrium defined by:
X _ X(i)e > XZ . *‘(i)e ( Xi )
T A — ‘2\4'1 _ _’LZ_ . + M2 7
( Xj Xj— j( ) X
=(i)e 7 (i)e
- (N ) - S
0 X;
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with:

M =M + My = ( (Z\fll)(;1 My (N?l))__l ]lwlj )

On the other hand, the matrix M and its eigenvalues yield the dynamical pattern of the system.

M = (N11) ™' My (Nua) ™" My
! (1)—-1
_ [ —NazxZQ —(1,.,1)Q
a(l,.,1) (1)—1
with:
o (N —1) (26 = W + 1) STE Ay
1)) 2
((1+28) - W) ((1 +28) - W+ N ((V(N — 1)+ W+ (N —2)) - G ))

whose eigenvalues are:

1 1
—1,§(a+1)i§\/a2—2(N—1)a+4Nb

with:
o aVN (2 — W + 1) 0
(1428) W) <(1 +28) - W +N <(V (N—=1)+W+B(N-2))— %%gmgg%ﬁ)
— aN(N=1)(28—-W +1) gﬁ%ﬂfﬁ—;;
(1+28)-W) <(1 +28)-W+N <(v (N=1)+W+5(N-2) - %fﬁgﬁ;ﬁ%?)

Having found the dynamical pattern for N > 1, we can focus on the case N = 1. For N = 1 these
formula reduce to:

-0 = vi( o %)
o) = vi( 0 )
+=E —=F 0 0
R A
N (;BG w) (- 0)
14+ pa?  Bo
B-4 ( Ba 1+6>

leading directly to:

((A—C) (D -2)+2B)° ((A—C)D+2(B - A)°

. 0 « 0 0 n 14+ 8a? Pa
o 0 0 -5 0 Ba 1+p

_ <1+a2ﬂ5"+21 afB )
af 145
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and we find:

a2

s\t T B—a?+a’B11
(A=) (D=2)+2B)°)  (A+0) = |, sudbrsadsoobisn
& (apZrap)(F—aZta?Btl)

0

As a consequence, the coefficient for the effective utilities are:
& app LLtF r a8l 1)
F+1 (B + ap) (B—a? + a2B + 1)

Ba?
p—a?+a?f+1

Nii = 1+Oé2ﬂf

My = (Ni)
My = 0

The previous formula for the equilibrium and the dynamic matrix are still valid. The matrix M is:

Ba® 0
M = B—a?+a?f+1
« 0

with eigenvalues o 0.

2 B
B—a?+a?f+1’

186



Appendix 6

Recal that the model described above starts with utilities of the kind:

1 1 - - .
—S G =Yt = 1)) AN () Vit - 1)—5 (Y0 - ¥ V) AD (i) - ¥ )i e (vie-1) - 7,)
(309)
where:
(1) (4) (9)
i Aif + A5
A = /8B (i) ) 7(5&).7‘}%.1)6; *(Eji?km k)eff
A+ A G C
J J
A{kj}i>k>j’A{jk}i>k>j
Ag? + Bi1 — \/BES) {\/B (AE;) + AE?) ,Bm}
(4) )
B — ﬂA]‘] + (A]j )eff’B22
{\/B (Ag? + Ag?) anz} \/B{ ’(E({Jk)j};@)eff’ 7(6({Jj)k}2j2 k)eff }
(9) (9)
’A{kj}i>k>j’A{]jk}i>k>j
0 AD A0
e(j). < - e(j.) .
c = VB| (A@ _ A<_J:>) { ( ““”;”)eff, ( ““;/’“)eff, }
7 I () ©)
_A{]kj}i>k>j’A{]jk}i>k>j

Start with the utilities of the three agents:

—~ ) +1—wt—1)—an(t)s, (t—1)

_,p<1_w(t—1)—f)2—%y(w(t—l)—d})z—%si(t)_

N RN~ DN —

and put them in the following form corresponding to our general model:

(n () + 1)+ 2an (t) s, (t —1) — 2n () w (t — 1)
= (n®+1*+2an@) (1 0 0)st—-1)—2n{t)w(t—1)

2 2
s(t)([d)s(t)+p(1—w(t—1)—f) Fry(w(t—1) — )

= s(t>(1d)s(t)+(p+v>(w(t—U— ’ (“f)_ : w)2

(w (£) = wo)® + 802 (¢ = 1) + 2vm (t = D)w (§) + 2n (¢ = 1) (1= w (8) = ) + 2050 (t = 1) (w (1) - F)

= (w(t) —wo)* + 00 (= 1)+ 2n (¢ = Dw(t) — 2usp (= 1) (w(t) = (1= F)) + 250 (¢ = 1) (w (£) — )
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Effective action for the first agent:

Starting with the less strategic agent utility
nE) @) (@) —2nt)(Dwt—1)+2an() (1 0 0)s(t—1)+2n(t)
we add some inertia in this agent’s behavior:
)M (@) —eant)nt—1)—2n{t)(DwE—1)+2ant) (1 0 0)s(t—1)+2n()
and the matrices defined in (309) are:

A = —61\/,5
B = 1—61\/5
cC =0

The equation for the dynamic matrix (310)
(A-C)D*+2(B—A)D+(A+C)=0

reduces to:
AD?4+2(B—A)D+AD =0

with solution

D=1-+/-24"1B
61\/>D2+1 61\/B
L 2(1—e1v/B)
D = 1 =73
v _ 1
’ 1-eVB

in the limit e; — 0

((A-C)(D-2)+2B)

_ 6\[( (12\73\/>) )+2(1_€1\/E>

— 2
and the effective utility (which in this case is also the intermediate effective utility)
(Yi )=V 4 (A-C)(D-2)+2B)"" ((A L0) ( (t—1)— Y“))))
X ((A=C)(D-2)+2B) (12 ) -V +(A-C)(D-2)+2B)"" ((A+ ) ( (t—1) — ff;”)))

is in this limit ¢; — 0:

<n (t) — (n<1>>eﬁ> 2 (n (t) — (nﬂ))eff) —2n(t)(Dwt—1)+2an(t)(1 0 0)s(t—1)

nM -
so that ultimately:
Ueps (n(t)) = 2(n(t)? = 2n(t) (1) w(t — 1)+ 2an (t) (10 0)s(t—1)

Using (263), the equilibrium value for this agent is just: X; (e — zMe = 0.

with
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Effective action for the second agent:

Here again, we can identify the utility for the second agent. The action for the first agent:
Usr (@) =2n @) —2n () (Dwt—1)+2an) (1 0 0)s(t—1)

2
-1
g Bl

leads to consider the additional quadratic weigh ). Starting with the intertemporal utility for agent

2:
w(t)? +0n2 (t— 1) + 2vn (t — 1w (t) — 268 (t — 1) (w(t) - (1—f)) + 2, (E— 1) (w (t) — 1) — 2w (£) wo

the identification of the affective utility in (309) starts by setting:

1
0 Hy>
I

b= (\/B(—fﬁ—v)

A

Il
>
A~

, 1 {85
_ 0 (-v+32)
o= v T0)
The equation for the dynamic matrix D
(A-C)D*+2(B-—A)D+(A+C)=0 (310)

since

0
0 —v
A+C = 2\/B<_1 0 >
and:

(125+1> f\/Ez/fébc\/B =0
0(55—1-012) —é\/ﬁ—bc\/gu

Il
o

b:#\/ﬁy(c(l—i—a%é)—\/ﬁ)
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(1+0288) /B — (90" 8 — 0 B1? + 60°B* + 0> +28) c+ (B+02) /B =0

(6028 (02 + 8) — (02)" B + 0> +28) — \/ (6026 (02 + B) — (02)7 B2 + 0> +28) —4(8+ %) (1+0285) B
2(1+02p0)VB

CcC =

0% + 028 (0212 + B6 + 020) — \/(5025 (02 + B) — (02) B2 + 02 + 2@)2 —4(B+02) (1+ 02B5) B
b= 2(02+ B)o2y/Br

- 1702(5fy2)5\/5+0(\/552)

since C is antisymmetric:

%((A—C)(D—2)+2B)S:(A—C)D+2(B—A)

_1 B
-oyo-+m® = Vi L ) (0 o) (T L)
LB—LeyB+1 0
( 0 55+%—b\/ﬁu

From now on the superscript S will be omitted.As a consequence, the intermediate effective utility (see
appendix 1) is:

N | =

o2

(Vi) -7 + (A=) (D -2 +2B) " ((A+0) (it - 1) - V)
X (A=) (D=2 +2B) (Vi (1) =V + (A= 0) (D~ 2) +2B) 7 (4 + ) (Vi k- ) - ¥,") ))

The relevant matrices are then:

(- s (0 ) (Y )

0 __a*\/Bv
_ o2+B—cVB
VB 0
02B5—02by/Br+1
The matrices needed to compute the effective action are then:
-1
Ni = (A=C)(D=2)+2B),; — (A-C)(D-2)+2B), ((A-C)(D-2)+2B);;)  ((A-C)(D-2)+2B);)

1 c
= 1+ ;5 - ;\/B

1
= 1+ ?ﬁ

23 (52 2\2 3,2 4 ;2 23 (52 2\2 3,2 4 52 2 2 2
(6028 (2 + B) = ()" B> + +25)\/(50ﬂ(0 +8) = (02) B2+ 02+ 28) —4(B+02) (1+0280) B
202 (1 + 029)

My = (Ni) ((A-C)(D-2)+2B)" (4+0))

=0
My = (Ni.)\}B(((A_C)(D—z)JrzB)1<A+0))ij=—<1+;5—c\/3>mf_”awﬁz_u
Ni = Nii"‘Mii:Nii:l‘F%ﬁ_c\/B
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To find the equilibrium values X ;2)8, we use (263) and our previous result that X 1(1)6 = 0. Moreover,
given the utility of the second agent, its optimal goal would be w = 0.Then, X j@ = 0. In that case (263)

becomes: X j(-i)e = 0. As a consequence, the effective action:
1 > A
ar i) = (5 (7)) (3 e (7))

{002 )
g (X = (7)) o) (30 = (7)) + E 25 0 4 (3 (2= 1)

7>

becomes for the second agent:

Ueps (w(t)) = <1+ B—cf) )—2vw (t)n (t—1)+/<csf(t—1)(1—w() f)+nsw(t—1( (t)—t)

which implies the inertia:
€10 =V

Effective Action for the third agent

Starting with the utility for the third agent at time ¢,

s(t)(Id)s(t)—l—(p—i—v)<w(t—1)— P (1—f)— 7 w)z (311)

(p+7) (p+7)
and including the additional normalization factor for agents 1 and 2 effective utility:

B 1
02 (14+ 5B —cVB

%(—w(t—l)—l—a( 1 00 )s(t—l))2—|— )(l/n(t—l)—HSf(t—1)+’l7$w(t—1))2

B wr(t—1)+a?s2 (t—1)— 20w (t—1)s, (t—1) +2n?(t—1)
02< +r%87 (L= 1) +nsh, (t—1) = 2vkn (t = 1) 55 (t = 1) + 2vmn (t — 1) 5y (t — 1) = 26ms5 (8 — 1) 80 (t — 1) )

and defining as before: 7, K, « — x%

0 0 0 n 0
0 0 0 —K 0
A = \/—? 00 0 0 a
g n —K 0 0 717612
0 0 « 717612 0
2
+pL -pE 0 VB 64
o B R = R/ B
B = o) 0 0 o+ B —Ba VB«
VBn  —VBr  —fa d+B+0%w VB(-1-v)
-84 8% VBa  VB(-1-v) 1484
0 0 0 —n 0
0 0 0 K 0
c = ‘/—QB 00 0 0 —a
g n —k 0 0 1—€19
0 0 « 71+612 0
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where we set

d

w

1
1+§ﬁ—£\/§
(p+7)

The equation for the dynamic matrix D is then:

(A-C)D*+2(B—A)D+(A+C)=0

000 7 0
0 0 0 -k 0
0= +B|l 00O 0 a
0 0 O 0 -1
0 0 O —€12 0

0O 0 0 0 0

0O 0 0 O 0

+v/Bl 0 0 0 0 0

n —k 0 0 —e€po

0 0 o -1 0

ot + 0% 55
Y by
0 0
0 0
-8 By

1+ 52—y 0 no0
—%m? 1—1—%52 0 - -« O
0 0 14 5a? 0 «a
n 0 0 -1\ '//d+L 0
X —k 0 o 9
0 a —€12 0 0 1+ve5
Of the type:
0 I 2 B11 Bio
(0 @)D+(B21 Ba
D
D=—
VB
with:
n 0
I = —k 0
0 «
0 -1
o= (%)
A — B (v +p) + Naa
0
_ n —x 0
¢ = ﬁ(O 0 a)
o 0 —€12
v- (5 )
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E F
v = (6 n)
D - E*+FG EF+FH
B GE+ HG GF+ H?

The equation for D:

o O

(

can be decomposed in blocks:

I'(GE+ HG) T (GF+ H?) BuE+Bi,G BuF+BipH \ (0 0 _,
©(GE+HG) ©(GF+ H?) BoE + BosG BoyF + BosH ® v )

r 2 Bi1 Bio 0 0\ _
@)D+(B21 BQQ>D+<<I> \11>_0

leading to two systems:
r (GE + HG) + (BHE + Bl2G) =0

(GE+ HG) = —07'((BuE+ BxnG)+ @)
Lo~ " ((BaE + ByG) + ®) = (BuE + B12G)

E (Bi1 —=TO ' By) ™" (TO7! (BysG + &) — B1»G)

and
T (GF + H?) + (BiF + BioH) =0
O (GF + H?) + (Bo1F 4+ By H) + ¥ =0

F=(Bi1 —TO 'By) " (IO} (ByoH + ¥) — By H)

The two remaining equations:

I'(GE + HG) + (B11E + B12G) =0
O (GE + HG) + (B E + ByaG) + & = 0
)

I'(GF + H?) + (BuF + B1oH) =0
© (GF + H?) + (Bo1F 4+ B2 H) + ¥ =0

(FG —+ Bll) FE + (FHG + B12G) = 0
(TG + B11) F + (TH? + BioH) =

0 1 0
0 0 1

allow to find a relation between G and H. Let:

v

multiply the first equation by V.

Multiply the first equation by (G (V)t> and the second one by H~!. It yields:

(PG + Bu) E(V)' (G (V)t> = (PG + Byy) FH™?
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and then, since (I'G 4 Bj1) is square:
-1
E(V) (G (V)t) — FH

Using the equation for E and F' gives:

E(V) (G (V)t)f1 (B —TO By, <r@1 (322 + o (V) (G (V)t> B > - B12>
FH™' = (B —TO© 'By) (IO (By+VH ') — Byy)
ro-! <322 re) (@) ) —TO (Byy + WHY)

multiply by (V) on the left and simplify by (V) ' TO~!:

~1
It (V) (G(V)t) —otg!
since (VT)" = (VT), it leads ultimately to:
H= (G (V)t) (vr)~let

This last equation allows to reduce the problem to find (GV?'). Actually, we can take benefit from the
arbitraryness of the matrix V' to make an other choice. Let

100
W<001>

H= (G(W)t) (wr)~' et

one also have:

and the two identities for H yield:

writing

the previous equation leads directly to:

a = —1p
K
d = —1e
K
Thus, it remains to determine
b ¢
t
avt = ( v )
To do so, recall that:
E = (Bu—-TO 'By) ' (TO (ByuG + ®) — B1,G)
0 0 —nl5?
= 0 0 ritel
—kB+bd+02bBw do kB—bd—o?bBw 0

dan r(a?B+o2d—da?B) a?B+o2d—dap
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F = (Biu—TO 'By) ' (TO ' (ByH +T)— ByyH)

il 0
= | L 0
2
0 dav H(Zfﬁfii‘f_'ﬁ“ém
H = (G(W)t) (wr) ' et
by

- ()

and insert these relations in (313), the equation for D to find:

: 0 plm gl 0
1 0 0 N 0
- —kB+bd+0o2bBw kB—bd—o2bBw kB—bd—o>bBw
b= VB dann(a2ﬁ+a2dfda25) d a?f+o2d—da?p 0 0 daym
—1 b 0 0 Ly
0 0 f -£ 0
replace b by bx and set 72 = k2 + 12, then the equation for b and f are:
0 = ba®B*—a®B% +bd®fo? — bda® 5% + o?bd?a + bdo® B + bf o B + o2bdf — df o3

+02bdaf + o*ba’ 2w — o?daf — bdf o B + o*bdafw + o2bdf o® fw
—fBr? — o2df + bdfr? — af*r? — o2 fBr? + bdar?B — o dafS + o2bdf v?

o
I

1 (6028 (02 4 B) — o*Br? + 0% +28) — \/(502ﬂ (624 B) — (62)* Bu2 + 02 + 2ﬂ>2 —4(B+02)(1+0280)
o2 2 (1 + 0236)

And the relevant matrices for our problem become:

VB (A=C)D+2(B - A))

2 2 2
Bn’+o dd—bdn nﬂ—ﬁjbd 0 0 v —ﬁ;-bd
nk 7B;bd m2B+o2dd7bdm2 0 0 Vﬁﬁfdbd
= 0 0 M —(f+ap) 0
0 0 —(f +aB) f+datapf+o®aBw 0
@ 2 2
v —ﬂjbd Vﬁﬁjibd 0 0 d+Bv dfbdv

195



((a-cypv2B-a)%) (A+0)

Bn+o2d—bdn? —B+bd —B+bd
] dbd] ’L’Tm%zdbd? 0 0 T bd 00 00 0
I 0 0 vmﬂd 0 0 0 0 o0
2 2
= 0 0 afto didie  _(f 4 ap) 0 00 0 0 ©
0 0 —(f +aB) f+da+a£+02aﬁw 0 n -k 0 0 —v
vn w;rbd Uﬁﬁzlbd 0 0 dwuifbdu? 0 0 o -1 0
0 0 aun =Lt vn=td 0
0 0 am/@ mu@ 0
= nda el —kdo T8 0 0 —vdo T8
no 26+0'g<d+dfoz — ko 2B+U d+df o 0 0 —va 2B+U d+df o
X X 284 812 +02d—bdr? —bdn? 2 24 20 bdr? —bdn? X
0 0 akl n to 4 Ik n k=B+Bn +17% K n 0
with:
X = a?B% + d*fa? — do’B? + o?dPa + do’B + fo?B + o%df + o2daf + o2a’fPw — dfa®p + (02)2 dafw + o?df o Bw
x = —kr?B—pn? —od+ bdr? + bdn? — o Bv? + o2bdr?
which leads to the expression for Ny;, My;, M;;:
0121‘ = (A-C)(D-2)+ 2B)z’i
~((A-C)(D-2)+2B),, <((A —C)(D-2)+ 23)”.)7 (((A —O)(D-2)+ 2B)jl.)
Bn2+02d7bd172 Nk w;z;d 0
_ —B+bd k2B+o%d—bdr?
0 Vﬁ# f+dataB+o®afw -t
B85bd o 0
- 0 VE=—g3— 0 dtBr?—bdv?
—(f+aB) 0 d
0 0 —(f+ap)
Vn# zmﬁ%dbd 0
[37]2+02dd—bd172 77 —2[3+bd 0 0 yp=B+bd B+bd
nl{—ﬁ;—bd K /3+odd bdr> 0 0 Vﬂﬁ—dbd
2 2
x 0 0 aftodidia  _(f 4+ ap) 0
0 0 _ (f + O[ﬂ) f+do¢+a5+¢72a6w 0
vn——5— Berd ,4;6 dbd 0 0 M
-3 702d+bd 2 _o2Bv%+52bdr? B—bd
. —d— [gu?-i-bdu KN —g—goz1ba? 0
— K B—bd —k2B—02d+bdr?—o2Br3+02bdr? 0
N —a=Bv2+bdi? —d—BrZ+bd?
0 0 d(f+da+ocxﬁ+02aﬂw)
0 0 auny
My = Ni (((A—C) (D—2)+QB)_1(A+C))_4 = Ni; 0 0 arp b4
“ nda—f‘mﬁ —/{da—ft(aﬂ 0
vn B-bd 0
My = Ni((A-C)(D-2)+2B)7 (4+0C)) =Ny =i
Y 0 —vdaites

X
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and the effective utility for the third agent is:

(Xi (t) — (Yi(l))) Ni; (Xi (t) — (Ai(l))i)— (Xi (t) - (Yi(l))]) Mi; (X (t=1) - (ﬁ(l)%)

Ueps (Xi () =

N —

Or, reexpressed in the variables s (¢):

w(t=1) = (w®),
Uer (s (t)) = (s (t) — (8(3))eff) Ny (s (t) — (S<3>>eff><s (t) — (5<3>)€ff> M;; ( n(z _ 1) - En(?»)))e;; )

where the constants

form a 5 dimensional vector. The vector X ()¢ satisfy (263), which reduces to:

A A NS -
AEZ') + B — \/BGS) {31272\F (A(-z-)) }
S(3)e ()
X®e — (49) Ly HBAT B (314)

{B§2,2x/5 (Ag))S} <2( ) L ()

e{kj}kgj A{k]}7>k>j)

THERGE SRE NI ()
(

B®)" @)
( 12 ) BA” B2

given that (Xj(.j )e> = 0, as shown in the previous computations for the first two agents. Moreover (311)
shows that:

0
(i) 4 1 Y 0
V) = 1—f)+ w) 0
( ! ) ((p+v)( ) (p+7) 1
0
and then (314) simplifies as:
X(3)e
S -
( (p+v)w)
, . . -1
A( + Byy — /Bel? {3127 VB (A(Z) + A(j-))} B® (i) 1
(A(J')) +5AY B { 5 VBAG g
— 0 33 ) st 322 X " 1
B A; s i
VB (47 + 47)} o () () <5AJ7 + 2> 0
{kﬂ}k’<ﬂ ff7 {kj}i>k>j
1
12 ’\FAU 0
= B 'x )
<6Ajj) + ) 0
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p+~v O
0 0

B2 = 8 (Ag) (A%))e_flf( (eg))eff (eg)’“}’“<j)eff ))

(), (), ().,

Given the effective action for the two first agents, one has:

Using again (311) yields AE—? =0, A%-) = ( ), whereas (262) gives Bg’) and ng):

3
By

(4)
€. = 0
( 73 )eff
(6@ ) _ (0 VB
{jk}k<j eff 0 0
(A(,j.)) _ (1+#=B-c/B O
93 ) ety 0 1
) VvBn 0
AP = | —Br 0
0 VBa
40— 0 —VBv
g VB 0
0 - 0 -0 vty —
3) _ 7\/577 14+ %6 _ C\/B 0 1 0 — BV _ 5 ) o2+5y—a'2(,\/B
Bz b vBr 0 0 1 0 0 0 kB g mevE
0 VBa 0 0
B(3>=,8( 0 —\/Bv)<1+,}2ﬂ—c\/ﬁ 0)‘1<0—5y> :(0 0 )
22 *\/B 0 0 1 0 O 0 ag ﬁ m
and then:
(3) i 1 (3) 1
a0 F0) .
= =pp+
i ) 1 i 1
b)) 2)
so that:
0
~ ~ 0
X0 = g(p(1-f)+va) B 0
1
0
2 2 2
—V/Pn (d — Bv) et d=de b
RV/B (d - By) el
_ —UQdaﬂu%
a2((lfd)r2+02u27da2r2)52+d((o’2)2u2702da2+02a2+02r2)B+(a2)2d2
C
\/Bag(17d)r252+o’2d((17d+1/)042+r2)5+d2(02)2(1+V)
]
with:

c = a? (V2 —dv? + Kw + w4 0w — drw — dn2w) Jixd
+d (021/2 —20°v + (02)2 V2w + o2a’w + 02Kk%w + o nPw + 2do’y — Uzda2w) 52

+d? (—20’2V +a?+ (02)2 w— docZ) B+ o?d?
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Global action for the system

Gathering the previous result, one can gather all effective utilities into the global system utility:

Uesr = (s (t) — (3(3))eff) Nii (s (t) — (8(3))€ff> - <8 (t) - (5(3))eff> M, ( T:LE:: B : E:((;))))eff )
+ (1= w? () + 20w () n (t— 1)+ nsp (= 1) (1= w(t) = F) + 150 (t = 1) (w(t) — F)
@) —2n®wt—-1)+2an@®) (1 0 0)s(t—1)

We can first study the stability of the system by having a look on the classical system associated to this
effective utility. Discarding the equilibrium value, the first order condition can expressed by:

N11 0 0 Mll M12 M13
0 N22 0 X (t) = M21 M22 M23 X (t — 1)
0 0 1 Msy Mz 0

where X (t) concatenates in column the vectors s (t), w (t) and n (¢). The solution of the system is then:

(Nip) "My (Nyp) ™" Miyp (Nyp) ™ Mg

Xt = (Nag) " My (Nag) " May  (Nag) " Mz | X (t—1) (315)
M3, Mso 0
= MX((t-1)

Recall that
My = (Vi) (A=) (D =2)+2B) ' (4+0))

ij
and as a consequence one obtains the various matrices involved in the dynamics:

(Vi) M = (((A- ~2)+2B)7 (4+0))
0 a5V7I+<72577€12
= 0 _am
)
—bde) —% (aff — bda) 0
(Ni) ™ (Mg, Myg) = ( ~2)+2B) 1 (4+0)) (A=) (D-2)+2B) " (4+C)) )
/3V7l+f7 bneio 0
— K?BV—'FO' lmelz 0
—%612 (af — bda)
with:
o = 0%bk? — k2B — Br? — Bn? — 0% + o’n? + oPbes, + b2 BY? + bYin? + b2 BeR, + bBn?el,
+21)I{2BV€12 + 2bﬁu7}2612

and:

< (Na2) ™" My (Nag) ™" My (Naz) ™' Mag ) _ <
M3, Mso 0

The determinant has three null eigenvalues, and the two last ones satisfy:

oals
o&\z
Qo o
=
—
o |
v
~

A = £/ (d+ Br? — bdv?)

