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Abstract—Advanced Persistent Threats (APT), at-
tack campaigns performed by competent and resource-
ful actors, are a serious security risk and tools suited
to their detection are needed. These attack campaigns
do leave traces in the system, and it is possible to
reconstruct part of the attack campaign from these
traces. In this article, we describe a stochastic model for
the evolution of an APT. It is based on hidden Markov
models (HMM) and is accompanied by a score. The
aim of this model is to validate whether the evolution
of the partially reconstructed attack campaigns are
indeed consistent with the evolution of an APT. Since
APTs are the work of competent attackers, we can
assume that not every step of the APT will leave traces.
This fact must be taken into account when computing
the fit with the model, which is why we introduce a
new score. This score is based on the log-likelihood of
the observations in the model, but also accounts for
potentially missing observations. In addition, it also
allows comparing attack campaigns of varying length.
We validate and illustrate both the model and the score
using synthetic and real-life data.

Index Terms—hidden Markov models, score, attack
campaign, advanced persistent threats

I. Introduction
A. Advanced Persistent Threats

In recent years, Advanced Persistent Threats (APT)
have emerged as a real threat to both private companies
and government agencies [1]–[3]. While there is no exact
definition of what is an APT, the idea is that it is the
work of professional hackers, often state backed. This
means they are competent, organised and resourceful, and
have precise goals that they need to achieve, such as
exfiltrating sensitive data or sabotaging machinery. Their
attack campaigns can last for months, or even years, and
are customised for their target. They will use existing tools
if they are sufficient, but they do not hesitate to develop
their own or to exploit 0-days (heretofore undisclosed
vulnerabilities) when necessary. For example, one of their
paramount concern is avoiding detection and they will
rather spend time developing a new and undetectable tool
than risk using an old and easily detectable one [4]–[6].

As we can see, APTs are a formidable threat, and
defenses capable of detecting them are necessary. There
is ongoing research [7], [8], but the existing tools on the
market are not good enough [9]. An interesting fact we

leverage is that APT actors do leave traces during their
operations. For example, [10] found that in 86% of the
cases they surveyed, there were traces of the breach in the
log files. This is an even bigger failure on the defender’s
part if those traces were seen as attacks but dismissed as
irrelevant. In this article, we present a possible solution for
adding context to individual events and attacks in order
to help with their detection and evaluation. In particular,
we focus on checking whether individual attacks are part
of larger attack campaigns, even if part of the attack cam-
paigns have not been detected. This builds on top of our
previous work on reconstructing attack campaigns [11] and
adds the evaluation of potential attack campaigns against
a model of APTs. Hence, the aim is to use some suitable
model to check which reconstructed attack campaign is
indeed an APT. More concretely, in the present paper,
we aim to rank the different campaigns in order of most
probably an APT to least probably an APT.

B. A stochastic model for APTs
In order to model APTs, we start by noting that de-

spite each campaign being targeted and customised, every
campaign follows the same generic steps, as described
in [12]. First, there is a reconnaissance step, where the
attacker gathers as much information about the target
as possible, be it about the technology stack used or the
people employed. Then, the attacker leverages this infor-
mation to perform an initial compromise and establish a
foothold inside the defensive perimeter. From then on, the
attacker’s goals are twofold: maintain their presence and
find their targets. This leads to a number of steps similar
to the ones described above but moving laterally inside
the defensive perimeter instead. Finally, once the target is
reached, the attacker will complete their mission, usually
either exfiltrating data or sabotaging the target. In some
cases, this is not the end of the mission and the attacker
remains active and continues looking for more sensitive
data. This generic scheme can be summarised with the
following steps:

1) Reconnaissance
2) Compromission
3) Establish presence
4) Privilege escalation

→ Loop back to step 1 if necessary
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5) Mission completion
→ Loop back to step 1 if necessary

In addition, the attacker can fail to execute any step which
either brings them back a step or force them to start from
step 1 again; in other cases, some steps can be skipped.

