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A UNIVERSAL LAW FOR VORONOÏ CELL VOLUMES IN INFINITELY

LARGE MAPS

EMMANUEL GUITTER

Abstract. We discuss the volume of Voronöı cells defined by two marked vertices picked

randomly at a fixed given mutual distance 2s in random planar quadrangulations. We
consider the regime where the mutual distance 2s is kept finite while the total volume

of the quadrangulation tends to infinity. In this regime, exactly one of the Voronöı cells

keeps a finite volume, which scales as s4 for large s. We analyze the universal probability
distribution of this, properly rescaled, finite volume and present an explicit formula for

its Laplace transform.

1. Introduction

In a recent paper [5], we analyzed the volume distribution of Voronöı cells for some families
of random bi-pointed planar maps. Recall that a planar map is a connected graph embedded
in the sphere: it is bi-pointed if it has two marked distinct vertices. These marked vertices
allow us to partition the map into two Voronöı cells, where each cell corresponds, so to say,
to the part of the map closer to one marked vertex than to the other. The volume of, say
the second Voronöı cell (that centered around the second marked vertex) is then a finite
fraction φ of the total volume of the map, with 0 ≤ φ ≤ 1, while the first cell clearly spans
the complementary fraction 1− φ. The main result proven in [5] is that, for several families
of random bi-pointed maps with a fixed total volume, and in the limit where this volume
becomes infinitely large, the law for the fraction φ of the total volume spanned by the second
Voronöı cell is uniform in the interval [0, 1], a property conjectured by Chapuy in [4] among
other more general conjectures. Here it is important to stress that the above result holds
when the two marked vertices are chosen uniformly at random in the map. In particular,
their mutual distance is left arbitrary1.

This paper deals on the contrary with Voronöı cells within random bi-pointed maps where
the two marked vertices are picked randomly at a fixed given mutual distance. Considering
again the limit of maps with an infinitely large volume and keeping the (fixed) mutual distance
between the marked vertices finite, we find that only one of the Voronöı cells becomes infinitely
large while the volume of the other remains finite. In particular, the fraction of the total
volume spanned by this latter cell tends to 0 while that of the infinite cell tends to 1. In other
words, having imposed a fixed finite mutual distance between the marked vertices drastically
modifies the law for the fraction φ which is now concentrated at φ = 0 if it is precisely the
second Voronöı cell which remains finite or at φ = 1 if this second cell becomes infinite.

In this regime of fixed mutual distance, a good measure of the Voronöı cell extent is now
provided by the volume of that of the two Voronöı cells which remains finite. The main goal
of this paper is to compute the law for this finite volume, in particular in a universal regime
where the mutual distance, although kept finite, is large.

The paper is organized as follows: we first introduce in Section 2 the family of bi-pointed
maps that will shall study (i.e. bi-pointed quadrangulations), define the volumes of the
associated Voronöı cells and introduce some generating function with some control on these
volumes (Section 2.1). We then discuss the scaling function which captures the properties of

1For one family on maps considered in [5], it was assumed for convenience that the mutual distance be
even, but lifting this constraint has no influence on the obtained result.
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this generating function in some particular scaling regime (Section 2.2), and whose knowledge
is the key of the subsequent calculations. Section 3 is devoted to our analysis of Voronöı
cell volumes in the regime of interest in this paper, namely when the maps become infinitely
large and the mutual distance between the marked vertices remains finite. We first analyze
(Section 3.1) the law for the fraction φ of the total volume of the map spanned by the
second Voronöı cell and show, as announced above, that it is evenly concentrated at φ = 0
or φ = 1. We then analyze (Section 3.2) map configurations for which the volume of the
second Voronöı cell remains finite and show how to obtain, from the simple knowledge of
the scaling function introduced above, the law for this (properly rescaled) volume when the
mutual distance becomes large. This leads to an explicit universal expression (Section 3.3)
for the probability distribution of the finite Voronöı cell volume (in practice for its Laplace
transform), whose properties are discussed in details. Section 4 proposes an instructive
comparison of our result with that, much simpler, obtained for Voronöı cells within bi-
pointed random trees. Section 5 discusses the case of asymmetric Voronöı cells where some
explicit bias in the evaluation of distances is introduced. Our conclusions are gathered in
Section 6. A few technical details, as well as explicit but heavy intermediate expressions,
are given in various appendices.

2. Voronöı cells in bi-pointed maps

2.1. A generating function for bi-pointed maps with a control on their Voronöı
cell volumes. The objects under study in this paper are bi-pointed planar quadrangulations,
namely planar maps whose all faces have degree 4, and with two marked distinct vertices.
We moreover demand that these vertices, distinguished as v1 and v2, be at some even graph
distance d(v1, v2), namely

d(v1, v2) = 2s

for some fixed given integer s ≥ 1. Given v1 and v2, the corresponding two Voronöı cells are
obtained via some splitting of the map into two domains which, so to say, regroup vertices
which are closer to one marked vertex than to the other. As discussed in details in [5], a
canonical way to perform this splitting consists in applying the well-know Miermont bijection
[7] which transforms a bi-pointed planar quadrangulation into a so-called planar iso-labelled
two-face map (i-l.2.f.m), namely a planar map with exactly two faces, distinguished as f1
and f2 and with vertices labelled by positive integers satisfying:

(L1) labels on adjacent vertices differ by 0 or ±1;
(L2) the minimum label for the set of vertices incident to f1 is 1;
(L3) the minimum label for the set of vertices incident to f2 is 1.

As recalled in [5], the Miermont bijection provides a one-to-one correspondence between bi-
pointed planar quadrangulations and planar i-l.2.f.m, the labels of the vertices corresponding
precisely to their distance to the closest marked vertex in the quadrangulation. More in-
terestingly, by drawing the original quadrangulation on top of its image, the two faces f1
and f2 define de facto two domains in the quadrangulation which are perfect realizations of
the desired two Voronöı cells as, by construction, each of these domains regroups vertices
closer to one marked vertex. Since faces of the quadrangulation are, under the Miermont
bijection, in correspondence with edges of the i-l.2.f.m, the volume (= number of faces) of a
given cell in the quadrangulation is measured by half the number of edge sides incident to
the corresponding face in the i-l.2.f.m. Note that this volume is in general some half-integer
since a number of faces of the quadrangulation may be shared by the two cells (see [5] for
details). To be precise, an i-l.2.f.m is made of a simple closed loop L separating its two faces
f1 and f2

2 together with a number of subtrees attached to vertices along L, possibly on each
side of the loop. If we call e1 and e2 the total number of edges for subtrees in the face f1

2This loop is simply formed by the cyclic sequence of edges incident to both faces.
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and f2 respectively, and e the length (= number of edges) of the loop L, the volumes n1 and
n2 of the Voronöı cells are respectively

ni = ei +
e

2
, i = 1, 2,

for a total volume

N = n1 + n2 = e1 + e2 + e .

Finally, the requirement that d(v1, v2) = 2s translates into the following fourth label con-
straint:

(L4) the minimum label for the set of vertices incident to L is s.

Having defined Voronöı cells, we may control their volume by considering the generating
function F (s, g, h) of bi-pointed planar quadrangulations where d(v1, v2) = 2s, with a weight

gn1 hn2 .

From the Miermont bijection and the associated canonical construction of Voronöı cells,
F (s, g, h) is also the generating function of i-l.2.f.m satisfying the extra requirement (L4)
with a weight

ge1 he2 (
√
g h)e .

As such, F (s, g, h) may, via some appropriate decomposition of the i.l.2.f.m, be written as
(see [5])

(1) F (s, g, h) = ∆s∆t log(Xs,t(g, h))
∣∣∣
t=s

= log

(
Xs,s(g, h)Xs−1,s−1(g, h)

Xs−1,s(g, h)Xs,s−1(g, h)

)

(here ∆s is the finite difference operator ∆sf(s) ≡ f(s)− f(s− 1)), where Xs,t(g, h) is some
generating function for appropriate chains of labelled trees (which correspond to appropriate
open sequences of edges with subtrees attached on either side of the incident vertices).
Without entering into details, it is enough for the scope of this paper to know that the
generating function Xs,t(g, h) is entirely determined3 by the relation (obtained by a simple
splitting of the chains)

(2) Xs,t(g, h) = 1 +
√
g hRs(g)Rt(h)Xs,t(g, h)

(
1 +

√
g hRs+1(g)Rt+1(h)Xs+1,t+1(g, h)

)

for s, t ≥ 0, where the quantity Rs(g) (as well as its analog Rt(h)) is a well known generating
function for appropriate labelled trees. It is given explicitly by

(3) Rs(g) =
1 + 4x+ x2

1 + x+ x2
(1− xs)(1− xs+3)

(1− xs+1)(1− xs+2)
for g = x

1 + x+ x2

(1 + 4x+ x2)2
,

where x is taken in the range 0 ≤ x ≤ 1 and parametrizes g (in the range 0 ≤ g ≤ 1/12 for a
proper convergence of the generating function). For h = g, the solution of (2) can be made
explicit and reads

(4) Xs,t(g, g) =
(1− x3)(1− xs+1)(1− xt+1)(1− xs+t+3)

(1− x)(1− xs+3)(1− xt+3)(1− xs+t+1)
.

