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Abstract. In breathing pyrochlores and kagomes, couplings between neighbouring tetrahedra
and triangles are free to differ. Breathing lattices thus offer the possibility to explore a
different facet of the rich physics of these systems. Here we consider nearest-neighbour
classical Heisenberg interactions, both ferromagnetic and antiferromagnetic, and study how
the anisotropy of breathing lattices modifies the mode spectrum of pyrochlore and kagome
systems. The nature and degeneracy of the flat bands are shown to be preserved for any value
of the anisotropy. These flat bands can coexist with Dirac nodes at the Γ point when the
model becomes particle-hole symmetric. We also derive the nature of the ground state for the
breathing kagome lattice, which bears a spontaneous chirality when neighbouring triangles are
alternatively ferromagnetic and antiferromagnetic.

1. Introduction

Pyrochlore and kagome antiferromagnets are archetypical examples of flat-band systems in
frustrated magnetism [1, 2]. In these classical spin liquids, the flat bands correspond to highly
degenerate ground-state manifolds which support emergent Coulomb physics [3]. However, while
the pyrochlore and kagome antiferromagnets have been rather extensively studied, little is known
about their “breathing” counterparts. Pyrochlore and kagome lattices are made of corner-sharing
units, respectively tetrahedra and triangles. The term “breathing” has been coined to describe
lattices where spin couplings of neighbouring units are different [4]. Such geometry has first
been used as a mathematical convenience to study the quantum spin liquid nature of the pristine
spin−1/2 pyrochlore and kagome antiferromagnets [5–13]. But recently, breathing lattices have
gained noticeable interest on their own as possible outcomes of spin-lattice coupling [14, 15],
and after being synthesized in the rare-earth based pyrochlore material Ba3Yb2Zn5O11 [16–20],
in the vanadium oxyfluoride kagome [NH4]2[C7H14N][V7O6F18] [21–23] and in the spinel oxides
LiGaCr4O8 and LiInCr4O8 [4, 24–27], where the large magnetic moment of the Cr3+ ions makes
a classical approach sensible [15, 28].

In this paper, our goal is to complement the understanding of classical breathing lattices by
studying the evolution of the flat bands originally present in the uniform lattices. The anisotropy



Figure 1. Breathing pyrochlore (left) and breathing kagome (right). The purple and red
tetrahedra/triangles represent the A- and B-type of units with respectively JA and JB coupling
constants. There are 4 spin sublattices in pryochlores and 3 spin sublattices in kagomes.

of breathing lattices will be used as a tunable parameter, exploring both antiferromagnetic
and ferromagnetic couplings between classical Heisenberg spins. We will explain why the flat
bands, and their degeneracy, are protected, and how Dirac cones appear at the Γ point when
neighbouring units have couplings of exactly opposite sign. In addition to their band structures,
the ground state of the breathing kagome lattice will be described, both for the Heisenberg and
XXZ Hamiltonians.

2. Breathing lattices

2.1. Geometry
Pyrochlores and kagomes are frustrated lattices made respectively of corner-sharing tetrahedra
and triangles [Fig. 1]. For convenience, tetrahedra and triangles shall be referred to as units.
The centres of these units form bipartite lattices (respectively diamond and honeycomb). It is
thus possible to define two types of units labeled by A and B [coloured in purple and red in Fig. 1].

Let Ra be the position of the centre of unit a. Within a A-type tetrahedron, the positions of
the 4 spin sublattices with respect to Ra are
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For a B-type tetrahedron, δδδiB = −δδδiA for i ∈ {1, 2, 3, 4}. All distances are given in units of the
linear size of the cubic unit cell made of 16 pyrochlore sites.

Within a A-type triangle, there are 3 spin sublattices whose positions with respect to Ra are
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For a B-type triangle, δδδiB = −δδδiA for i ∈ {1, 2, 3}. All distances are given in units of the linear
size of the triangular unit cell made of 3 sites.



2.2. Hamiltonian
Let us consider a Hamiltonian with isotropic nearest-neighbour exchange

H = JA
∑

a∈A

∑

〈ij〉
Si
a · Sj

a + JB
∑

b∈B

∑

〈ij〉
Si
b · Sj

b, (3)

where Si
a is a classical Heisenberg spin of unit length |Si

a| = 1 on sublattice i belonging to the
unit a. The first and second terms of Eq. (3) run over all A- and B-type of units respectively.
It will be useful to introduce the breathing factor α = JB/JA [4].

3. Mode spectrum of the interaction matrix

3.1. Interaction matrix
In pyrochlore and kagome lattices, every spin belongs to two different units, indexed ao ∈ A
and bo ∈ B. This means that every spin can be written as Si

ao or as Si
bo

with position

Ri
ao + δδδiA = Ri

bo
+ δδδiB = Ri

bo
− δδδiA. Keeping this in mind, one can define the Fourier transform

of the spin degrees of freedom for a given sublattice i.