. X~ a2 (f + o)
d(—o2d + (bd — B8)r? — 0212 + 02bdv?) x
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with 72 = n? 4+ k2. Then one can study these eigenvalues numerically as functions of the system parame-
ters. This will be the goal of next paragraph.

The effective utility allows also to study the stability of the all structure in interaction with a large set
of similar structures. We rewrite:

Ni;p 0 0 0 Mis M3
U = (X(t)—X°) 0 Np 0 |(X@H)-X)-(X@®)-X)[ 0 o0 0 (X (t—1) —(X19)
0 0 1 0 0 0
My 0 0
—(X(t)—)_(Q(Q)) My, My Mo | X (t—1)
Mz Mz O
where: .
X = (X0<,0,0)
and:

x5 = ((pJprv) <1_f> * (plv)w>

o= O OO

Then, the saddle point equation for the equilibrium value X, derived from (316):

Ny 0 0\ 0 My My \°®
0= 2 0 Np 0 |(x-%X)-2[0 0 0 | (X-%9
0 0 1 0 0 0
My 0 0\ /Myo0 0\
—| Mo My My | X — | Mo My Mo (X - X2( )>
M31 M32 0 M31 Mgz 0
or, which is equivalent:
o My 0 0\ My o0 0\,
2(N=M%) (X=X = | Mu My My | X7+ My My My | (X2 %) (317)
M31 M32 0 M31 M32 0
= 2M5X°— (M) X§?
whose solution is: .
X=X (N M%) (MSXe Ly X§2>) (318)

We can now express Uess (X (1)) as:

Uers (X) = (X=X (N =M -M)°) (X - %) - (X - %) X
_ (MSXe ;(M’)txg“)) (V= M%) 7" (N = (M = M) (N = ) 1(MSXe ;(M’)tX2(2)>
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Uy (X () = (X(6)—X)N (X ()~ X) ~ (X () - %) NM (X (¢~ 1) - X)

+Uess (X)
= (XH-X)N(X(@H)-X)— (X(t)-X)M(X({t—1) - X)

+(X = X) (N = (M - M)°) (X - X°) = (X - X)) m'X

An other convenient form for Uesy (X (t)) in the sequel is obtained by writing its continuous time ap-
proximation (202), plus its constant term:

Uess (X (£) = (X (t)—X) (N = M) (X(t)—X)+%(X(t)—m—1>><MS+N)<X<t>—X<té3w>>
- (X (1) = X) MA (X (1) - X)
+(X = X) (N = (M = M)°) (X - X9) = (X - X)) w'X

One can also consider that some externalities produce an inertia term of the form: with € > 0, that will seen
below as stabilizing the system, so that ultimately:

Ues (X () = (X (&) = X) (N - M%) (X (1) - X) (320)
%(X() X (t— 1)) (N + MS) (X () — X (= 1)) — (X () — X) MA (X (t— 1) — X)
+(X=X) (N = (M = M)°) (X - X9) - (X - %) X

For the purpose of some applications, we record the particular results for 3 — 0. As explained before, in
that case, the effective utility simplifies to the initial utility:

() +1)*+2an(t)sp (t—1) —2n(H)w(t—1)
= @ +1)*+2an@) (1 0 0)st—1)—2n{t)w(t—1)

s(t)([d)s(t)er(l—w(tfl)ff)2+'y(w(t71)fﬁ;)2
_ s(t)(ld)s(t)+(p+7)(w(t—l)— P (1—f)_ 7 11))2

(p+) (p+)
(w (t) = wo)” +6n (¢ = 1) + 2um (t = D) w (£) + 25y (= 1) (1= w(t) = F) +2ns, (¢ = 1) (w (t) — F)
= (w(t) = wo)* + 00 (= 1) + 2wn (¢ = w(t) — 2usp (t— 1) (w(t) = (1= F)) + 250 (¢ = 1) (w (£) — )

That can be gathered in a matricial expression:

Ueps (X () = (X (8) = X0) I (X (8) = X1) —2X (¢) MX (£ — 1)

with:
0 0 0 O 0 0 0 0 O 0 0
0 0 0 O 0 0 0 0 O 0 0
M=]0 0 0 0 O = 0 0 0 0 0 and X; = 0
n -« 0 0 -—-v rcos(f#) —rsin(d) 0 0 —v wo
0 0 a -1 0 0 0 a -1 0 -1

The saddle point equation:



yields the "constant term":
Uy (X) = (X - X)) (X - X)) - 2XMX
- (M(l — M) Xl)t (M(1 — M) Xl) —9 ((1 — M) Xl)tM(l M) X,
- ((1 M) X1>t (M*M — 2MM) ((1 —M)7! Xl)
and we can gather these results:
Uwps (X (8) = (X (8) — X) T (X (£) — X)—2X (£) MX (t — 1)+((1 — M) Xl)t (M*M — 2M) ((1 M) Xl)

that can be rewritten as in (320):

Uess (X (1) = (X (5) = X) (T~ M) (X (1) = X) 5 (X (1) = X (6= 1) (& + M) (X (1) = X (¢~ 1)) ~ (X (1) ~ X) M

+ (- Xl)t (ar'ar = 2m) (1= )7 xa)

The matrices involved in the previous expression are:

0 0 0 rcos(d) O 0 0 0 0 0
00 0 —rsin(d) 0 0 0 0 0 0
(MM —2M) = 000 0 o 0 0 0 0 0
0 0O 0 -1 rcos(f) —rsin(d) 0 0 —v
0 0O —v 0 0 0 a -1 0
0 0 0 O 0
0 0 0 0 0
-2 0 0 0 0 0
rcos(f#) —rsin(d) 0 0 —v
0 0 a —1 0
r2 cos? —r2cosfsingd 0 0 —rvcosf
—r2cosfsind r2sin® 0 0 0 rvsin 6
= 0 0 o> —a 0
—2r cosf 2r sin 0 —« 1 2u
—rv cosf rvsin 6 —2a 2 V2
1 0 0 0 0
0 1 0 0 0
1-M)"'= 0 0 1 0 0
cos 0 sin 6 v 1 v
Ly rl/fl Sy Tu—1 v—1
I
1 0 0 0 0 0 0
0 1 0 0 0 0 0
(1-M)""X, = 0 0 1 0 0 0o | = 0
e I — oy (v + o)
VA sy (o + 1)
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((1 M) Xl)t (M*M —2M) ((1 M) Xl)

= (0 0 0 —%_1(V—|—w0) %_1(11104—1))
72 cos® 0 —72 cos 0 sin 0 0 0 —rvcosd 0
—r?cosfsin® —1r?(cos20—1) 0 0 ruvsind 0
X 0 0 o —a 0 0
—2r cos 6 2rsin 6 —a 1 2v ——L- (v +wy)
—rvcosf rvsiné —2a 2 v? L (wp + 1)
1
- “G17 (—v*w + 2vw§ + 2vwo + 2v + w + 2wo)
2 0 0 rcosf 0
0 2 0 —rsind 0
N+M%=1+M°= 0 0 2 0 a
rcosf —rsinf 0 2 —v—1
0 0 a —-v—1 2
2 0 0 —rcos(6) 0
1 0 2 0 rsin(0) 0
I-M5 = 3 0 0 2 0 —a
—rcos(f) rsin(d) O 2 v+1
0 0 -« v+1 2
2
with eigenvalues 1 4+ 2\@\/(052 +(1+v)°+ r2) + \/(a2 +(14+v)°+ r2> — 4r2a?
0 0 0 —%r cosd 0
0 0 0 %r sin 6 0
M4 = 0 0 0 0 —1a
ircosf —1irsing 0 0 —-1(v-1)
0 0 ja (v—1) 0

For some values of the parameters, the eigenvalues of I + M® are positives.

For the purpose of section 9, we need to find a matrix relevant

N+ M <N — M) 2@ (M(S> + N)

to the computation of (205):

—1
M<A>> N+ M®)

The eigenvalues of this matrix will tell if the field theoretic version of the three agents model, which describes
the interaction of a large number of copies of the three agents system, will present some stable pattern (if
the eigenvalues are positive), or some unstable ones (for negative eigenvalues). To compute vV N + M(5) we
rewrite I + M* by using the previous change of variable. One has:

0

0

[+ a5 =1 2
Rsin (v) cosf —Rsin (v)sinf 0

o= oo w

0
2
0
(
0

R cos (v) cosu
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Rsin (v) cos 6 0
—Rsin (v)siné 0
0 Rcos (v) cosu
2 —Rcos (v) sinu
—Rcos (v)sinu 2



The parameters R inserted in I + M?° are defined by:

2 = ®+(14v)

R = (s*+1r?)
s = Rcos(v), r= Rsin (v)
a = scosu, (1+v)=ssinu

We will restrict to the § = 7 = u. By setting the internal parameters to the same value it reduces the
problem to compare relative strength of these parameters to IV, which is equal to I and to the magnitude of
its action, which is read through R. Then:

2 0 0o & o 2 0 0 % o0
(o 2 0 =F 0 0 2 0§ 0
S R S R
I+M° = -l o o 2 o & |, 7-M=-| 0o 0 2 o0 -Z
2l B _r (¢ o _E 2 R R g 9o R
5_533_5 _EiRRi
o o & -& 2 o o & &
o 0 0 -& o0
2
(o 0o 0o F o0
M* = o o o o -Z
2 & _r E
22201%2
o o & & o0

—1
VN + M(S) (N — M) oA (M<S> + N) M(A)> VN +M®

The matrix VN + M) is computed by the diagonalization of N + M (%) whose eigenvectors and eigenvalues

are:
1 1 1
1 1 1 1 1 _ —
VI I - io v v fi-4ve 1) fori- Ry - Ve

1
2

1 1 1
13 -13 \/Q\/% 1f+z\/ 12 VA /L-1v2 1)for1+§R 5—1V2

N

AN
- S
_|_
N~

3
3
f 1 f 1[ 1 1[ 1 f 1\/7 1 f 1_1R
2 W2 VR IVeH L2y /ivE+ ) VELVE+L 1) forl- g
V2

1 1
Ve WVE oIV i -vEIVE+ ) VB IVEH L 1) for 14 gRy (VR4S
1100 O)forl

Moreover one computes directly that:

N —M® oM@ (M<S> + N) ey

2

1p2  8R*-128 _1p2  8R%*-128 _ R? 1p3 R?-8 1 . R
sR RT-32R? 1128 +1 R R1-32R?+128 4R4732R2+128 R R 52R2+128 R 16R47322R?4

_1p2_  8R?*-128 1p2  8R*-128 R3 1p3 R?-8 R
R RT-32R?+128 R RT—32R?+128 +1 4R4 52R2+128 R R R4252R2+128 16R4532R2+

_ 2 R?— _ 2 —4 1p3 R?—16
- 4R4 32RZ+128 4B4 32R2+128 2R RT— 32R2jl28 +1 4R R~ 32R2+128 R R 3232+125
3 R?-8 1 1 3 R?-8 2 —4 2  B5R?-24 R®
R 2RI— 64R2+256 4R R R 2R4 64RZ 1256 —4R Ri- 3zR2+128 2R R4 32R?+128 +1 R 2R4 32R

—16 16 RS R?—16 1R 1R R® 2R2 R%-16
RT— 32R2+128 R 32R2+128 2RT_64R21256 4 2R4 32R21128 RT—32R?+1:

These formula allow to compute the eigenvalues and eigenvectors of

M) (N — oM 4 pr (M(S) + (M(S))l) M(A)> M(S)
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For large 7, the eigenvalues become negative since the magnitude of the parameters induces an instability.
For R < 1 one finds a stable dynamics, and we report the eigenvalues for R = 0.5 and 1 as examples.

For R = 0.5, the eigenvalues are: (0.83529,0.87428,0.92990,0.97332,1).

For R = 0.3, the eigenvalues are: (0.28617,0.35047,0.73561,0.90095, 1).

For R = 2, the eigenvalues are: (—1.4318,—0.81119,0.45254,0.79876, 1).

Moreover the matrices of eigenvectors, multiplied by v I + M) yields the eigenvectors, in the initial
coordinates corresponding to these eigenvalues. The results are:

1.5536 1.0074 0.969 08 0.72991 1.0
—1.5536 —1.0074 —0.969 08 —-0.72991 1.0
—3.7528 0.41713 6.8745x 1072 —10.278 0 for R = 0.5
9.0597  0.17309 —0.166 22 —4.2567 0
—2.1990 1.4247 —1.3703 1.0331 0

1.5661 1.0273  0.87621  0.70586 1.00000
—-1.5661 —1.0273 —-0.87621 —0.70586 1.00000

—2.0418 0.78805 0.11532  —5.3622 0 forR = 1
4.9287 032679 —0.27844 —2.2211 0
—2.216 1.4525 —1.2391 0.9983 0

Then one can check from the eigenvectors matrices that the more stable directions are the one for which the
system moves maximally towards the directions of the substructures. In that case this direction of motion
relaxes the stress imposed by the dominating structure. The more stable solution is mainly driven toward
the second, intermediate agent, which acts as a pivotal point in the stability. Other modes are alternatively
driven mainly into the direction of one of the substructures.

The eigenvalue 1 and its eigenvector is a particular case. Due to the exceeding number of parameters
compared to the directions of oscillations, this eigenvalue corresponds to an internal oscillation of the third
agent, and does not involve the two others.

On the other hand, for R = 2 the relevant matrix of eigenvectors is:

1.0554 1.5699  0.71046  0.67057 1.0
—1.0554 —-1.5699 -—0.71046 -0.67057 1.0
1.0996 —1.5068 0.12698 —3.7513 O
0.45546  3.6378 —0.30665 —1.5538 O
1.4926 —2.2202 —1.0047  0.94835 0

one has a reversed result. The two unstable directions correspond to a motion mainly in the direction of the
substructures. Actually, for R = 2 the parameters of the interactions are strong enough, so that the coupled
oscillations between the two substructures present an unstable pattern.

Results for various types of uncertainty

We compare the results for the classical dynamics for various degree of uncertainty o2 in agents behaviors.
We look at three examples, mild uncertainty o2 = 1, full uncertainty, o> — 0o, no uncertainty o> — 0,
which converges to the classical case.

The most interesting case for us will be 62 = 1, the two others one being benchmarks cases. Some
interpretations will be given in the text, in section 2. Here, we give the relevant parameters for each of these
cases, but the interpretations will rely on the eigenvalues of the dynamic system, since these eigenvalues
describe the pattern of behavior of the structure as a whole. Recall that these eigenvalues are given by:

A =+v/02v (d+ fv? — bdv?) x ,/%

205



with:
N = a®8%—da’B? — d*a®B + o?d*a+ da’B + fa?B + odf + o%daf + 020’ B*w — df B + (02)2 doBw + o?df a? fw
D d(—o*d+ (bd — B)r* — o Bv* + o°bdv?)
X (a362 +d%fa? —da®B? + 2 dPa+ doPB + fa’B + o2df + o?daf + o%a’fPw — dfa? B + N%dafw + a2dfa26w)

For 02 — 0, one finds for the parameters of the system and its eigenvalues, to the second order in f3:

_ 1 2 2 2 a2
d = 2(1+55+\/(55 +1) 4ﬂu2)

A:iH= < 2 =@<1—’B;(5—V2)>+0(53)

14+ 3% + \/(552 + 1)2 - 45%2)
and we recover the classical results as needed.

For 02 — o0, one obtains:

. (5025 (02 +B) — (02)° B2 + 02 + 2ﬂ) - \/(50—25 (02 + ) — (62)2 B2 + o2 + 25)2 —4(B+02) (1+0285) B
o2 2(1+ 02p96)

_aﬁVQ +1

and the eigenvalues are:

As said before, the case for 02 = 1 is the most interestng for us, since in gneral it corresponds to what we
aim at modeling: agents anticipating other agents, but taking into account for uncertain intrinsic behaviors.
The computations to the second order in 3, simplify to yield the following values for the parameters:

b = B—wp
[ = —ap
d = 1-p>*-9)

A=V - VT (46— 7) 40 (5°)
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Appendix 7

We start again with the postulated effective action

v ) = v (5 0 ) ne-mo (g N ) e
+ 372X, () AY) (X (¢t - 1) + VI (¥ ()
izk>j

Uess (Y (£) = w( (A%;)eff 3>Yj<t>2Yj (t)( (65‘5‘)0)eff (f??)k}%q)eff )wn

+ 3 2%, () A (X (- 1) + VI (v, )

izk>j

with V;(f} (X (t)) a certain function of X (¢), that depends on the potentials Vi(i) (X; (t)) and Vj(i) (X; (t—1)).

Note that for the sake of the exposition we discard all the constants )_(J(i),... )_(j(.i)e but that they can be
reintroduced at the end of the computation.
Recall that (11) allows to find recursively the utilities Uery (X (2)) :

exp (Uesy (X (1)) = / exp (Ut“)) I Ilexe (Z ff(fv(())) dX; (s) (322)

rk(j)<rk(i) s>t s>t

As recorded in the text, we rewrite the utilities in terms of the variables Y; (¢). We use the general form (44)

AD W 0
ZYi(t-l—k)( v O)Yi(t+k)+Yi(t+k—1) 0” ga | Yiltrk=1)

k>0 {45}
0 pzAW
+Y; (t+k 1 K Yit+k—-1
( )( o A@ : ) (t+k-1)
oo o (5558 5 o (28
F>i k>0 B2 j<i B8z

The normalization of exp (Uess (Y (t))) is obtained by letting:
C [ exp Uess (Y; (1)) (d(Y; (1)) = 1

writing:
Uers (V; (8) = ;1) (49) | ¥5(8) =25 ( Z At -1) - ( () (Fgees) )Y,

! ’ ) e 3 ) epp UM< ) oy )

VG ()
= UL (Y (1) + Vi (G (1)

then

[ew s 5 @0 0 = [ e (U85 000 +
e (v (50)) / exp (Uﬁ}‘?d ¥ 1)) @(Y; 1)
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with:

To compute

we use that:

ogproso) = (v (49)) | 5 apne-n-((4),, (o), )ne-y
izk>j
x<nu>+@%0;} > ARxce-n-( (), (Ghwss),,, )V
i>k>j
t
: (i>k>jA§j]3Xk . _( (6%)>€ff (Eg)k}kq)eff )Yj(t_ 2
<(45) 0 | S Axee-n - (), (e, ¥t

which yields, up to an irrelevant constant:

/ngfmwnwmm>

= exp|— Z Aﬂ)Xk (t—1)— ( (6%)>eff ( f{é)k}k]) o )Y] (t—1)
i>k>j
. (Ag));flf Z;]Am )7( ( m eff <€g)’€}’“<ﬂ‘) ef f )Yj(t* 1

and

and the normalization factor:

exp (VO (2} ) exp (— )" (AU))*1 0;)) = e (@) (A(j))A U; + V9 (U))
NG P 3V N7 ) oy =PI ) P T ers
this choice of decomposition being justified by the fact that for Ve(;; = 0, one recovers a normalization of

N1
exp <(Uj)t (A‘gjj))eff Uj>, as in the quadratic case.

This normalization factor has to be added to the global weight (i.e. the normalized effective utility) to
be taken into account for agent ¢ is then, similarly to Appendix 1:
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S o
- Y; (t ; Y (t)
i () (1) i
t>0 Biy { (Ajjj ) + BA]S ’BQQ}

) A@

: " Y ()
282V (0 |0 () 9.40) Y (t—1)+ V3 (U)
Ji Ckiyh<i epp’ ORISR

where M = 1 (M + M?) for any matrix M, and
Ba = oA (47) | A7
ma = {oa) (a) 400 (42 (1), ()., (Gonsi),y, )}
BAY () (Am) N A;J]‘C)’
Bn = ﬁ( (%)) eff (?J)k}k@)eff ) (A%))eflf( ((])>6ff (E{JJ)’”’W) eff )
3 (A(J) (AU )eflf( (;?) » ( ({Jj)k}k<J)eff ))S

As a consequence, the total weight appearing in (322) is the same as in appendix 1, plus the non quadratic

contributions due to V(l)( X; (1), V( )( X, (t—1)) and Ve(;}( i (t)). The same operations can be thus

performed and in the end the total welght to integrate in the R. H S. of (322) is
W= 3 (5 0506 = Yol 1) AQKE(9) = Yi (s = 1) 4 Y5 6) BY (5) 4 (3 () = Yi (s = D) O (5 (339

YL (1) BY: (1) + 5Yi (1) AYi (1)

+5 85 (v (W) <Vj<i> (YJ((tt’M)) Lo (W)
l;) ( B> +jz<:i BT JrN rf gt

+Y;(t)BYi<t>+§Y;() Y (t) =y g (Z Z By, (Vi (t+R)), ...<mt+k)>m)

k>0 >3 ny,...ng
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with:

—62(-;:) Az(';') +A§j)
(D (D
A= VBl o, 40 ("“”“’)6“ (““é”)eff,
A e 40
{kj}ti>k>5 " {jk}i>k>j
AD 4 By — B {I(AE;)+A<J)>’BH}
5Ajj (A%)) » B
p - 01 A9 .5 e, L)
{\fﬁ(Aji +Aji>,B12} {k;}kq erg T\GMRE) gy
VB 3 G
A{kj}l>k>J7A{Jk:}’L>k>j
0 AD _ A
) “ ?5)
cC = B (A(i) A(ﬂ) ({k]}m)e”,i(“k“”)e“,
Ji Ji A(J) A(J
{kj}ti>k>j " {jk}i>k>j

and

-0 = 3 alvie-n-( (<)), (Gines),, )¥iE-1

izk>j

The potential:

(Yi(t g (Y ((t+Ek)—1) Loy (Uj(t+k—1)
(B (v (M5 e (25

depends only on Y; (t + k) and will be denoted V() <Y’gz'k))
2

Then the integral in (11) is computed in the following way. Write:

exp () = exp(;—;<m<s>—ms—1))A<m<s>—ms—1>>+m<s>Bms>
FOG0) ilo = D) CYis ~ ) 4 Y0 BY 0+ 5% (0 AV () = 3771 <5( )>
- (e ()
exp(;—;<n<s>—m<s—1))A<n<s>—m<s—1>>+n<s>Bms>
R A A A I R UL AR R ) |

where J; (s) is an external source term. Then we have to compute in the first place the integral of a very
similar weight as in the quadratic case. The only difference is the appearance of the source term. However,
it is known that such a term does not modify the fact that the successive gaussian integrals can be evaluated
at the saddle point.