Unfortunately, no such explicit expression is known for Xs,t(g, h) when h 6= g and the
relation (1) might thus appear of no practical use at a first glance. As discussed in [5], this
is not quite true as we may recourse to appropriate scaling limits of all the above generating
functions to extract explicit statistics on Voronöı cell volumes in a limit where the maps
become (infinitely) large. Let us now discuss this point.

3This relation fully determines Xs,t(g, h) for all s, t ≥ 0 order by order in g and h, i.e. Xs,t(ρg, ρh) is

fully determined order by order in ρ.
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2.2. The associated scaling function. The limit of large quadrangulations (i.e. with a
large number N of faces) is captured by the singularity of F (s, g, h) whenever g or h tends
toward its critical value 1/12. As we shall see, in all cases of interest, this singularity may
be analyzed by setting

(5) g = G(a, ε) , h = G(b, ε) , where G(c, ε) ≡ 1

12

(
1− c4

36
ε4
)
,

and letting ε tend to 0. In this limit, we have for instance the following expansion for the
quantity x parametrizing g in (3):

x = 1− a ε+
a2ε2

2
− 5 a3ε3

24
+
a4ε4

12
− 13 a5ε5

384
+
a6ε6

72
− 157 a7ε7

27648
+
a8ε8

432
+O(ε9) ,

so that, for h = g (i.e. b = a), we easily get from the exact expression (4) of Xs,t(g, g) the
expansion

(6)

F (s, g, g) = log

(
s2(2s+ 3)

(s+ 1)2(2s− 1)

)
− (2s+ 1)a4 ε4

60

+
(2s+ 1)

(
10s2 + 10s+ 1

)
a6 ε6

1890
+O(ε8) .

Since a4ε4 = 36(1−12g) is regular when g → 1/12, the most singular part of this generating
function is given by

(2s+ 1)
(
10s2 + 10s+ 1

)
a6 ε6

1890
=

4 (2s+ 1)
(
10s2 + 10s+ 1

)

35
(1− 12g)3/2

and we thus deduce that the number FN (s) of bi-pointed planar quadrangulations with N
faces and with their two marked vertices at distance 2s behaves at large N as

(7) FN (s) ≡ [gN ]F (s, g, g) ∼
N→∞

3

4

12N√
πN5/2

f3(s) , f3(s) =
4 (2s+ 1)

(
10s2 + 10s+ 1

)

35
.

When s itself becomes large, this number behaves as

(8)
3

4

12N√
πN5/2

× 16

7
s3 .

Note that this later estimate assumes that N becomes first arbitrarily large with a value of
s remaining finite, and only then is s set to be large. This order of limits corresponds to
what is usually called the local limit. In particular, N and s do not scale with each other.

Now it is interesting to note that getting this last result (8) does not require the full
knowledge of F (s, g, g) and may be obtained upon using instead some simpler scaling function
which captures the behavior of F (s, g, g) in a particular scaling regime. Consider indeed the
generating function Xs,t(g, g) in a regime where g → 1/12 as above by letting ε→ 0 in (5),
but where we let simultaneously s and t become large upon setting

s =
S

ε
, t =

T

ε
,

with S and T kept finite. In this scaling regime, we have the expansion

XbS/εc,bT/εc(g, g) = 3 + x(S, T, a) ε+O(ε2) ,

where the function x(S, T, a) is given explicitly from (4) by

x(S, T, a) = −3 a− 6a
(
e−aS + e−aT − 3e−a(S+T ) + e−2a(S+T )

)

(1− e−aS) (1− e−aT )
(
1− e−a(S+T )

) .
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This in turn implies the expansion

∆s∆t log
(
XbS/εc,bT/εc(g, g)

) ∣∣∣
T=S

= ∂S∂T log (3 + x(S, T, a) ε)
∣∣∣
T=S
× ε2 +O(ε4)

=
1

3
∂S∂Tx(S, T, a)

∣∣∣
T=S
× ε3 +O(ε4)

which yields

F (bS/εc , g, g) = F(S, a) ε3 +O(ε4) ,

where the scaling function F(S, a) associated with F [s, g, g] reads explicitly

(9)

F(S, a) =
1

3
∂S∂Tx(S, T, a)

∣∣∣
T=S

=
2 a3 e−2aS

(
1 + e−2aS

)

(1− e−2aS)
3

=

(
1

2S3
− a4S

30
+

2a6S3

189
+O(S5)

)
.

A crucial remark is that we recognize in this latter small S expansion of F(S, a) the large s
leading behavior4 of the coefficients in the expansion (6) for F [s, g, g] in the local limit. For
instance, the large s behavior of the singular term (proportional to ε6) in (6) is given by

(2s+ 1)
(
10s2 + 10s+ 1

)
a6

1890
∼

s→∞

2

189
s3 a6 = s3 × [S3]F(S, a) .

For a =
√

6 (in which case we have the direct identification ε6 = (1− 12g)3/2), the left hand
side is precisely the coefficient f3(s) in (7), so that the result (8) may thus be read off directly
on the expression of the scaling function F(S, a) via

(10) f3(s) ∼
s→∞

s3 × [S3]F(S,
√

6) = s3 × 2

189
(
√

6)6 =
16

7
s3 ,

without recourse to the explicit knowledge of the full generating function F [s, g, g].
The origin of this “scaling correspondence”, which connects the local limit at large s to the

scaling limit at small S is explained in details in the next section. This correspondence is in
fact a general property and can be applied in the situation where h 6= g. It therefore allows
us to access the large s limit of the large N asymptotics of [gN ]F (s, g, h) (again sending
N →∞ first) from the simple knowledge of the scaling function associated with F (s, g, h).

As of now, let us already fix our notations for scaling functions when g and h are arbitrary:
parametrizing g and h as in (5) above, we have when ε→ 0 the expansion

XbS/εc,bT/εc(g, h) = 3 + x(S, T, a, b) ε+O(ε2)

with a scaling function x(S, T, a, b) which, from (2) expanded at lowest non-trivial order in
ε, is solution of the non-linear partial differential equation

(11) 2
(
x(S, T, a, b)

)2
+ 6
(
∂Sx(S, T, a, b) + ∂Tx(S, T, a, b)

)
+ 27

(
r(S, a) + r(T, b)

)
= 0 .

Here r(S, a) is the first non-trivial term in the small ε expansion of RbS/εc(g), namely, from
its explicit expression (3),

(12) RbS/εc(g) = 2 + r(S, a) ε2 +O(ε3) , r(S, a) = −a
2
(
1 + 10e−aS + e−2aS

)

3 (1− e−aS)
2 .

4In particular, we have the large s expansion: log
(

s2(2s+3)

(s+1)2(2s−1)

)
= 1

2 s3
+O

(
1
s4

)
.
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As for F (s, g, h), we may now use (1) to relate the associated scaling function F(S, a, b) to
x(S, T, a, b), namely

(13)
F (bS/εc , g, h) = F(S, a, b) ε3 +O(ε4)

where F(S, a, b) =
1

3
∂S∂Tx(S, T, a, b)

∣∣∣
T=S

.

Scaling functions are in general much simpler than the associated full generating functions.
In particular, although we have no formula for Xs,t(g, h) for arbitrary g and h, an explicit
expression for x(S, T, a, b) is known for arbitrary a and b, as first obtained in [5] upon solving
(11) with appropriate boundary conditions. We may thus recourse to this result to get an
explicit expression for the scaling function F(S, a, b) itself via (13). The corresponding
formula is quite heavy and its form is not quite illuminating. Still, we display it in Appendix
A for completeness (the reader may refer to this expression to check the various limits and
expansions of F(S, a, b) displayed hereafter in the paper).

As opposed to F (s, g, h), the scaling function F(S, a, b) is thus known exactly and we
will now show in details how to use the scaling correspondence to deduce from its small
S expansion the large s limit of the large N asymptotics of [gN ]F (s, g, h) and control the
volume of, say, the second Voronöı cell in large quadrangulations, by some appropriate choice
of h.

