
HAL Id: hal-01549196
https://hal.science/hal-01549196v2

Submitted on 6 Oct 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Hidden Markov models for advanced persistent threats
Guillaume Brogi, Elena Di Bernardino

To cite this version:
Guillaume Brogi, Elena Di Bernardino. Hidden Markov models for advanced persistent threats. In-
ternational Journal of Security and Networks, 2019, 14 (4), pp.181. �10.1504/IJSN.2019.103147�.
�hal-01549196v2�

https://hal.science/hal-01549196v2
https://hal.archives-ouvertes.fr

Hidden Markov models for advanced persistent threats
Guillaume Brogi∗†, Elena Di Bernardino†

∗ Akheros and † Conservatoire National des Arts et Métiers, Laboratoire CEDRIC, EA4629, Paris, France
guillaume.brogi@akheros.com
elena.di_bernardino@cnam.fr

Abstract—Advanced Persistent Threats (APT), attack
campaigns performed by competent and resourceful actors,
are a serious security risk and tools suited to their detection
are needed. These attack campaigns do leave traces in the
system, and it is possible to reconstruct part of the attack
campaign from these traces. In this article, we describe a
stochastic model for the evolution of an APT. It is based
on hidden Markov models (HMM) and is accompanied by
a score. The aim of this model is to validate whether the
evolution of the partially reconstructed attack campaigns
are indeed consistent with the evolution of an APT. In ad-
dition, the introduced score is designed to take into account
the inevitable presence of undetected attacks in the attack
campaigns. It also allows comparing attack campaigns of
varying length, which is necessary to be able to compare
attack campaigns. We validate and illustrate both the model
and the score using data obtained from experts.

Index Terms—hidden Markov model, score, attack cam-
paign, advanced persistent threat

I. Introduction

In recent years, Advanced Persistent Threats (APTs) have
emerged as a real threat to both private companies and gov-
ernment agencies [1]. While there is no exact definition of what
is and isn’t an APT, the idea is that the attack campaign
is the work of professional hackers with well funded backing,
usually state or large company. This means the attackers are
competent, organised and resourceful, and they have precise
goals that they need to achieve, such as extracting sensitive
data or sabotaging machinery. These APTs can last for months
or years, and are customised for their target. While APTs are
a formidable threat, the attackers still leave traces, as [2] found
traces of the breach in 86% of cases with no specific anti-APT
solution. This fact is leveraged by ongoing research [3], [4] to
defend against them.

In this article, we present a solution for adding context to
individual attacks in order to assist with their evaluation. This
builds on top of our previous work on reconstructing attack
campaigns [5]. That initial tool is capable of linking related
attacks together but can also sometimes link unrelated attacks.
The model and accompanying score in this article are used to
remove those unrelated attacks and keep only the rightly linked
attack chains from the results of the first tool. Concretely, the
contribution is a model and a score which can rank chain of
attacks, already detected and linked by other tools, in order
of most probably an APT to least probably an APT. The
model is an hidden Markov model (HMM) and it uses a custom
score designed specifically to handle missing observations and
to compare chains of different length.

The rest of this article follows the usual outline. Section II
presents related works, and Section III the security model. We
introduce hidden Markov models and our score in Section IV
and evaluate them in Section V. Finally, we conclude the article
in Section VI.

II. Related Works

Most research studying APTs starts by decomposing them
into several phases, as shown in [6]. In [3], Giura and Wang
base their concept of an attack pyramid on this decomposition.
The exact phases they use are “Reconnaissance”, “Delivery”,
“Exploitation”, “Operation”, “Data Collection” and “Exfiltra-
tion”. This is central to the attack pyramid concept, a construct
to determine the path attackers can use to reach a given
goal. They start by identifying the overall goals, targets of the
“Exfiltration” phase, and from there move backwards to the
earlier phases. For each goal, they list all the way the attacker
could reach it. These become the goals of the previous phases.
The main difference with attack trees is that attack pyramids
can encompass several planes, such as the physical plane where
someone can pick a lock or phishing on the user plane.