While quite generic, this model of the evolution of APTs
is useful enough that it is used in most papers working on
the detection of APTs [13]–[16]. In our case, we propose to
model this attack strategy by using Markov chain. Indeed
the attacker advances step by step, and the aim of a given
step depends on what has already been achieved. On the
defender’s side, the current step of the attacker is not
known directly, but it can be deduced from the actions
observed. This behaviour can typically be modelled by
using hidden Markov chains, that is, a chain which cannot
be directly observed but whose states can be deduced from
other observations. In this case, the observations we can
use are the various alerts given by the defense mechanisms
monitoring the system.

The rest of this article is organised as follows. In Sec-
tion II, we present hidden Markov models and how to
apply them for APT modelling. In particular, we intro-
duce a score we designed to rank the potential APTs. In
Section III, we use the proposed model in a detailed case
study. Conclusions are postponed to Section IV.

II. Hidden Markov models for APTs
A hidden Markov model (HMM) is a two-level stochastic

process. The first level is a Markov chain representing
the state of the system. However, the states cannot be
measured directly. Instead, states generate observations
which can be measured and are then used to infer which
state generated the observation. Thus, a HMM is defined
by:

1) The N states of the system, denoted as

S � {S1 , S2 , . . . , SN }. (1)

In our case, these states would be the five steps of
an attack outlined in Section I-B. The L states of
a given chain of length L of a HMM are written as
s � s1 , s2 , . . . , sL.

2) The M observations of the system, denoted as

O � {O1 ,O2 , . . . ,OM}. (2)

In our case, these observations would be the alerts
raised by an intrusion detection system. As expected,
they do not tell us directly which step the attacker
is on, but they do give us information which we can
leverage to infer the most probable state sequence.
The L observations of a given chain of length L of a
HMM are written as o � o1 , o2 , . . . , oL.

3) The state transition probability matrix A � [ai j],
where

∀t , P(st+1 � S j |st � Si) � ai j for i , j ∈ ⟦1,N⟧. (3)

A is a N × N matrix, and ∀ i ,
∑

j ai j � 1.

4) The observation probability matrix B � [bi j], where

∀t , P(ot � O j |st � Si) � bi j

for i ∈ ⟦1,N⟧ and j ∈ ⟦1,M⟧. (4)

B is a N × M matrix, and ∀ i ,
∑

j bi j � 1.
5) The initial probability vector π � [πi], where

P(s1 � Si) � πi for i ∈ ⟦1,N⟧. (5)

π is a vector of length N and
∑

i πi � 1.
An HMM will then be denoted as λ � (A, B, π).
Given a sequence of observations and a HMM, we can

compute the probability that this sequence of observations
was generated by the HMM:

P(o |λ) �
∑

S

P(o |s , λ) · P(s |λ)

�

∑
S

P(oL |sL) · P(sL |sL−1) · · ·P(o1 |s1) · P(s1).

(6)

This can be efficiently computed using Baum’s forward-
backward algorithm [17]. In addition, we can also compute
the most probable path which generated that sequence of
observation as well as its probability in the model using
the Viterbi algorithm [18]. The Viterbi algorithm is done
by walking forward in the trellis of possible transitions
and computing the maximum probability of reaching each
state at each time step, taking the observations into
account. Once the end of the chain is reached, the trellis
is walked backward starting from the highest probability
and finding which state in the previous step lead to it
and so on until the beginning of the chain is reached.
Let us take the well-known example HMM in [19]. The
idea is to find if the temperature of years in the distant
past was hot or cold based on the observed tree ring size.
Tree rings do not directly tell us whether a year was hot
or cold, but colder years will have a tendency to make
trees have smaller rings and warmer years will make them
larger. Hence, the HMM described has two states “hot
year” (“H”) and “cold year” (“C”) and three observations
“small tree rings” (“S”), “medium tree rings” (“M”) and
“large tree rings” (“L”). The matrices are

A �

[
0.7 0.3
0.4 0.6

]
, B �

[
0.1 0.4 0.5
0.7 0.2 0.1

]
, π �

[
0.6 0.4

]
.