Ŝi
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where N ′ is the total number of sites in a given spin sublattice. If N is the total number of spins
in the system and s is the number of spin sublattices, then N ′ = N/s. The Fourier transform
of Eq. (3) takes the form [28]
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−q eıq.(δδδ
i
A
−δδδj

A
) +

JB
2

∑

q

s
∑

i=1

s
∑

j=1
j 6=i

Ŝi
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The dispersion relations are obtained by diagonalizing the q−dependent interaction matrix Kq

whose coefficients are Kii
q = 0 and, for i 6= j,
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As opposed to the uniform pyrochlore [1, 29] and kagome [2] lattices (α = 1), the coefficients
of Kq are intrinsically complex for breathing lattices [28]. However since Kq is hermitian, the
eigenvalues remain of course real. For most of the paper, the discussion will be focused on
JA > 0 and −1 ≤ α ≤ 1, because the mode spectrum for JA < 0 and |α| > 1 can be easily
derived by a rescaling of the coupling constants.

3.1.1. Breathing pyrochlore The four eigenvalues of Kq are given by
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with two degenerate flat bands, as explained in Sec. 3.2.



3.1.2. Breathing kagome The three eigenvalues of Kq are given by
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with one flat band, as explained in Sec. 3.2.

3.2. Origin of the flat bands
In breathing pyrochlore and kagome lattices, some of the bands are completely flat, as shown
in (9) and (10). The origin of these flat bands can be clarified by the factorization of the
Hamiltonian (3), as was done for the tight-binding model on complete graphs [30]. To this aim,
we rewrite the Hamiltonian (3) as

H =
1

2

∑

m,n

Ĥmn Sm · Sn. (11)

Here, Sm is the spin defined at the site, m, and the summation with m and n is made over the
entire lattice. The coefficient matrix, Ĥ, can be factorized by introducing an auxiliary hybrid
lattice, as we show in Fig. 2 for the breathing kagome lattice. Firstly, we put sites at the centers
of units, and secondly, we connect them to the original sites [Fig. 2 (b)], and finally we remove
the original bonds [Fig. 2 (c)]. The resultant lattice is the decorated diamond (honeycomb)
lattice for breathing pyrochlore (kagome) lattice.

Figure 2. The process of making an auxiliary hybrid lattice from a breathing kagome lattice.
(a) A breathing kagome lattice. (b) Sites are added in the center of triangle units. (c) The
bonds of original breathing kagome lattice is removed.

The new auxiliary lattice consists of two classes of sites: those of the original lattice, and
those at the centres of the units of the original lattice. We call the former class ℓ, and the latter,
c. The number of sites in class ℓ and c are defined as Nℓ and Nc, respectively. These are given
as Nℓ = N and Nc = 2N ′ = 2N/s for both lattices.

On this auxiliary lattice, we introduce two rectangular matrices, Ĥc←ℓ and Ĥℓ←c = (Ĥc←ℓ)T .

Ĥc←ℓ is a Nc × Nℓ incidence matrix, and its column (row) indices are related to the sites in

ℓ (c). We set its (m,n) component, (Ĥc←ℓ)mn, to be 1, if the corresponding sites, m ∈ c and
n ∈ ℓ are connected, and to be 0, otherwise. Being a Nc × Nℓ rectangular matrix, the rank of
Ĥc←ℓ is bounded by min(Nc, Nℓ) = Nc

1. Given these definitions, the matrix Ĥ of Eq. (11) can

1 It is actually possible to prove that rank Ĥ
c←ℓ = Nc − 1 by counting the number of localized modes [31].



be factorized as

Ĥ = JAĤ
ℓ←c τ̂ Ĥc←ℓ − JA(1 + α)1ℓ, (12)

where 1ℓ is the Nℓ×Nℓ identity matrix and τ̂ is a Nc×Nc diagonal matrix, τ̂mn = τmδmn, with
τm = 1(α) if m belongs to sublattice A (B).

This expression immediately leads to the protection of the flat bands present in the uniform
lattices. Firstly, suppose there is a state annihilated by Ĥc←ℓ, then this state serves as an
eigenstate of Ĥ with eigenvalue, −JA(1 + α), and is independent of α. Secondly, there are in

fact at least (Nℓ − Nc) = (s − 2)N ′ such states, since Ĥc←ℓ acts on a space of dimension Nℓ,

while the rank of Ĥc←ℓ is bounded by Nc. Consequently, Ĥ has at least (s − 2)N ′ degenerate
states with eigenvalue, −JA(1 + α). This argument proves that the s − 2 = 2 (1) flat bands of
the uniform pyrochlore (kagome) lattices see their energy shifted by the breathing anisotropy,
but are not destroyed and conserve their degeneracy. In addition, the presence of new flat bands

Figure 3. Mode spectrum of the interaction matrix for breathing pyrochlores in the [hhk] plane
at α = 1 (see Ref. [1]) and α = 0.5. The ground state is a doubly degenerate flat band with
gapless excitations. A gap between the dispersive bands opens for |α| 6= 1. Wavevectors are in
2π units.