In [4], Sexton et al. once again decompose APTs into five
phases: “Delivery”, “Exploit”, “Install”, “C&C” and “Actions”.
They uses these phases to construct attack chains by associ-
ating each phase with a number of event types. They then
combine events in different phases in order to detect APTs.
The combination is done by computing a score for each type of
event and for each phase; this score is then aggregated at the
host and cluster level. If the score is high enough, an APT is
detected.

Both of these articles are interesting because they decompose
APTs in phases. However, they both require knowledge before-
hand. In [3], every path of attack must be thought of, while
in [4], every type of attack must be associated with a specific
phase. From these article, we keep the decomposition of APTs
in phases. In this article, we use the following phases:

1) Reconnaissance (R)
2) Compromission (C)
3) Establish presence (EP)
4) Privilege escalation (PE)
5) Mission completion (MC)

In addition, the attacker can, at any time, go back to a previous
phase. There are two main reasons for going back: either the
current attack failed and the attacker must find another way
to achieve their current goal, or the attack succeeded, but the
current machine is only a stepping stone and the attacker must
now find a machine closer to its ultimate goal to gain a foothold
on. This last move is called a lateral movement and is expected
in an APT.

In [7], Ourston et al. use a hidden Markov model (HMM) to
model multi-stage network attacks. The phases of an attack are:
“Probe”, “Consolidate”, “Exploit” and “Compromise”. These
are the hidden states of the HMM. Attacks are categorised
and these categories are the observations of the HMM. This
resembles closely what we are doing. However, on top of being
restrained to network attacks, this article does not take into
consideration two key elements of attack campaigns. First, they
do not take into account the possibility that several attack

guillaume.brogi@akheros.com
elena.di_bernardino@cnam.fr

campaigns could be happening at the same time. Second, they
do not take into account the possibility that some attacks
are not detected. We address the first issue with our previous
contribution [8] and build this contribution on top of it, adding
a score specifically designed to handle missing observations, i.e.
undetected attacks.

III. Security Model
In this article, we present a method to evaluate potential

attack campaigns and decide whether they really are attack
campaign. This work is a continuation of our previous article [8]
where we presented the first half of TerminAPTor, a method to
link attacks together. The method presented here is the second
half of TerminAPTor and is meant to analyse those potential
attack campaigns. Hence, we use the same threat model.

We propose to protect enterprise networks from APTs. Such
a network is composed of machines being used as a mix of
servers and workstations. They are monitored. In our case, we
posit that each machine is equipped with a local monitoring
agent which includes the first half of TerminAPTor. This agent
detects attacks and links related ones together. The output is
thus a list of potential attack campaigns, where each attack in
the campaign is categorised. The second half of TerminAPTor,
the subject of this article, analyses each potential campaign
based on the category of the attacks it contains and ranks them
in order of more likely an APT to least likely an APT.

The attacker is performing an APT. This means they have
a precise goal and they are following the phases outlined in
Section II: reconnaissance, compromission, establish presence,
privilege escalation and mission completion; where, at any time,
the attacker can start a lateral movement on the internal
network usually by going back to the reconnaissance or com-
promission phase, but on a different machine. For each phase,
the attacker is capable of either exploiting existing tools or
deploying their own customised one; overall, they are capable of
infiltrating any system they want to. In addition, the attacker
tries to avoid detection and will thus avoid unneeded actions.
This means that each attack in an attack campaign is necessary
and is used to setup the next attack.

IV. Hidden Markov models for APTs
A hidden Markov model (HMM) is a two-level stochastic

process. The first level is a Markov chain representing the
state of the system. However, the states cannot be measured
directly. Instead, states generate observations which can be
measured and are then used to infer which state generated the
observation. Thus, a HMM is defined by:

1) The N states of the system, denoted as

S � {S1 , S2 , . . . , SN }. (1)

In our case, these states would be the five phases of an
attack outlined in Section II. The L states of a given chain
of length L of a HMM are written as s � s1 , s2 , . . . , sL.

2) The M observations of the system, denoted as

O � {O1 ,O2 , . . . ,OM}. (2)

In our case, these observations would be the alerts raised
by an IDS. As expected, they do not tell us directly which
phase the attacker is in, but they do give us information
which we can leverage to infer the most probable state
sequence. The L observations of a given chain of length L
of a HMM are written as o � o1 , o2 , . . . , oL.