(7)
Let us walk through the Viterbi algorithm for the fol-
lowing chain: “S-M-S-L”, as shown in Fig. 1. From (5),
we know directly that P(s1 � “H”) � π“H” � 0.6 and that
P(s1 � “C”) � 0.4. We can then compute the probability
that the chain is at either state and generates the first
observation “S”:

P(o1 � “S”|s1 � “H”) · P(s1 � “H”) � 0.06. (8)
P(o1 � “S”|s1 � “C”) · P(s1 � “C”) � 0.28. (9)

Then, for each state, we use the result of (8) and
(9), multiply by the transition probability and take the
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“H”

0.06

“C”

0.28

“S”

“H”

0.0448

“C”

0.0336

“M”

“H”

0.003136

“C”

0.014112

“S”

“H”

0.002822

“C”

0.000847

“L”

0.6

0.4

0.018

0.168

Fig. 1. Walking the trellis in the Viterbi algorithm for the “temper-
ature of the year and tree ring size” example.

maximum of the two. For example, if the second state is
“C”:

max(0.06 · P(s2 � “C”|s1 � “H”),
0.28 · P(s2 � “C”|s1 � “C”)) � 0.168.

(10)

We then multiply this result by the observation probability
0.168 · P(o2 � “M”|s2 � “C”) � 0.168 ·0.2 � 0.0336. We do
this for every state at each step and obtain the numbers
in Fig. 1. We then retrace the trellis by selecting the state
with the highest probability (“H” in this case) and finding
which state at the previous step led to this probability
(“C” in this case). We then do the same for that state
and so on until we reach the first step. In our case this
leads to the finding that the chain of observation “S-M-
S-L” was most probably generated by the state sequence
“C-C-C-H”.

In our case, we aim to use HMMs to model APTs. This
means that the states will be the different steps of an
attack campaign (see Section I-B) and the observations
are the alerts given by the intrusion detection systems.
Determining the exact model will require computing the
probability matrices π, A and B.

A. The score

As mentioned, we want to rank the different campaigns
in order of most probably an APT to least probably
an APT. In particular, we want to be able to compare
chains of different lengths and matching different models.
However, most scores are used to do model selection. This
means they are used to find the best model for a given
chain, and are not meant to compare the fit of several
chains. In effect, scores such as the Akaike information
criterion (AIC) [20] or the Bayesian information criterion
(BIC) [21], try to balance the accuracy of the model
(measured through the log-likelihood L) with its complex-
ity (measured through the number of parameters of the
model), the aim being to find a model that is accurate
enough but not too complex. The BIC, furthermore, aims
to limit the amount of data required for model creation.
Thus, we propose, in the following, a new score adapted to
our APT detection problem. In particular, this new score
must not be sensitive to the length L of the chain.

The log-likelihood L of a given chain is defined as
L � ln(P(o , s |λ)), where s is obtained using the Viterbi

algorithm, meaning it is the most probable chain of states
having generated these observations. Then:

L � ln(P(o , s |λ))
L � ln(P(oL |sL) · P(sL |sL−1) · · ·P(o1 |s1) · P(s1))

L �

L∑
l�1

ln(P(ol |sl)) +
L∑

l�2
ln(P(sl |sl−1)) + ln(P(s1)).

(11)

The log-likelihood is, thus, a sum of negative terms, and
the number of terms increases with the length L of the
chain. We can easily find an upper and a lower bound
on the log-likelihood (see Equation (12)). These bounds
are dependent on L but the ratio L

L is bounded by values
independent of L (see Equation (13)). In keeping with the
spirit of AIC and BIC we define our score as:

S � −L
L
. (14)

Now that we have a base score, we also have to take
into account the fact that we may miss observations. As we
have seen, APTs are executed by skilled actors, this means
some steps of the attack will probably escape detection,
and the score must account for this possibility. We do this
by modifying the Viterbi algorithm.

Due to the Chapman-Kolmogorov equations for homo-
geneous HMMs, the transition probability of going from
state Si to state S j in two steps is

P(st+2 � S j |st � Si) �
∑

k

aik · ak j � A2(i , j). (15)

One can then generalise (15) and show that the transition
matrix of taking k steps when going from one observation
to the next is Ak . Similarly, the initial probability vector
when reaching the first observation in k steps is π · Ak−1.
Thus, we denote the HMM where we take k steps for each
observation as λ(k) � (A(k) , B, π(k)) where A(k) � Ak �

[a(k)i j ] and π(k) � π · Ak−1. A(k) denotes the transition
matrix for the case where there are k steps between one
observation and the next, and Ak is the standard matrix
power notation.