3. Infinitely large maps with two vertices at finite distance

This section is devoted to estimating the law for the volumes spanned by the Voronöı cells
in bi-pointed quadrangulations whose total volume N (= number of faces) tends to infinity.
Calling n1 and n2 the two Voronöı cell volumes, we have n1 + n2 = N so it is enough to
control one of two volumes, say n2. Here the distance 2s between the two marked vertices
is kept finite (possibly large) when N →∞.

3.1. The law for the proportion of the total volume spanned by one Voronöı cell.
For large N and finite s, the first natural way to measure n2 is to express it in units of N ,
i.e. consider the proportion

φ ≡ n2
N

of the total volume spanned by the second Voronöı cell. We have of course 0 ≤ φ ≤ 1 and
the large N asymptotic probability law Ps(φ) for φ may be obtained from F (s, g, h) via

∫ 1

0

dφPs(φ) eµφ = lim
N→∞

[gN ]F (s, g, g eµ/N )

[gN ]F (s, g, g)

since gn1(g eµ/N )n2 = gN eµφ.
From the scaling correspondence, the largeN asymptotics of [gN ]F (s, g, g eµ/N ) is, at large

s, encoded in the small S expansion of the scaling function F(S, a, b) for some appropriate
b ≡ b(a, µ). The right hand side of the above equality may thus be computed explicitly
at large s from the knowledge of F(S, a, b). This computation, together with the precise
correspondence between the large s local limit and the small S scaling limit, is discussed
in details in Appendix B. We decided however not to develop the calculation here since the
resulting law is in fact trivial. As might have been guessed by the reader, we indeed find

(14)

∫ 1

0

dφPs(φ) eµφ ∼
s→∞

1

2
(1 + eµ)

or equivalently

Ps(φ) ∼
s→∞

1

2
(δ(φ) + δ(φ− 1)) .
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This result simply states that, for N → ∞ and s finite large, only one of the Voronöı cells
has a volume of order N with, by symmetry,

(15)





n1 = N − o(N) , n2 = o(N) with probability
1

2
,

n1 = o(N) , n2 = N − o(N) with probability
1

2
.

The main purpose of this paper, discussed in the following sections, is precisely to characterize
the volume of the Voronöı cell which is an o(N). As we shall see, the volume of this Voronöı
cell remains actually finite and scales as s4 when s becomes large.

3.2. Infinitely large maps with a finite Voronöı cell. This section and the next one
present our main result, namely the law for the (properly rescaled) volume of the Voronöı
cell which is not of order N when N → ∞. More precisely, we will concentrate here on
map configurations for which the total volume N = n1 +n2 tends to infinity but the volume
n2 is kept finite. We will then verify a posteriori that the number of these configurations
represents 1/2 of the total number of bi-pointed maps whenever s is large. This will de facto
prove that the configurations for which n2 = o(N) in (15) are in fact, with probability 1,
configurations for which n2 is finite.

Let us denote by

Fn1,n2
(s) ≡ [gn1hn2 ]F (s, g, h)

the number of planar bi-pointed quadrangulations with fixed given values of n1 and n2. In
the limit N = n1 + n2 →∞ with a fixed finite n2, this number may be estimated from the
leading singularity of F (s, g, h) when g → 1/12 for a fixed value of h < 1/12 (see [6] for a
detailed argument of a fully similar estimate in the context of hull volumes). We have indeed

FN−n2,n2
(s) ∼

N→∞

3

4

12N√
πN5/2

× 12−n2 [hn2 ]f3(s, h) ,

where f3(s, h) is the coefficient of the leading singularity of F (s, g, h) when g → 1/12 at fixed
h, hence is obtained from the expansion5

F (s, g, h) = f0(s, h) + f2(s, h) (1− 12 g) + f3(s, h) (1− 12 g)3/2 +O
(
(1− 12 g)2

)
.

Upon normalizing by the total number of bi-pointed maps FN (s) with fixed N and s, whose
asymptotic behavior is given by (7), we deduce the N →∞ limiting probability ps(n2) that
the second Voronöı cell has volume n2:

ps(n2) = lim
N→∞

FN−n2,n2
(s)

FN (s)
=

1

f3(s)
12−n2 [hn2 ]f3(s, h) .

This probability for arbitrary finite n2 may be encoded in the generating function

(16)
∑

n2

ps(n2) ρn2 =
f3
(
s, ρ12

)

f3(s)
,

where ρ ∈]0, 1] is a weight per unit volume. Recall that n2 may take half integer values so
that the sum on the left hand side above actually runs over all (positive) half-integers.

5The precise form of this expansion is dictated by the similar explicit expansion (6) for F (s, g, g). In

particular, the absence of singular term ∝ (1 − 12g)1/2 is imposed by the fact that such a term, if present,

would imply that FN−n2,n2 (s) be of order const. × 12N/N3/2 at large N while this quantity is clearly

bounded by [gN ]F [s, g, g] which, as we have seen, is of order const’.× 12N/N5/2 only.
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Let us now discuss the scaling correspondence in details6. Its origin is best understood
by considering the all order expansion of F (s, g, h) for g → 1/12, namely

F (s, g, h) =
∑

i≥0

fi(s, h) (1− 12 g)i/2

(with f1(s, h) = 0 as discussed in the footnote 5). We may indeed, via the identification

(1 − 12 g)1/2 = (a/
√

6)2ε2 for g = G(a, ε), relate the scaling function F(S, a, b) to this
expansion upon writing

F(S, a, b) = lim
ε→0

1

ε3
F (bS/εc , G(a, ε), G(b, ε))

= lim
ε→0

∑

i≥0

(
a√
6

)2i

ε2i−3 fi (bS/εc , G(b, ε)) .

Since G(b, ε) depends only on the product b ε, the quantity fi (bS/εc , G(b, ε)), which depends
a priori on S, b and ε, is actually a function of the two variables S/ε and b ε only, or
equivalently of the two variables S/ε and S/ε× b ε = b S. We deduce from the very existence
of the scaling function above that7

(17) fi (bS/εc , G(b, ε)) ∼
ε→0

(
S

ε

)2i−3

ϕi(b S)

for i 6= 1 (while f1 = 0) with, moreover, the direct identification

F(S, a, b) =
∑

i≥0

(
a√
6

)2i

S2i−3 ϕi(b S)

with ϕ1 = 0. This latter identity allows us in turn to identify the functions ϕi(τ) via

(18) ϕi(τ) =

(
a√
6

)−2i
[S2i−3]F

(
S, a,

τ

S

)
= [S2i−3]F

(
S,
√

6,
τ

S

)
,

where the last term was obtained by setting a =
√

6 in the middle term since, ϕi(τ) being
independent of a, the middle term should be too for consistency.

We may now come back to our estimate of (16) when s is large. To obtain a non trivial
law at large s, we must measure n2 in units of s4, i.e. consider the probability distribution
for the rescaled volume V defined by

V ≡ n2
s4

.

This law is indeed captured by choosing ρ = e−σ/s
4

, in which case the second argument,
ρ/12, of the numerator in (16) behaves as

1

12
e−σ/s

4 ∼
s→∞

1

12

(
1− σ

S4

(
S

s

)4
)

= G

(√
6σ1/4

S
,
S

s

)
.

Taking ε = S/s and b =
√

6σ1/4/S in the above estimate (17) and using the identification
(18), we may now write

fi

(
s,

1

12
e−σ/s

4

)
∼

s→∞
s2i−3 ϕi(

√
6σ1/4) = s2i−3 [S2i−3]F

(
S,
√

6,

√
6σ1/4

S

)
,

6We discuss here the general case where h 6= g is fixed while g → 1/12. Our arguments could be repeated
verbatim to the case h = g → 1/12 to explain the scaling correspondence in this case, as observed directly
from the explicit expressions of F (s, g, g) and F(S, a).

7The fact that all the ϕi, i 6= 1, are not zero is verified a posteriori by the fact that F(S, a, τ/S) has a
small S expansion involving non vanishing S2i−3 coefficients for all i ≥ 0, i 6= 1.
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leading eventually, using (10) and (9), to

(19)
∑

n2

ps(n2) e−σ V ∼
s→∞

[S3]F
(
S,
√

6,
√
6σ1/4

S

)

[S3]F(S,
√

6)
=

7

16
[S3]F

(
S,
√

6,

√
6σ1/4

S

)
.

Since we have at our disposal an explicit expression for F(S, a, b), this equation will give us
a direct access to the desired law for V .

3.3. Explicit expressions and plots. As a first, rather trivial, check of our expression
(19), let us estimate the probability that n2 remains finite in infinitely large planar bi-
pointed quadrangulations. This probability is obtained by summing ps(n2) over all allowed
finite values of n2, i.e. by setting ρ = 1 in (16), i.e. σ = 0 in (19). It therefore takes the large
s value

∑

n2

ps(n2) ∼
s→∞

[S3]F(S,
√

6, 0)

[S3]F(S,
√

6)
=

7

16
[S3]F(S,

√
6, 0) .