Figure 4. Mode spectrum of the interaction matrix for breathing kagomes at α = 1 (see Ref. [2])
and α = 0.5. The ground state is a unique flat band with gapless excitations. A gap between
the dispersive bands opens for |α| 6= 1. Wavevectors are in 2π units.



is allowed, which is precisely what happens for α = 0 (see below).

3.3. Gap opening when |JA| 6= |JB |
The mode spectra for regular pyrochlore and kagome lattices are known to be gapless [1, 2].
Here we find that for α > 0 excitations out of the flat bands remain gapless, but the breathing
anisotropy opens a gap between the dispersive bands λ1

q and λ2
q when |α| 6= 1 [Figs. 3 & 4].

Figure 5. Mode spectrum of Kq for breathing pyrochlores and α ∈ {−0.5,−1,−2}. The left
column shows the entire [hhk] plane, while the right column shows a cut along the [hhh] line.
For α < 0, the flat bands are not part of the ground state anymore. The gap closes at α = −1
where a Dirac cone appears at the Γ point. Wavevectors are in 2π units.



From Eqs. (9) and (10), one gets

∆pyrochlore = 4 |1− |α|| , ∆kagome = 3 |1− |α|| . (13)

Starting from α = 1 and decreasing its value, λ1
q and λ2

q become less and less dispersive
[Figs. 3 & 4] and flat at α = 0. For decoupled antiferromagnetic units, the ground state is made
of three (resp. two) degenerate flat bands in pyrochlores (resp. kagomes).

Figure 6. Mode spectrum of Kq for breathing kagomes and α ∈ {−0.5,−1,−2}. The left
column shows the entire (qx, qy) plane, while the right column shows a cut along the qy = 0 line.
For α < 0, the flat bands are not part of the ground state anymore. The gap closes at α = −1
where a Dirac cone appears at the Γ point. Wavevectors are in 2π units.



3.4. Particle-hole symmetry and Dirac cones for JA = −JB
The breathing factor α can be seen as a way to tune the relative importance of the real and
imaginary parts in Kq [see Eq. (8)]. When α = −1, Kq becomes purely imaginary, Kq = ıΩq

with Ωq ∈ M(s,R), the ensemble of real matrices of size s × s. Since Kq is hermitian, its
eigenvalues are real. Let Vq be an eigenvector of Kq with eigenvalue λq,

KqVq = ıΩqVq = λqVq. (14)

The complex conjugate of Eq. (14) gives

ıΩqVq = λqVq ⇔ −ıΩqVq = λqVq ⇔ KqVq = −λqVq. (15)

It means that if the eigenvector Vq is real, then λq = 0. But if Vq is complex, then −λq is
also an eigenvalue of the interaction matrix Kq. Hence, breathing lattices possess particle-hole
symmetry at α = −1 [Figs. 5 and 6].
Furthermore Kq becomes nil at the Γ point. It means that all the bands connect at q = 0 and
that the flat bands are at zero energy.

An interesting outcome is that the dispersive bands form Dirac cones at the Γ point [Figs. 5
and 6]. In linear order in |q|, the dispersion relation is λ2

q = −λ1
q = |q| for pyrochlores and

λ2
q = −λ1

q =
√

3/2|q| for kagomes. Please note that the presence of a single Dirac cone per
Brillouin zone is allowed despite the Nielsen-Ninomiya theorem because of their co-existence
with flat bands [32].

4. Ground states for α < 0
4.1. Breathing pyrochlore
In agreement with the work of Benton & Shannon [28], we find that the classical spin liquid of
the pyrochlore antiferromagnet (α = +1) is robust for positive α but disappears as soon as α
becomes negative [Figs. 3 and 5]. For α < 0 the ground-state configurations belong to one of
the dispersive bands, with lines of zero-energy modes along the [1k0] directions (and equivalent
wavevectors) [Fig. 7]. An order-by-disorder transition is expected to select spin configurations
with [100] ordering [28].

Figure 7. Mode spectrum of Kq for breathing pyrochlores in the [hk0] plane at α = −0.5 and
α = −1. The [1k0] directions (and equivalent wavevectors) form lines of zero-energy modes.
Wavevectors are in 2π units.