3) The state transition probability matrix A � [ai j], where

∀t , P(st+1 � S j |st � Si) � ai j for i , j ∈ ⟦1,N⟧. (3)

A is a N × N matrix, and ∀ i ,
∑

j ai j � 1.
4) The observation probability matrix B � [bi j], where

∀t , P(ot � O j |st � Si) � bi j

for i ∈ ⟦1,N⟧ and j ∈ ⟦1,M⟧.
(4)

B is a N × M matrix, and ∀ i ,
∑

j bi j � 1.
5) The initial probability vector π � [πi], where

P(s1 � Si) � πi for i ∈ ⟦1,N⟧. (5)

π is a vector of length N and
∑

i πi � 1.
An HMM will then be denoted as λ � (A, B, π).
Given a sequence of observations and a HMM, we can com-

pute the most probable path which generated that sequence
of observation as well as its probability in the model using
the Viterbi algorithm [9]. This is done by walking forward in
the trellis of possible transitions and computing the maximum
probability of reaching each state at each time step, taking
the observations into account. Once the end of the chain is
reached, the trellis is walked backward starting from the highest
probability and finding which state in the previous step lead
to it and so on until the beginning of the chain is reached.
Let us take the well-known example HMM in [10]. The idea
is to find if the temperature of years in the distant past was
hot or cold based on the observed tree ring size. Tree rings
do not directly tell us whether a year was hot or cold, but
colder years will have a tendency to make trees have smaller
rings and warmer years will make them larger. Hence, the HMM
described has two states “hot year” (“H”) and “cold year” (“C”)
and three observations “small tree rings” (“S”), “medium tree
rings” (“M”) and “large tree rings” (“L”). The matrices are:

A �

[
0.7 0.3
0.4 0.6

]
, B �

[
0.1 0.4 0.5
0.7 0.2 0.1

]
, π �

[
0.6 0.4

]
. (6)

Let us walk through the Viterbi algorithm for the fol-
lowing chain: “S-M-S-L”, as shown in Fig. 1. From (5),
we know directly that P(s1 � “H”) � π“H” � 0.6 and that
P(s1 � “C”) � 0.4. We can then compute the probability that
the chain is at either state and generates the first observation
“S”:

P(o1 � “S”|s1 � “H”) ·P(s1 � “H”) � 0.06. (7)
P(o1 � “S”|s1 � “C”) ·P(s1 � “C”) � 0.28. (8)

Then, for each state, we use the result of (7) and (8), multiply
by the transition probability and take the maximum of the two.
For example, if the second state is “C”:

max(0.06 ·P(s2 � “C”|s1 � “H”),
0.28 ·P(s2 � “C”|s1 � “C”)) � 0.168.

(9)

We then multiply this result by the observation probability
0.168 ·P(o2 � “M”|s2 � “C”) � 0.168 · 0.2 � 0.0336. We do this
for every state at each step and obtain the numbers in Fig. 1.
We then retrace the trellis by selecting the state with the high-
est probability (“H” in this case) and finding which state at the
previous step led to this probability (“C” in this case). We then
do the same for that state and so on until we reach the first step.
In this case we find that the chain of observation “S-M-S-L” was
most probably generated by the state sequence “C-C-C-H” and
that P(o � “S-M-S-L”, s � “C-C-C-H”|λ) � 0.002822.

“H”

0.06

“C”

0.28

“S”

“H”

0.0448

“C”

0.0336

“M”

“H”

0.003136

“C”

0.014112

“S”

“H”

0.002822

“C”

0.000847

“L”

0.6

0.4

0.018

0.168

Fig. 1. Walking the trellis in the Viterbi algorithm for the “temper-
ature of the year and tree ring size” example.

In our case, we aim to use HMMs to model APTs. This
means that the states will be the different phases of an attack
campaign (see Section II) and the observations are the alerts
given by the IDSs. Determining the exact model will require
computing the probability matrices π, A and B.