The action we have to consider is then:

5 (=5 (460 = ¥is = D) AT (9) = ¥ s = 1)+ 6) BY; ()4 (35 (9) = i s = D) Vi (s = 1)+ 5 () ¥i )

(324)
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and the equation for the classical solution of (323) is then of the usual Euler Lagrange type and quite
similar to (268):

A(Yi(s+1)=2Yi(s) +Yi(s = 1)) +2BYi(s) —C(Yi(s +1) = Yi(s = 1)) + Ji(s) = 0 (325)

and its solution is of the kind:
Yi(s) = D*" (Y; (t) + F; (s)) (326)

with F; (t) = 0 and where the equation for the matrix D is given in Appendix 4:
(A-C)D*+2(B-A)D+(A+C)=0

we insert (326) in (325) which leads to:

A(D*(Fi(s+1) = Fy(s)) — (F; (s) = F; (s = 1)))=C (D* (F; (s + 1) = F; (s)) + (Fi (s) — F; (s — 1)))+J; (s) =0

Let:
Gi(s)=(Fi(s) - Fi(s — 1))

the equation for G; is
A(D*G;i(s+1)—G;(s)) —C (D*G; (s + 1)+ G, (s)) + Ji (s) =
| (A—=C)D*Gi(s+1) = (A+C)Gi(s)+ Ji (s) =0
—-2B-A)D+(A+0C)Gi(s+1)—(A+C)G;i(s)+ Ji(s) =0

and its solution is:
Gi(s)=(A+0)" ) ((A-C)D*)" Ji (s +n)

n=0

and then:
Fi(s)=(A+C)"" > Y ((A-C)D*)" Ji (u+n) (327)

t<u<snz=0

to satisfy the initial condition F; (t) = 0.
Replacing the solution (269) in (324), this last quantity can be evaluated in the same way as in appendix
1. One find a quadratic term, as in appendix 1:

SV AL+ 1)~ Yilt) + 1 (Vi (14 1)~ Yi () Y (1) + 5% (1) AY; (1)

and an additional term coming from the source term. It appears to be an infinite sum

S () Yi(s) = 5 30 i () DY (Vi 6) + i (9))

s>t S>t
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using (269) and (327) it yields an overall contribution:

SV (O A(D (Vi (1) + Fi (44 1) = ¥i () + 5 (D (Vi (0) + Fy (¢4 1)) = Y; (1) CYi (1) + 3Y; (1) AY: ()

5 30 T 5) Vi (s)

s>t

= NO(A-OD-1))Yi()+ g
1
3

+5 ZJ ) D*tY; (¢ Z Z Z J(A+C)H (A= C)DY)" J; (u+n)

Y (t) AY; (t) + le— (t) (A—C)DF; (t+1)

= Y@(A-0)(D >nw>+;YUAY<>
+; () (A—C)D(A+C) T;) (A= C)D¥)" J; (t+n+1)
+= ZJ ) DY (¢ Z YN Ji(s)(A+C)H (A= C)D*)" Ji (u+n)
s>t s>t t<u<sn=0
- %»O«A—CM —>nﬂw+§mwAn@>
4 ZY (Dst Y (A-O)D(A+C)! ((A—C)DQ)”) Ji (s)

+2 Z S Ji(s)(A+C) (A=) D))" Ji (u+n)

s>t t<u<snz=0

Then, adding the time t contributions leads to:

AD 0 i} 24];
Y; (t) . (i) () Y; () + V/BY; (t) ) ) ) Yi(t—1)
0 B4y + (Ajj )eff 245 - (€{jkj}k<j) of f A{ka}z>k>J
+3 2 (0) AY (X (£ - 1) + VO (X0 (1)

Jj>i

iy @ 3 ((DH)t +(A=C)D(A+C) ((A-C) D2)") Ji (s)

2
s>t

4= Z SN T (A+C) (A= C)D*)" Ji (u+n)

s>t t<u<sn>=0

As before, the term V( 2 (X, (t — 1)) has been discarded, since it depends only on ¢ — 1 and will be cancelled
by the nomalization.
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After computations similar to that of appendix 1, the integral over Y; (t), j < ¢ yields the effective action:

A= ) M (- 1)+ (D7) + (A=) DA+ ) (A=) D)) i (9)) )
5 0O (=), + (07 + (A=) DA+ 0) (A=) DY) () )
3 (V5 (0), (Vi) (% (8), + 322X (1) AL (X, (6~ 1))

2 —
7>
t

B3 (o) +(a-op@r oy (a-0p)) 1)

s>t

x(A+C)Y ((DH)t +(A-C)D(A+C) " ((A-C) DQ)") Ji (s)

s>t

55 2 T AU (A=) D) Tt n)

s>t t<u<sn=0

where the matrices used in the previous expression are given by:

Ni = ((A=C)(D=2)+2B), - (A-C)(D-2)+2B),; (A~ C) (D—2)+23)jj)71 (((a-c)(p-2)+28),)
My = (V) ((A=C)(D=2)+2B) " (A+0))

My = (Vi) ((A=0)(D=2)+2B) } (4+0))

ij
Remark that applying —— 8(J Gy o exp (A) produces a term:
ﬁ

(Y (8); + F (Ji (5))) exp (A)
where F' (J; (s)) is a linear function of F'J; (s). As a consequence, one shows recursively that:

0 0
9 (Ji(s1)) 0 (Ji(sn))

for some function F,) ((Y; (t)),,Ji (s1)...Ji (51)). As a consequence:

exp Zﬂg thy () ( = a))GXp(A)} )
({ ( s>t g 9L (s)) Ji(s)=0

1 1

exp (A) = Fluy (Y (1)), Ji (1) i (1)) exp (4)

= 5 ¥i(0); Mii (Vi (t = 1)), — 5 (Y (1)) My; (Vi (¢ - 1)),
1 i
g (Vi (8)); (Nas) (Vi (8));+ D2 (1) A (X5 (¢ = 1) + Vi3 (Y (1)
Jj>i
where Ve(f)f( ; (t)) is some function obtained by the application of the derivatives m appearing in

the series expansion of exp (— et Btk (@) (1_f a(ﬁ(;;)))) and then setting J; (s) = 0. The previous
g7z O

expression is then the expected formula for Ueys (X; (2)).
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Appendix 8

One applies the method of appendix 1, but using the recursive form for the agents effective utility:

Uy (X0 0) = 5 (X0 = XY i (X ) - XO7) = (i) - ) Ajg (XZ- (6 - X7°)(329)
_E(Xl (- X7) 22 (x,0-1) - ’>e)+§2X X; (t=1))
X0 K (Ei“ > 7 <s>>
ENS . 7 (s) = Z; (s) forJ s < t. It can be reduced to the form of appendix 1:
U (00) = 5 (%00 = XO%) N (30 - X97) = (3 (0) - X1 7; (Xi - x)
X (3 - x77) 2 (3, 0= - X)) + > 2% 1) 45 (X5 (1= 1)

by the shift X7° — X0 4 (V) ', K (E S 7 (s ))

Then, since one considers the computation of Uess (X; (t)) for an agent 4, all effectlve actions Ues s (X (2))
for j < 4 have to be modified by this shift: Xj(j)e — X](.J)e +(Nj;)~ Zk<j K(Z ( 'S Zi (s )) It is known
that the saddle point computation to obtain the integrals over X; (s) and X (s) is still valid when the X J(j Je

depend on t (which is the case here after the shift), then the all method of appendix 1 applies.
Before integration, one then arrives to the intermediate effective utility (265):

S

~ YL )~ Yils D) A (8) — Yi(s — 1)+ (% () - 5) B (i () - 1,

2
+(Yi(s) =Yi(s = 1)) CYi(s = 1) +Y; (t) BY; (¢)

YL (1) AV (1)

Integration over Yj (s), s >t would lead to (274), but recall that for X; (s) = (Y; (s)); one has to impose

the constraint X; (s) = B;(s) + Et(Z)Zi (s) — Bi(s+1) for all s, as well as the transversality condition
B; (s) — 0, t — T. For a matter of convenience, in the sequel, we will write Z; (s) for Et(l)
this notation in the end.

One can thus integrate over the vector which is the concatenation of B; (s) + Z; (s) — B; (s+ 1) and
(Yi(s)); for j < i and s > t. One changes the variables B; (s) = B; (s) — >_;. Zi (s + 1), so that B; (s) +
Z;(s) — B;(s+1) = Bi(s) — Bl (s+ 1) and the transversality condition is B} (s) — 0, ¢t — T. Then the
integrals over Bj (s) can be changed by change of variables as integrals over B} (s) — B} (s + 1)

The result of the integration is thus (272):

Z; (s) and restore

SYi(0) (A= 0) (D~ 1)Yi (1) + 3Yi (1) Y (1)

with a difference with case studied in Appendix 1: as in the simple example presented in the text, the series
of integrals over B; (s) results in replacing in (274) X; (t) by B. (s)— B} (s + 1). The result for the integration
is thus:

Yi(t) (A=) (D= 1) Yi () + 5 Vi (1) AY; (1)

N | —
N | =

with:
: B () - Bi(t+1)
Wt)z((n()) forj<z>
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and where B] (s) — B} (s + 1) satisfies:
(Bi(s) = Bi(s+1)) = D(Bj(s —1) = Bi (s))

(the matrix D is the dynamic matrix (270)). This relation alongside with the transversality condition allows
to rewrite the sum:

Bi(t+1) = (Bi(t+1)-Bj(t+2))+..+(B;(T'-1)-B;(T))
= (1+D?+..+D")(Bj(t+1)— B/ (t+2))
D (1 — DT) / ’
= —{-p (Bi (t) = B; (t+1))
where we used B] (T) = 0. As a consequence:
(Bi (t) - Bi(t+1)) = D((ll_DD)T) Bi(t+1)

and we are left with:

Vi (1) (A~ €) (D~ 1) Vi (1) + 5¥i (1) AV (1)

o _ [ pacpmBHE+1)
we - (REETR)

B ( %(Bi(tJrl)JrZi)OZi(SJri)) )
(Yi(s)); for j <i

|~

with:

then we use the constraint recursively to write:
Bi(t+ 1)+ Zi(s) ==Y _Xi(s)+ > Zi(s)
s>t s<t s
and then:
1-D
Vi (t) = D((l—D)T) (_ Dt Xi(8) + 22, Zi (s))
(Y (s)), for j <

Thus, as in appendix 1 formula (274), one adds contributions due to specific (i.e. non effective) time ¢

utility (we also change the sign of the first component of Y; (), using the fact that the utility is quadratic)
to obtain a non integrated effective utility:

-} B0 25 e

(( 1%%%@;qx Zgz@)>

Y; (s)), for j <i
O & 240
IR AON ERONNNC i)+ vVBY:() | 0 ) ) Yi(t—1)
0 ﬁAjj + (Ajj )eff 24;; ( {kﬂ}k<J) ff’2A{kj}z'>k>j
+> 02X () X (t—1))
>
Using that, see (273) and (274):
Al 0 —el? 24"
Yi (t) | (i) ) Y; (1) + V/BYi (1) ) ) ) Yi(t—1)
0 BAjj + (Ajj) eff 2Aﬂ ( {kﬂ}k<J) eff 2A{kj}1>k>J

— Yi()(B-A)Yi(t)+Yi (1) (A+C)Yi(t—1)
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and developing in (329) the quadratic terms in Y7 _, X; (s) — >, Zi (s) as X; (t) + Y- ., Xi(s) —
n

as well as discarding terms that do not depend on X (¢) and (Y; (¢)). for j < i yields:

where:

Frint - _1 % X’L (t) _ % X’L (t)
Uety (Yi (1) = 5 < ((Yf(t))‘ ;2”.@. )((A C>D)< ((Yf()) %2”.@
Y (1) (B—A) Y () +Y; (1) (A+O)Yi (¢t — 1) + Y 2X; (8) AT (X; (¢ - 1))

7>

+ ( (D(ll g)T)> (Ze<tX ( ) Zs Zi (s)> ) ((A—C) D) ( (%) ){i (t) )
(Y (1)), for j <

SYi(O P (A=) D) PY; (1)
1Y; (1) (B - A)Yi (t) +Y; (¢) (A+C)Y; t—1+22X AY (X, (t-1))

’L

n (z () - Yz <s>> PL((A-0)D) (Y (1),
n (Z Xi(5)- Y. 2 <s>> (pi=mr) -0 (Fa=2-) %0

%mt)(Pt((A—c>D>P+2<B—A>)m>+m><A+0> (- 1)
PE((A—C)D)PY; () + Y 2X; (t) AL (X (t — 1))

s<t s ) >

Y

Il
/N
—~ o
o
~_
vl

Il
/N
o o
o
N~

n = (pa=m)

1; = identity matrix for the block j < ¢

Then, to obtain the effective utility for X; () one can integrate over the (Y; (t)); for j <.
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-1

(Yi(t)+(Pt((A—C’)D)P+2(B—A))

N | =

Uesr (Xi (8)) =

x (A+C)(Yi(t—1) + P ((A (;X ZZi(8)>>_
x (Nii) (Y: (0) + (P' (A= C) D) P+ 2(B —SA))_l s l
(A+C)(Yi(t—1))+ P*((A (ZX ZZZ‘@))
+Z2X () A (X (t - 1)) - s i
+<ZX ZZ > ((A—C)D)PX; (t)
~ —%((m(ﬂ)-Mﬁ(w— >>}+T>—1(<n<t>>Mij (¥ (¢~ 1), +T)
4 (Y (1), (N S+ 02X (1) A (X (- 1))

J>1

+<ZX ~2 4l )( (A=C)D) P (Ni)) (P' (A= C) D) P+2(B = A)) "' + P/ (A= C) D) P,) 330)

s<t

where the matrices used in the previous expression are given by:
Ni = (P'((A=C)D)P+2(B—A)), (331)

—(P'((A-C)D)P+2(B-A) (P (A-C)D)P+2(B-4),) ((P'(A=C)D) P+2(B - 4)) )
My = (Na) ((P'(A=C)D)P+2(B - 4) ™ (4+0))

(4+0))

My = (V) ((P' (A=) D) P+2(B-A)""

ij
and where the "T" means the transpose of the expression in the same parenthesis. Then, as explained in
the text, the terms

(ZX )( ((A=C)D) P (Ni) (P (A= C) D) P+2(B — A)) ™ + P! (A= C) D) P,) X; (¢)

s<t

(332)
may be approximated by:

-1

(X: (6) + X: (¢ = 1)) (P (A= C) D) P(Na) (P (A~ C) D) P+2(B — 4)) ™" + P (A~ C) D) P\) X; (1

and these terms may be included in the quadratic terms of the effective utility to produce the result announced
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in (328) with (and restoring ) . Z; (s) — (Etm > 2 (s)))

Ny = (P'((A-C)D)P+2(B-A)), (333)

~(P'((A-C)D)P+2(B - 4)) ((Pt (A—C)D)P +2(B — A))jj) ((Pt (A—C)D)P+2(B - A))ji)

+(PH(A=C)D) P (Ni) (P! (A= C) D) P+2(B— A) ™' + P! ((A-C) D) )
My = (M) ((P(A=C)D)P+2(B=4))" (A+0))
+(H((A—C)D)P(Nii)(Pt((A—C)D)PJrQ(B—A))*l+Pf((A—C)D)Pi)
My = (Ni) ((Pt((A_c)D)PJrQ(B_A))*l(A+C))Z_j
K = (PH(A=C)D)P(Ny) (P' (A= C)D)P+2(B - A)"' + P! (A~ C) D) P})

Note also that in (328), the terms )_(](-j)e have to be shifted by )_(j(j)e — )_(J(.j)e—&—(ij)*l dok<j KJ(.Q (Et(j) YosZk (s))
and as a consequence, (263) implies that Xi(l)e is shifted by
. . NS -1
AD + By — /Bl {312,2\/3 (AS)> }
(4) (4)
(Ajj )e i T B455 Baa, (334)

{3{2’2‘/3 (A%))S} (2 (fines) 240! )S
Ir

Ckitk<i), {kjYi>k>j

(e _
0X; =

3
By

0 ! 0
X B®) , @) RO . ) .
2) {(A%)) B ﬁ(%) } (N33) ™ S K31 (B L, 2 ()
¢ eff

Keeping the i th coordinate of this shift and computing the expansion of the terms including § X J(-i)e in the
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effective utility (328) yields a contribution:

SXi () K (Ef“ >z <s>>

, , NS
AEZZ‘) + B — \F&EZ‘) {312, 2\ (A(‘Z‘)> }

(Agjy)) eff + BAJ] » Ba2,

{B{z,Q\/B (Agi))s} (2 ( ) ) a0 >s
eff

C{kjk<i {kj}i>k>j

= X)) (Nu 0)

3)
Bj
2

0
<[ () ") . BY e
- (4%)).,,-B 22,;2,¢B< s )eff

0
8 ( (ij)_l Kz(;) (ngiEt(i) Zs Zj (5)) )

. . NS -1
AD + By — VB {Bu2va (49)")
(4)
+X ( )( Mu sz ) ") S (Ajj> eff +ﬂAJ3 73227
{352,2\/5 (Aji ) } ) i s
(2 (e{kj}ksj)eff ’ 2A{k’j}i>k>j>

X (B$> ¢ { ) B® KON

A2/ A\ By, 222 \/B {kjyk< i

2 9 » T 92 2
(19).,
0

X

(Vi) K (S, B Y, 25 (s - 1)

In the approximation of the continuous limit
ZE()ZZ s—1) ZE(”ZZ
Jj<t J<1t
and the total contribution due to the constraint reduces to:
(4) (4) )
SNoXi K| BV Z5(s)
i<t s
i ; NS -1
Al(;) + Bi1 — \/Bﬁz(;) {3127 2V <A§;)) }
()
= Xi(t)( Nis+ My M) t NS (AJJ) o +5AN s Bag,
{31272\/3 (47) } (Do) 248
E{kiyh< eff {kjti>k>j
(3)
0 Biz

0
X B®)' ; (3) e —1 (i i
(=)’ {(A;y) B v (et ) } <<ij> K (ngiEstZj(s)))

eff
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which implies that:
. . N\ S -1
A + Biy — /Bel} {Bl% 2P (Af;))
()
(Aj] ) ff + BAJJ aB22a

{B{zﬂ\/g (Agjz)>s} (2 ( €) ) QA(J)
eff

Ckjyh<i {kj}1>k>a>

KL(;) = ( Nu+M; M;)

3 - i i
B§2 (N' ) ! K'(') (ngiEt( ) Zs Z; (5))
& \B ( W@) } N3 K (5,0 B X, 25 (9))
eff

x { (A§.?7')> eff B

Now, if we were to keep the terms (332) without approximation, the effective utility (328) should be
modified from the beginning to include some additional lag terms:

Uoss (X (1)) = 5 (X300 = XY N (X (1) - X% — (i (9) — X0) i (X (1) watfisis)

2 VE

ey M5 (e )
—;( X )W(Xj(t 1) - X )+§2X 1) AD (X (t— 1)
X ( < )ZZ >+ZZX ) el X (1)

These terms modify the matrices A, B, and C in (266) by modifying the inertia terms ef{jlgj}kgj as a sum

() (4;m)
lhjyk<i e{ky}k<J + Ze{kj}k<J

n=2

and as well for their transpose:

) ) Gn)  pn-1
€likyizk 7 ikyizk T Z 6{]"9}]>k
n=2
and these operators are included in the computations that are similar to the previous one. Now, the
saddle point equation (268) is still valid, as well as its solution (269). However two modifications have to be
included. First, Given that the saddle point equation is derived from (267):

~ Z*E(Yi(S)*Yi(S*U)A(Yi(S)*Yi(S*1))+K~(5)BK~(S)+(Y¢(S)*Yi(S*I))CYi(S*l)

2
s>t

YL (1) BY: () + 5Yi (1) AYi (1)

and since this equation includes coupling between Y; (t) and Y; (¢ £ n), due to the inertia terms EF{]k;L]? ke L

then in (268):

(3@- () — ffi(”) A(Y; (s +1) — 2 (s) + Y; (s — 1))+2Y; (s) BY; (s)f(YZ- () — ffi(l)) C(Yi(s+1)=Yi(s—1)) =0

this fact is taken into account by replacing in A, B, C the terms e{]k”})qu” L by e?k;?kgj (L=t 4 L=(n=1)
(this is the analog of the symmetrization process appearing in this kind of equations but translated to the

lag operators level L — L~! in this transposition), and as well for their transpose ef{j k})j>kL" ! that have

to be replaced by €E[7k})7>k (L=t 4 L=(=D),
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Second, one can first solve formaly for D as in (269) by letting:
i (s) = D'*Y; (1)

and the solution is formally the same as if no inertia was present. But this equation, solves D as a function

D (e?k;l})kgj (L=t + L_("_l)) ,eg’:})pk (Lnt + L_("_l))). Let us call D this solution. To find the "true"

matrix D as a function of the parameters, one replaces in Y; (s + 1) = DY (s), and in that case:

DY; (5) = D (e, (0 L7 m0) ) (77 L0 0) ) Y Gs)

and given the solution Y; (¢), LY; (s) = DY; (s), the previous relation can also be written:

DY (s) = D (e, (D714 D70) L) (D4 D=0 7) ) v (s)

which yields the equation for D:

7N (4,m) n—1 —(n—1 (4,m) n—1 —(n—1
D =D (e, (P74 D70 0) ) (Pt + D7)

Then this equation can be solved as a series expansion in the é{%?kq" In fact, as seen in the text, the

inertial term are of order % where T is the characteristic length of the interaction process. As such, T is the
"largest" parameter in the system, and the series expansion can be stopped at the first order.
Once D has been found, the resolution is the same as before. One arrives at the effective action given in

(330), which yields ultimately the required form (106). Then, one expands the coefficients involved in (330)
(m)

as series €tk O obtain:
Ny = [(P'(A-C)D)P+2(B - A4)),
—(P'((A-C)D)P+2(B - 4)), ((Pt (A—C)D)P+2(B — A))jj> ((Pt (A—C)D)P+2(B — A))ji)
+ (P; ((A—C)D) P (N;;) (P'(A—C)D)P+2(B—A))"' + P ((A-C)D) Pi)]zeroth
M = () ((PH(A=C) D) P+2(B-4) 7 (4+0))
+(PHA-C) D) P(N) (P (A= C) D) P+2(B=4) T + PL((A-O)D)R)|
Mi(JQ) - {(N“) ((Pt (A-C)D)P+2(B - A))*1 (A+0) J .
M;, = (P; (A= C)D)P(Ny;) (P' (A= C)D)P+2(B—A)) "' + P/ (A-C) D) Pi)
the subscript zeroth standing for the zeroth order expansion in the e({JkJ"}?k < The expression for the
matrices J\fi(io)7 Mz-(io) and Mi(;)) are the same as the one presented in (333) since Ni(io), Mi(i0 ) and Mi(;-)) are
(g.m)

obtained by the zeroth order expansion of Uesy (X; (t)) in €7y, and thus their expression is similar to
the case without constraint. The higher order terms in the expansion, in fact the first order being sufficient,
will be gathered to yield the terms >, , >~ _, X (s) N;X; (t). We do not present any detailed formula here,

since it depends for each particular case on the form of D as a function of the e?k;? K<
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Appendix 9

An operator of the form

—V2+ax2+a:(—v+\/5x) (V+Vaz) + a++a

has eigenvalues

nat+a+va=n+1)Vata

on0) = (L)t (o) e (~L57)

where the H, (aix) are the Hermite polynomials. The Green function

with eigenvectors:

G = (—V2 +az? + oz)71

which is equal to the propagator:
G(z,y) = (¥ (z) ¥ (y))

is given by: @) ol (@)
_ P (L) P (T
G(%Q)-Zm

n

Applying this results to our problem yields G (z,y):
1

G (x, = (x -
@) = G (G0 = Terr)) (o (@0 =
1 .

i
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Appendix 10

As explained in the text, we have to compute the Green function under the following form:

G (z,y) P (0, 5,2, y;) <exp (_; (/OSX(U) du) (/OTX(U) du>>>
= ) g (< ([ o) ([ x0))

Where X (u) a brownian motion starting at x; at time 0 and reaching y; at time s and

(o ([ 300) ([ x))

is the expectation value of exp <% (fg X (u) du)Q) given the process X (u).

The appearance of the factor P (0,s,z;,y;) in (181a) comes from the fact that in (180) the measure is
not normalized, and (180) is computed for the measure of a free Brownian motion. The global weight for
the path starting at z; at time 0 and reaching y; at time s is thus not equal to 1 but to P (0, s, z;,y;). We

then decompose X (u) as:

X (u) = (taH— S;ty> + (B(u) - (S) B(s))

S

where B (u) is a free brownian motion. Then, the use of Ito formula yields:

</Osx(u) du) /Ot (Zx—i— Ss_ty) dt + (/0 (B (u) — (%) B(s)) du>

and one obtains:

o (< ([ o))

I
@
e
i)

so that:

ol o))

= e (L () 0P st 4 28 (52) (f; (5 - w) dB (w)
p( s( 2[5 o (5 —w) (%—ug)d%( 2) dB (u1) ))

<exp (-1 (25 (”“"?”) (/0 (5-u)an (u)> Lo OS /Oul (3 —w) (5~ ) 4B (ws) dB (u1)>)>

V)



using classical methods of differential stochastic equations:

(o (4 ([ 1) [ [ semmoriz)
= eXp( /f2 du—@// (u, up duldu2>

Lo (o[ o) )>)

z+y 21
= exp < ( (S( + 12

2
u1 S S
§ § — ) duzdul

N2
T4y +02 2+0'283 Tty 2+a4s4 exp(— o%s )
= exp|—|s —
P 2 12 6 2 144 NG
In the text, we consider several approximations that yield a simplified form of the Green function. These

hypotheses are justified in the text. We assume first that ¢ < «, and s ~ é Moreover the individual

fluctuations |z — y|, which are of order /s ~ %, will be neglected with respect to the mean path “"Qﬁ

and then:

over the all duration of interaction. It translates in ££% >> |z — y| and since |z — y| is of order o/s ~ T

a+y)2 2 a+y )2 et
(2) >>0‘8&Hd(.2) >> = . '
Then one can rewrite some contributions:

and:

02653 (—) being lower than <. One has, in first approximation:

(] o) ([ o)) =5
(5 s (53 o))

12 6 2 144 Vs

Glaay) — L <exp (

12
Y
@
>
o}
/‘\/T\
Vo)
/~
&

N |+
N
~
[\v]
N———
@

]

ko)

|

rnm‘@

s

SN—
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We will explain in the end of this appendix how to include the neglected contributions:

2 2.3 2 4
o o°s T+ o
2+ ) + 2
2 144

12 6

But, for the moment, to find a field formalism including G (a,w,y), the green function modified by the
constraints, one has to find a differential equation satisfied by G («, z, y), and one does so by first computing:

<v2 o2t ) ((77) ) G (o, 2,y)

Using that:

one obtains:

ex at (55)°) |54 . Y
—92 (:c-i-y)a% p( z((ajr(ﬂy)% ) <(§x Uy‘>\l2<a+( ;-y> ))
= d(x—y)+(z+y) 5 = +3 |% + =

x_y‘+ 1 exp( 2<()é+(w—2w)2)|w;y)lﬁf(oc—y)—lﬁf(y—%)
2 (ot (254)) 2 (a+ (232)") 0

As a consequence G (o, z,y) satisfies the following differential equation:

+2(z+y) ‘
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.T—yQ
o=
g

Sa-y - 2 <v2_2a+(”§y)2>_ (z+)’ 3172
2(

3
o )\ 2l C29) T ol o)
yz)) 2<a+<:c42ry>2>1 G (o 2,y)

) <ﬂm+w}¥@y)H(

g

Then use our assumptions about the parameters to obtain:

302 302 z+y\’
Ay < <<
le+e=7) @
302 |L;y| 30 |z — y
< << o<«

2 (a+ (552)°) 2 (a+ (552)°)

2
2 z+y
|z -y <<<2)

- 2
21+|%| 2(a+(%+y)) o2 . oz — 1y

Ve (3) 2<a+(%+y)2)

< <o+4o0<2

and the differential equation reduces to:

2
5(x—y)=<fv2—2<a+($;—y) ))G(a,x,y) (336)

as stated in the text. We conclude this appendix, by commenting on including the corrections of order s2 or
more to compute G (a, x,y). We had:

(z—y)*
2 2 2.3 2 4 exp (| ——=~—
= T+Y 0 5  0°s° [x+y oy ( o2s )
G - . z Z N Tr 7
(o, x,y) exp( (s( 5 ) + 175 + 5 ( 5 ) + TS )) 7
2 o 2 _=p)?
= e 0—728724,0—72 Tty 0734,0—74674 L le — Tty P s
T Pl T 6 T2 ) 903 T 144000 AT T2 NG
and the derivatives in & can be computed perturbatively. Moreover:
a? 9? o? (z+y 2 93 ot 94 -
| ==+ = —t+t—7 G
eXp( (12 92 6 ( 2 ) 98 T 144 9at (o 2,y)

= L |exp (—s (m+y)2> eXp(_%)

2 Ve
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The right hand side of this equation satisfies (336), and as a consequence:
2 2
dlx—y) = T2 9la+ Tty
2 2
o? 0? o? (z+y 2 93 ot ot ~
P (‘ (maaz 5 ("3 e * Trigas) ) G

We will not detail the computations in this particular case, but apply the method in appendix 11, while
computing the impact of an interest rate on a system.

