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Analytic Hadamard states, Calderén projectors
and Wick rotation near analytic Cauchy surfaces

Christian GERARD & Michal WROCHNA

ABSTRACT. We consider the Klein-Gordon equation on analytic space-
times with an analytic Cauchy surface. In this setting, we prove the
existence of pure analytic Hadamard states. The proof is based on con-
sidering an elliptic operator obtained by Wick rotating the Klein-Gordon
operator in a neighborhood of a Cauchy hypersurface. The Cauchy data
of Hadamard two-point functions are constructed as Calderén projectors
(suitably generalized if the hypersurface is non-compact) for the elliptic
operator.

1. INTRODUCTION & SUMMARY

1.1. Analytic Hadamard condition. In Quantum Field Theory on curved
spacetimes, the Hadamard condition plays a key role as a mean to select
physically relevant states and as an ingredient in the renormalization of a
priori ill-defined products of quantum fields. In the setup of the linear Klein-
Gordon equation, it amounts to a condition on the C* wave front set of
certain bi-solutions: the field’s two-point functions.

Presently, many techniques to construct two-point functions satisfying the
Hadamard condition are available. This includes abstract proofs of existence
on arbitrary globally hyperbolic spacetimes [FNW, GW1|, as well as more
explicit constructions on classes of spacetimes with good behavior at spa-
tial infinity [Ju, JS, GW1, GOW]| and various other additional assumptions
[Ol, BT|. Furthermore, other strategies have been developed for spacetimes
with specific asymptotic structures, in which case it is possible to have distin-
guished candidates for Hadamard two-point functions [Mo, DMP1, DMP2,
BJ, Sa2, GW3, VW]|, or to use global arguments [BF, VW] (cf. [GHV, GW4]
for the related problem of constructing Feynman generalized inverses).

The situation is however dramatically different if one requires an analogue
of the Hadamard condition with the C* wave front set replaced by the an-
alytic wave front set WF, (see Def. 5.1), assuming that the spacetime is
analytic. The analytic Hadamard condition was introduced by Strohmaier,
Verch and Wollenberg, who have shown that whenever satisfied, it has re-
markable consequences for the quantum field theory, as it implies the Reeh-
Schlieder property [SVW]. This means that any vector in the Hilbert space
can be approximated arbitrarily well by acting on the vacuum with oper-
ations performed in any prescribed open region (see Subsect. 2.4). Unfor-
tunately, only few examples of two-point functions were shown to satisfy
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2 ANALYTIC HADAMARD STATES AND CALDERON PROJECTORS

the analytic Hadamard condition, namely the ground and KMS states on
analytic stationary spacetimes with an analytic Killing vector field [SVW].
Moreover, the methods developed for the C® case do not seem to be directly
useful in that respect, outside of the stationary case, as they rely on ingre-
dients specific to the C® setting, such as spacetime deformation or variants
of Hérmander’s pseudodifferential calculus.

In the present work we fill this gap by providing a construction of an-
alytic Hadamard two-point functions without assuming any symmetries of
the spacetime. In the language of algebraic QFT, we construct analytic
Hadamard (quasi-free) states (see Sect. 2.1-2.3 for the relevant definitions),
which are more precisely pure ones (see Prop. 2.1 for a criterion formulated
in terms of two-point functions). In this terminology, the main result can be
stated as follows.

Let us recall that a hypersurface in a spacetime is Cauchy if it is intersected
by every inextensible, causal (i.e. non-spacelike) curve exactly once.

Theorem 1.1. Let (M, g) be an analytic spacetime with an analytic space-
like Cauchy hypersurface. Suppose P is a differential operator of the form
P = -], +V, where V : M — R is real analytic. Then there exists a pure
analytic Hadamard state for P.

1.2. Outline of proof. The main steps in the proof of Thm. 1.1 can be
summarized as follows.

First, we show that the problem can be reduced to a situation where the
spacetime is replaced by a neighborhood of a Cauchy surface ¥ and the
Lorentzian metric is of the form —dt? 4 h;(y)dy?. Moreover, we argue that
t — h; can be assumed without loss of generality to be a real analytic family
of metrics on X such that hgy is complete. In this setup, the Klein-Gordon
operator reads

P =3} +7r(t,y)0; + a(t,y, dy),

where a is an elliptic differential operator of order 2.
Next, we perform the Wick rotation in t, i.e. by means of the substitution
t =: is we get an elliptic operator

K = —83 —ir(is,y)0s + a(is, y, 0y)

defined on a neighborhood of {0} x¥. After possibly choosing a smaller neigh-
borhood 2, we associate to K a closed operator Kq by imposing Dirichlet
boundary conditions on the boundary of 2 and we prove that Kq is in-
versible.

The construction is then an adaptation of a recent idea from [Gé|, which
consists in considering the Calderén projectors of Kq on the hypersurface
{s = 0}. While the Calderén projectors belong to the standard toolbox of
elliptic problems on manifolds with boundary (see e.g. |Gr, H3|), their use
in QFT in [G¢] and in the present work is new. In addition to what can
be found in the literature, here we also need to cope with issues related to
the fact that K is in general not formally self-adjoint, and the hypersurface
{s = 0} might not be compact.
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The rough idea is that for solutions of Kqu = 0 in Q* = {Q n £s > 0},
one can consider their Cauchy data

+, _ uls
’Y+U B < —(%UTE )7

where the trace on ¥ is understood as a limit from Q<.

Supposing for the moment that ¥ is compact, the space of all such data
can be characterized as the range of a projector Cér. It is well-known that
these projectors can be constructed using the formula

(1.1) Cq = Ty Ko '*S,

where S is a suitable 2 x 2 matrix of multiplication operators and
vr=seehi@eh 1= F)ecemr

Now, while C;;r are constructed in the Wick-rotated elliptic setting, we use
them as the Cauchy data of bi-solutions A* for the original hyperbolic prob-
lem. The key property which allows us to conclude the analytic Hadamard
condition for AT is:

(1.2) Vfe & (2)?, WF.(UsCsf) < {£7 = 0},

where 7 is the covariable dual to t and UZC;{ f is the unique solution of
Pu = 0 with Cauchy data on X equal to C;)—r f- The general strategy in the
proof of (1.2) is based on ideas due to Pierre Schapira and is to a large degree
a special case of the analysis in [Sch]. In our setting, the main step, (for-
getting the space variables x € X)), consists in constructing the analytic con-
tinuation of the function (—Kg'v*Sf)(s), and proving that the so-obtained
holomorphic function has a boundary value which is precisely the distribu-
tion (UsCq f)(t). Using propagation of singularities theorems we show that
it is sufficient to do so locally, and we give such local construction basing on
theorems on representations of distributions as sums of boundary values of
holomorphic functions.

To show that the pair of operators C;f can be used to define a state, one
needs to check that it satisfies the identity (well-known in the compact case)

(1.3) CH+Cq =1,

and a positivity condition (see Thm. 4.5 for the precise statement). It turns
out that the latter can be proved by an argument reminiscent of reflection
positivity in Euclidean QFT.