For b = 0, the explicit expression for F(S, a, b) simplifies into

F(S, a, 0) = −
36
√

2 a3
5∑

m=1
pm(aS) e−maS

(577 + 408
√

2)

(
2∑

m=0
qm(aS) e−maS

)3 ,

where the pm(r) (1 ≤ m ≤ 5) and qm(r) (0 ≤ m ≤ 2) are polynomials of degree 3 and 2
respectively in the variable r, given by

p1(r) = −6(816 + 577
√

2)− 6(915 + 647
√

2)r − 3(618 + 437
√

2)r2 − 2(99 + 70
√

2)r3

p2(r) = −24(222 + 157
√

2)− 12(126 + 89
√

2)r + 12(27 + 19
√

2)r2 + 4(24 + 17
√

2)r3

p3(r) = −108(4 + 3
√

2)− 180(3 + 2
√

2)r − 54(4 + 3
√

2)r2 − 12(3 + 2
√

2)r3

p4(r) = −24(−6 + 5
√

2) + 12(−6 +
√

2)r − 12(3 +
√

2)r2 − 4
√

2r3

p5(r) = −6(−24 + 17
√

2) + 6(−27 + 19
√

2)r − 3(−18 + 13
√

2)r2 + 2(−3 + 2
√

2)r3

q0(r) = 6 + 3
√

2r + r2

q1(r) = −24(−4 + 3
√

2)− 12(−3 + 2
√

2)r + 2(−4 + 3
√

2)r2

q2(r) = 6(−17 + 12
√

2)− 3(−24 + 17
√

2)r + (−17 + 12
√

2)r2 .

We have in particular the small S expansion

(20) F(S, a, 0) =
1

2S3
− a4S

60
+
a6S3

189
+O

(
S4
)

which leads to a probability that n2 be finite equal to

∑

n2

ps(n2) ∼
s→∞

7

16

(
√

6)6

189
=

1

2
.

We thus see that configurations for which the second Voronöı cell remains finite whenever
N → ∞ represent at large s precisely 1/2 of all the configurations. This is fully consistent
with our result (15) provided that the configurations for which we found n2 = o(N) are
actually configurations for which n2 remains finite. Otherwise stated, configurations for
which both n1 and n2 would diverge at large N are negligible at (large) finite s.

Beyond this first result at σ = 0, we can consider, for any σ ≥ 0, the expectation value of
e−σ V for bi-pointed quadrangulations with N → ∞ and finite s, conditioned to have their
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σ

E
[
e−σ V

]

Figure 1. A plot of the expectation value E
[
e−σ V

]
as given by its explicit

expression (21).

second Voronöı cell finite8. It is given by

Es
[
e−σ V

]
=

∑
n2

ps(n2) e−σ V

∑
n2

ps(n2)
,

and has a large s limiting value

Es
[
e−σ V

]
∼

s→∞
E
[
e−σ V

]
=

[S3]F
(
S,
√

6,
√
6σ1/4

S

)

[S3]F
(
S,
√

6, 0
)

=
7

8
[S3]F

(
S,
√

6,

√
6σ1/4

S

)
.

From the explicit expression of F(S, a, b) displayed in Appendix A, we deduce after some
quite heavy computation the following expression for E

[
e−σ V

]
:

(21) E
[
e−σ V

]
=

3

2

P (σ1/4) +
3∑

m=1

(
Pm(σ1/4,

√
2) em

√
6σ1/4

+ Pm(σ1/4,−
√

2) e−m
√
6σ1/4

)

(
Q(σ1/4)

(
4 + (4 + 3

√
2)e
√
6σ1/4 + (4− 3

√
2)e−

√
6σ1/4

)
− 12

)4

where P (r), Q(r) and Pm(r, γ) (m = 1, 2, 3) are polynomials in r of degree at most 8 (with
coefficients linear in γ for the last three polynomials), given explicitly by

8Alternatively, we may lift this conditioning and interpret Es
[
e−σ V

]
as the expectation value of e−σ V

where V is the rescaled volume of the smallest Voronöı cell.
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V

Figure 2. A plot of the probability distribution P(V ) as obtained from
the explicit expression (21) via some numerical inverse Laplace transform.
As displayed in the insert, this law becomes flat when V → 0.

P (r) = 96
(
−252− 399

√
3r − 756r2 − 161

√
3r3 + 170r4 + 153

√
3r5 + 144r6 + 22

√
3r7 + 4r8

)

P1(r, γ) = 126(168 + 85γ) + 63
√

3 r (867 + 596γ) + 1323 r2 (132 + 95γ) + 28
√

3 r3 (3153 + 2300γ)

+ 24 r4 (2463 + 1843γ) +
√

3 r5 (588 + 905γ)− 36 r6 (177 + 124γ)− 6
√

3 r7 (174 + 127γ)

− 36 r8 (4 + 3γ)

P2(r, γ) = −8
(

63(24 + 17γ) + 63
√

3 r (105 + 74γ) + 378 r2 (78 + 55γ) + 14
√

3 r3 (1569 + 1108γ)

+12 r4 (2337 + 1652γ) +
√

3 r5 (6954 + 4919γ) + 18 r6 (154 + 109γ) + 6
√

3 r7 (24 + 17γ)
)

P3(r, γ) = 126(24 + 17γ) + 63
√

3 r (277 + 196γ) + 189 r2 (516 + 365γ) + 28
√

3 r3 (3399 + 2404γ)

+ 24 r4 (7193 + 5087γ) +
√

3 r5 (68436 + 48397γ) + 36 r6 (1465 + 1036γ)

+ 6
√

3 r7 (1342 + 949γ) + 12r8(140 + 99γ)

Q(r) =
(

1 +
√

3r + r2
)
.

The function E
[
e−σ V

]
is plotted in Figure 1 for illustration.

The actual probability distribution Ps(V ) for the rescaled volume V is the inverse Laplace
transform of Es

[
e−σ V

]
, hence its large s limit P(V ) is given by the inverse Laplace transform

of E
[
e−σ V

]
. From the quite involved form (21) above, there is no real hope to get an explicit

expression for P(V ) but it may still be plotted thanks to appropriate numerical tools [1, 2, 3].
The resulting shape is displayed in Figure 2.

A few analytic properties of P(V ) may be obtained from its explicit Laplace transform
(21) above: in particular, we may easily find large and small V asymptotic equivalents of
P(V ), as discussed now.

• The large volume limit. For small σ, we have the expansion

E
[
e−σ V

]
= 1− 665

√
3

1024
σ1/4 +

49

768
√

3
σ3/4 +

63

80
σ +O(σ5/4)

so that E
[
e−σ V

]
is not analytic at σ = 0, with all its derivative infinite at this point. We

first deduce that all the (positive) moments of P(V ) are infinite. By a standard argument
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V

Figure 3. Algebraic decay of P(V ) at large V : the figure displays a com-
parison between P(V ) and its large V asymptotic equivalent (in black) given
by (22).

V

Figure 4. The flat nature of P(V ) at small V : the figure displays a com-
parison between P(V ) and its small V equivalent (in black) given by (23).

using the famous Karamata’s tauberian theorem, the large V tail of P(V ) is estimated from
the leading (∝ σ1/4) small σ singularity above as

(22) P(V ) ∼
V→∞

665
√

3

4096 Γ(3/4)

1

V 5/4
.

A comparison between P(V ) (as obtained numerically) and its large V equivalent is displayed
in Figure 3.

• The mall volume limit. For large σ, we have the asymptotic equivalence

E
[
e−σ V

]
∼

σ→∞

9

2
(3
√

2− 4) e−
√
6σ1/4

.

By a simple saddle point calculation (see Appendix C), we deduce the small V estimate

(23) P(V ) ∼
V→0

311/6(3− 2
√

2)

2
√
π

1

V 7/6
e
− 35/3

4
1

V 1/3

which is a flat function at V = 0. A comparison between P(V ) (as obtained numerically)
and its small V equivalent is displayed in Figure 4.
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4. A comparison with Voronöı cells in infinitely large bi-pointed trees

As an exercise, it is interesting to compare our result for P(V ) to that, much simpler,
obtained for another family of maps, namely bi-pointed plane trees, which are planar maps
with a single face and with two marked vertices v1 and v2, taken again at some fixed even
distance d(v1, v2) = 2s along the tree. Any such map is made of a simple path P, formed by
the edges joining v1 to v2, completed by trees attached to the internal vertices of P on both
side of the path and at its extremities v1 and v2. The two Voronöı cells are now trivially
defined by splitting the tree at the “central vertex” in P, which is the vertex along P lying
at distance s from both v1 and v2 (there are in general two subtrees attached to this vertex
and we may decide to split the tree so as to assign one of these subtrees to the first Voronöı
cell and the other subtree to the second cell). The volumes n1 and n2 of the two Voronöı
cells are now measured by their number of edges and the generating function Ftree(s, g, h)
enumerating these maps with a weight gn1hn2 reads simply

Ftree(s, g, h) =
(
g (Rtree (g))

2
)s (

h (Rtree (h))
2
)s

where Rtree(g) is the generating function for planted trees with a weight g per edge, namely9

Rtree(g) =
1−√1− 4g

2g
.