Appendix 11

When some discount rate is introduced, we go back to the initial individual agent formulation and modify
it accordingly. Recall that the transition probabilities between two consecutive state variables of the system

are defined by (89) with a discount rate 8 added:

T
(Bst1||Bs) = /Hst-i-i exp <U (Cs) + ZﬁiU (Cs-i-i))

i>0

but now, the constraint rewrites:
Bsi1=(147r)(Bs+Y, —Cs)

or equivalently:

Be—i—l
Cs=B;+Y, — —
S + S (1 + T‘)
Then, the integral over the B, is similar to the previous one, since one can change the variables: (i:;),
Bs—i—i for i > 1.
T 2 2
- / [T dBosiexp (— (Co—C)? =3 (Cosi = C) )
i=2 i>0
T B.is 2 ‘ Borint 2
= dByriexp | = (B +Ys = === C) =% B (Besit+Yoyi— 7= = C
/H *exp< ( BNy ) Zﬁ( H T >>
=2 >0
T 2 ~
i Bst1 2 ni [ / Yoy, = C
= (1+47r)" dB,;exp —(Bs—i—Ys— —C) — (147" p" | Bepi = Blyiy1 + ———
/LI;[Q (1+7) ; (1+7)

T 2 _\ 2
i Bs 1 A 1 Bsi1 Yor, — C
14+7r) |Jexp| — | Bs+Ys — —-C) - i s 7
(U( ' )> ) ( NCD ) S (B(141)7) ((HW% <1+r>’>

T 2 7\
; B _Ben &), Bat1 Yori = C
(H(l—i—r))exp (Bs-i-Ys Ot C) (T)<(1+T)+Z (1+r)i>

=2 i>0

where the sum has been performed up to 7" where T is the time horizon defined previously and 7' >> 1,
and s71 (T) = >, (ﬁ (1+ 7“)2) . Since 8 < 1:

%

s7H(T) >> Z ((1 + r)2>_ o~ 1

2r
i>0
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for r << 1. As a consequence, s (T') << .

T
The factor H (1+ T)i can be included in the normalization factor, as explained before, and then we are
i=2
left with:
T
(Bs+1l|Bs) = /H dBs;exp (U (Cs) + Z U (Os-‘ri))
i=2 i>0

9 A 2
ol (mov- g o) 0P i) ) e

which is similar to (89), except the ﬁ factor in front of Bsy1 and the (1 + r)i multiplying (Ysﬂ» - C’).
One also replaces T' by ﬁ Then the previous analysis following (89) applies, except that, writing Bs11 as
a function of the past is now:

BSH:Z Yoy _Z Csti (339)

147 = (1+7) = (1+7)
with By — 0, s — T to impose the transversality condition. The number of periods, T, is itself unknown,

but as said before T is the expected mean process duration.

If Y., is centered on Y with variance (1 4 r)* 62 (we assume that the discounted variable —=t:

B (14r)*
constant variance o2), > iso Ysti centered on Y with variance To?, integration over Ys; yields:

N\ 2 T
/HdYerieXp —s(T) <(1Bj:;) —|—ZYS“_YC> _;;(YSH_Y)Q

has a

=0 (L+r
B v, +v-0\ 1< >
= dy’. . —s(T s+1 Isti T T M) & Yy, —Y
J TTvzsesn | == )<(1+r>+.z i) ")
>0 =1
with Y/,;, = Y,4; — Y. Neglecting the terms Y, ;Y] ; for i # j, since they are null in expectations, the
exponential rewrites (for a time horizon 7' >> 1):
N2
exp [ —s (1) [ Bett +Zw ,LXT:(Y Y)?
(1+7) = a +T)i o? i=1 "
T T
Bo1 1, - )2 (Bsﬂ 1o ) Y 1 s(D)
= exp | —s(T +o(Y-0)) —2s(T +-(Y-C _eki 1

1

for 02 < 1 and since s (T) << r << 1.
and the integration over the Y ; leads to a weight:

— = 2 0'282 T s+1 — = 2
exp<—s(T) (u&ﬁ)+i(y—c)> + (Tz(H )((fjrﬁi(}f—c)) )

Beyi 1o )\
~ exp <S(T) <(1f:'r) +; (YC’))
since s (T') << r and theus w << s(T)o? (1 +r) << s(T). Using that:

Bsia -y Yoti =S Csti
L+r (1+7) (1+7)

i<0 i<0
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the weight can be written:

2
Bs = 2 sz 7 Cs i 1 A
exp <BS+YS +1 C> —s(T) Z +z‘*z +i - (Y -0)
(1+7) i<0(1+’r) Ko(l—i—r) r
2
2 Yoti Coti 1, o =
= exp|—(Cs—C)" —s(T) Z i—z -+-(Y-0C)
i<0(1+7") i<0(1+r) r
s(T ~\ 2 Ys 7 Cs i < 7 ~ 2
0+ EER) @0 s (D (S gt - Sico iy — i +1 (V- 0)
B p 23(T)(Zigo%fzi<o%imii(c Y))(C C)
+ ez
)\ 2 Yips Copi ¢ > A2
~ exp| (Ce=C) =) (Zi@ (i~ <o (T ~ W T Y*C))
- P +2S(T)(Zz<0 ﬁ_zmo (fity_m_%(é_y) (Cs_é

(14+7)

as in the text, the terms in the exponential depending only of past and predetermined variables are irrelevant
to the statistical weight, so that this one can be written:

exp

R

exp

exp

for s(T") << r, with Ysﬂ- =Y —

2
Cs—C— D Z YSHz‘_Z Cs+7z‘ 1(Y_i)
(1+7) i<0(1+r) iz (L+7) "
B B 2
(C C’)* S(T) ZYQ—}-i*CiZOS-&-i*C
’ (1+7r) o 4+ o ()
R R 2
,  s(T) Z sz—&—iliz Csti_
(1+47) igo(l—i—r)l A+
V,Cori=Cori —Y,i>0.

We can now proceed as in the derivation of (92), and switch the representation to express the probabilies
for the variables. This weight can be written differently. Actually, it describes the variables

Cs—i—i
(1+7)

s(T)
(I+r

X,

-2

<0

i (2

o (1+r)

as gaussian and independent. Now, remark that at the first order in r:

(1 +7")XS _XS+1

_ "N C s(T) s+i Cs+i A _ s(T) 3A/s+1+z' _ CA's+1+i
= (1+7r)Cs— T+ ;qur)- Kzo(lJFT) s+1 T+ g(lﬂ)i g(lﬂ)i
~ (1+T)C’S— st1+s(T ( s+l )

= (1+r—s(T)C +(1+ )

~ (147)Cs = Coq + (f (fi)f/sﬂ
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It then allows to compute the density probability of:

~ N s(T) ~
(1 +T)Cs — Ls+1 + (1 :_7)#)}/3—1-1
by writing:
~ A T) ~
/exp (7X§ — X3+1) 5 ((1 =+ T) XS — Xs—i—l — ((1 + T) Cq — Cq-‘,—l =+ (i S_ Z) }/s_t,_l)) dXSdXS+1

~ exp| —

This stochastic process is constrained to X7 = 0 through the constraint:

Xy = Cop — Z Y; ‘_Z C; :Z Y; ‘_Z C; _0

0<i<T (1+7) 0<i<T (1+7) 0<i<T (1+7) 0<i<T (1+7)

Given that s (T) Ys41 has variance s2 (T) 02 << 1, including the global constraint yields the statistical weight
over all periods:

(és B CYSH (- T)> S Z Y; _ Z Ci

2(1+ s2(T)0?) A (S LA C RS

exp

~ N N 2 - . 2
> (Cor1=Co=1Con) (Sucicr oy ~ Tocicr a5y
~  exp 5 To2

S

Now, switching to an endogenous expression for Y;,, we introduce an index ¢ to describe a set of N

agents. Each of them is described by an action C’gi) and has an endowment Ys(i) = % > y ng ). The global
weight for the set of agents is then:

(@)
exp | — Z (és+1 -G, - TC'S+1>2 - é Z Z CO(1+ p)~(2te) c (340)
s 1 81,52

1 Al N
S 0 ~(2 ) G0)
T agr 2 2O WOy

51,82 i,j

To understand the field theoretic equivalent of the two last terms in (340), one proceeds as follows. First,
we turn to a continuous representation:

s d o N1 s s »
exp (/0 ds <dSC§? TGE?) — 502;/0 dsQ/O ds1C{Y exp (=7 (s2+51)) C) (341)

1 S S Al .
+W/O d81/0 dsz%:cgl) (exp(—r(sz—ksl))Cg))

and consider separately the second and third contributions. Actually, the second one represents the individual
part of the constraint and the third one to the collective effect.
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12.1 Individual part of the constraint
The second term of (341):

502 Z/ dsz/ ds1C{ exp (=1 (so + 51)) CY
g

can be introduced in very similar way to the case r = 0, in (341), but now, terms of the form exp (r (s2 + $1))
are inserted. We proceed as for the case 7 = 0. We normalize 02 to 1 and can compute the Green function :

(e -rc)’

_ z;(s)=
G (z,y) :/exp —as; /Da:l exp Z/ o, 572 Z/ d52/ dle(z exp (—r (s2 + $1

which is the Green function for an agent under constraint. It can also be written:

G(z,y) = /exp(—asi)P(O,s,xi,yi) <exp <—i </Osexp(—7"u)X(u) du) (/O exp (—ru) X (u) du>)>

Where X (u) the Ornstein Uhlenbeck stochastic process starting at z; at time 0 and reaching y; at time s
with probability transition:

s o 2
$1(‘5 Ct(Z) - TCt(Z))
/sz ) exp Z/ 557 dt

i (0) Zq

<exp (-i (/0 exp (—ru) X (u) du> </Osexp (—ru) X (u) du>>>

is the expectation value of exp (% (f; exp (—ru) X (u) du)2) given the process X (u). Our hypotheses are

and:

the same as in the case r = 0, and thus, we can approximate the expectation by the replacing X (u) by the
classical (average) path. This one is obtained by the minimization of:

ZTi\S)=Yqi 2
/ W C'( - rC( dt

The usual Euler Lagrange equation is:

& ) @) _ 240
ﬁct %Ct Ct = 0
or, since r << 1:
d” a6 4 Ax)
ﬁct — T'%Ot ~ 0
whose solution is ( (rt) - 1)
A0 _ () exp (1t) —
C =) e m ) T

and then:

<exp (—i < A " exp (—ru) X (u) du> ( /0 " exp (—ru) X () du)>> (343)
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We assume first that ¢ < a, and s ~ é Moreover the individual fluctuations |z — y|, which are of order

o5 = %, will be neglected with respect to the mean path IT“’ over the all duration of interaction. We

will consider two regimes depending on the time range. The first one corresponds to the long range. We

assume that rs =~ = >> 1, where we used, as in appendix 10, that in average s ~ L As a consequence, in

(6%
this regime:

<exp (-i ( /O " exp (=) X (u) du) ( /0 exp (=) X (u) du>>> (344)
~ exp (| ——
= on(-35)

This regime is the more relevant in that context, since it allows to study the effect of r in that context. The
second regime will be the short range in time: 7s >~ = << 1 and leads to:

<eXp (—1 < /0 " exp (—ru) X (u) du> ( /0 " exp (=) X (u) du)>> (345)
exp (=1 (=) +as))

at the first order correction in r. this case leads us back to r = 0 plus a linear correction in r. Using the
same techniques as in appendix 10, we can compute the Green function in both regime, starting with the
first one rs ~ = >> 1.

¢

12.1.1 Green function for large time range: rs~ = >>1

Using the previous equation for the expectation value of the exponential variables (344):

Glooy) = L Kexp <—i< OSX(u) du) </OSX(U) du)>>P(0,s,xi,yi)}

352
= L |:eXp <ST‘2> P(Oasamiayi):|

where the convolution is performed on the variable a. To find G («,x,%), note that both exp (77”—22) and

sTr

P (0,s,x;,y;) satisfy partial differential equations:
0 x? x? 22 r2 9 1 x?
Teap(-1) = T exp(-L ) =" (vV2- 2V )exp (-
9s P ( 37“2) 272 P < sr2> 4 < T > *b ( sr2)

2
= Oiexp <x2)
s
0

gP(O,s,xi,yi) = (;02V2 N TVCU) P(0,s,2i,yi)

and:

= 02P (O)S,IEi,yi)

As a consequence, exp (—ﬁ) P (0,s,z;,y;) satisfies:

9 _z P(0,s,25,y:) ) =0 2 P(0,s,2,y:) (346)
as eXp S’]"Q ) 87 xl? yl - eXp 87"2 b 87 x’l? y'L
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with:
-1 LL’Q .')32
O = P (0,s,z4,9;) O1 (P(0,s,2i,%:)) +exp (— > O3 exp ( )

sr2 sr2

Actually:

_1 x2 22 2
(P (07svxiayi) Ol (P (0757%7%‘)) + exp (_87'2) 02 exXp (57’2>) (exp <_87‘2> P<Oas7xi7yi)>

Z‘Q xQ
= P(Oasaxiayi) 01 exXp (_ 2) +eXp <_ 2) O2P(075,$iayi)
ST ST

= P(0,s,xi,y;) %exp (—;Z) + exp (—;;22) %P (0,8, 24,y;) = % (exp <—;;> P(O,s,xi,yi)>
The operator O is thus the operator needed to write the field functional. Indeed, given (346), it implies that:
_ 72
G(a,z,y) =L {exp <_sr?> P (0, s,xi,yi)}

satisfies: B
(= 0)G(a,z,y) =6 (z —y)

We cn compute operator O straightforwardly:

2 2
-1 x T
O = P(0,s,24,y)O1(P(0,s,25,y:)) +exp <—8T2> Oz exp (er) (347)
-1 .’132 .’L‘2
- Ol +02+P(0a S7xi7yi) {017(P(073,$i,yi)) :| +eXp _? 027exp ?

The second commutator in (347) is computed to yield:

x? 1 59 x?
exp <_5r2> [20 V* —rVz,exp (Wﬂ (348)

2 2 2
5 2T 5 2T v_ 2z n o
5274 sr2 sr sr2

The first commutator in (347) can be approximated in the following way. Since:

2
r 1
Olz(VQ—V)
4 T
and since at the lowest order in r, P (0, s, z;,y;) behaves as the transition function of a brownian motion

2
exp (7 (1—1/2)
~ N " 7

2s0

P(0,s,2;,y;) ~ S5—5 " On can write:
(P (0,5,2:,9)) [O1, (P (0.5,205) | = (P(0,5.21,9) |01, (P (0,5,2i,9)) '] (349)
2 l@-y’ 1 _(@-yo (@-y
~ D[RV
4 ( ots? 25 02s v+ zo?s

and then gathering (347), (348) and (349) leads to:

o2 2
O = —(1+—)V?
2 ( +202>v
o2 2z 2 r?(z—vy)
<T2_<m:+4x+a2 2s ))




Now, our assumptions imply the following order of approximation:

2 (f—y)wff

x2~sr2,(zfy)2~scf , —
r
Our assumption sr >> 1, and also so >> 1 yields:
2% 1 1 z—y)? (z-— 11
(22 > ~ f<<7",( 23;)+( y)**~f<<7’
s2r s s o?s s s rs

2
2 3 T T
T o~ TS =T24rs, — ~ —= =
Vs "dr  \fs \Jrs
3
(x—vy) o o2 3 2x r r 3
~ == —= << 020§, — ~ —== <LK 1r2N/TS8
2s Vs \Jos IV
So that ultimately the operator O reduces to:
2 2

o 72 1r 272
O=— (14— |V —raV - ——r— "
2 ( +2(72> " 102 Tar

We can now find the equation satisfied by the Green function of the individual part in our order of approxi-

mation. We can write:

2
Ip_op—op- 2
0s sr
with:
~ 2
P = exp (STQ> P(0,s,2i, i)
A o? r? 9 172
So that the equation (350) rewrites:
L 222
SQP =0sP—- —P
0s r

that is:

whose solution is:
_ 222 N
G(a,z,y) =exp | — T—i—l ln(oz—O) 0(x—y)

and thus G (o, z,y) satisfies:

exp((QfH) 1n(a_o))  ayayy) = 3 (@ — y)

12.1.2 Green function for small time range: rs ~ = <<1

In this regime we can perform an expansion in sr of (343). At the first order in r one finds:

<exp <—i (AS exp (—ru) X (u) du> <Asexp (—ru) X (u) du)>>
exp <_1 <( (y(_)x) 5 (3 _ (Lmexp (—u))> L r(—exp (—u))>2>
s \ (exp (u) — , .

oo (22 i)
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One can now compute the Green function directly in this approximation. As in appendix 10, we write:

o = elfen (5[ s ([ ) TEE] o
= L exp<_<s<ff;ry> _Sgr(x—ky x+5y >eXp NG y))]
( -

o (st ;;)exp(
(

and at the first order in 7, it reduces to:

S (e e [ LAY

4(0[—!—(%)2)202 12
e (—yf2 (o (=52)7) 12221
2 (a+ (232)°)

We have seen in appendix 10, how to find a differential equation for using G (o, z,y) (352). Actually, we

showed that: ( )
(z—y)*
2 exXp |\ — 2
(1) _ B Tr+y o2s
GY (a,z,y) =L |:exp ( s ( 5 ) > 7 ]

satisfies in first approximation:

§(z—y)= <J22V2 —2 <a+ (x;ry>2>> G0 (a,,y)

and as a consequence, given that given (352):

Gla,z,y) = |1+7r

X

G (o, z,y) = exp (—TW;OZ > G (o, z,y)

<U;v2—2 (a—i— (x;ry>2>> exp (—rwy)lwai)@(a,w,y) =d(z—y)

one has:
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Now, given that, at the first order in r, the following relations hold:

50 C (@ 2,y) = ——(2\ﬁlx—y|+ )eXp(_\/@’zUyD
( (z+vy) x+5y)a(fz)é(a’x7y)

302+2(a+(%)2> (z—y)°+3 2<0‘+(%)2) |$_y|a(:p+y)(m+5y)

(ot (=327) ’

o~ 1—7r

the equation for G (a, z,y) is

S(z—y) = {<§v2—2<a+(m;y>2>> (353)

($+y)(w+5y)302+2(a+(%)2> (e =)° +3y/2 (a+ (5)) lr =l
’ 1 os (52)7)

T(x+y)(z+5y)2m|xy|+g}

1—r

G (o, z,y)

12 oo

12.2 Collective part of the constraint

The third term in (341) can also be written

1 S
exp _-7\7802;/0 dsyexp (—7s1) C'( /d32eXp 7"52)0(]) (354)

We have seen previously how to introduce the field theoretic counterpart of such a product. One has to
find the counterpart of each term exp (f; dsyexp (—rs1) ng)) and exp (fos dsq exp (—1s2) ng)), and then

to take simply the product of the field equivalent quantities. We then focus only on fos dsq exp (—1s3) C’S(?,
and compute its expectation in the path integral to find its field theoretic formulation. For the sake of clarity,
we will replace r by —r and restore the sign ultimately:

@i (s)=y; 52 .
/exp (—as;) /’Daci (t) exp (— Z/ <332Z (t) + K (z; (¢ )) exp ( dsyexp (—rs1) Cﬁ?)
: z,»(O)*z,»
(/ dsy.. / dSQ,LC exp (— —7s1) C’( exp (—rsz) .. C’g? exp (—7r8p—1) C eXp( rsn)>

</ dsi.. / dso, Ol )eXp( rs1) CS(? exp (—rs2) ...C'S(EL1 exp (—78p—1) Cé? exp (—rsn)>
where the expectation (A) of any expression A is computed for the weight

/Dxl exp( Z/I(OS) y< )+K(a:2())dt>>

and the path integral leads to contributions:
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</ dsl.../ dSQHC’g) exp (—rs1) C’g? exp (—rs2) ...Cg?ﬁl exp (—7rsp_1) ng'} exp (—’I“Sn)> (355)
0 0

s S2n
= // dsl.../ dson P (0,51, x;, X1) X1exp (—rs1) P (s1, 82, X1, X2) Xo...X,, exp (—7sy,)
0 0
XP(SnflaSnaanhXQn)P(Snaqu’ruyi)dX1~--an
writing:

exp (—rs1)...exp (—rsy,)

= exp(n—rs81)...exp (2 —7r(Sn—1 — Spn—2)) exp (=7 (8, — Sp—1))

(355) can be transformed as:
</ ds... / dsz,LC’g) exp (—rsy) C’g? exp (—rsz) ...ng;[l exp (—rsp—1) Cs(i) exp (—rsn)>
0 0

= //S dsq... /82" dsan P (0,s1,x;, X1) X1exp (n —rs1) P (s1,52, X1, X2) Xo... X exp (=7 (sp, — Sp—1))
><P(()sn,17 sn,Oin,l, Xon) P (sn, 8, Xon, yi) dX1...dXa,
whose Laplace transform is:
Ginr ¥ X5 Gy * X %G x X 5 GG pp * X 5 G (oyp * X % .G x X 5 G (356)

One can find an approximation for such contributions by the following trick. Actually, write the convolution
of the Green functions, without the interacting term X as:

Ginr ¥ Ginotyr ¥ . G x G
as a product of operators:
(Gt =nr) (G =(n=1)r)... (G =r)G!
And this product is formally a product series

[T (-6 +#)

k=1
NIT ((—rG)_1 + 1)
(=0T ((=r6) "+ N 4 1)

Using asymptotic expansion for T’ ((fv’Gf1 + 1) and T’ ((77*(}')71 + N+ 1), assuming r small, yields:

e (- (vt ror ) (o )

Factor the first term in the exponential by (—rG)_1 + 1 leads to a first order expansion:
(HG)*1 +N+ 1) In ((er)*l FN+ 1) - (HG)*1 + 1) In ((fra)*l + 1)
N (m ((—rG)‘1 + 1) + 1)
1 N2

2 ((—r&)"+1)
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and:
NIT ((—rG)‘1 + 1) N
(=r)N D ((=rG) "+ N+ 1) (—r)

12

2y
N! ((G)N> exp (—NN) exp (NTG;((G)A_ZW)

The terms in the series expansion becomes negligible for a value of N, denoted N that is proportional —

1—(J.i‘
and then the previous contributions are approximated by: ’
Ginr ¥ X xGyno1yr x X % .G x X 5 G

1 Nr
—— | G
o ((r+355re) ©)
1 -
~ exp ((r—l— 2N7‘) G)
and then, (356): rewrites
Ginr* X * Gy * X .G x X+ G (357)

o o fo ([ L) 0) ex} e o (4 L)) o).
oo ((r+ 17) @) ex} e
foo ((++ 390) 0) o} = (o (v 27 @) x - ({4 3350) )

This leads to an interaction potential:
1 -
{exp <(r + 2Nr> G) * X}

/ v (2) (eXp ((r + ;m) G (x, y)> ””‘2”/> Ut (y) dedy (358)

We can come back to our problem and find the field counterpart of: (354). As a consequence, a term:

exp (/ dsy exp (—rs1) C’g?)
0
induces a field counterpart:

/ o (2) (eXp ((7“ + ;m) G (a, y)> 2t y) Ut (y) dedy (359)
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where:

and a field contribution:




Then, the expansion of

exp [ 35 [ asiesp(oran € [ asse (-rs) €
i Y0 0

can be computed, and as previously, using (358) and (359), it leads to the following potential in field theoretic

formalism:
[ / o' (2) (exp ((r + ;m) G (x,y)) z;”) o' (y) da:dy}

x [ / ot () (eXp ((r + ;m) G (w,z)) “’;y) U (2) dwdz]

The Green function introduced here are similar to (183) and includes the constraint at the individual level.