Finally, still supposing that ¥ is compact, the purity statement in Thm.
1.1 is merely a direct corollary of the operators C’% being projections.

The case of 3 non-compact is technically more involved. We show that
formula (1.1) still makes sense without the need of making extra assumptions
on the geometry at spatial infinity, and (1.2)-(1.3) remain valid. However,
purity is more subtle because it is not a priori clear if there is a suitable
space on which C;gr are projections. Using an approximation argument we
show instead that C;—{ satisfy a weaker condition, which implies the purity
statement nevertheless. The approximation argument is also used in the
proof of the positivity properties of Cér in the non-compact case.
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1.3. Discussion and outlook. Once the Wick rotation is performed on
the geometric level and the (sufficiently small) neighborhood € of {0} x X is
chosen, our construction provides a canonical choice of analytic Hadamard
two-point functions. Thus, in situations where a Cauchy surface is chosen
and where the size of ) is immaterial or under control, the construction
assigns unambiguously a pair of Hadamard two-point functions to the space-
time. While that assignment is not expected to be locally covariant in the
sense of [BFV], it could be of practical interest in the study of semi-classical
Einstein equations nevertheless.

An interesting issue is the relation of the present work to the construc-
tion of Hadamard states by pseudo-differential techniques in [Ju, JS, GW1,
GOW]. We expect that an alternative proof of (1.2) could be given using
a ‘Wick-rotated’ version of the parametrix in [GOW]. Here, we chose not
to use such arguments in order to avoid any assumptions on the geometry
of the Cauchy surface at infinity. It is however worth stressing that the
present work was triggered by the observation!' that the parametrix con-
struction from [GOW] is reminiscent of parametrices for Calderén projectors
in elliptic problems.

The construction in the present paper is also expected to preserve some
symmetries that are not directly under control in techniques developed for
the general C® case [FNW, GW1]. This could be of particular merit e.g. in
gauge theories.

It is worth pointing out that if the spacetime has special symmetries, an
analogous construction with different boundary conditions can be partic-
ularly useful. This is for instance the case on spacetimes with a bifurcate
Killing horizon, where a Calderén projector corresponding to periodic bound-
ary conditions can be used to construct the Hartle-Hawking-Israel state [Gé].

An interesting perspective would be the extension of the present construc-
tion to setups where the spacetime has a boundary. This would require a
good understanding of Calderén projectors on manifolds with corners.

1.4. Plan of the paper. The main part of the paper is structured as follows.

In Sect. 2 we review standard definitions and results on Hadamard states
and analytic Hadamard states. In Sect. 3 we perform the Wick rotation
and study various properties of the elliptic operator Kq. The associated
(generalized) Calderon projectors C’% are defined and analyzed in Sect. 4.
We prove in particular that they can be used to define pure quasi-free states.
We also briefly discuss the special case of an ultra-static metric. Sect. 5
is devoted to the proof of the analytic Hadamard condition; it includes an
introduction to the analytic wave front set and its basic properties. An
auxiliary lemma is deferred to the appendix.

1.5. Notation. Throughout the paper we adopt the following notations and
conventions.

- We write A € B if A is relatively compact in B.

IThis observation was kindly communicated to us by Francis Nier, to whom we are
very grateful.
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-If X,Y are sets and f : X — Y we write f : X = Y if f is bijective.
If X,Y are equipped with topologies, we write f : X — Y if the map is
continuous, and f : X = Y if it is a homeomorphism.

- The domain of a closed, densely defined operator a will be denoted by
Dom a.

2. QuANTUM KLEIN-GORDON FIELDS

2.1. Klein-Gordon fields. In this section we review classical results about
quasi-free states for free Klein-Gordon quantum fields on a globally hyper-
bolic spacetime, see e.g. [BGP, DG, KM, HW] for textbook accounts and
recent reviews. We will use the complex formalism, based on charged fields.

2.1.1. Bosonic quasi-free states. Let V be a complex vector space, V* its
anti-dual and let us denote by Ly (V, V*) the space of hermitian sesquilinear
forms on V. We denote by 7 -qua the evaluation of ¢ € L(V, V*) on vy, vg € V.

A pair (V, q) consisting of a complex vector space V and a non-degenerate
hermitian form ¢ on V will be called a phase space. Denoting by Vg the
real form of V, i.e. V considered as a real vector space, (Vg,Imgq) is a real
symplectic space.

The CCR #-algebra CCR(V, q) is the abstract x—algebra generated by 1
and elements 1(v), ¥ *(v) for v € V, subject to relations:

D(v+ w) = ¥(v) + Mp(w),

V¥ (v + Aw) = ¢¥(v) + M*(w),

[¢(v), Y(w)] = [¢*(v), *(w)] = 0, [¢(v),y*(w)] = vqwl,

Y(v)* =¢v*(v), AeC,v,weV.
Equivalently, CCR(V, q) is generated by 1 and ¢(v) for v € V, where the
(abstract) real fields ¢(v) are defined by

1 %
P(v) = ﬁww) + 9% (v)),
and
[¢(U1), ¢(U2)] = iv; - Im qua, v1,v2 € V.

A (gauge invariant) quasi-free state w on CCR(V, q) is entirely characterized
by its complex covariances AT € Ly(V,V*) defined by

(2.1) 7-Aw:i=w@Wu*(w), 7 A w:=w(@*(w)y@)), vwe),

since gauge invariance implies that

w(w(v)d)(w)) = w(d)*(v)ﬂ)*(w)) =0, v,we .

Note that AT > 0 and AT — A~ = ¢ by the canonical commutation relations.
Conversely if AT are Hermitian forms on V such that
(2.2) AT —A"=¢q, AT >0,

then there is a unique (gauge invariant) quasi-free state w such that (2.1)
holds, see e.g. [DG, Sect. 17.1]. One can associate to w the pair of operators
cte L(V):

(2.3) cti=+q oA,
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The properties (2.2) become then:
(2.4) ¢t e =1, *q=qct, +qct=0.

In the real formalism one has:
i
w(d(v1)p(ve)) = v1 - N2 + Jv1 Im qus,

where the symmetric form n € Lg(V, V#) is called the real covariance of w.
We recall a well-known characterization of pure states (see e.g. [KW] in
the real case and [GOW, Prop. 7.1| for another equivalent characterization).

Proposition 2.1. The state w with covariances AT is pure iff:

o
(25) T -(AT+A )= sup |71 - qua

Yvy € V.
02V a0 U2+ (AT + A7)y’ !

Proof. Consider V as a real vector space, equipped with the symplectic form
o =Imgq. Then from [GW1, Subsect. 2.3] we know that the real covariance
of wisn=3Re(AT + A7). From [KW] we know that w is a pure state iff

1o Imguyf?

v -NUp = - sup ——.
4,20 U2 MU

Using that n = %Re(A+ + A7) and that ¢ is sesquilinear, this is equivalent

to (2.5). [OJ

2.1.2. Klein-Gordon fields. We adopt the convention that a spacetime is a
Hausdorff, paracompact, connected, time orientable smooth Lorentzian ma-
nifold equipped with a time orientation.