The scaling function associated with Ftree(s, g, h) is obtained by setting

g = Gtree(a, ε) , h = Gtree(b, ε) , where Gtree(c, ε) ≡
1

4

(
1− c2

4
ε2
)
,

and reads simply

Ftree(S, a, b) = lim
ε→0

Ftree (bS/εc , Gtree(a, ε), Gtree(b, ε)) = e−(a+b)S .

By repeating and adapting the arguments of previous sections, here with leading singularities
of type (1 − 4g)1/2, we can find the large N (= total number of edges) asymptotic law
Ptree(Vtree) for the rescaled volume

Vtree ≡
n2
s2

among bi-pointed trees with d(v1, v2) = 2s, conditioned to have their second Voronöı cell
finite (which again represent 1/2 of all bi-pointed trees with fixed s). For large s, we find
(with obvious notations) the expectation value

Etree

[
e−σ Vtree

]
=

[S]Ftree

(
S, 2, 2σ

1/2

S

)

[S]Ftree (S, 2, 0)
= e−2σ

1/2

.

We may now deduce by inverse Laplace transform the exact law for Vtree

Ptree(Vtree) =
1

√
π V

3/2
tree

e−
1

Vtree ,

which is nothing but a simple Lévy distribution. In particular, all its (positive) moments
are infinite.

This distribution is a particular member of the more general family of one-sided Lévy
distributions with parameter α, namely distributions whose Laplace transform is e−const. p

α

.
For 0 < α < 1, such distributions are flat at small volume V and vanish as

const.

V (2−α)/(2(1−α)) exp

(
− const.’

V α/(1−α)

)
.

For large volume, they present a fat tail with an algebraic decay of the form 1/V 1+α. The
simple law Ptree(V ) for trees corresponds precisely to the situation where α = 1/2.

9It is solution of Rtree(g) = 1 + g (Rtree(g))2.



14 EMMANUEL GUITTER

As for the distribution P(V ) of quadrangulations, it is obviously not a Lévy distribution
but its small and large V behaviors are nevertheless similar to those obtained for a Lévy
distribution with α = 1/4.

Clearly, the value of α appearing in both the small and large V asymptotics is related to the
fractal dimension D of the maps at hand (D = 2 for trees and D = 4 for quadrangulations)
via

α =
1

D
.

It is tempting to conjecture that the above forms for small and large V asymptotics should
be generic and hold for other families of maps, possibly within more involved universality
classes with more general fractal dimensions, hence more general values of α.

5. Asymmetric Voronöı cells

In Section 3.3, we estimated the large N asymptotic proportion of bi-pointed planar
quadrangulations for which the second Voronöı cell is finite. The obtained value 1/2 is
trivial by symmetry if we assume that configurations for which both Voronöı cells become
infinite are negligible (this latter property being de facto proven by the result itself). Note
that, in this respect, our computation was performed here in the “worst” situation where
the value of the distance 2s between the two marked vertices is large.

We may now explicitly break the symmetry and define asymmetric Voronöı cells upon
introducing some bias in the measurement of distances. The bijection between bi-pointed
planar quadrangulations and planar i-l.2.f.m is indeed only one particular instance of the
Miermont bijection. The Miermont bijection allows us to introduce more generally what
are called delays, which are integers associated with the marked vertices and allow for some
asymmetry in the evaluation of distances [7]. In the case of two marked vertices, two delays
may in principle be introduced but, in practice, only their difference (called θ below) does
matter. In the presence of delays, the resulting image of the bi-pointed quadrangulation is
again a two-face map, but now with a more general labelling of its vertices by integers. If
we insist on keeping a distance d(v1, v2) = 2s between the marked vertices in the original
quadrangulation, the labelling of the two-face map, which now involves some additional
integer parameter θ, is characterized by the following four properties:

(L1) labels on adjacent vertices differ by 0 or ±1;
(L2) the minimum label for the set of vertices incident to f1 is 1− θ;
(L3) the minimum label for the set of vertices incident to f2 is 1 + θ;
(L4) the minimum label for the set of vertices incident to L is s;

if f1 and f2 denote the two faces of the map and L the loop made of edges incident to both
faces. The Miermont bijection is a one-to-one correspondence between bi-pointed planar
quadrangulations with d(v1, v2) = 2s and planar two-face maps with a labelling satisfying
(L1)− (L4) above for any fixed θ in the range [7]

−s < θ < s .

All the vertices v of the original quadrangulation but v1 and v2 are recovered in the two-face
map, and their label is related to the distance in the quadrangulation via

`(v) = min(d(v, v1)− θ, d(v, v2) + θ) .

Again the two domains of the original quadrangulation covered by f1 and f2 respectively
(upon drawing the quadrangulation and its image via the bijection on top of each other)
naturally define two cells in the map. For some generic θ, those are however asymmetric
Voronöı cells with the following properties: the first cell now contains all the vertices v such
that

d(v,v1) < d(v, v2) + 2θ (cell 1)
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ω

Π(ω)

Figure 5. A plot of the probability Π(ω) that the volume of the second
Voronöı cell remains finite when N → ∞, as a function of the asymmetry
factor ω, as given by (24).

(this includes the vertex v1), as well as a number of vertices satisfying d(v,v1) = d(v, v2)+2θ.
The second cell contains all the vertices v such that

d(v,v1) > d(v, v2) + 2θ (cell 2)

(including v2) as well as a number of vertices satisfying d(v,v1) = d(v, v2)+2θ. In particular,
the loop L, whose vertices belong to both f1 and f2, contains only vertices satisfying d(v,v1) =
d(v, v2) + 2θ.

Taking θ > 0 therefore “favors” cell 1 whose volume is, on average, larger than that of
cell 2. A control on these volumes is again obtained directly via the bijection by assigning
a weight g per edge in f1, h per edge in f2 and

√
gh per edge along L. The corresponding

generating function reads then

F (s, θ, g, h) = ∆u∆v log(Xu,v(g, h))
∣∣∣
u=s+θ
v=s−θ

= log

(
Xs+θ,s−θ(g, h)Xs+θ−1,s−θ−1(g, h)

Xs+θ−1,s−θ(g, h)Xs+θ,s−θ−1(g, h)

)
,

giving rise to a scaling function F(S,Θ, a, b) via

F (bS/εc , bΘ/εc , G(a, ε), G(b, ε)) = ε3 F(S,Θ, a, b) +O(ε4)

where F(S,Θ, a, b) =
1

3
∂U∂V x(U, V, a, b)

∣∣∣
U=S+Θ
V=S−Θ

.

Defining the asymmetry factor ω by

ω ≡ θ

s
, −1 ≤ ω ≤ 1 ,

the local limit of configurations with fixed s and ω is, at large s, encoded in the small
S expansion of F(S, ω S, a, b). In particular, we easily get the b = 0 small S expansion
generalizing (20)

F(S, ω S, a, 0) =
1

2S3
− a4 S

480
(1 + ω)3

(
8− 9ω + 3ω2

)

+
a6 S3

6048
(1 + ω)3

(
32− 33ω + 3ω2 + 9ω3 − 3ω4

)
+O[S]4 .

By the same argument as in Section 3.3, we directly read from the S3 coefficient of this
expansion the large s probability Π(ω) that, for N → ∞, the volume of the second (now
asymmetric with a fixed value of the asymmetry factor ω) Voronöı cell remains finite:

(24) Π(ω) =
1

64
(1 + ω)3

(
32− 33ω + 3ω2 + 9ω3 − 3ω4

)
.

This probability is displayed in Figure 5. It satisfies of course Π(ω)+Π(−ω) = 1 as expected
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by symmetry, and in particular Π(0) = 1/2 for the symmetric case. For, say ω → 1, the
second Voronöı cell, which is maximally unfavored by the asymmetry is finite with probability
Π(1) = 1.