A. The base score
As mentioned, we want to rank the different campaigns in

order of most probably an APT to least probably an APT.
In particular, we want to be able to compare chains of dif-
ferent lengths. However, most scores are used to do model
selection. This means they are used to find the best model for
a given chain, and are not meant to compare the fit of several
chains. In effect, scores such as the Akaike information criterion
(AIC) [11] or the Bayesian information criterion (BIC) [12], try
to balance the accuracy of the model (measured through the
log-likelihood L) with its complexity (measured through the
number of parameters of the model), the aim being to find
a model that is accurate enough but not too complex. The
BIC, furthermore, aims to limit the amount of data required
for model creation. Thus, we propose, in the following, a new
score adapted to our APT evaluation problem. In particular,
while it is based on the log-likelihood, this new score must not
be sensitive to the length L of the chain.

The log-likelihood L of a given chain is defined as
L � ln(P(o , s |λ)), where s is obtained using the Viterbi algo-
rithm, meaning it is the most probable chain of states having
generated these observations (see [9] for details). Then:

L � ln(P(o , s |λ))
L � ln(P(oL |sL) ·P(sL |sL−1) · · ·P(o1 |s1) ·P(s1))

L �

L∑
l�1

ln(P(ol |sl)) +
L∑

l�2
ln(P(sl |sl−1)) + ln(P(s1)).

(10)

The log-likelihood is, thus, a sum of negative terms, and the
number of terms increases with the length L of the chain. We
can easily find an upper and a lower bound on the log-likelihood
(see Equation (11)). These bounds are dependent on L but the
ratio L

L is bounded by values independent of L (see Equation
(12)). In keeping with the spirit of AIC and BIC we define our
score as:

S � −L
L
. (13)

B. Adapting the score for missing observations
Now that we have a base score, we also have to take into

account the fact that we may miss observations. As we have
seen, APTs are executed by skilled actors, this means some
steps of the attack will probably escape detection, and the score
must account for this possibility. We do this by modifying the
Viterbi algorithm.

Due to the Chapman-Kolmogorov equations for homoge-
neous HMMs, the transition probability of going from state
Si to state S j in two steps is

P(st+2 � S j |st � Si) �
∑

k

aik · ak j � A2(i , j). (14)

One can then generalise (14) and show that the transition
matrix of taking k steps when going from one observation
to the next is Ak . Similarly, the initial probability vector
when reaching the first observation in k steps is π · Ak−1.
Thus, we denote the HMM where we take k steps for each
observation as λ(k) � (A(k) , B, π(k)) where A(k) � Ak � [a(k)i j]
and π(k) � π · Ak−1. A(k) denotes the transition matrix for the
case where there are k steps between one observation and the
next, and Ak is the standard matrix power notation.

The idea is to modify the Viterbi algorithm to include
the additional transitions described by A(k). We denote as p
the probability that the monitoring agent does not detect an
attack. We can then weigh each A(k) and π(k) by the probability
that the monitoring agent misses k − 1 attacks in a row, i.e.
pk−1 for independent events. Ideally, we would rewrite the
Viterbi algorithm taking into account k ∈ ⟦1,+∞⟦. However,
for computational reasons, we only use k ∈ ⟦1, K⟧, where K is
chosen arbitrarily. Note that the bigger k gets, the smaller pk−1

so the approximation we make by taking k ≤ K is limited. It
does require that we normalise the probabilities so that they
do sum to 1.

We denote the state Si reached in k steps as S(k)
i and replace

Equations (3), (4) and (5) with, respectively:

for i , j ∈ ⟦1,N⟧, l ∈ ⟦1,M⟧, k ,m ∈ ⟦1, K⟧,

∀t , P(st+1 � S(k)
j |st � S(m)

i) � a(k)i j · pk−1∑K
n�1 pn−1

, (15)

∀t , P(ot � Ol |st � S(k)
i) � bil , (16)

P(s1 � S(k)
i) � π(k)i · pk−1∑K

n�1 pn−1
. (17)

We note those weighed matrices as A(k)
p and π(k)p . Note, in

particular, that the value of (15) does not depend on the
value of m which means it does not depend on how many
steps it takes to arrive on Si but only on how many steps are
taken going from Si to S j . We can then use Equations (15)-
(17) in the new trellis to compute the Viterbi path and its
associated log-likelihood. We note the log-likelihood computed
with the Viterbi algorithm allowing for up to K steps from one
observation to the next as L(K), and the score computed from
this log-likelihood is S(K) � −L(K)