12.3 System with full constraint
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Ultimately, gathering (351), (353) and (??), we are left with the following action with constraint and discount
rate in the case = >> 1:

() )
k=1...M
= ;zk:/d)%lgnd)élgz)q,(m (X]gm) H(VXL“) (pr — MW (X,i” B (X)k)) v (Xzil))]

“ 2
2(X,£1)) o2 r2 172
2 o(1) r Wt (0
+6Xp T"‘l In (a—(1+02> VX£1)+TXk VX£1)+40_27"> \I/( )t (Xk )

constraint, individual level

(9) OINS dAR TN S ¢V
X ({0, ) T e () v (31)
intra species interaction

YOS <{X,E”)} )ﬁ [ v <X£)) k) (X;S))
1<in, <n; ) - .

m ky..kpy N1oNm Sin; <Ny

inter species interaction

. . (1), % (2)
S ania S 1 (00 (2) (0 (4 430) 6 (20, 22)) S50 ) wito (3(7) ) as(Vax?
. _ . R o (1), v (2) R R .
I (w (20) (o0 (4 30 6 (0. 1)) 75 Y weo (%2) ) axfYax(?

constraint, collective level

+

And for the case - << 1:

S ({\I](k) }k:L..JLI)
- S fare (57) [[(Fap) (T -0 (50 (5)) ot v ()] (50 - )

+ o(XV-xP) e ()
constraint, individual level

+;;Vn <{X’gi)}1<¢<n> H G (Xlgb)> ) (X,i”)

1<i<n

intra species interaction

+Z Z Z Voroonm <{Xk(:7bg)} | ) ﬁ H ki)t <X£:n,)) (ki) (X]S:n]))
1< znjé’nj j=1 léi"j <ny

m ki..kp N1...Ny

inter species interaction
. _ (D) (2) R . N
S ansa S 1 (00 (X) (0 (= (o 587 6 (21 42)) 550 ) 0o (22) ) axax?
G S @) Xy X0 (2 S(1) 14 (2
Xff( (kg)T( <,2>) (eXp ((r+§Nr)G(X,§2),X,§2))) ko 0k ) gyke) (Xzé)) dXIgQ)dX]iz)

constraint, collective level

+
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T | e (R CE= )

(X7 +%2) (%10 + 5%
1—7r D X

2 2
(1) % (2) N N 2 (1) % (2) N N
302 42 <a+ (Xk 2% ) ) (X - %) 43,2 <a+ (Xk 22 ) ) X0 - %00
4@\ 2 ?
4 a+ (w) o2

(X0 + X2 (%0 +5%) 2v2a | X - X+ 0

12 ao

X

=T

Appendix 12

Case 1: one type of agents

The inclusion of the term:

LYY ey (360)

i 81,82

in the field formalism is performed as in the derivation of (135) and (140). If we consider that the time
horizon T is constant, the field theoretic counterpart of (360) is obtained by adding the term

L@ v @) ) v ) v ) drdy

to the field action, for a total of:

z+y 2
S(¥) = /\pf(x) (7V2+%+x2)6(x7y)+(z) +2x;y’ U (y) dedy
L W@ @) () W () W () oy

However, doing so implies that the functional S (¥) which is not bounded from below. Actually, if ¥ (z)
is of norm /7, the last term of the previous expression is of order —%n27 whereas the other terms are of
order 7. As a consequence for i sufficiently large, S (¥) becomes negative. The system is thus unstable and
nothing can be said about any equilibrium. However we can turn this difficulty by recalling that the time
horizon can be considered as being related to s, the duration of the interaction process. The most simple
assumption is to set 7' = s.

In that case, we can adapt (135) to include a factor % in the following way. We will proceed for an
arbitrary potential and apply the result to our particular case. Inserting any potential Vi (z;, (tg) ...z, (tx))
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in the description in terms of path integral was given by:

Z N H/exp —as; /Dxz exp( 2/1(05)_: ( () + K (z; (¢ ))dt)) (361)
X 1;22 L (;:y Vi (5, (tr) .o.xiy, (tr)) dty...dt,

3 [t s
XZN,H/eXP s, /Dx eXP< Z/; : ( )+K(xl())dt>>

and inserting a factor ﬁ = 8%1 in this expression yields:

ZN' H/exp —as; /Da:z exp< Z/l(os) i < (t) + K (z; (¢ ))dt)) (362)

_xl

XSIC% Z Z / Vk (xil (tk) ~~~1'ik (tk)) dtldtk

k>241,...0% z;(0)=x

_ Z Z { /dmil...dﬁikvk (ffnxlk)(;](((;x“)é[(?xlk)}

k>211,...1%

XZN'H/eXp ~asi) 1/7)3:, exp< Z/ij ( )+K(xz())dt>>
_ (/:Oda> >3 {(—1)k/dxi1...dxika (x“'”m““)5K((Sxil)"‘6Kfa:ik)}

k>211,...0%

DM ﬂ [ew(-as) [ Do (— 3 BN CACRT TSI dt))

N

as a consequence of the Laplace transform properties. Then, as we did to find (132), the next step is to
exponentiate (362) as:

zi(s)=yi 7, zi(s)= y
X exp —ZL (2 () + K (x; (¢ dt) . Z / (i, (t1) o, () dty...dty

7 Jai(0)=a: {(0)=c

o k—1 5 )

x %: % f[l/exp (—as;) /Dxi (t) exp (— EZ: /w::)_:h (332% (t) + K (z; (1)) dt))

The translation of this operation to the field formalism is then straightforward. As we did for (140),
finding the equivalent of the potential

(s)= y
Z / e (24, (1) ooy, (b)) diy ..dty,

1,.--2
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in terms of fields corresponds to act with the operator:

o k—1 ] g
exp ( (/ da) /dzfl---dzika ) S () K (o, >>

on the field path integral:

/exp(—S (1)) DYDWT

= exp <—/\IIT (x)

and let K (z) =0 for a result:

exp ( (/j da>k1/dzi1,..d:pikvk. (i, i, ) 51(((5@ )"'5K?xik)> /exp(S(\I/))D\IJD\I/T
— exp <_ / o' (2)

2(k—1)
+/( ? 3 W (@s,) ¥ (@0, Vi (@, i) BT () 0 (xik)dxl...dxk) DYDY

(—V2+%+$2+K(x))5(m—y)+ (T)2+2

W (y) dxdy) DYDY

a4y 2
(—V2+%+m2>5(a:—y)+( z) +2

U (y) dedy

f‘I’T (x)‘l’(x))k_l i1,.in

Applied to our case we can now assert that the equivalent of —{ Do 251752 Oé?cﬁ? on the field theoretic
side is:
fa?

T[T (2) U (2) da

/ W (2) U (2) () T (4) U (y) dedy

for a total action:

S(¥) = /qﬁ(x) (—V2+%+x2)§(x—y)+( 2 42

_ fo®
[ Ut (2) ¥ (z) da

g

/ () U (2) () U (4) U (y) dedy

If we keep the hypothesis of the text, we can neglect the initial inertia, and the action reduces to:

L+y)2 2

S(P) =~ /dx\IJ (z) (2 + %) U (z) + /alasdy\I/T (z) [( ;2 +2

fo?
[T (2) O () da

r—y
o

v (y)

/ W (2) U (2) () W (4) U (y) dedy

with €2 = &,
(oa

Case 2: several types of agents

We proceed in the same way as for the case of a single type of agents. The interaction term

1 S S D a .
exp (TZ/O /0 ol (Zfaﬁcf;)ﬁ) dtdu)
i, 7,8
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for T = s has a field theoretic counterpart which is found as in the previous paragraph, by letting the

operator
exp (— (/a da) ;/dxadxgvk (Ta,25) 6K§xa) 5K‘2x6)>
act on:
exp (— ZS((‘I’a))>
where a
ZTotya )2 2
S(Wa) =Y (/ dza W' (z4) (2% + 5 + K () Vo (2a) + /dxadya\IlT (za) [( Z ES iz (ya)>

and then set K (z,) = 0. It yields directly an interaction term:

2

ST o) W (e s 227 [/ VL (a) 7ao <%>} [/ W, (25) 250 <m5>]

for a total action functional:

2
Tao — Ya

g

Tat+Ya ) 2

$((¥a)) = Z(/ dg U1 (2a) (7 + €) Wa () + / A dya V1 (za)[( 242

g

«
2

S v (x:)\If (Ta) die 2 Zfaﬁ U‘I’T (o) Za Yo (xa)} U‘I’E (2p) 25 %P5 (wﬁ)}

with €2 = %.
o

Case 3: Business cycle model, field theoretic representation

The field theoretic equivalent of (196) is obtained by the same methods we used previously. One obtains the
following action for the field:

v 0 0 —AF (K)+ C+4(K)
S(v) =01 (K,C,A) (—v. (( 0 = 0 )V+2((AF’(K)+TC) (C-0) ))
0 0 5% 0
2 (C—C’)Q—I—(Ai—fl)2+(—(AF(K)—5(K))’—AF’(K)—TC)+a—C’0>\IJ(K,C,A)

+yUT (K7, C1, A1) U1 (Ko, O, Ag) {AsH (K, Ko) K1} U (K1, Ch, A1) U (K3, Ca, As)

2 2 2
_ /qqu,c,A){ 2%,$%H (€ 0) + (A=A v 0
+(—2(0—AF(K)+5(K))£K+2(AF’ (K)+re) (C— C)%JrQa%(AF( ) — 5(1()))

F2(AF (K) +710)} ¥ (K, C, A)
+ / vl (K, C, A) (- (;{ (AF (K) - (K))) —(AF' (K) 470 +a — co> U (K,C, A)

1
—&-’yi/‘lﬁ (K1,C1, A1) UT (Ky, Cy, Ag) {AsH (K1, Ko) Ky + A H (K, K1) Ko} U (Kq,Ch, A1) W (Ko, Cy, A)
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Let 6 (K) = §K as usually assumed. The previous expression simplifies as:

; , 02 1 9, P 2 d
SW) = [ VI(K.CA =" 55 ~ 250 Y oz T (A= A)" —2(C = AF (K) +0K) 5o

F2(AF () 1) (O O) 2462 (C—C)Q}\I/(K,C,A)
+/\1ﬁ (K, C, A) (a+ 2AF" (K) + (re — 8) — Co) W (K, C, A)

1 ,
—|—’}/§/\IJT (Kl,ChAl)\I’T (KQ,CQ,AQ) {AQH (Kl,KQ) K; +AlH(KQ,Kl)KQ}\IJ(KhCl,Al)\I/(KQ,CQ,AQ)

If we consider that the rate (AF’ (K) + r.) is slowly varying, as an interest rate, we can perform a change
of variable:

U(K,C,A) = exp (2;2 (AF' (K) +r2) (C — é)2> W (K, C, A)
\PT(K,C,A) = exp(—Q;Q(AF/(K)—FTC)(C—C_')2 lif([QC’,A)

and rewrite the action as a function of W:

- - 0? 1 02 0? o\ 2 0
_ t 2 2
S(\Il) —/\I’ (K,C,A){ w 2 2 9A? v 2+(A A) 2(C — AF (K) 4+ 0K) K

o2

AF' (K) +r.)* . -
+ (;u“””) (C—C)2+a—Co+AF’(K)—6}\11(K,C,A)
1 au ~ A o
—|—’Y§/\IJT (Kl,ChAl)\I’T (KQ,CQ,AQ) {AQH (Kl,KQ) Kl +AlH(KQ,Kl)KQ}\IJ(Kl,Cl,Al)\I/(KQ,CQ,AQ)

Then, a change of variable

K' = C—-AF(K)+0K
9 _ (6 — AF' (K)) 4
0K oK'

associated also with the assumption that the rate § — AF’ (K) slowly varying leads to:

82
aK/2

0
oK'

+(A-A) —2(5— AF' (K)) K’

. . 02 1 02 2
_ T / 2 _ .2 _ !
S(\If) _/\1: (K,C,A){ iy (6 — AF' (K))

+<§2+W"(ggﬂ“c)> (C_C)2+a_co+AF’(K)—5}@(K’,C,A>

1 o ~ o ~
+7§/\IIT (Ky,C1, A UT (KL, Co, Ag) {AsH (K1, Ko) Ky + A1 H (Ko, K1) Ko} U (K, Cy, A1) W (Kb, Cy, A)

Ultimately, one can recast the action in a tractable form through a second rescaling of the field:

1\ 2
U (K',C,A) = exp <2y2 (5(_KA)F/<K))>\II(K’,C,A)
\iﬂL(K”C’,A) = eXp<2y2(6(—I{2F/(K))>le(K/’C’A)
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and thus:

= Tt ’ 2 32 1 82 2 , 2 62 2
S(\IJ): U(K',C,A) ¢« —w @_P@_V (6 — AF'(K)) 3K'2+(A_A)
’ 2 "2
+<<2+W(K§+"C)> (c-0)* 4 ) +aco}qf(K’,c,A>
w 14

1 T, T, / ST ! T, !
+v§/‘1” (K1, Cr, Ar) W1 (K, o, Az) { Ao H (K, K) Ky + AyH (Ko, Ky) Ko} W (KT, Cr, Av) B (K, G, As)

The relation between ¥ (K, C, A) and ¥ (K’, C, A)

P <2;2 (AF"(K) +7e) (€ = 0)2) P <_ 22 (5 <—K2F’ (K))) TG4

U (K,C, A)

(K')*
22 (6 — AF' (K))

UT(K,C,A) = exp <—1 (AF' (K)+r.) (C— 0)2) exp (

57 ) U (K',C, A)
implies at first sight that ¥ (K’,C, A) and ¥ (K’,C, A) are not complex conjugate. This is the consequence
from the fact that the operator involved in the definition of S (¥) is not hermitian, or self adjoint in the real
interpretation. This non hermiticity is itself the consequence of an asymmetry in the transition functions:
due to a drift term, the transition probability between two points is not symmetric. However, one can make
sense of the partition function:

/ exp (—S () DEDU! (363)
and show that it computes the same partition function as:
/ exp (—S (1)) DEDU! (364)
To do so, we first define:
0? 1 02 0? 2 0 -\ 0
L = —w? — = —v? A—A) —2(C - AF(K)+6K) — —2(AF' (K )(C—=C) =
@902 T \2oA? V3K2+( ) (& (K)+0 )BK (AF'(K) +7.) (C C)BC

+32(C =0 +a—-Cy
, 2 1 P
“ 902 T \2oA?

K")?
+(1/2) +OK—C0

and then:
UM (K,C,A) LY (K,C,A) =V (K',C,A) L'V (K',C, A)

so that:

N2
U o= exp<_2;2(AF/(K)J”"C)(C—C)ZJF21/2(6(—1;{14)1”(}()))

x L exp (2;2 (AF' (K) + ) (C'* 0)2 T 9,2 (5(_K;1)F/ (K))>

Then, to make sense of the partition function (363), we will compare it to the computation of (364). To do
so, recall that the partition function for v = 0, that is (364), is defined as det (L_l) and that this quantities
is computed via the eigenvalues of L:

det Lil == H dzndyn €xp (7In)\n-rn - yn)\nyn)
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This expression makes sense since the eigenvalues of operator L have positive real part. Let a,, = z,, + iy,
and a;fz = 2, — iyn, det L™! rewrites:

det L7 = H dandaIL exp (al)\nan)
This expression is real, since L is a real operator, and if )\, is an eigenvalue of L, so is \,. Consider the

expansion of ¥ (K, C, A):
U(K,C,A) =Y an¥,(K,C,A)

where U, (K, C, A) are eigenfunctions for A, of L, then, define ¥' (K,C, A) as
(K, C,A) = ol ¥, (K,C, A) (365)

where Ul (K, C, A), eigenfunctions for )\, of the adjoint L*, and <\IJIn (K,C,A),¥, (K,C, A)> = Omn-
As a consequence; the partition function rewrites:

det L' = exp (=S (¥)) DoDYT

This is (364), but the field ¥T is not the complex conjugate of ©, and has rather to be understood as the
given by the expansion (365). Now, focusing on (363), consider the transformed eigenfunctions:

U, (K',C,A) = exp (-2;2 (AF'(K) +r.) (C — 5)2 5 & (fi’l)F, (K))> v, (K,C, A)

that are eigenfunctions of L’ for eigenvalues \,. Actually:

L'V, (K',C,A) = exp<—212(AF’(K)+rc)(C—C_’)2+
w

= AT, (K',C, A)

(Kl>2 LY, (K,C,A)(366)
202 (§ — AF' (K)) nATh
Moreover, we define:

(K')*
22 (6 — AF' (K))

Ul (K',C,A) = exp (2;2 (AF' (K) +7.) (C—C)° - ) Ul (K,C,A)

the eigenfunction of (L’)+ for A,. The functions ¥,, (K’,C, A) and ¥,, (K’, C, A) are orthogonal :
(Ul (K,C,A), ¥, (K,C,A) = (V] (K ,C A),T, (K CA)=0nn, (367)

as a direct consequence of:

o K')?
(It = exp (2;2 (AF'(K) +7.) (C=C)" — 9,2 (5(_,4)F' (K))) L
X exp <_27132 (AF" (K) +r.) (C - C>2 * 202 (6 (*KA;l)Fl (K))>
and
(L,)+ \I,IL (K’,C’ A) = exp (% (AF/( )+ 7e) (C— 0)2 ~ 53 G (—[(XF/ (K))) L+\IJIL (K,C,A)
= MU (K, C,A)

247



since these two relations imply:

/@T(K/CA) _ 2572_iﬁ_l,?((;_AF/(K))?iJr(A—A)2
' 902 T )2 oA 0K
AF' (K) +7.)° . K')
+<<2+( (wl’Lr))(CC)QJr(V) +aC’0} (K',C, A)

- /\IJT(K’C’A)L\I/(K’CA /Za f K, CA) Aan T, (K,C, A)

/Z am)\nan

_ /ZaT U (K,C, A) AWy, (K, C, A)

= UI(K,C ALY (K,C,A)

As a consequence of (366) and (367),
/DeTD\If exp (—U1 (K,C, A) LY (K, C, A))

and
/ DEDY exp (— / Ui (K',C,A) L'V (K',C, A)>
compute the same partition function. We can thus consider the following action:

=t , 2 0? 1 02 2 , 2 0? 2

+ <<2+ AF(K) +re)” (KlJ”C) ) (0—0)2+ (K/) +a—00} (K',C, A)

w l/
1 _ _ — _
g [ UG o) W (05, G, Aa) (AaH (K, ) Ko+ ArH (Ko, K) K B (K5, Cr, A1) B (16, Ca, o)

as stated in the text.

Case 3: Existence of a saddle point

We first set H (K5, K) = 1,to simplify the saddle point equation (198):

0? 1 02 5 02 .3

s <g2 . ng”)> (c-cy+ &) +04—00}‘I’1 (K,C, 4)

where:
/\1/{(KQ,CQ,AQ)Kqul(KQ,CQ,Ag) = T
/‘I’J{(K2,C2,A2)A2‘1’1(K2,02,A2) = I3
oK) = K-SR
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and ||¥; (K,C, A)|| = 1, so that ¥ (K,C, A) = \/n¥; (K,C, A). We can also replace K with K’ through the
relation:

K' =C—AF (K)+ 0K =g ' (K)

2 1 9 , o i
=50~ o O AR WO g+ (4 )
AF' (K) + 1) . K")?
4 <§2_~_((w>2—'_r)> (C—C)2+ ( VQ) —|—04—C()}\I/1 (K,C,A)

1 (F’2A+F3 (g (K/(;C») Uy (K,C,A) =0

For the usual form F (K) = K¢, with € < 1,

and above a minimal level K:

5}3{{6 N Afe <1+5<KI—([{> ~ 5(12—5) (KI—{I_(>2>
<

2

N AK¢® 14 K-K
~ 3 € -
and: A _
Ke K-K
g N K)~ K — 5 <1+e<>>
so that:

0 § — AcKe—1

For this particular form of production function, (198) is then:

K:g<K’—C> _(K'—C)+ AR (1-¢)

32

2 82 1 82 2 / 2 2
gz oz VAN E)) Fim +(4-4) (368)
AF' (K) +1.)? - K')®
+(<2+((Z~+T>> (C—C)2+(V2) +a_co}\1/1(K,C,A)

(K' —C)+ AK® (1 —¢)
§— AeKe—1

+m <F'2A + T3 > U, (K,C,A)=0

where:
Iy (C), Ty =(K'), T3 =(A)

i (K' —C)+ AK® (1 —¢)
2 - 5 — AcKe—1

and the brackets denotes the expectation of the quantities in the state Wy.
Equation (368) can be rewritten in a normalized form:
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0K"? 2 2

2
(AF' (K) +r.)* ~ 1l
+<g2—|— 2 C—-—|C+ AF (K)1re)? —
2 (§2 + Tc) ((5 — AEKE 1)

2
_ 1 < ’W?F% >
(g2 + (AF’(;(2)+TC)2) 2 (5 - A5K5*1)

2 2 2 2 2
{_w28_18_y2(5—AF’(K))2 0 +<A—A+WF1> +7nr1[1—<7’7r1) (369)

2
K + ynrls ) 2 ~ —
2(6—AcRe-1) ) ynly CH+ AK® (e —1)
— —_— —Cy — Tr = v, (K,C, A
* V2 Y (2(5/15[(61) FamCo T\ T T ke 1 (K,6,4)

The potential terms in (369):

) (AF’ + re) (K")? a2 , (K= C)+ AK* (1-¢)
<§ + ) V2 + (A A) + yn FZA + Fd 5 — AEKE_l
s (AF’ + re) (K')? a2 , (K' = C)+ AK® (1 —¢)
~ <§ + ) V2 + (A—A)" +n(THA+T3 5Tk

with

o (K'=C)+AK*(1—¢)\ (Ty—Ty)+K°(1-¢)Ty
2 5 — AcKe—1 - § —Daeke1

and the potential terms are then:

(gz L AF () + >> -+ B0 (4 2o ((rz ST+ RS(1-o)Ty (K= C) + AR (1 e))

w? v? § —Tyeke1 3 § —TgeKe1
and can be written in a compact form:

Y(x - %) (x - %)+(T)MX = (t <X ~ X+ ;ger» 0 (X - X+ ;QlMF) —i (‘TMQ ™ MT)+('T) MX

(370)
with:
, 2
c ) c r, <§2+(AF(;{2)+”)> 0 0
X = K |,X= 0 |,I'=| Iy |,Q= 0 1)
A A I's v?
0 0 1
0 0 -1
Moo= e 00
3¢ -1 1 K°(1—¢)
and I and X are related through:
P |
r = X—§Q‘1M1“ (371)



The constant term in (370) is thus given by:
—% (TMQ'MT) + ('T) MX = —i ('TMQ'MT) + ('T) M (1 + ;91M> r
= (‘1) <M + iMQlM> r
- (%) (1 + ;Mﬁl)l (M + iMQlM) (1 + ;ﬂlM>1 X

Equation (371) can be expressed as an equation for I's:

24+ C
ry = 2 + Con (372)
4—(a+b)a? (yn)” + 2aBym
24 (5 — T3eK=1)? + Oy (5§ — T3 K1)

4(6 - I‘gsfﬁ'E*l)Q —(a+b)(yn)* (§ — TzeK="1) + 2ynK= (1 —¢)

where: )
a+b= “ s+t <<1

Zw? + (AF (K) + 1)

and: _
1 Ke(1 -
o 5 (1—¢)

o — F38K571 6 — F3€K€71

Let:

z=0—TgeK!
to write (372) in the following form:
2Az% + C_’vms
422 — (a+b) () = + 2ynK= (1 —¢)
As a consequence, I's > 0 if and only if + < 6. For yn > (vn),, then 2 > J, and the approximation breaks

down. For (a+0b) << 1, the solutions to this equation with & < ¢ are obtained for z > 0 or z < —%.

n
We will consider the first case > 0 only. It corresponds to a depreciation rate for capital greater than an
average rate of return. Below the threshold yn = (yn),:

x=06—2Ke!

4C — Cba? (yn)* + 2aAayn 4 2Ca by

r, = .
4—(a+b)a?(yn)” +2apBn
_4C — Cba? (yn)? + 2aAayn + QC'aﬂfynF
B 2 (2]1 + C’a’yn) ’
r, — (*}/77)2 ba’C + 2baynA

4 (a+b)a? (1)’ +2ap
(777)2 ba’C + 2bory77f_1r
2 (2]1 + C’a’yn)

These expressions allow to find the expectation value of K in the state Wy:

—4C+Cba’n?—2aAan—2Cafy
7% 2n2+ba?n?—2apn—4
K —C)+ AR (1 —¢ aoZn? $0ay—2a sy
<K> _ ( ) - ( ) _ ( —a « O(ﬂ ) bOé’I] — 2A—21-C;Om
§ — AcKe—1 aa?n?+ba’n? —2a6n—4
_9 2A+Can
aa?n?2+ba?n?2—2a6n—4

2A8 —2C — (a+b) Aan
Y (a+b) a?n? + 2af6n
2A8 —2C — (a + b) Aan
_ T,
2 (24 + Can)
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This yields the quadratic term:

(tX) <1+ ;MQ‘1> <M+ leQ‘lM) (1+ 19—1M) e

1
4 (5 — TyeK=1) (2 (;_";‘79;_) + 4) AC + (g”f e 13

4(Ke (1—e)+2(6 — Tyeke1))”

for a + b << 1, with:

24 (5 — Tye K= 1) 4 Cyn (6 — Tge K=1)

s =2 e\ - . .
4(6 —TseKe=1)" = (a+0b) (yn)” (6 — TseK=1) + 2ynKe (1 —¢)

For § — 'se K¢~ > 0, this is positive for

[ anKe(l—¢) ynKe(1—¢)
6F35K51+4+\/7+25 Tseke— )7
Ke(1-¢) ¢
ynke €
6—IgekKe—1 +4

When this condition is satisfied, (369) has solutions of the type:

< ;722 + (T+Tc ) (C 1—11)
Wn17n25n3 = Hnl ((C - Fl)) €xXp | — 9
MNA=T3)? , (K' —Ty)?
H,, (A-T %\ H,, (K -T - _
(4= Ta)op ( 2 ( 2P\ o Tk 1) 07

with 7 defined by:

0 — AeKe—1

M_Tc:<(8A(K’—C)+AK8(1—6)>5_1>+r028F3((Fz—F1)+K5(1—5)F3>6_1+rc

o — F35K671

and where the integers ni,ns, n3 satisfy the compatibility condition:

2n9 + 1
A

a—Cy+ (tF) (M—f— iMQ1M> F=—-02n1+1) \/g2w2+(f‘+rc)2 —

A minimum for the action may thus exist for

Co > o+ Min, <(t1“) <M + iMQlM> F) + \/§2w2 + (P 1) + % + (6 — AeK*71)

Since the minimum for (('T') (M + 1MQ~'M)T) is 0 for yn = 0, the condition reduces to:

1 _
Co > a+\/2w? + (7 +1.)° + T (6 — Ae K1)
In that case, the compatibility fixes the value for 1. For ny = ng = ng:

4y (5 — Ty K1) (2 (L )AC+ (% )é (vnK (1-

§—TzeKe—1 6—TzeKe—1

§ FgEKE 1

r3)C? - (i +1) )
)

(373)

+4)

— (2n3 +1) (0 — Tzek*1)

0 = a—Cy—
’ 4 (e (1—e)+2 (0 — geke-1))>

1 _
+/s2@2 + (7 + 1) + 10— Tae°Y)
= g
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with
24 (5 — Tye Ke1) 4 Oy (6 — Tge K=1)
4(6 - F35K5—1)2 —(a+b) (y)? (6 —T3eKe1) +2ynKe (1 —¢)
L2400~ T3e K1) 4 Cyn (5 — TgeK=1)
4(6 - I‘gsK'E*l)z +2ynKe (1 —¢)

for (a +b) << 1. If we find a solution to (374) with n # 0, then (369) will have a solution with n # 0. To
inspect (374), note that for vy =0, I's = A and thus

7 1 _
g(0)=a—Co+1/?w? + (AcK=1 + rc)2w2 + X + (6 - AEKE*)
whereas that for yn = oco:

¢ (6 _ Pgsksil) and 0 —3e K1 =6 — 56 (6j Fggk&l)

Ke(1-¢) K(1-e¢)

Ty =

so that:
A% —2AC — C?

g(o) = a-Co+ (Kf(lfs))

+/e2@? 4 (AsKe—1 +1.)° + % + (6 — AeK=1)

Given our conditions, if A2 — 2AC — C? > 0, and if

A% —2AC - C?