Let (M, g) be a globally hyperbolic spacetime, i.e. a spacetime possessing
a smooth spacelike Cauchy hypersurface, and let

P=-V°,+V(z), VeC”M,R)

be a Klein-Gordon operator on (M, g).
We denote by Giet/ady the retarded/advanced inverses for P (see e.g.
[BGP]) and by G := Gyet — Gagy the Pauli-Jordan commutator. We set

(2.6) (uv)ar = / wv dvoly, u,ve CP(M),

M
and we will use (-]-)ps to identify sesquilinear forms on C°(M) with linear
operators from C (M) to C*(M). We set:

(2.7) V= G (M)

= PCr (M) [u] - Q[v] = i(u|Gv) .

It is well-known that (V, Q) is a phase space.
Let now X be a smooth spacelike Cauchy hypersurface for (M,g) and
Vs = CP(%;C?). We equip Vs with the scalar product

(2.8) (flg)s == /E Fodo + Fagidos,
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and again, we use (-|')y to identify sesquilinear forms on C*(%;C?) with
linear operators from CX(X;C?) to C®(X;C?). Let us set

= ul's
J930 iflanurz )

where n is the future unit normal to ¥ and:

(29) e (1)

It is well known that the map:
pZG : (V7 Q) - (VEMJE)
is pseudo-unitary, i.e.
psGu - gspsGu = [u] - Qv], wu,ve CP(M).

One can use equivalently either of the two above phase spaces. The CCR =
—algebra associated to either (V, Q) or (Vx,¢x) will be simply denoted by
CCR(P).

2.1.3. Spacetime two-point functions. We will use for the moment the phase
space (V, Q) defined in (2.7). Let us introduce the conditions:

i) AT CP(M) — C®(M),
ii) AT >0 for (-|-)p on CP(M),
(2.10) iii) AT — AT =G,
iv) PAT =A*P =0,
v) (ulAFTu)y =0, VYue CP(M).

As explained above, we set with a slight abuse of notation:

o0

— M

[u] - A*[v] := (u|ATv)ar, [u],[v] € I%C“S(]\/;)

If (2.10) hold, then A* define a pair of complex covariances on the phase
space (V,Q) defined in (2.7), hence define a unique quasi-free state on

CCR(P).

Definition 2.2. A pair of maps AT : C*(M) — C*(M) satisfying (2.10)
will be called a pair of spacetime two-point functions.

2.1.4. Cauchy surface two-point functions. We will need a version of two-
point functions acting on Cauchy data for P instead of test functions on
M.

Let us introduce the assumptions:
i) AS CP(%;C2) — C%(5;C?),
(2.11) i) A& =0 for (),
iii) A — Ag = gs.

Definition 2.3. A pair of maps )\JE—r satisfying (2.11) will be called a pair of
Cauchy surface two-point functions.

The following proposition is shown in [GW2] in a more general situation.
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Proposition 2.4. The maps:
AS = A = (psG) A5 (p=),

A* = = (pFas)* A (phax)

are bijective and inverse from one another. Furthermore, /\JE—r are Cauchy
surface two-point functions iff AT are spacetime two-point functions.

2.2. The Hadamard condition. We now recall the celebrated Hadamard
condition in its microlocal formulation.
We start by recalling some standard notation.

- For © € M we denote by V4 < T, M the future/past solid lightcones and
by Vi, < T¥M the dual cones Vi, = {{e T M : &-v>0, Vvoe Vpr, v +#
0}. We write

§>0 (resp. £<0) if £V, (vesp. V7).
- We denote by o the zero section of T%* M.

- For X = (x,¢) € T*M\o we denote by p(X) = £ - g~ ()¢ the principal
symbol of P and by N' = p~1(0) n T*M\o the characteristic manifold of
P. If H, is the Hamiltonian vector field of p, integral curves of H, in N
are called bicharacteristics. N splits into the upper/lower energy shells

N=NTUNT, Nt =N n{+£>0}.
T cT*M x T*M we set

I = {((21,&), (x2,&)) : ((x1,&), (32, —&)) € T}

- If w e D'(M), the wave front set of u is denoted by WF(u) and is a closed
conic subset of T M\ o.

By the Schwartz kernel theorem, we can identify AT with a pair of distri-
butions A% (z,2’) € D'(M x M). One is especially interested in the subclass
of Hadamard states, which are subject to a condition on the wave front set
of A% (xz,2).

Definition 2.5. A quasi-free state w on CCR(P) is a Hadamard state if its
covariances AT satisfy AT : CP(M) — C*(M) and

(2.12) WF(AY) c NE x NE.

This form of the Hadamard condition is taken from [SV, Ho|. The original
formulation in terms of wave front sets is due to Radzikowski [R1], who
showed its equivalence with older definitions [KW]|.

A fundamental result is the following existence theorem of Hadamard
states, which was proved by Fulling, Narcovich and Wald in [FNW]:

Theorem 2.6 ([FNW]). Let P be a Klein-Gordon operator on a globally
hyperbolic spacetime (M,g). Then there exist pure, quasi-free Hadamard
states for P.

The proof of this result proceeds by constructing an interpolating metric
G and a Klein-Gordon operator P which equal g, P in the far future of some
Cauchy surface ¥ and equal gys, Pys in the far past of 3, where gys is some
ultrastatic metric and Py is the associated Klein-Gordon operator with a
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constant mass. Transporting the vacuum state for gus to the far future of X
by the evolution of P yields a state for P. The Hadamard condition on g
is then concluded from the Hadamard property of the vacuum state for gyg
using the propagation of singularities theorem and the time-slice property of
Klein-Gordon fields.

2.3. The analytic Hadamard condition. In [SVW], Strohmaier, Verch
and Wollenberg introduced the notion of analytic Hadamard states, obtained
from Def. 2.5 by replacing the C® wave front set WF by the analytic wave
front set WF,.

The definition of the analytic wave front set WF,(u) of a distribution
u € D'(N), for N a real analytic manifold, will be recalled in Subsect. 5.2.

The basic results of microlocal analysis, such as microlocal ellipticity or
propagation of singularities theorems, require to consider differential oper-
ators with analytic coefficients when one wants to study for example the
analytic wave front set of solutions.

Therefore the notion of analytic Hadamard states is restricted to ana-
lytic spacetimes (M, g), i.e. real analytic manifolds M equipped with a real
analytic Lorentzian metric g. The Klein-Gordon operator P is now

(2.13) P =-V,+ V(z), where V : M — R is real analytic.

We will call a Klein-Gordon operator as above an analytic Klein-Gordon
operator.

Definition 2.7. A quasi-free state on CCR(P) is an analytic Hadamard
state if its spacetime covariances AT satisfy

(2.14) WF.(A*)Y c NE x NE.

In [SVW] the analytic Hadamard condition is also defined for more gen-
eral states on CCR(P) by extending the microlocal spectrum condition of
Brunetti, Fredenhagen and Kohler [BFK]| on the n—point functions to the
analytic case.