For a better understanding of the meaning of Π(ω), we may quote Miermont in [7] and
“let water flow at unit speed from the sources” v1 and v2 at given mutual distance 2s “in
such a way that the water starts diffusing from” v1 at time −ω s, from v2 at time +ω s, “and
takes unit time to go through an edge. When water currents emanating from different edges
meet at a vertex (whenever the water initially comes from the same source of from different
sources), they can go on flowing into unvisited edges only10 (...). The process ends when the
water cannot flow any more (...).” In this language, Voronöı cells correspond to domains
covered by a given current. When the map volume tends to infinity, only one of the currents
flows all the way to infinity, the other current remaining trapped within a finite region. We
may then view Π(ω) as the probability for the second current (emanating from the source
v2) to remain trapped within a finite domain or, equivalently, as the probability for the first
current (emanating from the source v1) to escape to infinity.

6. conclusion

In this paper, we computed explicitly the value of the expectation value E
[
e−σ V

]
for

infinitely large bi-pointed planar maps, where V is the rescaled volume of that of the two
Voronöı cells which remains finite. This law describes Voronöı cells constructed from ran-
domly picked vertices at a prescribed finite mutual distance, and in the limit where this
distance is large. Although it may look quite involved, the expression (21) is nevertheless
expected to be universal since its derivation entirely relies on properties of scaling functions,
which are in fact characteristic of the Brownian map rather than the specific realization at
hand (here quadrangulations). In other words, we expect that the same expression (21), up
to some possible non-universal normalization for the parameter σ, would be obtained, in the
same regime, for all bi-pointed planar map families in the universality class of so-called pure
gravity11.

We then deduced from this result a number of features of the associated, universal, vol-
ume probability distribution P(V ), such as its large and small V behaviors (22) and (23).
Although we have not been able to give a tractable explicit formula for this law for arbi-
trary V , we thereby showed that its nature is comparable to that of a simple one-sided Lévy
distribution with parameter α = 1/4.

Let us conclude by briefly discussing Voronöı cells, now in the so called scaling regime:
here we continue to fix the mutual distance 2s between the marked vertices but we now let s
and N tend simultaneously to infinity with the ratio S = s/N1/4 kept finite. In this regime,
the fraction φ = n2/N of the total volume spanned by the second Voronöı cell is again a
good measure of the cell volume distribution and the asymptotic law12 P{S}(φ) for φ at fixed
S may be obtained as in Section 3.1 via

∫ 1

0

dφP{S}(φ) eµφ = lim
N→∞

[gN ]F
(⌊
SN1/4

⌋
, g, g eµ/N

)

[gN ]F
(⌊
SN1/4

⌋
, g, g

) .

As explained in Appendix B in the context of the local limit law Ps(φ), the gN coefficient of
the numerator above may be extracted via some simple contour integral which, upon taking

10Miermont’s bijection is so designed that meeting currents “can go on flowing into unvisited edges

only respecting the rules of a roundabout, i.e. edges that can be attained by turning around the vertex
counterclockwise and not crossing any other current.”

11This includes maps with bounded face degrees with possible degree dependent weights, as well as maps

with unbounded face degrees with degree dependent weights which restrain the proliferation of large faces.
12We use a slightly different notation P{S}(φ) with curly brackets to distinguish this law from the local

limit law Ps(φ) at fixed s.
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g = G(a, 1/N1/4), involves at large N the scaling function F(S, a, b) at b = (a4 − 36µ)1/4.
This leads to

∫ 1

0

dφP{S}(φ) eµφ =

∫
Cµ da a

3 ea
4/36F(S, a, (a4 − 36µ)1/4)

∫
C0 da a

3 ea4/36F(S, a, a)
,

where the integral over a is over some appropriate contour Cµ depending on µ (see Appendix
B). Due to the involved expression of F(S, a, b), we were not able to perform the above
contour integrals for general S. Still, for S → 0, we recover precisely via a small S expansion
the result of Section 3.2 (as expected from the scaling correspondence), now in the form

lim
S→0

∫ 1

0

dφP{S}(φ) eµφ =
1

2
(1 + eµ) ⇔ lim

S→0
P{S}(φ) =

1

2
(δ(φ) + δ(φ− 1)) .

As for the S →∞ limit, it may be obtained as follows (here we simply give a sketch of the
calculation and leave to the reader the task of filling the gaps): from its explicit expression,
we have

F(S, a, b) ∼
S→∞

Z(a, b)e−(a+b)S ,

where the value of the coefficient Z(a, b) may easily be obtained but is unimportant for our
calculation (apart from the, easily verified property that it has a non-zero limit Z(a, a) when
b→ a). For large S, the above contour integrals may be evaluated by a saddle-point method.
For the denominator (with b = a), we write

d

da

(
a4

36
− 2aS

) ∣∣∣
a=a∗

= 0 ⇔ (a∗)4 = (18S)4/3

and deform the contour C0 so as to pass via the positive real saddle point at a∗ = (18S)1/3.

This gives a denominator13 proportional at large S to Z(a∗, a∗)e−(18S)
4/3/12. As for the

numerator, it is dominated by the same saddle point but the replacement

b→
(
(a∗)4 − 36µ

)1/4
= (18S)1/3 − µ

2S
+O

(
1

S2

)

creates a µ-dependent correction. At large S, this leads to a numerator now proportional

to Z(a∗, a∗)e−(18S)
4/3/12+µ/2 with the same proportionality constant as for the denominator,

giving eventually

lim
S→∞

∫ 1

0

dφP{S}(φ) eµφ = eµ/2 ⇔ lim
S→∞

P{S}(φ) = δ(φ− 1/2) .

This result is quite natural since, heuristically, the limit S → ∞ describes maps with an
elongated shape, with the two marked vertices sitting at its extremities. The frontier between
the Voronöı cells for such an elongated map is typically a small cycle sitting halfway along
the elongated direction, hence splitting the map into two domains of the same volume, equal
to half the total volume. It would be interesting to visualize and follow the continuous
passage, for increasing S, of the distribution P{S}(φ) from its S → 0 to its S → ∞ limit
above and to better understand how its average over arbitrary S (properly weighted by the
S-dependent two-point function, i.e. the distance profile of the Brownian map) creates the
uniform distribution for φ ∈ [0, 1].
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13Since the denominator is directly proportional to the S-dependent two-point function (i.e. the distance
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at large S like e−const.Sδ with the exponent δ = 1/(1− 1/D) = 4/3 at D = 4.
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Appendix A. Expression for the scaling function F(S, a, b)

The scaling function x(S, T, a, b) was computed in [5] as the appropriate solution of (11).
Its explicit expression is quite heavy and is not reproduced here. From this expression, we
may obtain F(S, a, b) directly via (13). It takes the following form:

F(S, a, b) = −e
−(a+b)S

6

T(e−aS , e−b S , a, b)

D(a, b)

(
E(a, b)

U(e−aS , e−b S , a, b)

)3

,

where, introducing the notation

c ≡
√
a2 + b2

2
,

we have explicitly

E(a, b) = 6 a b (a−b)2(a+b)
(
2a2+b2

) (
a2+2b2

)
,

D(a, b) = (a+2c)(b+2c)
(
5a3+7a2c+4ab2+2b2c

) (
4a2b+2a2c+5b3+7b2c

)

×
(
17a2(a2+b2)+12a

(
2a2+b2

)
c+2b4

) (
2a4+12b

(
a2+2b2

)
c+17b2(a2+b2)

)
,

while T(σ, τ, a, b) and U(σ, τ, a, b) are polynomials of respective degree 4 and 2 in both σ and
τ , namely

T(σ, τ, a, b) =

4∑

i=0

4∑

j=0

ti,j σ
iτ j and U(σ, τ, a, b) =

2∑

i=0

2∑

j=0

ui,j σ
iτ j .