L .
If we adapt the example taken from [10] with K � 2 and

p � 0.8, we have the following matrices:

A(1)
p � A · 1

1 + p
�

[
0.389 0.167
0.222 0.333

]
,

A(2)
p � A2 · p

1 + p
�

[
0.271 0.173
0.231 0.213

]
,

B �

[
0.1 0.4 0.5
0.7 0.2 0.1

]
,

π(1)p � π · 1
1 + p

�
[
0.333 0.222

]
,

π(2)p � π · A · p
1 + p

�
[
0.258 0.187

]
.

(18)

L · ln(min
i j

(bi j)) + (L − 1) · ln(min
i j

(ai j)) + ln(min
i
(πi)) ≤ L ≤ L · ln(max

i j
(bi j)) + (L − 1) · ln(max

i j
(ai j)) + ln(max

i
(πi))

2 · L · ln(min
i j

(bi j , ai j , πi)) ≤ L ≤ 2 · L · ln(max
i j

(bi j , ai j , πi)),
(11)

2 · ln(min
i j

(bi j , ai j , πi)) ≤
L
L

≤ 2 · ln(max
i j

(bi j , ai j , πi)). (12)

“H”(1)

0.0333

“C”(1)

0.1554

“H”(2)

0.0258

“C”(2)

0.1309

“S”

“H”(1)

0.00138

“C”(1)

0.01035

“H”(2)

0.01436

“C”(2)

0.00662

“M”

“H”(1)

0.000559

“C”(1)

0.002412

“H”(2)

0.000389

“C”(2)

0.001739

“S”

“H”(1)

0.000268

“C”(1)

0.000080

“H”(2)

0.000279

“C”(2)

0.000051

“L”

0.3
33

0.222

0.258

0.187

0.0056

0.0517

0.0
043

0.0
43

6

Fig. 2. Trellis of the Viterbi algorithm with p � 0.8 and K � 2.

Walking the tree is done as in the previous example but using
the new equations. In this case, as shown in Fig. 2, we find
that the chain “S-M-S-L” was most probably generated by the
sequence “C(1)-C(1)-C(1)-H(2)” which actually means that the
observation sequence is “S-M-S-X-L” and the state sequence
is “C-C-C-Y-H”, where “X” means that the observation was
not observed and “Y” that the state is unknown because the
associated observation was not observed.

As we can see, the result with our customised Viterbi al-
gorithm differs from the original result. While in the case of
tree rings, it does not make sense that observations are missed,
especially with a p � 0.8, in the case of APT models, due to
the skills of attackers, there will be missed observations, and it
is necessary to take them into account.

We can now use our customised Viterbi algorithm to compute
the log-likelihood used in the score defined in (13). This gives
us a score which is not dependent on the length of the chain
and which takes into account missed observations.

V. An APT case study
In this case study, we want to apply the model and the

score defined above to the problem of APT detection. More
specifically, we receive as input a number of sequence of obser-
vations and we must determine which of these sequences are
more probably APTs. This means that the score must order
the sequences from most probably an APT to least probably an
APT. Additionally, the model should show the hidden states,
including the number of unobserved states, if any.

A. The proposed model
The first step is to define the list of states S and observations

O. Our model uses the five states in Section II: N � 5
and S � {“reconnaissance (R)”, “compromission (C)”,
“establish presence (EP)”, “privilege escalation (PE)”,
“mission completion (MC)”}. For the observations we use
the output of a tool which defines seven categories of

observations: M � 7 and O � {“scan”, “arbitrary execution”,
“credential theft”, “application exploit”, “backdoor”,
“remote access tool”, “data exfiltration”}. Once we have
the states and observations, we require statistics about the
transitions and observations in order to compute the matrices.
There are two sources of information that we leverage. First,
there are publicly available APT reports. They are useful
in knowing which tools are used in which phase, but they
are not precise enough in the evolution of the APT. Hence,
we use them to create the observation matrix B. For the
initial probability vector π and the transition matrix A, we
use expert knowledge. We setup a website where experts are
shown scenarios created at random. Each scenario can be
rated as “strongly an APT”, “weakly an APT” or “not an
APT”. The scenarios are shown as chains of states with an
observation presented for each state as an indication. For
example, the scenario “R”, “C”, “PE”, “EP” and “MC” was
rated as “strongly an APT” while the scenario “MC”, “C”,
“MC”, “EP” and “R” was rated as “Not an APT”. Thanks
to these two sources of information, we obtain the following
HMM model λ � (A, B, π):