It is shown in [SVW, Prop. 6.2] that for quasi-free states, the analytic
microlocal spectrum condition is equivalent to the following real version of
(2.14).

Let ¢p(u) = %(w(u)—i—w*(u)) for u e CP (M) real, and let wy € D' (M x M)
be the (real) two-point function of w defined by

w($(u)g(v)) = (w2, u®v), u,ve CE(M;R).
Then the C® (resp. analytic) Hadamard condition is equivalent to:
(2.15) WF (w2)" (resp. WF,(w2)') c Nt x N'T.

In [GW1, Remark 3.3] it is shown that for the C* wave front set (2.15) is
equivalent to (2.12). The same argument is valid for the analytic wave front
set.

It has been shown by Radzikowski [R1] that the covariances of any two
Hadamard states coincide modulo a smooth kernel. The same is true for
analytic Hadamard states:

Proposition 2.8. Let w,w be two analytic Hadamard states for some ana-
lytic Klein-Gordon operator P. Then A* — AT have analytic kernels.
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Proof. Let RT = AT — A*. Since AT — A~ = At — A~ = iG, we have
R* = —R~. On the other hand from (2.14) we have WF,(R*) < N+ x N'*
hence WF,(RT) n WF,(R™) = . Since R~ = —R™ this implies that
WF,(R%) = & hence R* have analytic kernels. []

2.4. The Reeh-Schlieder property. In [SVW]|, Strohmaier, Verch and
Wollenberg proved an important consequence of the analytic Hadamard con-
dition.

Theorem 2.9 ([SVW]). An analytic Hadamard state on CCR(P) satisfies
the Reeh-Schlieder property.

We first recall how the Reeh-Schlieder property is defined. If w is a state
on CCR(P) we denote by (Hy, 7w, §,) the GNS triple associated to w.

Definition 2.10. A state w on CCR(P) satisfies the Reeh-Schlieder prop-
erty if for any open set U < M the space

Vect{ﬂw (TTE v* (wi) [T ¢ (v)) Q= pgeN, wj,vj € C’(?O(U)}
s dense in H,,.

The proof of Thm. 2.9 in [SVW] relies on two ingredients: the first is
the use of wave front set for Hilbert space valued distributions. The second
is the fact that the analytic wave front set WF,(u) of u € D/(M) has deep
relations with the support suppu. An example of such a relation is the
Kashiwara-Kawai theorem, which we state below for illustration, and which
plays a key role in [SVW].

If F < M is a closed set, the normal set N(F) < T*M\o is the set of
(20, €%) such that 20 € F, ¢ # 0, and there exists a real function f € C%(M)
such that df (z%) = €° or df(2°) = —¢Y and F < {z : f(z) < f(2*)}. Note
that N(F) c T3 M.

The Kashiwara-Kawai theorem (see e.g. [H2, Thm. 8.5.6’]) states that

(2.16) N(suppu) € WF,(u) Yue D'(M).

2.5. Existence of analytic Hadamard states on analytic spacetimes.
It is not an easy task to construct analytic Hadamard states. The main
problem is that the Fulling-Narcowich-Wald deformation argument [FNW]|
used to prove Thm. 2.6 does not apply anymore as the interpolating metric
g is not real analytic (though at least a weaker form of the Reeh-Schlieder
property can be obtained, and an abstract existence argument can be given
for states satisfying the full Reeh-Schlieder property, see [Sall).

The only examples of analytic Hadamard states known so far are the vacua
(ground states) and KMS states on analytic, stationary spacetimes with an
analytic Killing vector field, see [SVW, Thm. 6.3].

Our main result, Thm. 1.1, provides a general existence proof for any
analytic Klein-Gordon operator P on an analytic spacetime with an analytic,
spacelike Cauchy hypersurface.

Before introducing the main new ingredients of our construction, let us
recall two standard facts which are useful to construct Hadamard states,
both in the C* and analytic case, the first one relying on propagation of
singularities and the second on conformal transformations.
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Proposition 2.11. Let (M, g) be a globally hyperbolic analytic spacetime, P
an analytic Klein-Gordon operator on (M, g), w a quasi-free state for P and
Y a Cauchy hypersurface for (M, g).

If its covariances AT satisfy the analytic Hadamard condition (2.14) over
some neighborhood U of ¥ then they satisfy (2.14) everywhere.

Proof. Let ¢4, s € R be the Hamiltonian flow of p. By (2.10) iv), microlocal
ellipticity and propagation of singularities in the analytic case (see |[Kw,
Thm. 3.3’] or [H4, Thm. 7.1]), we know that if (X1, X3) € WF,(A*)’, then
X1, Xs € N and (s, (X1), ¢s,(X2)) € WF,(AT)’ for all 51,89 € R. Since ¥
is a Cauchy hypersurface, there exists si, s2 such that ¢s,(X;) € T*U, hence
¢s;(X;) € NE, hence X; e N+. [

Proposition 2.12. Let (M,g) be a globally hyperbolic analytic spacetime
with a Cauchy hypersurface 3.

Suppose that there exists a neighborhood U of ¥ in M and an analytic
function ¢ : U —]0,+0[ such that any analytic Klein-Gordon operator
on (U,c?g) has a pure analytic Hadamard state. Then any analytic Klein-
Gordon operator on (M, g) has a pure analytic Hadamard state.

Proof. We write P as —[J, + 722-R, + W with W real analytic. By

4(n—1)
conformal invariance of —[J; + ﬁRg, setting § = c?¢g we have:
. -9 -
P .= —n/2—1P n/2—1 _ _ . n R- W
c c Ol + n—1) g+ W,

where W = ¢ 2W. If G is the Pauli-Jordan commutator for P we have
G = "2 1Ge 271 Tt follows that if AT are the covariances of some quasi-
free state @ for P, then AT = ¢/271A%¢/2-1 are the covariances of some
quasi-free state w for P.

If @ is a pure state then so is w. Indeed, denoting by (f), Q) the classical
phase space for P, the map

T:V5[a]— [ a] eV

is pseudo-unitary from (V, Q) to (V,Q), and w is simply the pushforward of
w by T.

If & is an analytic Hadamard state for P, AT satisfy (2.14) over U, and
so do A* since c is analytic. By Prop. 2.11 AT satisfy (2.14) over M, hence
w is an analytic Hadamard state. []

3. WICK ROTATION ON ANALYTIC SPACETIMES

In this section we perform the Wick rotation in Gaussian normal coordi-
nates. If ¥ is a spacelike Cauchy hypersurface in (M, g), the Klein-Gordon
operator P is written as

P =3} +7r(t, )0 + a(t,y, dy),

if (t,y) are Gaussian normal coordinates respective to ¥. By analyticity one
can perform the Wick rotation t =: is near s = 0 and consider the Wick
rotated operator

K = —0% —ir(is, y)0s + a(is, y, Oy),
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which is an elliptic differential operator defined on some neighborhood V' of
{0} x ¥ in Rx X. To define a proper inverse K !, we need some realization of
K as an unbounded operator. As turns out, the natural way is to realize K by
imposing Dirichlet boundary conditions on a sufficiently small neighborhood
Qof {0} x X inR x .