The coefficients ti,j ≡ ti,j(a, b) and ui,j ≡ ui,j(a, b) may be written for convenience as sums
of two contributions:

ti,j = t
(0)
i,j + c t

(1)
i,j , ui,j = u

(0)
i,j + c u

(1)
i,j ,

where we have the explicit expressions

t
(0)
0,0 = (a+b)3(396a10+1448a9b+3672a8b2+6520a7b3+9135a6b4+10146a5b5+9135a4b6

+6520a3b7+3672a2b8+1448ab9+396b10)

t
(0)
0,1 = −4(a2−b2)2(198a9+502a8b+1099a7b2+1551a6b3+1806a5b4+1596a4b5

+1128a3b6+596a2b7+224ab8+48b9)

t
(0)
0,2 = −6b(a2−b2)

(
2a2+b2

)
(198a8+280a7b+611a6b2+584a5b3+599a4b4+368a3b5

+200a2b6+64ab7+12b8)

t
(0)
0,3 = 4a(a2−b2)2

(
2a2+b2

) (
99a6+29a5b+186a4b2+40a3b3+104a2b4+12ab5+16b6

)

t
(0)
0,4 = −(a−b)3

(
2a2+b2

)2 (
99a6 − 82a5b+191a4b2 − 120a3b3+104a2b4 − 40ab5+12b6

)

t
(0)
1,0 = −4(a2−b2)2(48a9+224a8b+596a7b2+1128a6b3+1596a5b4+1806a4b5

+1551a3b6+1099a2b7+502ab8+198b9)

t
(0)
1,1 = 8(a+b)3

(
a4+7a2b2+b4

) (
48a6+74a5b+168a4b2+149a3b3+168a2b4+74ab5+48b6

)

t
(0)
1,2 = −24b(a2−b2)2

(
2a2+b2

) (
24a6+34a5b+62a4b2+54a3b3+43a2b4+20ab5+6b6

)

t
(0)
1,3 = −8a(a−b)2

(
2a2+b2

) (
a4+7a2b2+b4

) (
24a4+7a3b+33a2b2+6ab3+10b4

)

t
(0)
1,4 = 4(a2−b2)2

(
2a2+b2

)2 (
12a5 − 22a4b+27a3b2 − 27a2b3+14ab4 − 6b5

)
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t
(0)
2,0 = 6a(a2−b2)

(
a2+2b2

)
(12a8+64a7b+200a6b2+368a5b3+599a4b4+584a3b5

+611a2b6+280ab7+198b8)

t
(0)
2,1 = −24a(a2−b2)2

(
a2+2b2

) (
6a6+20a5b+43a4b2+54a3b3+62a2b4+34ab5+24b6

)

t
(0)
2,2 = 0

t
(0)
2,3 = 24a2(a2−b2)2

(
2a2+b2

) (
a2+2b2

) (
3a3 − 2a2b+2ab2 − 2b3

)

t
(0)
2,4 = −6a(a2−b2)

(
2a2+b2

)2 (
a2+2b2

) (
3a4 − 8a3b+11a2b2 − 8ab3+6b4

)

t
(0)
3,0 = 4b(a2−b2)2

(
a2+2b2

) (
16a6+12a5b+104a4b2+40a3b3+186a2b4+29ab5+99b6

)

t
(0)
3,1 = −8b(a−b)2

(
a2+2b2

) (
a4+7a2b2+b4

) (
10a4+6a3b+33a2b2+7ab3+24b4

)

t
(0)
3,2 = −24b2(a2−b2)2

(
2a2+b2

) (
a2+2b2

) (
2a3−2a2b+2ab2−3b3

)

t
(0)
3,3 = −8ab(a+b)3

(
2a2+b2

) (
a2+2b2

) (
a4+7a2b2+b4

)

t
(0)
3,4 = 4b(a2−b2)2

(
2a2+b2

)2 (
a2+2b2

) (
2a2 − ab+3b2

)

t
(0)
4,0 = (a−b)3

(
a2+2b2

)2 (
12a6 − 40a5b+104a4b2 − 120a3b3+191a2b4 − 82ab5+99b6

)

t
(0)
4,1 = −4(a2 − b2)2

(
a2 + 2b2

)2 (
6a5 − 14a4b+ 27a3b2 − 27a2b3 + 22ab4 − 12b5

)

t
(0)
4,2 = 6b(a2−b2)

(
2a2+b2

) (
a2+2b2

)2 (
6a4 − 8a3b+11a2b2 − 8ab3+3b4

)

t
(0)
4,3 = 4a(a2 − b2)2

(
2a2 + b2

) (
a2 + 2b2

)2 (
3a2 − ab+ 2b2

)

t
(0)
4,4 = −(a+b)3

(
2a2+b2

)2 (
a2+2b2

)2 (
3a2+2ab+3b2

)

and

t
(1)
0,0 = 4(a+b)4

(
10a4+18a3b+25a2b2+18ab3+10b4

) (
14a4+12a3b+29a2b2+12ab3+14b4

)

t
(1)
0,1 = −4(a2−b2)2(280a8+710a7b+1414a6b2+1839a5b3+1881a4b4+1428a3b5+812a2b6

+316ab7+68b8)

t
(1)
0,2 = −24b(a2−b2)

(
2a2+b2

) (
10a3+7a2b+8ab2+2b3

) (
7a4+5a3b+9a2b2+4ab3+2b4

)

t
(1)
0,3 = 4(a2−b2)2

(
2a2+b2

) (
140a6+41a5b+193a4b2+36a3b3+68a2b4+4ab5+4b6

)

t
(1)
0,4 = −4(a−b)3

(
2a2+b2

)2 (
5a2 − 2ab+2b2

) (
7a3 − 3a2b+6ab2 − 2b3

)

t
(1)
1,0 = −4(a2−b2)2(68a8+316a7b+812a6b2+1428a5b3+1881a4b4+1839a3b5+1414a2b6

+710ab7+280b8)

t
(1)
1,1 = 16(a+b)2

(
a4+7a2b2+b4

) (
34a6+86a5b+155a4b2+179a3b3+155a2b4+86ab5+34b6

)

t
(1)
1,2 = −24b(a2−b2)2

(
2a2+b2

) (
34a5+48a4b+71a3b2+52a2b3+30ab4+8b5

)

t
(1)
1,3 = −16(a−b)2

(
2a2+b2

) (
a4+7a2b2+b4

) (
17a4+5a3b+15a2b2+2ab3+2b4

)

t
(1)
1,4 = 4(a2−b2)2

(
2a2+b2

)2 (
17a4 − 31a3b+30a2b2 − 22ab3+8b4

)

t
(1)
2,0 = 24a(a2−b2)

(
a2+2b2

) (
2a3+8a2b+7ab2+10b3

) (
2a4+4a3b+9a2b2+5ab3+7b4

)

t
(1)
2,1 = −24a(a2−b2)2

(
a2+2b2

) (
8a5+30a4b+52a3b2+71a2b3+48ab4+34b5

)

t
(1)
2,2 = 0

t
(1)
2,3 = 24a(a2−b2)2

(
2a2+b2

) (
a2+2b2

) (
4a3 − 3a2b− 2b3

)

t
(1)
2,4 = −24a(a− 2b)(a2−b2)

(
2a2+b2

)2 (
a2+2b2

) (
a2 − ab+b2

)
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t
(1)
3,0 = 4(a2−b2)2

(
a2+2b2

) (
4a6+4a5b+68a4b2+36a3b3+193a2b4+41ab5+140b6

)

t
(1)
3,1 = −16(a−b)2

(
a2+2b2

) (
a4+7a2b2+b4

) (
2a4+2a3b+15a2b2+5ab3+17b4

)

t
(1)
3,2 = −24b(a2−b2)2

(
2a2+b2

) (
a2+2b2

) (
2a3+3ab2 − 4b3

)

t
(1)
3,3 = 16(a+b)2

(
2a2+b2

) (
a2+2b2

) (
a2 − ab+b2

) (
a4+7a2b2+b4

)

t
(1)
3,4 = −4(a2−b2)2

(
2a2+b2

)2 (
a2+2b2

) (
a2 − ab+4b2

)

t
(1)
4,0 = −4(a−b)3

(
a2+2b2

)2 (
2a2 − 2ab+5b2

) (
2a3 − 6a2b+3ab2 − 7b3

)

t
(1)
4,1 = 4(a2−b2)2

(
a2+2b2

)2 (
8a4−22a3b+30a2b2−31ab3+17b4

)

t
(1)
4,2 = −24b(2a−b)(a2−b2)

(
2a2+b2

) (
a2+2b2

)2 (
a2 − ab+b2

)

t
(1)
4,3 = −4(a2−b2)2

(
2a2+b2

) (
a2+2b2

)2 (
4a2−ab+b2

)

t
(1)
4,4 = 4(a+b)4

(
2a2+b2

)2 (
a2+2b2

)2
,

together with

u
(0)
0,0 = −(a−b)2(a+b)

(
2a2+b2

) (
a2+2b2

)

u
(0)
0,1 = 4(a−b)2(a+b)

(
a2+2b2

)2

u
(0)
0,2 = −(a−b)

(
a2+2b2

) (
2a4+17a2b2+17b4

)

u
(0)
1,0 = 4(a−b)2(a+b)

(
2a2+b2

)2

u
(0)
1,1 = −8(a+b)

(
4a2+ab+4b2

) (
a4+7a2b2+b4

)

u
(0)
1,2 = 4(a2−b2)

(
4a5+14a4b+22a3b2+32a2b3+19ab4+17b5

)

u
(0)
2,0 = (a−b)

(
2a2+b2

) (
17a4+17a2b2+2b4

)

u
(0)
2,1 = −4(a2−b2)

(
17a5+19a4b+32a3b2+22a2b3+14ab4+4b5

)

u
(0)
2,2 = (a+b)

(
34a6+76a5b+137a4b2+154a3b3+137a2b4+76ab5+34b6

)

and

u
(1)
0,0 = 0

u
(1)
0,1 = −12b(a−b)2(a+b)

(
a2+2b2

)

u
(1)
0,2 = 12b(a−b)

(
a2+2b2

)2

u
(1)
1,0 = −12a(a−b)2(a+b)

(
2a2+b2

)

u
(1)
1,1 = 48

(
a2+ab+b2

) (
a4+7a2b2+b4

)

u
(1)
1,2 = −12(a2−b2)

(
2a4+6a3b+11a2b2+9ab3+8b4

)

u
(1)
2,0 = −12a(a−b)

(
2a2+b2

)2

u
(1)
2,1 = 12(a2−b2)

(
8a4+9a3b+11a2b2+6ab3+2b4

)

u
(1)
2,2 = −12(a+b)2

(
a2+ab+b2

) (
4a2+ab+4b2

)
.