The idea is to modify the Viterbi algorithm to include
the additional transitions described by A(k). We denote the
state Si reached in k steps as S(k)

i . Thus we have:

P(st+1 � S(k)
j |st � S(l)

i ) � P(st+1 � S(k)
j |st � Si) � a(k)i j .

(16)
Note, in particular, that this does not depend on the value
of l which means it does not depend on how many steps
it takes to arrive on Si but only on how many steps are
taken going from Si to S j . If we simply rewrite the Viterbi
trellis by adding the states reachable in up to K steps,
then we duplicate each state Si K times in the trellis.
Hence, we have to divide each transition probability by K
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L · ln(min
i j

(bi j)) + (L − 1) · ln(min
i j

(ai j)) + ln(min
i
(πi)) ≤ L ≤ L · ln(max

i j
(bi j)) + (L − 1) · ln(max

i j
(ai j)) + ln(max

i
(πi))

2 · L · ln(min
i j

(bi j , ai j , πi)) ≤ L ≤ 2 · L · ln(max
i j

(bi j , ai j , πi)),
(12)

2 · ln(min
i j

(bi j , ai j , πi)) ≤
L
L

≤ 2 · ln(max
i j

(bi j , ai j , πi)). (13)

to compensate the effect of this duplication. This means
replacing Equations (3), (4) and (5) with, respectively:

for i , j ∈ ⟦1,N⟧, l ∈ ⟦1,M⟧, k ∈ ⟦1, K⟧,

∀t , P(st+1 � S(k)
j |st � Si) �

a(k)i j

K
, (17)

∀t , P(ot � Ol |st � S(k)
i ) � bil

K
, (18)

P(s1 � S(k)
i ) �

π(k)i

K
. (19)

We can then use Equations (17)-(19) in the new trellis to
compute the Viterbi path and its associated log-likelihood.
We note the log-likelihood computed with the Viterbi
algorithm allowing for up to K steps from one observation
to the next as L(K), and the score computed from this
log-likelihood is S(K) � −L(K)

L .
If we adapt the example taken from [19] with K � 2, we

have the following matrices:

A(1)
� A �

[
0.7 0.3
0.4 0.6

]
, A(2)

� A2
�

[
0.61 0.39
0.52 0.48

]
,

B �

[
0.1 0.4 0.5
0.7 0.2 0.1

]
,

π(1) � π �
[
0.6 0.4

]
, π(2) � π · A �

[
0.58 0.42

]
.

(20)

Walking the tree is done as in the previous example
but using the new equations. From (19), we have
P(s1 � “H”(1)) � π(1)“H”

K �
0.6
2 � 0.3, P(s1 � “C”(1)) � 0.2,

P(s1 � “H”(2)) � 0.29 and P(s1 � “C”(2)) � 0.21. We can
then compute the probability for each state that the chain
generates the observation “S”:

P(o1 � “S”|s1 � “H”) · P(s1 � “H”(1)) � 0.015. (21)
P(o1 � “S”|s1 � “C”) · P(s1 � “C”(1)) � 0.07. (22)
P(o1 � “S”|s1 � “H”) · P(s1 � “H”(2)) � 0.0145. (23)
P(o1 � “S”|s1 � “C”) · P(s1 � “C”(2)) � 0.0735. (24)

Then, for each state, we use the results of (21)-(24),
multiply by the transition probability from (17) and take
the maximum:

max(0.015 · P(s2 � “H”(2) |s1 � “H”),
0.07 · P(s2 � “H”(2) |s1 � “C”)
0.0145 · P(s2 � “H”(2) |s1 � “H”)
0.0735 · P(s2 � “H”(2) |s1 � “C”))

�0.03822.