3.1. Gaussian normal coordinates. Let us consider a globally hyperbolic
analytic spacetime (M, ¢g) with an analytic spacelike Cauchy hypersurface X.

Using Gaussian normal coordinates to 3, we obtain neighborhoods U of
{0} x ¥ in R x ¥ and U’ of ¥ in M and an isometric diffeomorphism

(3.1) X 1 (U, —dt* + hy(y)dy®) — (U, g),

where if K € ¥ and € > 0 is such that | — €,e[xK < U, then | —¢,¢[3t —
h¢(y)dy? is a t—dependent Riemannian metric on K. In particular ho(y)dy?
is the Riemannian metric induced by g on X.

By the Cauchy-Kowalevski theorem, it follows from the fact that (M, g)
and ¥ are analytic, that y : U — U’ is analytic, and that U 3 (t,y) —
h¢(y)dy? is an analytic (2,0) tensor.

It will turn out convenient later on to assume that

(3.2) the Riemannian manifold (X, hg) is complete.

Let us explain how to reduce ourselves to this situation.

It is known, see e.g. [Kn], that there exists a real analytic function c :
¥ —]0, +oo[ such that c?hg is complete on X.

We extend ¢ to U € Rx X by ¢(t,y) = ¢(y), push it to U’ by x and consider
the Lorentzian metric § = c?g. Clearly (U’, ) is globally hyperbolic with 3
as a spacelike Cauchy hypersurface.

By Prop. 2.12, to construct analytic Hadamard states for some analytic
Klein-Gordon operator P on (M, g), it suffices to perform the construction
on (U, g), for some conformally rescaled analytic Klein-Gordon operator P.
Denoting U by M and g again by g, we can hence assume without loss of
generality that (3.2) holds.

3.2. Klein-Gordon operator in Gaussian normal coordinates. De-
noting the operator x*P by P again, we obtain that

(3.3) P = 83 +r(t,y)o + alt,y, 0y),
where
r(ty) = [he(y)| "2 he(y)]2,
and
a(t,y. 0y) = [he(y)["20; ()| 2B ()0 + V (£,).

The operator a(t,y, 0y) is selfadjoint for the scalar product

(u|v) = / | hy|2 dydt.
U
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3.2.1. Reduction of P. It is possible to reduce oneself to the case where
r(t,y) = 0. In fact if

(3.4) d(t,y) = |he(y) M1 ho(y) 74,

we see that
d: LA(U, |hy|2dtdy) 5 u — du € L2(U, |ho|2 dtdy)

is unitary and

(3.5) Py :=dPd™" = 0} + ao(t,y, 0,),
for
_ r2 t, 1
(36) aﬂ(ta Y, ay) = d(ta y)a(ta Y, ay)d 1(t7 y) - (4y) - iatr(tv y)7

which is selfadjoint for the scalar product
(3.7) (ulv)o = / avlho| 3 dyd.
U

3.3. Wick rotated operator. The function ¢ — r(¢,-) and the differential
operator ¢t — a(t,y, d,) extend holomorphically in ¢ in a neighborhood W of
{0} x X in Cx X. We can moreover assume that W is small enough such that
for each « € R the functions U 3 (t,y) — |h(y)|* extend holomorphically in
t to W. In particular d(¢,y) defined in (3.4) extends holomorphically in ¢ to
w.

We define the Wick rotated operator:

(3.8) K = =03 —ir(is,y)0s + a(is, y,d,), (s,y) €V,
where V' is a neighborhood of {0} x ¥ in R x ¥. By possibly replacing it by a
smaller neighborhood, we can assume that V' is invariant under the reflection

(Suy) = (_S7y)'
The operator K is obtained from P by the substitution ¢ — is. It has
analytic coefficients in (s,y) on V.

3.3.1. Reduction of K. The reduction of P in 3.2.1 can be similarly carried
out for K. In fact let us set:

5 1
(3.9) hs(y) = (hishis)2 (y), (s,y) € U.
which is positive definite. Note that from h:(y) = ht(y)*, we obtain his(y)* =
h_is(y) hence:

(3.10) hs@)] = lh-s(®)]. (s,9) € U.

We also set:

(3.11) d(s,y) = [his(y)]*|ho(y)| 7V = d(is,y)

for d defined in (3.4). We see that

(3.12) d: L2(U, |hs|2dyds) 3 u — du € LA(U, |ho|2 dyds)
is unitary and from (3.5) we obtain that:

(3.13) dKd™ = Ko = =2 + ao(is, y, 0,).

From the selfadjointness of ag(t,y, dy) we obtain that

aO(isa Y, ay)* = aO(_iS7 Y, 51/)
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on L2(U, |ho|2 dyds).

3.4. Some preparations. The operators K or K\ are elliptic differential
operators, but have for the moment no realizations as unbounded operators
with some concrete domain. We will fix such a realization by introducing
Dirichlet boundary conditions on the boundary of some open set 2 < V. In
this subsection we collect some properties obtained from a convenient choice
of Q.

Lemma 3.1. Let ¥ = | J,. Ui be a covering of ¥ with U; @ ¥. Then there
exist T;, i € N such that for all (s,y) €] — T3, T;[ xU; and all v,v1,v9 € CTyX
one has:

i) 57 ho(y)v < T Re-his(y)v < 30 ho(y)v,
i) [0 Imhis(y)v] < 20 - ho(y)v,
01 - his(y)va] < 2001 - ho(y)v1)? (B - ho(y)va)?

w) 1<d(s,y) <1,

v

)
)
(3.14) i)
)
)

Proof. i) and ii) are obvious and imply iii). iv) and v) follow from d(0,y) =
1. O

Let Q < U be an open neighborhood of {0} x ¥ with a smooth boundary.
For s € R we denote by HZ (), H; .(2) the compactly supported and local

loc

Sobolev spaces of order s. We denote by H}(£2) the closure of C*(€) for
the norm

. 1
1) = /Q (16.ul? + 65" + [ul?)| ol dyds.

Note that if (Uj, Tj)sen are as in Lemma 3.1 and Q < (J,on] — T3, T3[ < Us,
it follows from Lemma 3.1 iv) and v) that

(3.15) d: HY Q) > H ().

In Prop. 3.2 below the space L?(£, |H3(y)|%dsdy) is denoted by L?(Q).
If A is a closed operator, its resolvent set is denoted by rs(A).

Proposition 3.2. Let Qq be the sesquilinear form:
Qa(v,u) = (v|Ku)r2(q), DomQq = CF ().
Then there exists an § as above such that:
(1) Q is invariant under i : (s,y) — (—$,y);
(2) Qq and Qf are closeable on L?(2);
(3) their closures Qq, QF are sectorial, with domain H}();
(4) the closed operators Kq, K¢ associated to Qq, QF satisfy 0 € 1s(Kq),
0ers(KE);
(5) K¢ is the adjoint of Kq.