1 _
O[-CO"’ §2w2+(7ﬁ+7'c)2+x+((5—A8K671) < Co<Oé—CO+ (Kg(lfé‘))

1 _
+\/§2w2 +(F+re) + 1T (6 — Ae K1)

a solution for (369) with 1 # 0 exists. An estimation for 7 can be obtained by rewriting the compatibility
condition (374):

A () A0+ (PR +3) O - (B +4) 4)
o — Cpg —

: 2
4(5 — Tyee1) ((g"ffa Lo 2)

0 =

1 _
+\/§2w2 +(Ftre) + T (6 —T3ek*)

as: __ _ _
z(2(z+4)AC + (z+3) C? — (z + 4) A?) _
(= +2)° N
with:
_ K (1-¢)
((5 — F38RE_1)

_ 1 _
Ke(1—¢) (a—CO + /2@ + (P +71e) + X + (5—F35K51)>

D

Note that D < 0, due to (373). The compatibility equation can be be expanded as:

(2 +4)AC+ (z+3)C?* — (x+4) A%) — (z+2)° D
= (C*+20A—- A% -D)a”+ (3C* +8CA —4A* —4D) x — 4D
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Several cases aris_e: B B B
If: (C?+2CA—A?—-D) <0and (3C*+8CA —4A%> —4D) < 0:

(3C% +8CA —4A% —4D) + \/(302 +8CA — 442 —4D)* + 16D (C? + 2CA — A2 — D)
2(C?2+2CA—- A2 - D)

r = -

8D (C?+204 - 42— D)

Cyeci-x-p)

(C?+2CA— A% - D) >0and (3C? +8CA —4A? —4D) > 0:

—(3C*+8CA—4A? —4D) + \/(302 +8CA— 442 —4D)? + 16D (C2 + 2CA — A% — D)
2(C?+2CA—- A% - D)

X =

8D (C? +204— 22— D)

(i roci-2—py ~ P

<

(C*+2CA— A2 — D) > 0 and (3C* + 8CA — 4A4% — 4D) < 0:

—(3C*+8CA—4A? —4D) + \/(302 +8CA — 442 —4D)? + 16D (C2 + 2CA — A% - D)

v 2(C2+2CA— A2 — D)
8D (C* +2CA— A? - D)
— — =—-8D
(C? +2CA - A2 - D)
and: )
<8 (8 —T3eK") |a—Co+ \/<2w2 +(F+re) + 3 + (6 —TseK ") <1
since

(6 —T3eK*!) << (K°(1—¢))

Case 3: Saddle point stability

The solution of (197) may thus present a non trivial minimum, as asserted before. To prove this point, we
have to show that among the set of possible solutions of (197), the action S (¥) is bounded from below.
Moreover, the second order variation of S (¥) around the solution with the lowest value of S (¥) has to be
positive. We write this second order variation 625 (U). A straightforward computation yields:

0? 1 0? 92 2
{—w2802 -2 — 25— AF' (K))? a7+ (A-4)
AF' (K) +7.)? _ K")?
+ <<2+((w2+7")> (C—C)2+(V2) +a—00}\111 (K,C,A)
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32

K7 +(A-T5)?

~5%5 (W) = /w (K,C, A) {w232 1P (6 — AF' (K))®
~ 2 / 2

+ (8 + (T;Z)> (C—T1)%+ (K =Ty +a+ ('T) (M + iMQ‘lM) I — CO} ¢ (K,C,A)

b [ WL (.0 K (1,0, 4) [ (5,0,4) Ap (1.C. )

) / vl (K, C, A) AV, (K, C, A) / o (K,C,A) K¢ (K,C,A)

. / (0 (K.C, A) + o' (K,C,A)) KT, (K, C, A) / (0 (K.C, A) + o' (K,C,A)) AV, (K, C, A)

; , 1 9%, s oen2 O 2

. 2 ;o 2
+ (8 + M?)) (C—T1)° + w +a+ ('T) <M+ iMQ_1M> F—CO}@(K,C,A)
w

+n / (¢ (K,C,A)+ ¢ (K,C,A)) KU, (K,C, A) / (¢ (K,C,A)+ o' (K,C,A)) AT, (K, C, A)

Where /nV; (K,C,A) is the fundamental previously computed for ny = ny = ng = 0, ('T'), and
('T) (M + iMQ_lM) T is evaluated for this state. The perturbation ¢ (K, C, A) orthogonal to this fun-
damental state ny = ny = ng = 0, and normalized to 1.

Given the compatibility condition,

0=a—-Co+ ('T) <M + iMQlM> T +/¢2w? + (7 +1c)? + % + (6 — AeK=1)

and the variation becomes:

1o _ t L2 0% L0y e O BERY:
LS (W) = /w (K,C,A){ s — gy~ (= AP (K)) 5 (A= TY)

~ 2 / 2
+ (& L EEre) ;ZC) ) (-1 T -T2 (\/§2w2 P 4+ (- Astl)) } o (K.C, A)

14

T / (0 (I, C,A) + ot (K.C, A)) KU, (K. C, A) / (0 (K, C,A) + o1 (K.C, 4)) AV, (K, C, A)

The first part of %625 () is positive given the definition of the operator, only the last part can be negative.
Given that:

777/(np(K,CﬂA)—&—cpT(IQC’,A))K\I/l K,C,A) / (K,C,A) +¢' (K,C,A)) AV, (K, C, A)

(e
= VU/(SD(K’QA)‘F%)T(K@A)) S 5 );‘;?fﬁ'(:(l

Ly (10.0,4) [ (o (5.0 )+ (5.0 4)) AWy (8., )
in first order approximation in T'se K*~!. This expression is non null for the components (nj,ng,n3) =
(1,0,0), (0,1,0) or (0,0,1) of ¢ (K,C, A), to inspect the sign of %525 (), we can restrict to:

3

v =a1%Y1,0,0 +a2¥0,1,0)0 +a3¥0,0,1) = Zai‘l’z
i—1

with
la1]* + Jaz|* + |as* = 1
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For each variable X,

/ (0 (I, C,A) + ot (K.C, A)) X0, (K, C, A)

— (aita) / U, (K, C, A) (Xi — T3) Uy (K, C, A)

Now,
At + A

(X;-Ty) = 5o

where are the annihilation/creation operators, and with:

2 7+
wp = %—F( ;4)
_ 1
2T AR (K)
w3y = A

As a consequence:
(ai +aj)

/ (¢ (K,C,A) + ¢ (K,C,A)) X; ¥, (K,C,A) = —

and:

’yn/(@(K,C,A)+<pT(K,C’,A))K\111 (K,C,A) /((p (K,C,A) —|—<,0 (K,C’,A))A\Ifl (K,C,A)

(K'—C)+ AK®(1—
= [ (e, + ot (.00 TR
(asta3) _ (ata))) , (as+ap)
(“m — ) + SRR (1) (4 4 o)
6 — F3E[_(E_1 V2w3
((anga;)\/SAF/(K v (a1+a))w > (a3 _’_a§) + (QS;;§)2KE (1 B 5)

2V 2/ A /2 @21 (7+r,)2
6 — Fg&‘[_(s_l

\1/1 (K, C, A)/(cp (K,C,A) +¢' (K,C,A)) AT, (K, C, A)

= m

= m

Moreover, for:
3

o =a1¥1,0,0) +a2%0,1,0) + a3¥(0,0,1) = Zai‘h

i=1
the first part of 165 (¥) is equal to:
02 1 02 o
/SOT (K,C,A) {—WQaCQ T 29Az V2 (0 — AF' (K)) k2 T (A-Ts)”

+ <§2 + (Ftre) ;gc) > (C—T1)* + =Ty ;21“2) - <\/§2w2 + (P 1)’ + % + (06— AsKEl)) } ¢ (K,C,A)

2
= 2lay|? \/g @2 4 (P +7e)° w2—|—|a)\| + (6 — Ae K=~ 1)|<12|

256



and then:

(as+a3)® 7¢
1 2 2 ~ 2 2|CL3|2 —e—1 2 TSK (1—8)
55 S(‘I/) = 2|a1| §2w2+(1"+7’c) JrTJr (§*A€K )2|a2| +n 5—F35R5_1
(a2+a;)\/mu . (a1+a})w (an + a*)
2vA 2\/A §2w2+(f+rc)2 3
T o — P36K8_1

we have assumed v << 1, A > 1, and thus:

(as+a3)® 7¢
1 2 2 292 ~ 2 2|(~743|2 —e—1 2 TSK (1—5‘)
F07°5(0) = 2au PP+ (74 re)” + + (6 — AeK* 1) 2as|” + TR

(a1+a7) as + a*
(2\/k /g2w2+(72+,,_c)2> ( 3 3)
0 — F3E[_(8_1

-

Since we have seen

<8 (8 —T3eK) | — Co + 1/ s2w? + (7 + 1) + % + (6 —TzeK*™)

the last term can be estimated as:

(a14a])w as + a
(2\/)\\/§2w2+(f’+rc)2> ( s 3)

m

5*F3€K€71
* * 1 B
< w |(a,1+a1)2(a3+a3)| ‘Ot—Co‘i‘ §2w2+(7A‘+TC)2+X+(5—F38K€_1)
\/)\\/CZ’CUQ + (7 + rc)2
) 1 B
< 2 W|a1||ad| a_co+\/§2w2+(rxx+rc)2+x+(5_1—135}—{571)
\/A\/ Zw? + (7 + 1)
V2@? + (7 +1.)° @ |a = Co+ \/?w? + (7 + 1) + § + (5 — TaeK="1)
= . s
Vermt + o r)?
a2 P[0~ G0ty (4 re)? + &+ (6 —TseK*1)
< <|a1|2 2?2 + (f+rc)2 + ;’\ )
\/§2w2 + (7 +re)?
Since ﬁ is at most of of order 1, and <|a1|2 \/§2w2 + (7 + rc)2 + |“§\|2> << |a1|2+|a3|2 =1,
2w P+re

since \/§2w2 + (F+ rc)2 << 1 and X has been assumed to be large A >> 1, there is a large range for the
parameter Cj such that

w|a—Coh+ \/gzwz—l—(f—i—rc)z—f— 4+ (6 —TgeKe1)

<2

\/§2w2 + (F+70)° (Ke(1- s))2

and such that 16%S () > 0.
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Case 3: Computation of the Green functions in both Phases

As explained in the text, to inspect the transition functions in the various phases of the system, one comes
back to the initial set of variables and set ¢ = 0:

Ui (K,C,A){ — I +(A—A)2—2(‘3 C — AF (K) + 6K)
G5 "o T ke o { ()

90 (AF' (K) +7.) (C=C) + (o — co)} U (K,C,A)

ac
+3 / (vt (K, C, 4) AU (K, C, 4)) (U (K, C, A) KU (K, C, A))

In the phase where ¥, (K, C, A) # 0, the field has to be shifted by ¥y (K,C, A): ¥ (K,C,A) —» VU (K,C,A)+
U, (K, C, A), which leads to:

2 2 2
/@T(K,C,A){—w2 0 Lo 0 +(A—A)2—2i(C—AF(K)+5K)

a2  \29Az U oK? oK
0 .
—2% (AF' (K) + 1) (C=C) + (a—Co) + l; (TsK + F4A)} U (K,C,A)

+w7/(\11 (K,C,A)+ 9" (K,C,A)) KT, (K,C,A)/(\I/ (K,C,A)+ ¥ (K,C,A)) AT, (K,C, A)
+%/ (U1 (K, C, A) ATT (K, C, A)) (B (K, C, A) KU (K, C, A))
with
I3 = /\p{ (K,C,A) AV (K,C, A) >0

(FQ — Fl) + nge (1 - E)

r >
4 o — F3€KE_1

>0

/qﬁ (K,C,A) KV (K,C,A) =

In first approximation, one can replace 3 (I's K + I';A) by its expectation:

5 (3K +T4A) = S0 (D5 (K) + T4 (4))
(FQ—Fl)—FFgRE (1—8)
= s =T —
R N N
1
= S (T)mr

and this is positive given our assumptions. Moreover, as shown when analyzing the stability of the state ¥y,
the term

v / (U (K,C,A) + VT (K,C,A)) KU, (K,C, A) / (U (K,C,A) + VT (K,C, A)) AV, (K, C, A)

is the product on the projections of (\Il (K,C,A)+ ¥ (K,C, A)) K and (\I/ (K,C,A)+ ¥ (K,C, A)) A on
¥, and can be neglected. We are thus left with:

U (K,C,A){ —w? ¥ _1& p® +(A—A)2—2i(c—AF(K)+5K)
" “ac? T Z2oAar U oKz oK

_2% (AF' () 47.) (€ = O) + 3 ('T) MT'+ (Q_CO)}‘I’(K’C’A)

The difference between the two phases manifests thus as a difference between the "mass term":

m1:Oé—CO
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and )
meo = 5 (t].“) MT + (a— C())

In the phase with a non null fundamental, the mass term ms is greater than my, which implies reduced
transitions probabilities compared to the other phases. In both phases, one can use as before the expansion
around a minimal level:

— ~K-K
with: ) o
A=A Ay =T
Neglecting the interaction term, the Green function for phase i = 1, 2 satisfies:
02 1 02 02 0 _ _ ~K-K _ o
—? - — -2 —2— |C—-C—|AK® + eA;—— K-K K
{ “ocr T Noar T oKe 6K<C ¢ < te LK15>+5( )+ +C)>

—2% (AgKs " +r.) (C-C) + mi} G(K,C,A,K',C",A") =6 ((K,C,A) — (K',C'", A"))

in Fourier components, this becomes:

G:/exp(ilc (C—0) +ilg (K — K) +ilsA) G

1 o 9 _ 9 eA; 0
22, + 12 212 — 2%l (0K —Up | — — K*— §— —2 ) —
{w o+ szl + vl ilk (6K + C) K(alc 81A+< K1—5>6lK>

—2l¢ ([ligl_(a_l +re) 9 + mi} G(K,C,AK' C' A') = exp (—ZZ l,acZ)

Olc
A K _
G =exp —i(s +AC k|G
57 f?lje

o2 . Lo o 9 g O A ) 9
{w lc+ A2ZA+V lK 2lK 8[0 K alA + 1) Kl—s alK
—2lc ([liaf(s_l —1—7“0) 9 +m; o G(K,C,A,K',C", A") = exp —iZli.mi
alc ) b b) ) b 1/

whose solution is:

G= /exp(—mis)exp (—;Zziﬂi,jzj —iZJili) ds

ij
with:
20—~ NH - H ('N) = Oy (375)
) Js
5 = NJ
where
=2 0 —2(Aie K=t + 1) 0 0
O = ( 0 12 ),N: 2 —2(5—55:‘5) 2R+
0 0 0 0 0
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with initial conditions:

H@O) = 0 (376)
c'-C
J0) = ( K- K )
A/
Ji o= (C'"=C)exp(-2 (Aiel_(e_l +71¢)8)
_ (C'-0) KA eA;
— !/ _ — —
= (K e e e e ( ? <5 K1€> 5)
(C’ — C’) exp (—2 (flﬁf(“l + Tc) s) KeA
24,e K= 47, — 6 5 — Igf‘js
Js = J3=A

To find H, we first compute NH + H (*N):

NH + H (*N)
-2 (AieK= ! + 1) 0 0 a b e
_ =) —2(6- #h) 2k ( bod e )
0 0 0 c e f
o b e =2 (Ae K=t + 1) -2 0
+<b d e) 0 —2(5—5{2) 0
c e f 0 2K 0

(€ e—1 4.
—2a (2r. + 2K Ae) ( 2K —b(2r + 2K Ase) >

—2a — b (26 — 2K Aze)
2Kec — b(2rC +2K'€’1/L-5) = e 7 _ -
< 90— b (26 — 2K 1 A,e) > AK%e —4b—4d (6 — Ke7'A;e)  2K°f —2c—e (20 — 2K~ Aze)

—c (2r. + 2K Aje) 2K°f —2c—e (20 — 2K 1 Ase) 0

—c (2rc + QKE_IAZ'E)

and (375) leads to the set of differential equations:

a = 2a (QT’C + 2[7(5*1/711-5) + 2w?

b = —2K°c+b(2r.+2K " Aje) +2a+b (20 — 2K  Age)
¢ = 2 (TC + K’E*I/L-e)

d = —(4K°e—4b—4d (6 — K ' Ase)) + 27

¢ = —2K°f +2c+2e (5—K'5_1/L-5)
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whose solution involves 6 constants of integration, and given the initial conditions, it yields

w2

_ _ e—1 4.
a = 5 (Tc n }?5*1‘42—5) + a1 exp (4 (rc + K Als) s)
w? (exp (4 (rc + I_(‘s_l/_lie) s) - 1)
2 (rc + K'E*lflis)

2

fo= PS
c = agexp (2 (rc + If(sflﬁis) s) =0
B w? exp (4 (7"0 + [_(6_1/_11'5) s) w?
b = azeXP(Q (5+Tc) S)+ 2(%_'_};—5711211_6) (Tc—5+2f?5’1/1i5) + 2(5+rc) (TC+K671AZ'€)
w?exp (2(6 +7c) ) w?exp (4 (re + K71 Ae) s)

(rc -0+ 2K5*1Ai5) (6+7r.) 2 (rc + 17(8*1[11»5) (rc -0+ 2K5*1Ai5)

w2

26t ) (et K142

o 2K* K<
= 2(6 — K°1A; —
e a5eXp( ( 5) 8)+ /\2 (5—K5_1Ai€)8+ )\2 (5_K571Ai5)2
Ke (exp (2 (6 — K71 4ze) s) — 1) N 2K*¢

= — — = S

N (5= Rl ie)’ N (5— K 1A

2
14

— J— 7671 7,
2 (6= KA +agexp (4 (6 — K= ' 4ie) 5)

2K (exp (2 (5 - I_(E_lf_lie) 8))
N2 (8 — Ke—1A)”
N 2K25 - RQE
N (§— K1 A4)? 222 (6 — Ke14e)°

w2

T2(5— Ko Ae) (6 + re) (re + Ko 1 Age)
w2 exp (4 (TC + K’Eilfhs) s)
2 (ro + Ke=1 Aie) (ro — 6 4+ 2K=—1 Ae)”
w?exp (2(6 + 7))
2 (re— 0+ 2K Ae) (5 + 1)

which is the result stated in the text. These expressions can be simplified given our assumptions about the
parameters and for m; relatively large, m; > 6, r., K ' A;e. In this case, this can be approximated by:

a = 2w’s

2
f = F‘%
c = 0,
b = 0
e = 0

ez 2
d = 225+ 787 5 — 3ws_ -
A (8 — Ke=1A) (6471c) (0 —re — 2K 1 Ase)
4K?%s

1

A2 (6 — Re—14e)?
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so that:

2052 0 0
2 4K - 3w
H= 0 27+ N2 (6-Ke—1A;e)”  (9+re)(6-re—2K="1A;e) 0 s
0 0 Z
)\2

For J, the formula simplify as:

Jio= (C'=C)(1-2(AeK +7.) 5)
— ! > (C/—C_') A/Xg —_—
2= (K B 21‘_12‘5[_(5_1 +r.—90 J — [_(E_I/LE (1 -2 (5 —eA; K ) 5)
(' 0) - e

(1 -2 (AZ'EKE ! —l—rc) s) +

2141‘6[7(5714*7”675 57K€71Ai€
= (K'—K)(1-2(5— AR s) —2(C' — C) s + 24'K*s
J3 = J3=A

The Green function is computed through the inverse Fourier transform:

G(C,K,AC' KA s)

, = . 5K +C
- /exp(—llc(C—C’)—ZZK(K—K-F(S_KEW)—ZZAA>6XP —{leH” — i3 i | dicdlcdls

exp (f% (tXH’lX))

vdet H
with:
(C-0C) +J1
_ _ SK+C
X = (K K + —Ke—1A; s
A + J3
w? 0
— 2 3w?
H = 0 + )\2042 + 2(2a+B)B 0
0 0 =

As a consequence, the green function between two points (C’, K, A") and (C, K, A) is

exp (-3 ('XH'X))

G(C,K,A,C' K' A s) =
( ) v2mdet H
((c-0)—(C'-0)(1-2(a4B)s))®  ((K—K+°EFC)_((K'—K+E+C) (1-2as)-2(C'~C)s+24'K"s))"  A2(A-A')°
exp 4w2s - 5 2K2¢ 32 - 4s
_ 4(” +>\2a2+2(2u+5)ﬁ)s

2 2K25 3w?2
4\/7T7)ﬂ\2 (VQ + 2oz + 7(2031[5%‘3) S

where:

a = §—K A

B = 24K 47, -6
b+r. = 2a+p
AeKs Y 4r, = a+p
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and its Laplace transform, that is the propagator is given by:

G(C7KaA7C/7K/7A,7mi) (377)
((c=c)+2(0'=0)(atB)s)”  ((K-K')+2((K'-K)a+sK+0+(C'-0)-A'K")s)*  3*(A-4)*
exp | — 4025 - 4(1,24',%4,%)8 - 4s
= /exp (—m;s) 32a2 T2ath)B s

2 2K 2¢ 3?2
4\/”?’2 (V2 t 3z t 2(25;5)5) s
This can be found explicitly as the Laplace transform of a gaussian expression. Actually:

/eXp () &P (c5: (X =) H (X —5Y)))

o Loy A ()
= /exp< (mz—l—Q(Y)H Y)s) ERINIE dsexp (("X)H' (Y))

exp (—\/Qmi YY) H Y/ (XH1X) + ("X) H! (Y))
V2mi + (V) H 1Y

and as a consequence:

G(C7K’A7C/5K/7A/7mi)
exp (—/2m; + (V) H 1Y /(XH X) + ((X) H (V)
V2m; + (Y)H-1Y
(a+ﬁ)2(C’7C')2 ((K’,I_()OhLJI_(JrC/,A/[_(E)Q (C—C")? (K—K")? N (A_A)?
i * o2 + K- +
p< ¢ - (2385 i) \/ A i )

\/2mi + (at+p)?(C'—C)? + ((K'—K)at(c'—C)-A'K=)?

2 22 32
“ ("2+7+‘2(2a+/€>1§)

A2a2

(a+pB)(C-C")(C"-0) N (K - K") (K' = K) a+ 0K + C' — A'K?)