(25)

“H”(1)

0.015

“C”(1)

0.07

“H”(2)

0.0145

“C”(2)

0.0735

“S”

“H”(1)

0.00294

“C”(1)

0.002205

“H”(2)

0.003822

“C”(2)

0.001764

“M”

“H”(1)

0.000066885

“C”(1)

0.000231525

“H”(2)

0.0000582855

“C”(2)

0.0002608515

“S”

“H”(1)

0.000013042575

“C”(1)

0.0000039127725

“H”(2)

0.0000169553475

“C”(2)

0.000003130218

“L”

0.3

0.2

0.29

0.21

0.004575
0.0182

0.0044225

0.0
191

1

Fig. 2. Trellis of the Viterbi algorithm with up to K missing steps

We then multiply this result with the ob-
servation probability from (18) and obtain
0.01911 · P(o2 � “M”|s2 � “H”(2)) � 0.01911 · 0.4

2 �

0.003822. We do this for each state at each step and
once we reach the end of the trellis, we start at the
state with the highest probability and walk back to find
which succession of states lead to this probability. In
this case, we find that the chain “S-M-S-L” was most
probably generated by the sequence “C(2)-H(2)-C(2)-H(2)”
which actually means that the observation sequence is
“X-S-X-M-X-S-X-L” and the state sequence is “Y-C-
Y-H-Y-C-Y-H”, where “X” means that the observation
was not observed and ‘Y” that the state is unknown
because the associated observation was not observed.
It is interesting to note that if we compare this second
result to the initial one of “C-C-C-H”, the only known
state that changed is the second one, going from “C” to
“H”. The associated observation is “M” which is the most
ambiguous one; small rings are almost always due to a
cold year and large rings to hot years, but medium rings
could be either. Seeing only the state associated with
this ambiguous observation change when the information
is slightly modified, here simply making allowances for
incomplete information, is remarkable.

As we can see, the result with our customised Viterbi
algorithm differs from the original result. While in the
case of tree rings, it does not make sense that observations
are missed, in the case of APT models, due to the skills
of attackers, there will be missed observations, and it is
necessary to take them into account.

We can now use our customised Viterbi algorithm to
compute the log-likelihood used in the score defined in
(14). This gives us a score which is not dependent on the
length of the chain and which takes into account missed
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observations.

III. An APT case study
In this case study, we want to apply the model and

the score defined above to the problem of APT detection.
More specifically, we receive as input a number of sequence
of observations and we must determine which of these
sequences are more probably APTs. This means that the
score must order the sequences from most probably an
APT to least probably an APT. Additionally, the model
should show the hidden states, including the number of
unobserved states if any.

A. The proposed model
The first step is to define the list of states S and obser-

vations O. Our model uses the five states in Section I-B:
N � 5 and S � {“reconnaissance”, “compromission”,
“establish presence”, “privilege escalation”,
“mission completion”}. For the observations we use
the output of a tool which defines seven observations:
M � 7 and O � {“scan”, “arbitrary execution”,
“credential theft”, “application exploit”, “backdoor”,
“remote access tool”, “data exfiltration”}. Once we have
the states and observations, we require statistics about
the transitions and observations in order to compute the
matrices. There are two sources of information that we
leverage. First, there are APT reports. These are publicly
available reports about APTs. They are useful in knowing
which tools are used in which step, but they are not
precise enough in the evolution of the APT. Hence, they
can be used to create the observation probability matrix
B, but not the transition probability matrix A nor the
initial probability vector π. For those, we use expert
knowledge instead. We setup a website where experts are
shown scenarios created at random. Each scenario can be
rated as “strongly an APT”, “weakly an APT” or “not
an APT”. Additionally, individual steps can be removed
from the scenario in order to obtain a better match with
an APT. Fig. 3 shows three chains, one in each category,
as they were rated by an expert. As we can see, these are
the states of the chains, as the observation probability
matrix B is not computed from these ratings. The answers
from each expert are compared with each other expert by
computing an agreement score [22]. This allows removing
mis-rated models or even experts who never agree with
anyone else. We can then use the best rated scenarios
for learning the transition matrix A as well as the initial
probabilities π. Once we have the model λ, we can check
how it and our score perform.