A �

0.045 0.091 0.318 0.5 0.045
0.071 0.071 0.643 0.143 0.071
0.045 0.182 0.045 0.682 0.045
0.16 0.04 0.04 0.04 0.72
0.2 0.4 0.267 0.067 0.067

,

B �

0.3 0.02 0.02 0.02 0.6 0.02 0.02
0.5 0.14 0.01 0.1 0.13 0.07 0.4
0.01 0.3 0.01 0.3 0.05 0.03 0.3
0.05 0.4 0.05 0.05 0.05 0.1 0.3
0.4 0.03 0.01 0.09 0.01 0.4 0.06

,

π �
[
0.7 0.21 0.03 0.03 0.03

]
.

(19)

B. Experiment 1: Model adequacy checking
The aim of this first experiment is to check that the model

differentiates APT chains from non-APT chains. To do so, we
compare the scores of various scenarios rated as APT and as
non-APT by our expert raters. We can then plot the scores
and check that non-APT chains score higher than APT chain.
In this first experiment, our score does not take into account
possible missing observations. This means that we use the score
S(1). During the poll we explicitly told the expert raters to
consider the steps shown as the whole APT, with no missing
step, so this matches how the model was created.

The results can be seen in Fig. 3. The “Strong APT” chains
appear in blue, the “Weak APT” chains in green and the “Not
APT” ones in red. They show that both the proposed model
and the associated score are able to separate APT from non-
APT, with all APT chain below 1.5 and all non-APT above
that mark.

We also created one chain of each kind with a length of 50
and 100 to check that the score is still consistent when chains

4 6 8 10 12 14 50 100

Length L of the chains

0

0.5

1

1.5

2

2.5

Sc
or

e
S
(1
)

Strong APT Weak APT Not APT

Fig. 3. The score separates APTs from non-APTs

are that long. Indeed, we see that the score does not depend
on the length of the chain L, which was another crucial goal of
our score.

C. Experiment 2: Analysing the impact of missing observations
The aim of this second experiment is to check the impact

of taking into account possible missing steps on the score and,
more importantly, on the rank of each chain evaluated.

We display the same chains as in Fig. 3 but using S(3) instead
of S(1) and with different values of p in Fig. 4. As we can see,
the higher p is, the more some “Not APT” are on the same
level as “APT” chains. This reflects that the higher p is, the
higher the probability of missing one or even two consecutive
observations is too, which means that our score will consider
missing observations more. This is exactly what we wanted:
by inserting well chosen and positioned unobserved states in
the chain, their likelihood of being APTs is much higher. This
means that if we have an APT where we did not observe some
of the attacks, we can still reconstruct the probable unobserved
attacks and evaluate that chain as an APT. For example, if we
have a chain for which Viterbi gives us S(1) � 1.62 and the
states “R”-“EP”-“MC”. From Fig. 3, this chain is on the “Not
APT” side, and there are phases missing in the APT, between
“R” and “EP” for example. Switching to S(3), if p � 0.3, S(3) �
1.87 and the states do not change; from Fig. 4a, the chain is
still on the “Not APT” side, and there are still missing phases.
However, if p � 0.7, S(3) � 2.04, the states become “C”-“Y”-
“PE”-“MC”. From Fig. 4b, this is now on the “APT” side. This
is explained by the fact that if we replace the missing state
(“Y”) by “EP” phase, we now have a very reasonable chain of
attacks for an APT.

VI. Conclusion
As we have shown, the threat of an APT, where the attacker

executes a long-lived and multi-step attack campaign, can be
adequately modeled by an HMMs. The contribution of this
article is the fact we use such a model to highlight APTs. It
builds on top of our previous contribution [8], which disentangle
multiple concurrent APTs, and introduces a score specifically
designed to take into account missing observations. This is
crucial since the defense cannot guarantee they will detect
every attack in an attack campaign.