X €xp 2 9 2J(2e 352
2 (V t+ 3z t 2(2a+5)5>

2w

13 Case 3: Correction to the Green function due to the interaction
term

The interaction term
% /\IJT (Kl, 017 Al) \I’T (Kg, 02, Ag) {AQKl + AlKQ} ) (Kl, Cl, Al) v (KQ, 02, Ag)

modifies the Green functions of individual agents. The correction at first order in 7 is obtained by the
application of the Wick theorem to the interaction term. The contractions ¥' (K;, C;, A;) UT (K;,C;, A;)

being replaced by propagators G (K;, C;, A;, K, Cj, A;,m;). It leads to the contribution:
§G (C,K,A,C"K', A",m;)
= v/G(C,K,A,Cl,Kl,Al,mi) (A2 K71 + A1 K5) G (Cy, Ky, Ay, Cy, Ko, Aa, m;)
xXG (Cs, Ko, A2, C' K", A", m;) d (C1, K1, A1) d (Co, Ko, As)
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which is given by the following contribution.

exp( V2 + (X)) H X, /(X H1X) + (‘X) H~! (Xl))
V2mi + (X)) H1X,
eXp( V2mi + (1 X3) H—1X2\/(tX1H—1X1)+(tX1)H_1(X2))
V2ms + (1 Xy) H1X,
exp( V2 + (X)) HIX /(X H 1K) + (*Xo) H! (X’))
V2m; + (X)) H-1X/

x ('X,) B (Xs)

However, in this case, it is more convenient to work with the time representation and to compute rather
0G(C,K,A,C'" K’  A’,s). The correction at first order in + is:

G (C, K, A,C", K", A, ) (378)
= ’Y/G(Cv K3A7017K17A1351) (A2K1 + AlKQ) G(017K13A17023K27A2752)

G (027 K27 AQ’ Clv K/a Alv §— 81 — 82) d(Ch Kl; Al) (027 K27A2) d81d82
= y(AK + A1 Ky)

with a mean taken for a stochastic process constrained to start at (C’, K’, A’) and to end at (C, K, A). In
first approximation, one can approximate (As K7 + A1 K») by its value along the average path. This one is

given by the minimization of:
. d 4 (d
—X+MX | H —X+MX (379)
ds ds

for a path starting at (C’, K’, A’|s), and ending at (C, K, A,C"). The matrices M and H are given by the
exponential weight (377):

ox (_ (C=C)+2(C"=C) (a+8)s)

4wo?s

((K—K’)+2((K’—K+M>a+ (C’—C’) —A’f(s) 3)2 22 (A—A')2

- K2e w? B 4
4 (V2 + 2A2042 + 2(2?1+75)6) S o
so that:
(@+pB) 0 0 (a+8) 1 0
M = 1 a —K°¢ | tM= 0 « 0
0 0 0 0 —-K¢ 0
202 0 0 a 0 0
2e 2
H = 0 2 (l/ + ié{oﬁ + m) 0 = 0 b O
0 2 0 0 ¢
)\2
a 0 0 (@+B) 1 0 a 00\ ' [(atB) 0O 0
0 b 0 0 @ 0 0 b6 0 1 a —K¢
0 0 c 0 -K¢ 0 0 0 c 0 0 0

The paths that minimize (379) satisfiy:

| d? d _ d -
H- @XJrH 1Md X-("(H 1M))$Xf(tM)H 'MX =0
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or equivalently:

d? d

ﬁX+H(H—1M— ("(H'M))) d—X—H(tM) H'MX =0 (380)
s s

We will solve (380), by looking first for a solution exp (Ns) at the first order in o and 8. A straightforward

computation yields:

—(a+p) 0 0

N = -1 —a K¢ | +0(a?)
0 0 0
1-—u(B+a) 0 0
exp (Nu) = u(u(a—i—g)—l) l—ua Kou(l—%u) | +0(a?)
0 0 1

Then, a factorization X = exp (Ns)Y in the equation (380) leads to:

<d2y +exp(—Ns)H (H'M — (* (H"'M))) exp (Ns) Ly 4 2NdY> =0

ds? ds ds
That is:
d2 —2 (Ol + B) 0 0 d
—Y + —sf—1 —2a (l—-sa)K® | =Y =0
ds? 0 0 0 ds

which is solved as: J
<dsy> =exp (N’ (s)) A

for A an initial condition and

2s(a+B) 0O 0
N'(s)=| 3s5(sB+2) 2sa $K°s(sa—2)
0 0 0

One finds given our assumptions of first order approximation:

14 2s(a+p) 0 0
exp(N’(s)): s(2sa+33§+1) 14 2sc —Kas(s%+1)

and the solutions of (380) are thus:

X(u) = exp(Nu) <B + / exp (N'u) A)
= exp(Nu) (B+ P (u) 4)

where:
u(ua+uf + 1) 0 0
P(u) = /exp (N'u)= | tu*(dua+3uB+3) u(ua+1) —iKu?(ua+3)
0 0 U

For a path where X (0) and X (s) are fixed, the constants A and B satisfy:
B=X(0),A=(P(s))" (exp(~Ns) X (s) — X (0))
To find the correction (378) in terms of initial and final points, we define:

% — X(O)—;—X(s)
AX = X (s)—X(0)
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and the solution of (380) rewrites:

X () = exp(Vu) ((1=(P@)(P() ") X(0)+ (P @) (P(s) " exp(~Ns) X (s))
P

= e (Vu) (1= (P () (P ()} (1 —exp (~Ns)) X
+exp (Nu) (P () (P (s)) ™" (exp (~Ns) +1) — 1)
= exp (Nu) (P (w) (P ()" exp (~Ns) AX
+exp (Nu) (1= (P () (P ()" (1= exp (=N)) ) X (0)

Some computations yield intermediate results:

yltemnasd) 0 0
(P(w)(P(s) ™" = tu(s —u) Zoaduo—duf=3 ulf(f")a —%KTEu (s —u) (2sa — ua — 3)
0 0 %u

L 0
exp (Nu) (P () (P (5)) ™" exp (~Ns) = ( “hule - ) SRS s (s y) sxizess

1 0 0
exp (Nu) (1 — (P ) (P(s))"" (1 —exp (—Ns))) = ( —sua(s—u) 1 FTKuo(s—u)

and one finds for X (u):

u 0 0
X (u) = ( —%u (s — u) Sotua=3 ¢ %uKE (s — u) satua=3 ) AX
0 0

L 0 0
= ( —tu(s—u)setua=3 u Ly [ (g — q) setuasd ) X (s)
0 0 u

S S S

0 0 s—u

S

+ ( —%’U/ (8 _ u) 2sa—ua+3  s—u %Kau (S _ u) 2sa—ua+3 ) X (0)

so that the correction to the statistical weight can be found directly. One has:

s 38 0 0
v Xwdu=~| 5s* 1is LKes? | AX +vsX (0)
0 0 0 is

and ultimately:

0
0 0 0 0 0 s
= (X)) 0 0o s |XO+(AX){ 0 0 152 AX
0 s2 0 iszﬁ is2 —%Kss3
0 O %33
+2(*fAX) | 0 © 357 X (0)
0 %s2 f%Kss‘g

(381)



This term modifies the transition functions as
G(C,K,AC K A Ss)

VA s
exp <_ ((c=0)-(c'=C)(1-2(a+p)s))

(382)
(KR4 250 (K =R+ K40 (1-2a5)—2(C' =) s+24'K*5))" A (A—A/)Q)
4w?2s ( +TQ+W) 4s
4:\/7r7f22 (V2 + ié(i; + W) s
x exp (—y (A2 K1 + A1 K>))
We can write more precisely this correction. To do so, let us first remark that a weight of the form:
("(AX + MX (0)) H ' (AX + MX (0))) (*AX) Ry (AX) +2v ("AX) RoX (0) + v ("X (0)) R3X (0)
with:
(0 0 21453) (00 %s3> (000)
R, = 0 0 15° ,Ro=1 0 0 75* ,Rz3= 0 0 &2
21—433 isz —%Kesg’ 0 %52 —%K‘ESS 0 s> 0
and the log of (?7?) be rewritten:
( (AX +MX(0)) (H "+ ’yAl) (AX + MX (0))) (383)
+(N(MX(0) (H™') (MX (0) + 7 ("X (0)) A3X (0)
- (t(arx )HH +741) (MX(0)
where M satisfies
that is:

(H +’7R1) M=H'M + YRs

M = (1—-~HRy) (M +yHRy)
In our case, it leads to

a+ gas®y
M = 1 — %bcs‘lf}/z 1b52’y Ke
ficszfy %0527 }lecs v — lKECS 0
To complete the computation, we rewrite the two last terms in (383) as
t

(" (MX (0))) (H™) (MX (0))
= (f(

0

+ ("X (0)) R3X (0) — (" (MX (0))) (H™' +~vR1) (MX (0))
X(0))) (H™) (MX (0)) +v ("X (0)) R3 X (0)
— ("X (O))(M+7(R2)H) (1—v("Ri)H) (H'M +~R) X (0)
= (X (0) RaX (0) = ("X (0)) (3 ("Ra) M = (") M+ (M) Ra) X (0)
= 7('X(0) (s «)@&—&m (0)
Defining H~! by:
H' = (H'+9R)
a0 5
5507 150 g
and:
H = (H'+vR)) =H-HyR\H
(as 0 —Laes®
= 0

57aCsOy
bs ,%50347
0 -1 bcs v oes+g Kgc
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the weight including the correction (382) is:
exp (— ("(AX + MX (0)) H ' (AX + MX (0))) — v (*X (0)) (Rs — (("M) (2R — R1))) X (0))

This result can also be studied in terms of trajectories. Actually, in (382) a term is added to the initial

action. It has the form:
% <t </0 (X(v))dv)) M (/O (X(u))du)
= ([ xepae) ) ([ xwyan)

and the correction to the dynamic equations due to the agents interaction is:

C%:QX +H(H'M-("(H'M)))) %X ~((H(M)H'M)) X —yM (/0 (X (u)) du) =0 (384)

We can approximate M ( f: (X (u)) du) with its mean path approximation, so that (384) rewrites:

d? d
X+ H((HM = ("(H'M)))) X = ((H ("M) H M) + yHM;) X = yHM>X (0) =0 (385)
with
v 00 0 is 0 0
M(/ (X(u))du) =~y 001 Ls? ls —LKs? | AX 45X (0)
0 010 0 0 1s
0 0 0 0 0 0
= ¥ 0 0 is X (s) +7 0 0 is X (0)
%52 %s —1—12K‘fs2 —%82 %s %K‘Ss2

To find the solution of (386), we first consider:

j—;x +H((H'M - ("(H'M)))) diiX ~((H("M)H'M) +~yHM;) X =0 (386)

and proceed as for (380). We look for a solution of (386) of the form:
exp (Ns) (1 + N (s))

so that N (s) satisfies:

@N (s)+2N%]\Af (s)+exp(—Ns)H (H—lM —( (H—lM))) exp (Ns) d%]\? (s)—exp (—=Ns) HMyexp(Ns) =0

whose expanded form in our order of approximation is:

2. 0 0 0 i

0 0 0
0 0 0
—y 1—52[(5053 %K%SQ %bs
—Ecs2 Les %Kscs2
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The solution N (s) is computed at the zeroth order in « and as a consequence, it satisfies:

a2 . 0 0 O d . 0 0 0

TaNVE)+ | -1 0 K —=N(s) - 2Kecs® —1Kees?  lbs

0 0 O —1—52032 %cs 1%[(5082
. 0 0 0
N (s) = %Igscsj —%iKscs4 —1%4[%25556 +4T12bs3
—14aCs 75CS K cs
The equation (386) can then be solved in the following way. We first solve
d2

X+ H (H'M-("(H'M)))) %X —((H (*M)H™'M +~HN;) + yHM;) X =0

as before by setting X = exp (IVs) (1 + YN (8)) Y (s) and Y (s) satisfies:
d? d

T yvyirly=
ds? + ds 0
with:

(1 —yN (s)) exp(—Ns) (H (H'M — (* (H"'M)))) exp (Ns) (1 +4N (s))

+2 (1 — N (5)) exp (—Ns) % (exp (Ns) (1 + N (s)))

0 0 0
7—72K€cs41'y —336—}—1 —%KECSB’}/ —-K* —Kfsa— 7—72K25054'y
—35C87Y 0 §K50337
—a—pf 0 0
+2 iKscs‘lv -1 —%K‘SCSS’Y —a K+ ibsQV + %6K25c34’y

ﬁcsf’ﬁ%y — 1—180537 %052'7 ﬁKacs?"y

—2a — 20 0 0
%Kecs‘lfy —sf—1 —2a-— %Kscs?”y K* + %bszfy — Kfsa+ %Kzscs‘l'y
%655[32’}/ — %cs3v %CSZ’Y 3—76[(56537

/L(u)du ) /Ou —2a— 28 0 0

%K‘Ecs‘lv —sf—1 —2a-— %Kecs?’v K&+ %bs2'y — K¢sa+ 3—16K25054’y

ds
%03552"/ — %0337 %0327 3—21{50337
—2u (o + B) 0 0
%Keczﬁv — %UQB —u —2ua — 4%Kscu4"y Kéu — %K‘EuQa + %bu3’y + ﬁ[(%cu‘:”y
@cu662'y — ﬁcu‘lv %cugv ﬁKscu‘W
As a consequence:
exp (—/L (u) du)
100 —2u (o + ) o , 0 .
_ 13K° cu® 1,2 5K K® b K2 cu®
= 0o )| g o M g e g b g
Yo 0114’}/ %cu?"y 121; y
132 1
1 —2u(a+ B) 0 0 ?
+§ %Ksiuzy — %1;25 Z U —2ux : %Kecu‘l’y Keu— %K5u2a7+ %bu?’] + é—OK%czﬁv
macu’ By — gpeuty Feuy T K euty
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() = oo fon (- fria))

s(sa+sp+1) 0 0
2( pee 4
_ 5% (480sa+360s8— K cs*y+360) 9 3 e 5 Kes?  Kea  bs'y K csby
= B+ 720 stsfat gKes’y =T = T~ r — Tame A
_csTy _cs4fy s + Kes ~

144 24

which leads to the solution of (386):

X (u) = exp (Nu) (1 4N (u)) <B + (/ exp </L () du>) A>

Given that:

exp (Nu) (1 + N (u))
1-s(B8+a) 0 0
= S(S Ot-l-g)—l) 1—sa Kss(l—%s)
0 0 1
1 00 0 0 0
X 01 0 |+~ %K‘Ecs5 —%iKEcs4 —ﬁKzgﬁ + ﬁbs?’
0 0 1 —1%034 5053 %Kgcs4
1—s6—sa 0 0
= s?a — s+ %525 ZﬁK‘fcs‘r”y %8[(503147 " sa+1 K¢s— %Ksszsa + %i}si”’y + %K%css'y
— 122657 75C8°Y T fes®y + 1
exp (Nuw) (1 + N (u)) (/exp (—/L(u) du))
s 0 0

_ 1.3, 1.2 _ _7 €,..6 1 gre .5 lype2 _ 1ypre 3 1.4 3 172 ,..6
= gs"a— 58 T2 K Ccs™y s+?0K4csv S K®s Ks?a+ 5708y + 55 K= cs®y

57C8°Y s

we have ultimately the general solution of (386):

X (u) = exp(Nu) (1 +fy]\7(u)) (B+ (/exp (—/L(u) du)) A)
1— 58— sa 0 0
= 52a—s+%s§ﬂ —4@[(%857 4—18K€csl47gsa+1 Kes — %Kssia—i—l—gbsgv—i— %Kzec(@v B
— 112657 15C8° mKacs‘l'y +1
] 0 0
+ %3301 — %32 — ﬁZOKECSG’y s+ ?%KZCSS'Y %Kfs2 — %Kgsi’a + ibs‘*’y + %K%csﬁy A
5768 S

Then, adding the particular solution of (385):

2
j—SQX +H(H'M - ("(H'M)))) d%X —((H("M)H™"M) +vHM;) X — yHM,X (0) =0
which is:
0 0 0
X (s) =7 0 0 5bs® | X(0)
fﬁcs‘l %053 %084



we obtain the a full solution of (385):

1— 58— sa 0 0
Kecs® K* K2 ¢s8
X = | e S K e e Rt S | s
5cs ¥ €
144 5¢8°y giKesty +1
s 0 0
1.3, 1.2  TK%csSy Kecs®y K®s®  K°sa | bs'y | 3K*cs®y
+| gsTa—3s 1440 s+ L 60 2 6 T2 T 7160 A
csty
0 ST S
0 0 0
+ 0 0 1%bs X (0)
—dest Lesd cs*
144 12 144

Several possibilities of intial conditions are possible. The most relevant will be to chose X (0) and X (0) as

initial conditions, one finds A by writing:

. —a—p 0 0
A=X(0)— 1 —a K° | X(0)
0 0 0
Inserting this result in (387) leads ultimately to:
1 0 0
X(s) = 1sa+ L Koes®y  EKes'y+1 1bsPy— LKes?a+ S K%es®y | X (0)
0 Levysd 1
6C7TS
S 0 0 )
+ %5304 — 257 — @Kecs&y s+ ?1 Kees®y 1Kes? — 1K553a+ Lbsty + ﬁKzgcs&y X (0)
0 2403 vy s

Then, replacing b and ¢ by their values, and v by ﬁ, so that v is dimensionless, and noting that X (0) = B,
yields the result stated in the text and the deviation to this trajectory due to the interaction term, with the

same initial conditions, is thus:

0 0 0
6X (s) = | =gKes® £Kees' 1bs®+ LK*cs® | X(0)
0 Legd 0
0 0 0 .
+ 144OK‘Ecs OloK’fcs 1 bs + 120K2808 X (0)
0 24684 0

14 Case 3: 2 Agents interaction via 4 points Green function

The field theoretic context allows also to study the impact of one type of agent on an other. Consider the
transition functions, for two agents, without interaction. The probability of transition between (K, Cy, Ay),

and (K7, C’l,Al) for the first one, and (K3, Ca, A), and (K>, C’g,Ag) for the second one, is:

G ((KlaChAl)i ) (K27027A2)i ) (KlaChAl)f ) (K23027A2)f)
= G((Kl,ChAl)i7(K2,02,A2)i’S)G((K1,C1,A1)f7(K2702,A2)f73>

An application of the Wick theorem to the field interaction term:

%/\Iﬁ (K1, C, A1) Ut (Ky, Co, Ag) {AsKy 4+ A1 Ko} U (K1, Ch, A U (K, Cy, Ay)
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leads directly to a correction, on Green function Laplace transform:

26 (1,01, A1) (1, o, 1) i) G (B, Ca A (B, o ) )
X {AgKl —|—A1K2}
xXG ((K2,Ca, Az); , (K2,Co, As) ,m;) G ((K27 C2,A2), (K2,C2, A2) ¢ 7mi)
= /’YG ((Xl)q, 7X17mi) G (Xh (Xl)f ) m?) {(tXl) MXQ} G ((XQ)Z aX27mi) G <X27 (XQ)f 7mi)

and in time representation:

1[G X 1)) G (X (s0), (X5 1)
x {(*X1 (1)) M X2 (s2)} G ((X2);, X2 (s2) ,52) G (X2 (s2),(X2);,8— 32) dsidsg
= fy/ <(tX1 (51)) MX, (52)>d31d52
where the expectation is taken for path X (s1) starting from (K, Cy, A1), and ending at (K, Ch, Al)f and
path X, (s2) starting from (K3, Cs, Az), and ending at (KQ,CQ,Ag)f. Given our assumptions about the

parameters, we can, as in the previous paragraph, approximate these paths by their average values to the
zeroth order in the parameters:

u 0 0 s 0 0
Xi(u)=1| s5(s—u) % LK (s—u) | Xi(s)+ | —3%(s—u) =% Ki(s—u) |X;(0)
0 0 L 0 0 s
so that:
s s 0 0 is 0 0
/ X;(u)du = L2 ls —LKes? | X;(s)+ | —5s? is SKes? | X, (0)
0 0 0 is 0 0 is
%s 0 0
= Ls? 1s —LKes? | AX; +sX;(0)
0 0 %s
0 0 0
AX;
= %32 0 —%KESQ 5 + sX;
0 0 0
with X; = X(OFXs),
")//<(tX1 (51)) MX2 (82)>d51d52
0 0 5 00 0
= v ("AXy) 0 0 152 AXi+v("X2(0) | 0 0 s | X1(0)
is?’ isQ —11—2K883 0 s2 0
0 0 ?93 0 0 0
+y(‘AX,) | 0 0 352 X100+ (X2 0) 0 0 352 AXy
0 %52 —%K‘SSS %83 %.92 —11—2K583
0 0 0 : 00 s
_ _ AX 6 _
= (X)) 0 0 ot > 2 (g o 0 X
0 s 0 0 0 —FK°s®
0 0 0
_ AX
+7 (*X2) ( 0 0 0 n
1.3 1y7e.3
65 O 76K S
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This term modifies the 4 points Green function to an interaction Green function G.:
G, ((Kh C1, A1), , (K2,C2, Az),; , (K1, C1, Ar) (Ko, Cz,Az)f>

= G ((K1, Ci, A1), , (K2,Cs, Ag), , (K1, Ch, A1)f , (K, Cs, Az)f) exp (—7/<(tX1 (81)) MX, (82)> d31d32>

In terms of trajectory, this means that the deviation of X (s) due to X5 (s2) is given by ’yfos MX5 (s2) dso
(and the deviation for X5 (s) is yH [; M X1 (s1)ds1). Given (??), one has:

s 0 0 0 Ax 00 0\
'yHM/ Xo(w)du=~| 0 0 0 5 24410 0 bs | X,
0 Leg3 0 Lopegd 0 es O

Appendix 13

Stabilization of a finite number of negative eigenvalues by an inter-
action potential

We start with the saddle point equation described in the text.

0= KU (y) +2U (5) ¥ (y) / (0 (42) U (392) ¥ (32)) dya (388)

with: ) )
K = (—2V (M(S)) V—l—yM(A)V—I—yNy) +m?

Normalize ¥ (z) = \/nV¥; (z) where n = f\Iﬂ; (y) ¥1 (y) dy. The saddle point equation including this
potential can also be written:

0= Ky (5) + 200 (0) U1 () [ (1 (02) U (02) 01 (42)) i (3%9)

If, as assumed before, K has a negative lowest eigenvalue \g, with eigenvector (™) (y) then, one can find a
solution (¥ (y),n > 0) of (389).
Then, expand:

Uy (y) = a, ¥ (y)

n=0

with >, g lan|* = 1, where ¥(™ (y) are norm one eigenvectors of K with eigenvalues \,, and take the scalar
product of (389) with U (;):

0 = /‘I’J{(yl)K‘I’l(y)dy

+277/‘I’J{ (y1) U (y1) Y1 (1) dy1/ (‘I’l (y2) U (y2) 91 (y2)) dy>

This relation allows finding 7:
(W[ K [W)

1
2((W| U (W)

As a consequence, if we find a solution with 1 > 0, this solution |¥;) is mainly a combination of negative
eigenstates of K, so that (U] K |¥;) < 0.
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Given that: ) .
1 )\~ (4) _ ()
< % (M ) V 4+ yMADY 4 yNy> U, (y) En "0 A T (y)

(389) rewrites:

_ _ (WK j
0 = K@)~ M ) ) [ (8 U ) ¥ ) e
— K1) - ST ) )
or, equivalently: 0 K |2)
W | K |[WP) 4
Uy (y) = WK U (y1) ¥1 (v) (390)

This relation can be written in any orthonormal basis. Using ¥ (y) =", ., an U™ (y) with Ym0 lan|” =1
and W) (y) the eigenvectors of K for the value A\; and to order them by increasing eigenvalues, so that
v () (y) is the state with the lowest eigenvalue Ay < 0 by assumption.

Using the norm condition 27120 |an|2 = 1, and that the previous systems of equation has one relation of
dependence, one can get rid of ag (up to an irrelevant phase) and reduce the system to:

(U1 K [Wq)

T [U9)) > <\I/(n) (yl)‘ K='U (1) “I’(m) (y1)>am forn > 1

m=0

with >~ - lan | < 1 and where ag is replaced in the sums in the numerator and denominator by /1 — Y ons1lan 2.

As a consequence the system has a solution (a,,), if the application:

@ = { gy | 2 (0 00 K0 0 [1 )+ (9 0] 00) [ ) p-gwr))

>1

=z

has a fixed point. This possibility arises depending on the properties of the potential U. To get a more
precise account for this point write the application as:

KU

n>1™ () 7)
IR ot

where (), ; denotes the projection on the space of eigenvalues n > 1. Let 0 < ¢ < 1, any arbitrary constant.
Assume that U preserves the space V' generated by the negative eigenstates, so that I' defines an appli-
cation V' — V. We also assume that if 0 is eigenstates of K, it is an isolated point.
A fixed point exists in the ball B C V of radius c, Z;gl lan|? < ¢, where Z:gl runs over the negative
eigenstates, if for any state |¥) of B

<0
0) =Y a, ¥ (y)

n=1

such that 25201 |lan|® < ¢ (and thus |ag)® > 1 —¢):

2
_1\2
KU (w| (U (KU ) |9
(<\I/U|\I/>) > - LU [? S
(PIKIT) oy (@ K9
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with

KU |w)

wl (v (k)2 0) ey = S wlok! e (e

n>1
- ¥ ‘(\IJ| UK™! ‘\1/(")>‘2 — (W UK ‘\Ir<0>> <\1/<0>‘ KU W)
n=>0

_— (U (K~1? U) W) — (W|UK! )\1/<0>> <@<">’K*1U )

so that:
n>1

Then, a sufficient condition to have a fixed point, and thus a non trivial solution to (389) is that

(V] K W)

o (o 0 0= o o) (1) <1 -

for all |¥). This is achieved for example if U develops along the negative eigenstates of K and if the overlap
of U and K is concentrated around |\I'(O)>, that is:

<0
U= ‘\II(O)>U0 <\I’(O)‘ + Z ‘\I/(i)>Uij <\I/(j)‘ + ...
4,5>0,i4+57#0

with & << 1. Actually, in that case: [(¥|U |9 > (U (1 = ¢))? and |[(¥| K |¥)|*> < A2 and then:

0

m (<\I’| (U (K—1)2 U) |T) — (] UK-1! ‘\I/(O)> <\I,(0)‘ K_1U|\I/>>
< (Uo(l)\g_c))Q ((\If\ (U (K1) U) W) — (U| UK ‘\I/(O)> <\I/(0)‘ K*1U|\If>)

22 io: 1
< — 20 Uii Uik
X 2 iy 2 Vi
(Uo (1 =0)) i>0,k>0,,j>0 /\J'

and this is lower than ¢ for [{]:

n= —%% is positive as needed. Then, a fixed point exists in B, and thus on the space of all states,
for the type of potential considered. The minimum of S (V) is reached for the fixed point with lowest S ().
The interpretation of this case is clear. A positive potential of interaction counter balances the direction

of instability and allow the composed system of two structure two stabilize around a composite extremum.

small enough. As a consequence |¥;) is also peaked around |\If(0)>, and

1 -1
<2V (M(S)> V+yMAY +yNy+m2) S (y—w1)

P @5y =) [ (¥ () U (52) W (02)) i + 20 () U W)U (00) ¥ ()

To inspect if the solution we found is a minimum, one has to compute the second order variation (y| m [).
The variation ¢ (y) is arbitrary but can be considered of norm 1, since this norm can be factored from the
second order variation, and that only the sign of this variation matters. If one finds conditions on the
potential to have
09?8
e >0
¥l 5%, wyow, @ ¥
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we will have found a lower minimum than ¥ (x) 0, since, in that case:

S(¥) = /\IJ (y) <—;V (M(S))71 V +yMAWV + yNy +m2) Ul (y)dy

n ( [ (@)U ) 9 () dyz)z
which is equal, given (388): )
S (W) = - ( [ (@606 02) dyz)

Now, the second order variation (y| m |p) is computed as:

/w(y) Ko' (y) dy
+2n (/w(y) Uy ¢ (v) dy) / (\Ih (y2) U (y2) W] (yz)) dya + 2n ’/\1’1U (v)¢' () dy 2
= (Al - LK g Lol
AT ((@IK@ (01| U |91) = (03| K [9) ((@I Ule) + W))
ooy (P 16 (U [9) = (@] K [0) (6l U )
Given that the saddle point solution satisfies (390)
W) = g K ) )
U= e )

one can write:

(ol K |@) (Wa| U [W1) = (U1 K [1) (p| U )

— WU (WK Io) - g “U 1))

<s08%(f)2§%(@|¢>
— (Kl - S e <so|Uso>+W
= WIKIY - G <¢|U|¢>+m
> AO_(‘I’1|<(§(|_U1§>|‘I’1>
> AO_MIK?W

where A is the lowest eigenvalue of and Uy (which is negative by assumption), the minimum eigenvalue of

U(). Then: )
028 U
P e >N —
(vl oV, (2) 0T, (z) I (U, [ K-1U [@,)
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and this is positive if
Uy > Ao <\I/1‘ KU ‘\I’1>

that is if the potential is strong enough to compensate for the instability of the system.