B. Experiment 1: Model adequacy checking
The aim of this first experiment is to check that the

model differentiates APT chains from non-APT chains.
To do so, we compare the scores of various scenarios rated
as APT and as non-APT by our expert raters. We can
then plot the scores and check that non-APT chains score
higher than APT chain. In this first experiment, our score

does not take into account possible missing observations.
This means that we use the score S(1). During the poll
we explicitly told the expert raters to consider the steps
shown as the whole APT, with no missing step, so this
matches how the model was created.

The results can be seen in Fig. 4. The “Strong APT”
chains appear in blue, the “Weak APT” chains in green
and the “Not APT” ones in red. They show that both
the proposed model and the associated score are able to
separate APT from non-APT, with all APT chain below
1.5 and all non-APT above that mark.

We also created one chain of each kind with a length
of 50 and 100 to check that the score is still consistent
when chains are that long. Indeed, we see that the score
does not depend on the length of the chain L, which was
another crucial goal of our score.

C. Experiment 2: Improving the score in the case with
unobserved steps

The aim of this second experiment is to check that
taking into account possible missing steps does improve
the score. To do this, we take all the chains rated as APT
and remove states so that their log-likelihood L(1) of being
an APT diminishes. We also add the two “Strong APT”
chains of length 50 and 100, which are chains 9 and 10
respectively. We then recompute the score by taking into
account possible missing observations. This is shown in
Fig. 5. We take the APT chain presented in Fig. 3 (chain
(A) in both figures). We compute its S(1) score. We then
remove states so that the score increases and obtain chain
(D). Finally, we compute the S(2) and S(3) scores of the
chain (D) with removed states.

The results can be seen in Fig. 6. First we plot the
original score S(1) in blue. We then remove some steps and
plot in red the score S(1) of the resulting chain. Finally,
we compute the scores S(2) and S(3) taking into account
up to two and three steps from one observation to the next
respectively, and plot them in teal and green respectively.
The figure shows that by taking into account missing steps,
our score is capable of improving the score of chains whose
missing steps make them appear as not APTs. In this test,
the improved scores S(2) and S(3) usually ends up close to
the S(1) score of the original chain which is encouraging.
We can also note that in certain cases, such as chains 1,2
and 7, S(2) and S(3) are the same. This is due to the fact
that having three steps from one observation to the next is
not always better than having to. In those specific chains,
none of the cases where the score consider two steps to
the next observation are improved when considering three
steps instead.

D. Experiment 3: Evaluating the impact of unobserved
steps

The aim of this first experiment is to show the influence
of taking into account possibly unobserved steps on both
APT and non-APT chains. The key point is that when
evaluating whether a chain is an APT, we do not know if
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R C EP C PE EP MC (A) “Strongly an APT”

R EP C C PE EP MC (B) “Weakly an APT”

MC C MC EP R PE R (C) “Not an APT”

Fig. 3. Example of chains rated by experts. We note “reconnaissance” as “R”, “compromission” as “C”, “establish presence” as “EP”,
“privilege escalation” as “PE”, and “mission completion” as “MC”.
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Fig. 4. Experiment 1: the score separates APTs from non-APTs

the chain is an APT, but we also do not know a priori
if some steps are missing. Hence, we want to see the
influence of the score when comparing APT and non-APT
chains with and without missing steps. To do that, we
start by removing at random up to 25% of the steps in
each chain, so some chains remain untouched. We then
compute the score allowing for up to three steps between
each observation (i.e. K � 3). The results are shown in
Fig. 7 and can be directly compared with Fig. 4; it uses
the same scale and the same color code.

The first observation is that the scores are much lower
in this experiment. This is to be expected since taking
into account unobserved steps improves the score for every
chain, and not just APT ones.