Proof. Let us denote L2(V, |ho|2 (y)dsdy) by L3(V') and similarly L2(X, |ho|2dy)
by LZ(X). We first consider the sesquilinear form

Qo(v,u) = (0sv[0su) 2 (v) + (v|ao(is)u) p2(y), Dom Qo = Cr(Q).
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Let ¥ = (J,on Ui a covering of ¥ and 1 = >, X2(v), xi € C(U;) a subor-
dinate partition of unity on Y. Let us set
b(s) = Reag(is), c(s) =Imap(is), ko= —Ap, + 1,

where the real and imaginary parts are computed w.r.t. the scalar product
in L3(¥). We have

b(s) = Dien Xib()xs +m(s), m(s) = 3 X;[x, D, b(s)]];
(3.16) () = Mien xic(s)xi +n(s), n(s) = 5 20 [ e(s)]]s
ko = Yen Xikox: + mo, mo = 3 > [xi, [xi, ko]]-
Moreover, b(s) is a second order elliptic operator, formally selfadjoint on

L3(X), with principal symbol 7 - Re hi;' (y)n. By Lemma 3.1 i) and i) there
exist ¢;, T; > 0 such that:

sxikoxi — xicixi < xib(s)xi < Sxikoxi + XiciXi,
—3xikoxi — Xicixi < xic(s)xi < 3xikoXi + XiciXi

on L3(X) for |s| < T;. Since m(s),n(s), mo are multiplication operators on
Y, there exist constants ¢, such that

(3.17)

xi(Im|(s) + |n[(s) + [mol)xi < ¢ixF, on L§(X), for [s| < T}.

It follows that

/2
(3.18) m| + [n| + [mo| < ) cix?,

ieN
on LE(Uen Uix] — Si, Sil), if 0 < S; < TY. By (3.16), (3.17), (3.18) we
obtain:
(3.19) sko — 2i(ci + 5)x? < b < 3ko+ X (ci + 32,
. —gko = 2 (i + 3e)xE < e < gho + X(ei + )x,
on L3(Uien Ui <] — Si, Sil), if 0 < S; < min(T5, TY).
By the Poincaré inequality we can find 7} > 0 such that

(3:20) (Osuldsu)r2vy = (2¢; + 2¢; + D(ulu)payy, weCE(]- T/, T [xX).

Let now S; = min(7;, 7}, T)") and Q < (J,cn] — Si, Si[xU; an open neigh-
borhood of {0} x ¥ with a smooth boundary and i(Q2) = Q. We have by
(3.20):

(Osuldsu) 2(v) = Z(ainUwinU)Lg(v)
(3.21) ieN
> (2¢; + 2¢, + 1)(“|X?”)L%(V)7 ue CP(Q),

since suppu < € implies supp x;u <] — T/, T[xX. Let us denote by Qyef
the hermitian form

Qref (v, 1) = (05v|0su) L2 vy + (v]kow)L2(vy, Dom Qrer = CF ().
we obtain from (3.19), (3.21):
5 Qret(u,u) < Re Qo(u, u) < 3Quet(u,w),

(3.22)
| Tm Qo (u, u)| < %ReQref(u,u), ue CL(N).
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The form Qe is closeable, strictly positive and its closure Qs has domain
H (). From (3.22) we obtain that Q is closeable on C°(Q), and its closure
@ has domain H}(£2) and is sectorial. By [K, VI.2.1] the associated operator
Kq is closed, sectorial with 0 € rs(Kqy).

The same is true of the form @Qf and if kaz,o is the operator associated to
its closure, we have K¢ ; = (Kq)* by [K, Thm. VI.2.5].

Next, we set Kq := cz_lKQ,ocZ with domain d—! Dom Kq . Using (3.12)
and (3.13) we see that Qq,Qf, are closeable, with associated operators
Ko, K and K& = d 'K} od = (Ko)*. [

We end this section with a lemma which states that away from 0Q, K !
is given by a pseudodifferential operator on 2 of order —2.

We denote by ¥[*(€2) the space of classical, properly supported pseudodif-
ferential operators of order m € R, see e.g. [Sh|, and by W~%(2) the space
of smoothing operators, i.e. linear operators on §2 with smooth distributional

kernels. We set U™ (Q) = U (Q) + W~*(Q) and
(3.23) Ve Q) = (| v 9).
meR
Lemma 3.3. Let ¢1,p2 € CFP(Q) with ¢1 = 1 near supp w2. Then there
exist Q € W72(Q) such that
¢1K§1¢2 = (png02 +R 4, R € W_OO(Q)

Proof. From Lemma 3.1 we obtain that |n - hi;'(y)n| = con - hy ' (y)n for

(5,y) € Q, ne Ty ¥, hence K is elliptic on Q. It is well known that K admits

a properly supported parametriz, i.e. some Q € ¥;2(f2) such that:
KQ—-1,Q0K —1e W™ *(Q).

We can moreover assume that (1 — ¢1)Q¢2 = 0 hence:

KQu2 = @2+ p1R_opa, R € W 7(Q).
Since @1 = 0 near 052, this implies that

P1Qp2 = Qo = Ko (s + 01R_woip2) = 01K 02 + 1Ko o1 R— o pa.
By elliptic regularity K, : H3(Q) — H:t(Q), hence 1Ko ¢1R_oop2 €

c loc

W=?(€). This completes the proof. []

4. CALDERON PROJECTORS AND HADAMARD STATES

In this section we construct the Calderdn projectors C;;r associated to Koq.
We show that they define a pure quasi-free state for the analytic Klein-
Gordon operator P.

4.1. Notation. Let us fix an open set {2 © V such that Lemma 3.1 and Prop.
3.2 hold. If Q; < Q is open and F(Q) < D'(Q) is a space of distributions,
we denote by F(Q1) < D'(1) the space of restrictions of elements of F(£2)
to 7.

It is well known that any u € D’(€1) has a unique extension eu € D'(Q)
with eu = 0 on Q\QS!. We will apply this to the open sets:

OF == Qn{+s>0}.
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For example elements of C®(Q%) are functions in C*(Q*) which extend
smoothly across s = 0, while elements of C2(Q%) have additionally a com-
pact support in QF and vanish near 0Q* n {£s > 0} (but not necessarily
near ¥ = 00* N {s = 0}). Similarly elements of HZ(Q%) are functions in
H'(Q%) which vanish on dQ% n {£s > 0}, but not necessarily on .

We denote by r* : D/(Q) — D/(QF), resp. et : D'(QF) — D'(Q) the
operators of restriction, resp. extension by 0.

We define the trace operator by

yu = < —gsrsfz ) , ue CP(Q).

We denote by 4+ the analogous trace operators defined on C®(0%).

We set

HE) — L2, |hy|3dsdy), HET = L2(QW), |ho|*dsdy),

and
S = L2(%, |ho|2dy) ® C2.

We denote by v* : £(%)? — D/(Q) the formal adjoint of v : CX(2) —
C*(X)? when C(Q), resp. C*(X)? is equipped with the scalar products of
H, resp. S. We have:

A1) A =)@ fot 5@y [ = ( i ) e CP(B)2.