Appendix B. Calculation of the law for φ = n2/N in the local limit

Our starting point is the expansion of Xs,t(G(a, ε), G(b, ε)) when ε → 0, with G(c, ε) as
in (5). Expanding the equation (2) to increasing orders in ε, we deduce the expansion

Xs,t(G(a, ε), G(b, ε)) =
3(s+ 1)(t+ 1)(s+ t+ 3)

(s+ 3)(t+ 3)(s+ t+ 1)
+
∑

i≥1

Xi(s, t, a, b)ε
2i ,
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a
(36µ)1/4

0

Figure 6. Contour of integration in the complex plane for the variable a,
as inherited from the contour in g around 0 in the contour integral (26) via
the change of variable g = G(a, ε) when ε = 1/N → 0 (see [5]).

where the first term is easily deduced from ε the exact expression (4) with g = h = 1/12 and
where the Xi’s are obtained recursively, order by order in ε2.

Expanding (2) at order ε2 shows that X1(s, t, a, b) = 0 and, at order ε4, that X2 may be
written (by linearity) as

X2(s, t, a, b) = a4ξ(s, t) + b4ξ(t, s) ,

where ξ(s, t) is the solution of some appropriate partial differential equation. We thus have
the following form for the first terms in the expansion:

Xs,t(G(a, ε), G(b, ε)) =
3(s+ 1)(t+ 1)(s+ t+ 3)

(s+ 3)(t+ 3)(s+ t+ 1)
+ (a4ξ(s, t) + b4ξ(t, s))ε4

+ X3(s, t, a, b)ε6 +O(ε8) ,

from which we deduce via (1) the expansion

F (s,G(a, ε), G(b, ε)) = log

(
s2(2s+ 3)

(s+ 1)2(2s− 1)

)
−(a4+b4)ψ(s) ε4+F3(s, a, b)ε6+O(ε8) ,

where ψ(s) is directly related to ξ(s, t) and F3(s, a, b) to X3(s, t, a, b). From the very existence
of the scaling function, we may write

(25)
F(S, a, b) = lim

ε→0

1

ε3
F (bS/εc , G(a, ε), G(b, ε))

=
1

2S3
+ (a4 + b4) lim

ε→0
ε ψ (bS/εc) + lim

ε→0

(
ε3F3 (bS/εc , a, b) +O(ε5)

)
.

This is to be compared with the small S expansion of F(S, a, b), as obtained from its exact
expression of Appendix A, namely

F(S, a, b) =
1

2S3
− (a4 + b4)

S

60
+ (a6 + b6)

S3

189
+O(S5) .

We readily deduce that ψ(s) ∼ s/60 when s→∞ and

F3(s, a, b) ∼
s→∞

(a6 + b6)
s3

189

(note that the O(ε5) term in (25) necessarily leads to an O(S5) term in F(S, a, b)), which is
precisely the announced scaling correspondence.

We may now estimate [gN ]F (s, g, g eµ/N ).This quantity is obtained by a contour integral
around g = 0, namely

(26)
1

2iπ

∮
dg

gN+1
F (s, g, g e

µ
N )
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and, at large N , we may change variable from g to a by taking g = G(a, ε) with

ε =
1

N1/4
.

Setting h = g e
µ
N = g (1 + µε4) then amounts to choosing

−b4
36

=
−a4
36

+ µ+O

(
1

N

)
⇔ b4 = a4 − 36µ+O

(
1

N

)
.

Using dg = −(1/12)a3/(9N) and gN+1 ∼ (1/12)N+1 e−a
4/36, we eventually arrive at

[gN ]F (s, g, g eµ/N ) =
1

2iπ

12N

N

∫

Cµ
da
−a3

9
ea

4/36
{

log

(
s2(2s+ 3)

(s+ 1)2(2s− 1)

)

− 1

N
(2a4 − 36µ)ψ(s) +

1

N3/2
F3(s, a, (a4 − 36µ)1/4) +O

(
1

N2

)}

with some appropriate integration contour Cµ in the complex plane. As explained in [5] and
illustrated in Figure 6, this contour is made of a first part Cµ,1 consisting of two half straight
lines at ±45◦ meeting at the origin, and a part Cµ,2 which makes a back and forth excursion

from 0 to (36µ)1/4. Both the constant (i.e. independent of a) terms and the a4 term in-
between the curly brackets lead to integrals along this contour which vanish identically by
symmetry14, so that

[gN ]F (s, g, g eµ/N ) ∼
N→∞

1

2iπ

12N

N5/2

∫

Cµ
da
−a3

9
ea

4/36F3(s, a, (a4 − 36µ)1/4)

with a right hand side which behaves at large s as

1

2iπ

∫

Cµ
da
−a3

9
ea

4/36F3(s, a, (b4−36µ)1/4) ∼
s→∞

s3

189

1

2iπ

∫

Cµ
da
−a3

9
ea

4/36(a6+(a4−36µ)3/2) .

The contribution of the two terms in this latter integral were computed in [5], namely

1

2iπ

∫

Cµ
da
−a3

9
ea

4/36a6 =
432

π

∫ ∞

0

dt t4e−t
2

=
162√
π
,

1

2iπ

∫

Cµ
da
−a3

9
ea

4/36(a4−36µ)3/2 =
432 eµ

π

∫ ∞

0

dt t4e−t
2

=
162√
π
eµ .

This yields eventually

[gN ]F (s, g, g eµ/N ) ∼
N→∞

12N√
πN5/2

(
6

7
(1 + eµ) s3 +O(s2)

)

at large s. At µ = 0, we recover the estimate (8). Taking the appropriate ratio, we arrive
immediately at the desired result (14).

Appendix C. Estimate of P(V ) at small V

Since the quantity

P̂(σ) ≡ E
[
e−σ V

]

is the Laplace transform of the probability distribution P(V ), with V taking its values in
[0,∞), it has no singularity for real non-negative σ. Its inverse Laplace transform, the
probability distribution P(V ) itself, may thus be obtained via

P(V ) =
1

2iπ

∫ γ+i∞

γ−i∞
dσ eσ V P̂(σ)

14This vanishing holds for any finite s, i.e. even before taking the s→∞ limit.
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for any real non-negative γ. At small V , this integral may be evaluated via a saddle point
approximation as follows. For large σ, we have the asymptotic equivalence

P̂(σ) ∼
σ→∞

9

2
(3
√

2− 4) e−
√
6σ1/4

and the integral is dominated by its saddle point σ∗ given by

d

dσ

(
σ V −

√
6σ1/4

) ∣∣∣
σ=σ∗

= 0 ⇔ σ∗ =
32/3

4V 4/3
.

The use of the asymptotic equivalent above for P̂(σ) is fully consistent if σ∗ becomes large,
i.e. when V itself becomes small. Setting

σ = σ∗ + i η

in the integral, with η real (i.e. choosing implicitly γ = σ∗), we may use the expansion

σ V −
√

6σ1/4 = − 35/3

4V 1/3
− 31/3

2
V 7/3 η2 +O

(
η3
)

to write

P(V ) ∼
V→0

9

2
(3
√

2− 4) e
− 35/3

4V 1/3
1

2π

∫ ∞

−∞
dη e−

31/3

2 V 7/3 η2

=
311/6(3− 2

√
2)

2
√
π

1

V 7/6
e
− 35/3

4
1

V 1/3 .
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[2] J. Abate and P. P. Valkó. Comparison of sequence accelerators for the Gaver method of numerical Laplace

transform inversion. Computers & Mathematics with Applications, 48(3):629 – 636, 2004.
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