Instability due to non linear terms

We generalize the previous paragraph by considering the instability introduced by a more general term than
m?. Assume that the operator K (for m? = 0) has been set in a basis such that it rewrites in a diagonal
form

1
K= —§v2 +yD'y (391)

where D is a diagonal matrix with eigenvalues \; > 0 that ensure the stability of each fundamental
structure without the perturbation . Assume that due to the interactions among the structures components,
a potential V' (y) with a negative minimum is added to K to yield:

1
K, = —§v2 +yD'y +V (y) (392)

Operator (392) has the form of an harmonic oscillator plus a perturbation term.

The eigenvalues of K are E,, . n, = Zle ni,v/Ai+ % where k is the number of components of y, y = (y;)
and the nq, ..., n; are natural integers.

The eigenfunctions \Il(lnl"“’"k) (z) corresponding to these eigenvalues of Harmonic oscillators are:

k
i) () = T e, @)
i=1

N COREACREEC

where the H,, are the Hermite polynomials. Then, introducing the eigenvalues modify both the eigenvalues
and eigenfunctions as series expansion of C. We choose a perturbation that shifts essentially the lowest
eigenstates of K, that is quadratic and antisymmetric (the quadratic and symmetric part being included in
D’ by a series expansion and we assume that this part does not affect the sign of D"’s eigenvalues). We
choose for the potential the particular form

7yVA (ya v) \Y

which describes, as —yMAYV the internal interaction inside the structure, but taking into account non linear
terms (as resulting for non linear utilities for example).

The perturbation can be rewritten, using the usual creation and destruction operators as:

—yVV = —(at+a")VA(a" —a")
20TV Mg~
since V4 is antisymmetric. Note that a* and ¢~ have dimy = k components: a™ = (a,f) and ¢~ = (a;)

and y = (a¥ +a~), V= (a™ —a~). To model that this potential modifies mainly the lowest eigenstates of
K, we choose:

<WF““%)@ﬂV“WWT““MWw>=6@hwwnmwwmf«mwwnw>

with f ((n1,...,nx)) is a quickly decreasing function of n? + ... + n.
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Since V(4) is antisymmetric, and for the ground state \IJ§U""’°) (y), a+V(A)a_\I/§O""’O) (y) = 0 and one

can then deduce that the series expansion for the perturbed ground state is null. Thus one still have a state
\Ijgo,...,o) (y) with eigenvalue £.
As a consequence:

and the saddle point equation is not satisfied.

This situation changes for the first excited states. Consider \Ilgl’i) (y) = \Ilgo"’l""o) (y) with the 1 set in the

1 th position. These are the first excited energy levels, the closest to \If§°""’°) (y) with energy E; = v/\; + g

The perturbation expansion for the eigenvalue of
1
(2v2 —yVAV 4+ yD/y)

to the second order is then:

. . 2
(e )] atviia el @)

E, = E;+4 (393)
j=1z,a:¢z‘ VA= VA
- V.(.A)>2
ij
= B Y
J:Lj#i\/)\»i_ Aj

Note that, due to the hypothesis on f, the shift E;l
One can thus focus on the first eigenstates.

yeeey

We call |0/ y) ) the corresponding eigenvector to E!:
1 i

] ] k (A)
W) = e Y o
i

k k
jl (1,7)
F Y vy o)

SN (2 N
R )

This approximation is valid if we assume that V() is relatively small with respect to the \; and this
assumption is necessary if the fundamental structures are assumed to have a certain stability. If we rank the
A; in increasing order, equation (393) shows that the eigenvalue Ff is driven below Fj. It means that the
equilibrium of the system is reduced by its internal interactions/tensions. For a sufficient magnitude of the
perturbation, one may have F] < 0 and the previous analysis concerning the stabilization of the system by
the interaction between structures apply. Remark, that some other first excited states may be also driven
below 0, by the perturbation, but the number of such eigenstates remains finite given our assumptions about
the potential V. Higher order excited states have eigenvalues increasing with n? + ... + n} = a, whereas, f
decreases with a.
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Generalization to several types of interacting structures

We consider k fields in interacting, characterized independently by an operator:

1
K = (_2 (V))? — ylMl(A)Vl +y Dy + Vi (yl)>

for I = 1,...,k, where the V; (y;) have a negative minimal eigenvalue. The saddle point equations for the
fields with interaction are then

0

K () + (M(y) JV (@00, [0 ) 9] 00)]

o
|

p1

(@) o] @) o [ Ok (wn) O (@] (), ...d(xk)pk)

y2 Pk

= KV (y)+p (/V ((ﬂfl)pl yeen (Ik)pk) {‘I’l (1) ] (1’1)}

p1

(i) o] @)] [ ) W @] dlen),, ...d(a:k)pk> U, (y)

p—1 Dk

where (xl)pl represents p; copies of the coordinates x; and {\I/l () \I'lT (a:l)} indicates a product of p; inde-
pi

pendent copies of U; () \I/lT (7). The interaction involves then p; copies of the [-th structure. Then, one
normalizes

Uy (1) = /0y ()

where \Ill(l) (z;) is of norm 1 and the saddle point equations rewrites:

(i)

m

JV (@0, ) [0 @0 90 0)

. [\pk (zx) U (ack)}

0 = KUY () +p (394)

X

7 N\

[\yl (z1) U] (xl)}

p1 pi—1

dxl...d:vk) \Ill(l) (y)

Pk
As in the previous case of similar structures interaction, one can multiply by ‘Ill(l)Jr (z;) and integrate to find:

(10r)
0 = <‘I’z(1) (Z/z)’ K, “Pl(l) (yl)> =t (395)

m

« <[\ygl> @] e 01 @D, e (B ()],
(V (@), o i), )) ‘ [0 (o)

[\I/l (Sl'l)]pl_l [lI}k (xk)}Pk>

p1

Where we defined

‘ (o0 @)] @],y (xk)]pk> € (H)®" @ .. (H)®P'~' @ (Hy)®"

p1

the state corresponding to the product of fields {\Ilgl) (3:1)} [y (z1)],, - [¥k (z1)], where the H; are the

p1

state spaces for the structures [ = 1,,, k. Similarly, the individual fields \Ill(l) (y;) are know seen as vector on
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a tensor product space:
v () = ’\I!l(l) (yl)> ®1®..®1c (H)*" ®..0 (Hp)"

The value of the 7; are found to satisfy:

k
m = —h (H(m)p>

i=1

(V (@)oo (@0, )) ‘ (o @] @, (xk)]pk>

(] K[ @)

([0 @] (o, - e @),

p1

X

k
for [ =1...k, and (H (n;)* ’) is computed by the product of the k previous relations:

k 1=,
(1:[ (m)’”)
_ << [ @) @)y, 1 ), | (V) ] o (@] (), <mk>]pk>)21=“”
TT (=5 (wt” | o1 )"
=1

where V' stands for V ((xl)pl s eens (xk.)pk), so that one finds:

(i)

({fo ], - 98 ] 941,

=1
and:
A ) e A G R R ) o
s : w) TS
(H (—pz <\If§1> (yz)‘m ’\1'1(1) (yl)>> ) <‘I’z(1) (yz)‘Kz ‘\Pl(l) (yz)>
=1

As before we ssume that V' ((ml)pl s (xk)pk> preserves the eigenstates of the K; (our results would be

preserved if they are only preserved in first approximation).
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As in the one field case, replacing the values of the 7, in (394), leads to a fixed point equation:

k
(H (m)’”)
~=L 7 (396)

m
X <{\Il§1) (xl)}pl e (W ()] g [Pk ()],

_ <\P§1>( ’Kl‘q,( ) ( >
<[\p<1>< D] @)y, e [ @),
([0 @] Gl 0 )

K; “I’;@ (yz)> =-p

W ()], g [P (xk)]pk> v (y)

v

p1

p1

W @), e <xk>]pk> ¥ (y)

v {[w? )

V][]

X

(@), - (W (wk)ka>

pP1
for I = 1...k, where V ((xl)pl ey (xk)pk) is now seen as an operator V on (Hy)*"' @ ... ® (Hy,)®"*. The

partial amplitude:

<[ng1> (xl)] RS LZ1C) M L ) [ ()] o [ (mk)]pk>

V][]

is then an operator on V.
As in the one field case, one can develop the fields \Ill(l) (y1) in a basis of eigenvectors of K;, and since V
preserves the negative eigenstates, we can restrict the sum on these states (this will be implicit in the sequel)

) = Z a,,L7l\IJl(n) (y1) Withz |an|2 —

n=0 n=0

and \Ifgn) (yi) are eigenvectors of K| with negative eigenvalues ordered such that \Ifl(o) (y) is the eigenvector
for the lowest eigenvalue Ao ;.
The equations (396) are not independent for the coefficients a,,; This can be seen by multiplying both

sides of (396) by \I/Zr () and to integrate to obtain a trivial relation. Actually,

0 = (v | |u @) (397)
(o)
tp =t
m
x <[qu1> (ml)]m...[q/l @]y, - [k @e)]y, | (V (@), 50 (@), ) H\I,g) (xl)]pl W (@), - [ (mk)]m>

(H(n >Pt)
is trivial given the definition of i Thus, one can look for a solution of (396) by choosing the

coefficients ag,; with
ag, =ca #0 (398)

, so that the solution we are looking for is a perturbative expansion around the minimum of the K;. Rewrite
first

K |0V () ) (399)
(o )| a5 [wf? yl>>< 0 w<”<>

<[\p§1> (ml)}pl [0 (@) o (U, ()] [ (@), e [T, (mk)]pk>

o[l

Pl
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with:
Vi= <[\I’(11) (1’1)}},1 [qjl (Il)]pz 1- [qjk (zk)}pk v

is an operator on V;. It can be written more compactly as:

(" @) (400)

(e o] [ 93 ) (6 (‘I"”< )

<[\I,§1) (ml)}pl [0 (xl)]m Uy (71)] ‘ [T (a:l)}m o [Py (a:k)]pk>

{\Ilgl) (xl)} (@), g [Pk (mk)]pk>

P1

where (‘\Ill(l) (yl)>) is the vector with [ components ’\Ifl(l) (yl)>, and K, (K)™' V are the diagonal matrices
with components K;, (K;)~" V; on the diagonal. The vector (<\Ifl(1) (yl)‘ K; ‘\Ill(l) (yl)> (K)"'v (\I/l(l) (y)))
has | components <\I!l(1) (yl)’ K; ’\Ill(l) (yl)> (K)"'v (\Ill(l) (y))
Then, replacing for ag; in (400) implies that
(o | ) |9 )y )7 v ([ @) )
p: (“1’51) (yz)>) Ryt "
<[xp1 (ml)]pl [P (@), o (W ()], |V [qfl (xl)] P ()], [T (xk)]pk>

defines an application from V = V; x ... x Vi, where the V; are the negative eigenstates of the K;. Moreover,
using the condition (398) for the norm implies that solving - is equivalent to find a fixed point for this

p1

application on the ball of radius ¢ in the finite dimensional space VI(O) X oo X Vk(o) where Vl(o) is the orthogonal
of the lowest eigenstate in V;. Given the definition of ¢:

((o | i) |9 )y )7 v |9 @) ))
<[qu1> (‘”“)]pl [V @), e [ ()], | V ‘ [0 )] W @), - [ (mk)]pk>

_ Max, )<\Ill(1) (yl)‘ (K) Ml) (yl)>‘ 2
<[¢,§1> (“)]pl [ ()], [Pk ()], [V ) [\pgl) (:cl)]pl W ()], - [Pk (zk)}pk>
N v ), e
and that:

2
(1)
H( (\Ij )>)HV1(O)><...><V,§O)

= 7 () ()| Vit (507 Vi | 962 () ) = (02 ()| Vit (B |21 30)) (1 ()| (20) ™ Vi [ 252 () )

L,m
then:
(ot | £ [ ) () I‘I'” )
<[\Il§1) (ml)}pl Uy (wl)]pl (O (z1)],, |V ‘ \IJ(I xl [0 (xl)]p, o [Py (mk)]pk>
< k>\() sup Z (<\I} m ‘ ml (Kl) Vim | ¥ (ym)>

- <\Il£r11) (Ym)

Vout (50~ |9 () (01 ()| (5D ™" Vi |91 (1))
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where Vj is the minimum of the potential, and Ao g,p the lowest eigenvalue among the Ao, { = 1..., k.
Then we arrive to similar conclusion as in the one structure case. A fixed point exists, and then a solution
to the saddle point equation (396) if the minimum of the potential is strong enough, and if the potential is
mainly localized oriented in the directions of instabilty to compensate them. Actually, in that case:

D~ (05 ()| Vit (50 Vi[9 () ) = (2 @) Vi (507" 12 (00)) (01 ()] (50" Viom [ 22 (9 ))

l,m

2 (Z (082 ()| Vi ()7 [0 (o)) (04" ()| (D)™ Vi |90 (31 )

l,m q

— (WA ()| Vit (0™ [0 ) ) (9 ()] (0) 7 Vi [958 () )
> (Y o)

I,m \ ¢g#0

Vot ()™ 9 () (91" ()| (K1) ™" Vi |95 (1))

and given our hypothesis of a potential which is mainly non null around the ’\Ifl(o) (yl)>
¢ v k) (k) -1 (1)
S50 () )| Vot (B0 |1 ) ) (95 ()| ()™ Vi |60 () < €
l,m q#0

for a certain constant depending on V. Then

k)\‘g/j@ > (<‘I’£rll) (ym)‘ Vot (K1) ™% Vi ‘\If%) (ym)> - <\I/§,1L) (ym)‘ Vit (K1)~ }\II(O) )> <\I/,@ (yl)‘ (K) " Vi ‘\pg) (ym)>) |
!

)

kXS . .
and CV# < 1 is realized for Vo >> ck/\(z),sup.
Once a saddle point is found, the stability is studied through the second order variation:

828
Zblm enl oo oy T Y

where, in ), by [¢;), the |p;) are normalized to 1, as well as ), b; |¢;). Given that the potential V' can be
considered as being symmetric with respect to the identical copies of the structure with coordinates (x;),
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one obtains:

828
blbm <pm |<Pl>
Z \I/(l) () a\I,(l)T (Yom)

l,m
k
{0

= Ll Ko +pﬂle (@1 () <[w§” ()] o [0 ()] [T (20)],
v ' 2 @) [ )] T <xk>1pk> 1 (@)
(ﬁ(m)p
# 220 (= DRe 2= o (a0 <[w§” @) V)] e @]

(T

R m??nm Re o ] [147 @], [0 0] [0 0]
v|[e0 @], o] [ @] w0
The terms:
<<Pz(xz)<[\1/()( | e @] [ )] VH\Ifﬁn(xl)]pl @) e [‘I’S)(xk)]pk>l<m(yz)>

Re<mx>|<[\lf§”<m1>}pl Sl e] e @] (e @] e )] [W§cl)<xk>}m>|@m<y>>

represent the matrix element between two fields configurations, and this is assumed to be positive since we
look for a binding interaction. This is satisfied for a potential with separate variable, as the one designed in
the one field case. Then:

928
biby, (@l %)
Z v () 0T (ym)

Z|bl (@il K |1) Oim

+Z|bz| =" <1:[1 " )

p1 Pm—1

(¢ (1))

p1

[ ()], [ (mk>1pk> o (1))

< 0 @) @, [ ()], |V ‘ LIRIEN)

284



using (395), it reduces to:

928
biby,, (2| lo)
2 A (a) 00" (ym)

> lbl* (erl K L)
l

(o1 ()| <[W§” (0] e [0 @)y o (W ()],

p1

oy (1))

v ’ [qu1> (xl)] [ @),y e [V ()],

=
\/\/

<[\1/(11) (1;1)} e [ ()], g Yk (20)],,,
X <\Ifl(1) (yz)’ K, “I’gl) (yl)>)

[0 @0)] o @)y, [ 0],

Multiplying equation (396) on the left by (<\Ill(1) (yl)Dallows to write

(o o] &t ) (9 | K7 V[ )

-y

([0 )] el Gl V][0 )] 0 0, )
and:
. %S
lZm:bzbm (Ol 3\111(1) () 0T () lr)
Sl (gl K 1)
l
“Dl(”)'<[¢"1”<w1>]p1-~~[\Pz<xz>1pl_1 o [V [0 )] .[qn<xl>1pl_1...[@k<xk>1pk>mm»
‘ . o o ) (8 G )

X <\Ijl(1) (yl)’Kl ‘\Ill( ) yl)>> )‘O,sup
I SIE);
T (e o Ko ) (v ) K )

Assuming as before that if some of the K; have 0 as eigenvalue, this eigenvalue is an isolated point one
obtains:

Uy

928
blb <pm| |(pl>
lz owit (1) 00" (ym)
A2
2 /\O,sup_ 0,inf UO

kEon,sup< z() (i ‘Vz)‘l’l(l) (yl)>

where Ag it is the closest to 0 negative eigenvalue of the operators K;. Then the saddle point is a minimum
for a large enough potential, set along the negative eigenvalues.
Note that a larger k£ makes stability more difficult to achieve. At this minimum one has:

k
stwon = 3o (0] [ 00) (T
l -

x <[\11§1> (xl)]pl [‘Ifz(” (xl)}pl [xp,ﬁ” (mk)}

1% ‘ [\pgn (xl)Ll [\115” (xl)]pl [\1:;1) (xk)]pk>

Pk
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and using (395):

k
SWi(w) = —(m—-1) (H(m)’“)

i=1

x <[qf§1> (xl)] - [\115” (xl)]

< 0

. [\p;y (mk)]

v ‘ [ (xl)}p o (xz)}m -y ("”’“)}pk>

b1 Pr 1

Then, for p; = 1, the minimum is S (¥; (y;)) = 0, and we have two states corresponding to this level, the
saddle point solution ¥; (y;) and 0.
For p; > 2, S (¥; (1)) < 0 and the non trivial saddle point ¥, (y;) is the only minimum.
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Appendix 14

Effective action for the first field:

We start with effective action Ser (U;, (z4,))

. N2
(n+3) 0+ ozl (Vegs),, —310)
U, 1)) = E In|1 :
Sef~( i1 (le)) ’175( (.’II“))"‘ . + (n 5) AZQ +m122

n<N

and study the possibility for a non null minimum, i.e. a minimum with 7 # 0.

We first consider the case § > 0.

If § > 0 remark that, if S (¥;, (z;,)) > 0, The function Sy (U;, (z;,)) is an increasing function in 7
and the only minimum of Sey. (¥;, (2;,)) is for n = 0. Then if § (A;;) + m2 > 0, the only solution is

The case S (U5, (;,)) < 0, requires m7 < 0, so that one replaces m?, — —mZ with m?, > 0.

Then, S (¥, (z;,)) < 0 implies that  (A;,) —m? < 0. The minimum for S (¥;, (z;,)) is obtained if
U, (x;,) is in the fundamental state \IIE?) (x;,) that is the eigenstate of (231) for n = 0.

\/6 % 1 a
W) = (L) o ate) e (-5
1
1
T 2
For n = 0 one then has:

The derivative in 7 leads to:

0Sey. (Ui, (7iy))
n

(0 4) 5+ 7225 (7))
(A, m“+z (Asy +5)( 1 )

neN (n+3) (A, +0n) +m?, + o5 ((Yeff)w A(“’)

12

l\D\»—~

This is increasing for 7 close to 0 and decreasing for n large.

9Ses. (Viy (231))

Then, one can find the conditions for a minimum with n # 0. Actually, since o —
OSes (Viq (Ti . .
2 (Ai,) —m? < 0 for large 7, then if W lp=0< 0 and if there exists an 1, > 0 such that
8Ser (Wi,

# ln=n,> 0, then there is an 1, # 0 such that Scs (¥;, (z;,)) is a minimum. In that case we

have a phase transition (U;, (z;,)) # 0.
For 6 > 0, the condltlons for a phase transition are then:

1 2
§ (Aiz) —my, < 0
Y, - (i1)
05.s. (Wi, (31,)) ! ) + ((Vers),, - at3)
— —0=15(Ay)—m? 46 § <0
on T 2( n<N 2)(Ai2)+m§2

(n—i—%)(ﬂ—% ((Yeff) 5;”)

Aiy+0mg

5 —— >0
ne (1) (Aiy +0m0) + 3, + o2 ((Yogy),, - 30)
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The case § < 0 is studied in a similar way.

. OSef (Viq (Ti . o .
If 3 (As,)+m? < 0 (that is m?, is negative), W < 0, there is no minimum, the action decreases
with n which is the (squared) norm of ¥;, (z;,). That case means that Scr (¥;, (x;,)) is unbounded from
below, which is meaningless. The model breaks out for this values of the parameters and this case has to be
ruled out.

If £ (Ai,) +m? >0, then

( - 11)
MZE(AHM +Z (n+ )6+(A,2+5n (( iy = z )
on 2 L n<N ( ) (Alz —|—577) _|_m +67, (( eff . ~1))

98ep. (U (2)) 1y, )

on 3

then w |n=0> 0 is the condition for a solution n; # 0 to %@;(I”)) = 0. In other words: If

n

is increasing for 1 close to 0 and decreasing for 7 large. Since — m?l > 0 for large 1,

(AZ)-&-mZ > 0

(<Yeff>w #)

)Am—i—m

DN | =

1
5 (i) +m“—|—5z < 0

n<N

then A (377 L(24))

is null for a value 1 # 0, and this value correspond to the minimum of Sey. (¥;, (%;,))-
In that case, there is a phase transition (¥, (z;,)) # 0.

if, on the contrary

1)+ ((eg),, —#0)

>0
n+%)Ai2+mi2

(o)t 253

n<N (

N | =

the minimum is for (¥, (z;,)) = 0.

Effective action for the second field:

As explained in the core of the text, the integration of the action for the first agent yields the effective action
for the second one:

. 2
fdxlé (xi2 - ££;1)> \IJi2 (m’té) \I;;fz (wi2)
+ %) A+ mfl

(401)

Remark first that for § > 0 and (n+ ) A;, +m? <0ord <0and (n+ 3)A;, +m? > 0 one can find n > 0
N2
such that, whatever [ du;, (mi2 - ig;”) U, (24,) \I/;rg (2;,) one has:

. 2
fd$i2 (331'2 - a}g;l)) \I]i2 (3312) ‘I’j‘z (miz)

+
=0
1

50, +m?1

1416

Thus, being unbounded from below, the model breaks down (S.¢. (¥;, (z;,)) being unbouded, one cannot
define a probability exp (—Sey. (¥4, (24,))))-
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In other words, for § (3A;, + m%l) < 0, it is not possible to define an effective action for ¥;, (x;,).

For § > 0 and (n+ 3) A;, +m2 > 0, the first order condition for 7 is:

8 [ dai, (xiz - igil))Q Wi, (23,) W, (v1,)
S (W, (23,) + Y

- =0 (402)
RN (n e 3) Ay o [ da, (i — 20 ) W (@) W, (22,)

1
If A, +m2 >0, then

S (\plé (‘rlz)) =z 0
5/d$22 (xw - jz('zl)) Wi, (2iy) \I/L (zi,) = 0
. 2
(5fdl‘12 ('Tiz - j"xl)) \Dlé (xlz) \Il;’rz (xlé)
S (U4, (x4,)) + > 0

. 2
n<N (n + %) Ai1 + mfl + Uéfdl‘b (ZEIL'Q — i‘g;l)) \IfiQ (%2) \If;rz ($i2)

There is no solution to 9
ainSef‘ (\1112 (mm))

and this derivative is positive. As a consequence, the minimum for Sey. (¥, (z;,)) is reached at n = 0.

If 1A;, + m? <0, (402) may have a solution, but in that case, the second derivative %Sef_ (U, (miy))
is negative, the extremum is thus a maximum, and the minimum for Sey. (¥, (z;,)) is reached at n = 0.

The case § < 0 and (n+ 1) A;, + m? < 0 is treated similarly: The first order condition can be written

(=8) [ daiy (w5, — 25 Wi, (20y) WL, (21,)
S(\Illz (xl2)) + Z ( )

- —0  (403)
n<N — ((n + %) Ay, + mfl) —né [ dx;, (;Ciz — 565;1)) U, (zi,) \III2 (zi,)

and we come back to the case § > 0 and (n + %) A+ mfl > 0 by the change of variable:

1 1
0 — _57 <n+2) Ai1 +m221 — = (<n+2) Ai1 +m121>

Then, gathering all the results of this paragraph, the only vacuum of Scs. (V;, (24,)) is 7 = 0, as announced
in the text.
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