This follows from the fact that 6S|ﬁ5(y)|% vanishes at s = 0, because of
(3.10).

4.2. Some identities. Let us set:

(4.2) Rz(?scf(]é,y) ?1> q:<?1 3)1)
S:<21(9td]§0,y) —0]1> 50:<§)1 _0]1>

The following identities are straightforward to check:
(4.3) v od=RoyF) R*¢R=gq, R*SyR=S5.

The lemma below is proved by direct computations, using the form of Kj
in (3.13) and integration by parts.

Lemma 4.1. Let ue C®(Q%),v e CX(QF). Then:
(1.4 (0] Kou)ygs — (Kiolu)ys = +(740lSorv*u)s.
45 (U|K0u)7_% + (K0v|u)7_%
D
— 220l + (ol(aotis) + ao(is) )y T (1Folgr*u)s.

The following proposition will be needed in the proof of Thm. 4.5 below.
It is superfluous if the Cauchy hypersurface 3 is compact.

For x € C2(%) we set |[Vx|lo = supyes: [25x (1) hEF (1) rx(v)]2.
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Proposition 4.2. Let x be a compactly supported Lipschitz function on
(2, ho). There exists co > 0 such that for all u,v € H}(QF):

|Oxvllao(is), xlu)ge ] < co(Ixleo [ Vxloo + IVXIE 0 05 [l 1 @2,
|Oxvllao(is)*, xJw)gee | < collxlleolVxloo + IVXIE) [0 )l o)

Proof. Let us set ds(y) = d(s,y). It suffices to prove the result for ag(is),
using that ag(is)* = ao(—is). Moreover by density we can assume that

u,v € CP(QF). From (3.13) we obtain that [ag(is), x| = ds[a(is), x]d; ' and
[a(is), x]u = — th akuf |his 56’ (hj |his|2 ﬁkxu)
It follows that
(xvlfao(is), XJu)yz = (xvldslalis), x]1dy u)yz
= —/ X0 xhiY dudy(dy ) o 2 dsdy
Q+
—/ ds|hol? | his| =2 x00; (h3* | his |2 Bxed ) dsdly
ot
= —/ X@@xﬂ d 5k(czs_1u)]ho\%dsdy
/ d, 0; d XT) h] 0kxu|ho|2dsdy,

where we integrate by parts the second term and use that dg = |hg|~/4|his| /2.

Expanding the derivatives, we obtain:

(ol (i), xJu)y

B _/ X0y} d,Ocul ol dsdy +/ Xﬁﬁjthfﬁk(lnds)u\hoy%dsdy
QF O

- /Q+ X@&’j(ln(ds))hijs (9kxu|h0|§dsdy.

We can use Lemma 3.1 4ii) to bound scalar products involving his(y) by
scalar products involving hy(y). We also know from Lemma 3.1 iv), v) that:

12 (i ds (1)) W)X )] < coldxhG @Ax W), V(s.y) € 2
Using the Cauchy-Schwarz inequality we obtain that
|Ocvllao(is), xJw)yyz | < collxloel Voo + IV x 20 0] a1 05 lul ) -

This completes the proof. []

4.3. The Calderén projectors.

Definition 4.3. Let Q € V be as in Prop. 3.2. The Calderén projectors for
Kq are the operators

C% 1= ifyiKgl’y*S.



Analytic Hadamard states and Calderén projectors 19

Note that it is not a priori clear that C;f are well defined, even as maps
from CX(X)? to D’(£)2. Despite their name, it is even less clear whether C3
are projectors on suitable spaces. Let us start by reviewing basic properties
of C’gil, which are well known if ¥ is compact. We refer the reader to the
book [Gr, Chap. 11| for details on the compact case.

We recall that the pseudodifferential operator classes ¥* (X)) were intro-
duced in (3.23).

Proposition 4.4. (1) CZ map CX(%)? continuously into C*(%)?;
(2) CF are given by 2 x 2 matrices with entries in W*(X).

Proof. To prove (1) we can replace Ko' by ¢1Kg wa for ¢; € CZ(Q)
equal to 1 on some neighborhood of U; € 3. By Lemma 3.3 we can then
replace <p1K§1cp2 by ©1Qps where Q € W;2(f) is a properly supported
pseudodifferential operator. The proofs in [Gr, Chap. 11] can be then applied
directly to get (1).

It also follows from [Gr, Chap. 11] that if ¢ € CF(X), then @/JC’%w is
given by a 2 x 2 matrix with entries in W (X). To prove (2) it hence remains
to show that if ¥,y € CL(X) have disjoint supports, then wngwg is a
smoothing operator on ¥. Clearly we can find ¢; € CP(Q) with disjoint
supports such that ¢; = 1 near {0} x suppt;. Then in the formula defining
wlC;—{wg we can replace K§1 by gleﬁlcpg, which is smoothing by Lemma
3.3. Therefore 11 Cérl/)g is smoothing, which completes the proof of (2). []

Theorem 4.5. Let Q € V be as in Prop. 3.2. The following properties
hold true:
(1) one has
Cy+Cq=1on C*(%)?%
(2) setting \* := £qo CZ one has
(fIXEf)s =0, VfeCP(E)

It follows from the general arguments recalled in 2.1.4 that AT are a pair of

Cauchy surface two-point functions for the analytic Klein-Gordon operator
P.

Definition 4.6. We denote by wq the quasi-free state with Cauchy surface
covariances given by the sesquilinear forms (-] A\%-)s.

Before starting the proof of Thm. 4.5 we state a result about smooth
approximations of the distance function on (X, k), which follows from [AFLR,
Thm. 1.

Proposition 4.7. Suppose that ¥ is not compact and let d(y,y’) be the
geodesic distance for hg. Then for any fived y° € X, there exists r € C°(X%)
such that:

i) 5d(y°,y) <r(y) < 24(y°,y),
i1) || Vrle < 2.

Proof of Thm. 4.5. For ease of notation we will drop the € subscripts in
the sequel. The proof consists of several steps.
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Step 1. We first claim that is suffices to prove the theorem for K| instead
of K. In fact let C(;—r = iviKo_lfya‘So be the analogue of C2, defined using
Ky, where 7 is defined as the formal adjoint of v : Hy — S. Note that
% =

We recall that:

which implies that
Cd = RICFR.

Since ¢ = R*qR it suffices to prove the theorem for C’ai.
Step 2. In Step 2 we prove (1).
Let us consider

ut = 1T Ky NESof, for fe CP(X)2

Using the ellipticity of Ky and the fact that K lis a pseudodifferential
operator away from 02, one can prove that u* € H}(QF) n C%(QF), see
Lemma A.1 in the appendix.