The score and the model have potential. However, a study
with real life data is still required to validate the approach.
In addition, it is necessary to evaluate the influence of p and
K on the ranking of potential APTs. Setting K is a trade-off
between accuracy and computing power. The value of p is more
subjective. However elaborate the IDS, attackers will find ways

4 6 8 10 12 14 50 100

Length L of the chains

0

0.5

1

1.5

2

2.5

Sc
or

e
S
(3
)

Strong APT Weak APT Not APT

(a) p � 0.3

4 6 8 10 12 14 50 100

Length L of the chains

0

0.5

1

1.5

2

2.5

Sc
or

e
S
(3
)

Strong APT Weak APT Not APT

(b) p � 0.7

Fig. 4. S(3) of the original scenarios for different values of p.

to circumvent it, so while a higher value of p could reflect
badly on the quality of an IDS, it also shows the down to earth
position of the defense team.

References
[1] C. Tankard, “Advanced persistent threats and how to monitor

and deter them,” Network security, vol. 2011, no. 8, pp. 16–19,
2011.

[2] Verizon, “2010 data breach investigations report,” 2010. [On-
line]. Available: http://www.verizonenterprise.com/resources/
reports/rp_2010-data-breach-report_en_xg.pdf

[3] P. Giura and W. Wang, “A context-based detection framework
for advanced persistent threats,” in Cyber Security (CyberSe-
curity), 2012 International Conference on. IEEE, 2012, pp.
69–74.

[4] J. Sexton, C. Storlie, and J. Neil, “Attack chain detection,”
Statistical Analysis and Data Mining: The ASA Data Science
Journal, vol. 8, no. 5-6, pp. 353–363, 2015.

[5] G. Brogi and V. Viet Triem Tong, “TerminAPTor: Highlighting
advanced persistent threats through information flow tracking,”
in New Technologies, Mobility and Security (NTMS), 2016 8th
IFIP International Conference on. IEEE, 2016, pp. 1–5.

[6] Mandiant Intelligence Center, “APT1: Exposing one of china’s
cyber espionage units,” 2013. [Online]. Available: http://
intelreport.mandiant.com/Mandiant_APT1_Report.pdf

[7] D. Ourston, S. Matzner, W. Stump, and B. Hopkins, “Applica-
tions of hidden Markov models to detecting multi-stage network
attacks,” in System Sciences, 2003. Proceedings of the 36th
Annual Hawaii International Conference on. IEEE, 2003, pp.
10–pp.

[8] G. Brogi, “APT models,” 2016. [Online]. Available: https:
//aptmodels-guiniol.rhcloud.com/

[9] G. D. Forney, “The Viterbi algorithm,” Proceedings of the IEEE,
vol. 61, no. 3, pp. 268–278, 1973.

[10] M. Stamp, “A revealing introduction to hidden Markov models,”
Department of Computer Science San Jose State University,
2004.

[11] H. Akaike, “A new look at the statistical model identification,”
IEEE transactions on automatic control, vol. 19, no. 6, pp. 716–
723, 1974.

[12] G. Schwarz, “Estimating the dimension of a model,” The annals
of statistics, vol. 6, no. 2, pp. 461–464, 1978.

http://www.verizonenterprise.com/resources/reports/rp_2010-data-breach-report_en_xg.pdf
http://www.verizonenterprise.com/resources/reports/rp_2010-data-breach-report_en_xg.pdf
http://intelreport.mandiant.com/Mandiant_APT1_Report.pdf
http://intelreport.mandiant.com/Mandiant_APT1_Report.pdf
https://aptmodels-guiniol.rhcloud.com/
https://aptmodels-guiniol.rhcloud.com/

	Introduction
	Related Works
	Security Model
	Hidden Markov models for APTs
	The base score
	Adapting the score for missing observations

	An APT case study
	The proposed model
	Experiment 1: Model adequacy checking
	Experiment 2: Analysing the impact of missing observations

	Conclusion
	References