In addition, while the APT chains tend to score lower
than the non-APT ones, the discrepancy is less clear than
in the first experiment, with some APT chains having
scores higher than some non-APT ones. This is to be
expected since even chains which were originally APTs
have possibly had random states removed, which means
that we cannot assure that their log-likelihood of being an
APT is still high. Since the score does not know if there
are missing steps, it looks for the optimal unobserved steps
to insert which means that the score of every chain, be it
APT or non-APT and whether it has missing steps or not,
is improved. If a chain’s S(1) points to it not being an APT
because it is missing some crucial step, the chain’s S(3) can
consider that crucial step as missing and improve on the
original S(1), which makes that chain much more likely to
be an APT. This is exactly the effect we wanted when we

introduced this score. Since APTs are conducted by skilled
actors, they are more likely to invest more time and skill
in crucial steps which are then less likely to be detected.
It is paramount that our score can take that into account
and improve the score of chains accordingly. Of course,
there is a trade-off to make in the selection of the number
K of unobserved steps possible between two observed steps
because the score does not know which steps are missing
and only considers the best possible solution. If K is too
large, the score can always find a way to add missing steps
to make the chain fit the model.

IV. Discussion and perspective
A. Are HMMs a good fit for modelling APTs?

The original idea for modelling APTs with HMMs stems
from the fact that, while it is possible to detect unwanted
activity, it is hard to determine what step of an attack
campaign that activity is occurring at. And it is that
second information, the step of the attack, which is the
most important. As such, we needed a model where the
actual state is unknown but partial information about
the process is measured and is linked to the state of the
process. This is something that HMMs excel at. However,
in order to use HMMs, the modelled process must follow
the Markov hypothesis, ie. the state of the process at a
given time must only depend on the state of the process
at the previous time. In this paper, we assumes that this
hypothesis is followed. This is justified by the fact that
an attack campaigns proceed step by step and that the
direction each attack takes depends on the result of the
previous step, with the attacker proceeding forward if the
previous step succeeded or backtracking if it did not. While
there is no complete assurance that this will always be the
case, this assumption will be valid in most cases.

In addition, we can evaluate the performance of the
model we created by polling our expert raters. As we have
seen in Section III, the basic hidden Markov model does
separate chains rated as non-APT from chains rated as
APT. This is a very encouraging result. First, it seems to
indicate that the assumptions we made above are correct
and that HMMs can be used to model APTs. Second,
it shows that the actual model we created is accurate.
However, these results should be confirmed by a future
large scale study of real-life APTs.
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R C EP C PE EP MC (A) S(1) � 1.29

R C C EP (D) S(1) � 1.83,
S(2) � 1.28, S(3) � 1.12

Fig. 5. An APT chain and the same chain with states removed. We note “reconnaissance” as “R”, “compromission” as “C”, “establish
presence” as “EP”, “privilege escalation” as “PE”, and “mission completion” as “MC”.
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Fig. 6. Experiment 2: improving the score through missing states
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Fig. 7. Experiment 3: scores and recovered states

B. Can the score handle missing steps?
Our aim when we created the score presented in this

paper was twofold. First, we wanted to be able to compare
the score of chains of different lengths. We have proved in
(13) that the score is bounded by constants of the model.
As such, it does not increase with the length of the chain.
This was also verified in Fig. 4 where we saw that even
much longer chains still have scores consistent with shorter
chains.

The second property that we wanted to integrate into
our score is the ability to take into account potential miss-
ing steps. This is necessary because we cannot assume that
every step of an APT has been detected. As we have shown
in Fig. 6, our score clearly takes into account missing
steps and places a chain with missing steps at roughly
the same level as an original chain. However, as we can
see in Fig. 7, our score improves the performance of every
chain. This means there is a trade-off to make around the
number K of consecutive missing steps possible. If K is
as large as the number N of states in the model, then

the score is able to find the optimal route between two
measured steps every single time. In our case, this would
make every chain into a potential APT, thus rendering
the score useless. Since in our model, we have N � 5, we
values of 2 or 3 for K, the latter being the value used
in most experiments in this paper. The impact of the
choice of the value K on the performance of our model
and the determination of its optimal value are left for a
further study. An idea that could be explored is the use
of clustering algorithms, such as k-means, and the elbow
method to find the optimal value. The idea would be to
make sure that clusters corresponding to the expected
classes, “APT” and “not APT” in our case, can still be
identified.
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