4.2. Breathing kagome
While the evolution of the band structure shares many similarities between breathing pyrochlore
and kagome, their low temperature physics differ qualitatively. Indeed, there are no lines of zero-
energy fluctuations in kagome for α < 0 [Fig. 6]. Au contraire, the band structure shows clear
minima at the corners of the Brillouin zone, which can be understood as follows.

In order to minimize the energy of an antiferromagnetic triangle (type A) with classical
Heisenberg spins, the three spins must be coplanar with a 2π/3 angle between them. For a
ferromagnetic triangle (type B), spins must be collinear. Any configuration which respects these
constraints over the entire lattice belongs to the ground-state manifold, irrespectively of the value
of α as long as α < 0. Such a configuration is depicted on Fig. 8 and is uniquely determined
once the spin configuration of one A-type triangle is given. To prove this uniqueness, let A1 in
Fig. 8 be this initial triangle. Without any loss of generality, its spin configuration is chosen as

S1 =
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

0
1
0


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3
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
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√
3

−1
0



 , (16)

whose respective color codes are red, cyan and green in Fig. 8. Being ferromagnetic,
the neighbouring triangles B2 and B3 are immediately fixed into configurations S2 and S3

respectively. On the other hand, the orientations of the four spins Si∈{̟,µ,ν,η} are a priori not
fixed. The local antiferromagnetic constraints on triangles Ai∈{2,3} indeed allow for a O(2) degree
of freedom for each triangle. These continuous degrees of freedom are however constrained by
the intervening ferromagnetic triangle B1 which imposes Sµ = Sν . From Eq. (16), this constraint
can be rewritten as

Sµ = Sν ⇔
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


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
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



⇔ θν = −θµ =
π

2
⇔ Sµ = Sν = S1. (17)

Step by step, this argument around a plaquette of six triangles can be applied to the entire
lattice. The ground-state of the breathing kagome model for α < 0 is thus long-range ordered
with a global degeneracy of O(3)×O(2). In particular, there are no weathervane modes [33, 34].

Figure 8. Example of a ground-state configuration of the breathing kagome model for α < 0.
Each colored dot corresponds to a spin orientation given on the left.



If one assigns its corresponding color – red, cyan, green – to each of the ferromagnetic (B-
type) triangles, then any ground state configuration can be seen as a three-coloring problem on
the triangular lattice. The magnetization of the system is thus zero. On the other hand, the
vector chirality defined as

χχχ ≡ 1

N

∑

c∈{A,B}

(

S1
c × S2

c + S2
c × S3

c + S3
c × S1

c

)

(18)

is finite since all antiferromagnetic (A-type) triangles carry the same chirality while the ferro-
magnetic (B-type) ones bear none. Within the ground-state manifold, the vector chirality χχχ is
uniformly distributed on a sphere of radius

√
3/2. Please note that the scalar chirality is nil

since the configurations are coplanar.

Interestingly, if the interactions between spins are made anisotropic by favouring in-plane
couplings over the out-of-plane ones (XXZ model), then the configuration of Fig. 8 remains
one of the ground states. The only difference is that spins now lie in the kagome plane, and
the ground-state manifold has Z2×O(2) symmetry. The O(2) symmetry has the same origin
as before (in-plane rotation of all spins) while the Z2 symmetry corresponds to the sign of the
vector chirality χχχ = ±

√
3/2 ez where ez is the out-of-plane unit vector.

5. Conclusion

We have calculated the mode spectrum of the interaction matrix Kq for the breathing pyrochlore
and breathing kagome lattices. While the nature and degeneracy of the flat bands are not af-
fected by the breathing anisotropy, the shape of the dispersive bands dramatically changes as
a function of α. This is best illustrated for α = −1 where a Dirac cone is formed at the Γ
point and the system gains particle-hole symmetry. The extensive ground-state degeneracy of
the antiferromagnetic models is lifted when α < 0, in favour of lines of zero modes for breathing
pyrochlore [28] and a long-range ordered ground state with finite vector chirality for breathing
kagome.

A promising outcome of our work is the observation of a Dirac cone in a particle-hole
symmetric model for α = −1. The coexistence of Dirac nodes and flat bands has also been
observed for example in a tight-binding model on the Lieb lattice with three species of spinless
fermions [35] and on the Shastry-Sutherland lattice with Dzyaloshinskii-Moriya interactions
in a field [36]. In both cases, it was possible to open and close the gap at the Dirac point
between the flat band and both dispersive bands by tuning either the tunneling coefficients [35]
or the magnetic field [36]. It would be interesting to see if perturbations of our model could
open such a gap, which would establish breathing lattices as a favourable setup for topological
phenomena [14].
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