Let f,g € C(X)2. We fix v € CX(Q) such that yv = g and set ut =
$7‘J—FKO_IW*SOf so that yfut = Caif. We have:

(91So(CT +C7) f)s = (YTrTo[SoyTut)s + (v r Sy uT)s

= (r+v\Kou+)Har — (r+K6"U\u+)H3

— (T*U\Kou*)ﬂa + (T7K6k1)|u7)7_[07

(4'6) + po* + — 1o¥ -
= —(r"Kjvlu )Har + (r"K§vlu )HS

= (Kgv| Ky 'Y Sof)me = (01" So.f) e
= (v]Sof)s = (gSof)s-

In the second line we used (4.4), and then we used that Kout = 0 in Q.
Next, in the next lines we used that v € C(Q) and hence Kjv = (Kp)*v.
Since g is arbitrary and Sy is injective, (4.6) implies that C f + Cy f = f,
which completes the proof of (1).

Step 3. In Step 3 we prove (2). For simplicity we consider only the case of
Oy, the case of Cj being similar. Let f € C(X)? and u* = rt K 'yESof.
The idea is to apply the identities (4.4), (4.5) to v = u = u™. However since
we do not know if yTu € L?(X)?, the boundary terms in these identities may
be ill defined. Therefore we need some extra approximation argument. This
argument is superfluous if ¥ is compact.

Assume first that ¥ is non-compact. We fix F' € CZ(R) equal to 1 near
0. We set:

xn(y) = F(n"'r(y)), neN*¥
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where 7(y) is the approximation of the distance function given in Prop. 4.7.
Since (X, hg) is complete we have:

Z) Xn € 080(2)7
(4.7) i) s—limy, o xn = 1 on H,
iti) [ Vxnloo € O(n71).

If ¥ is compact we set x,,(y) = 1.
From (4.5) we obtain that:

Onu™ [ Kou® )y + (Kou™ [xpu™)y
= 2(0sxnu™ [ xnt ™ )r + (uF|(xiao(is) + ao(is)*xi)u )y
— (Y " gy T ut)s.
Next, we write:
Xnao(is) + ao(is)*x;,
= xXn(ao(is) + ao(is)*)xn + Xn[Xn ao(is)] + [ao(is)™, Xn]Xn,
which yields:
(X%u+|K0U+)HO+ + (K0U+|X3Lu+);qg
(48) = 2(0sxnt " |Osxnu ™ )ggr + (xntu™ [(ao(is) + ao(is)*)xnu ")+
+ (Xt |Dxns a0 (i) Ju™) g + (Dxns ao(is)Ju™ [xnu ™)+
— Oy et gy Tut)s.

The first line in (4.8) vanishes since Kou™ = 0 in Q7 the second is positive
by (3.22). By Prop. 4.2 the third line is O(n™1). Since v u™ = Cf f we
obtain:

(4.9) (xXnCJ FloxnCy fs = —Cn™ "

To complete the proof of (2) we now use the identity (4.4) combined with
reflection in s.

Let us set tu(s,y) := u(—s,y) for u € Hp. Then since ag(is)* = ap(—is),
and (2 is invariant under ¢ we have

(4.10) i : Dom Ky — Dom Kj, K = iKoi.
Moreover if I = 0 one has

0 -1
(4.11) 7T oi=Ton%

We take ut = r*K;'9¢Sof as before and vt = r*iK;1yESog for g €
C®(X)2. Then from (4.4) we obtain

O™ [ Kou® )y — (KGv™ qu® g
= (0¥ (x5 ao(is) — ao(iS)Xi)qu)Hg + (xny 0T Soxny T u)s.
As above we write:

xaao(is) — ao(is)Xa = Xn[xns a0(is)] + [Xn, ao(is)]xn,
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which yields
(o™ [Kou™ )y — (KGvT qu™)
(4.12) = (0" [[xns a0 () Ju™ ) gt + ([a0 ()", Xn]v™ [Xnu ™)y
+ (Y 0T |Soxay Tut)s.
We have Kou®™ = 0 in Q" and by (4.10) Kfv™ = 0 in Q7 so the first line
in (4.12) vanishes. By Prop. 4.2 the second line is O(n~!). By (4.11)
we see that y*vt = Iy K;'9¢Sog = ICyg. Using also that I*Sy =

—q and ytut = —C{ f, we obtain that the third line in (4.12) equals
(xnCy 9laxnCy f)s. Therefore we obtain

(xnCy 9laxaCy f)s € O(n™).
Taking g = f this implies that

(4.13) |(xnCy flaxnCy f)s| € O(n™")

We can now complete the proof of (2). We have for f € C®(X)? and n large
enough

(FlaCq fls = OGflaCy s = (xnflaxnCy f)s
= (xnCJ flaxnCy s + (xnCy flaxnCi fs
> —Cn_l,

where we used (1) in the second line and (4.9), (4.13) in the third line.
Letting n — +00 we obtain (2). This completes the proof of the theorem. []

4.4. Purity of wq. In this subsection we prove that the state wq is pure,
using the characterization of pure states recalled in Prop. 2.1.

If ¥ is compact, this follows immediately from the fact that Cér are pro-
jectors (note that C°(¥) = C®(X) then so Cg o Cg is then well defined
on CX(¥)?). The fact that CF are projectors in the compact case is well
known, see e.g. |Gr, Prop. 11.7].

If ¥ is not compact, we cannot a priori make sense of C% oC;{, so an extra
approximation argument is needed. In the proposition below we assume that
¥ is not compact and we set 1, = x2, where x,, € C*(X) is the sequence of
cutoff functions introduced in the proof of Thm. 4.5.

Proposition 4.8. Let f € CX(X)2. Then:

in D'(X)% when n — 0.

(4.14)

Proof. By the same reasoning as in Step 1 in the proof of Thm. 4.5,
it suffices to prove the analogue of (4.14) with CJ replaced by Cf =
_,)/Jr K()_17* S().

Let us note that the identity (4.4) is of course still valid if u € C2(QF)
and v € C*(QF). It is also valid if u € CP(Q%) and v € HZ_(QF), since all
the terms in the identity are still well defined.
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For f e C*(X)? we set
Vit f 1= —rt Ky 'y Sof.
Let w e CP(Q) and
v=(Ky")*etw.

We know that v € H}(2) by Prop. 3.2, and v € HZ () using that etw €

L?(€2) and elliptic regularity. For u e CX (%) we obtain from (4.4):
(4.15) (v|K0u)Har — (K(’)"v|u)7_£ar = (v"u|SoyTu)s = (y|SoyTu)s,
where in the last equality we use that vfv = yv. In fact yv is well defined

as an element of H3/2(2) @ Hl/Q(E) since v € H2(€2). Next, we obtain:

loc loc

(volSovTu)s = (V[y*Sor u)n, = (K ) et wly*Soy u)u,
= (e w|Kg " Sov T u)ny = —(wVg T u)ys

From (4.15), (4.16) we obtain:

(wh = V' y s = (5 e wl o)y

= (1)|K0u)Har, u,we CP(QT).

(4.16)

(4.17)

We now fix f 6@(2)2 and u = V3" f. By Lemma A.1 in the appendix,
we know that v € H} (") n C*(QF). We now apply (4.17) replacing u by
U = Ppu, which belongs to C©(Q1).

Since Kou = 0 in O, we have Kot u = [Ko, 1n]u and since 1, = x2:

[Ko, ¥n] = [ao(is), ¥n] = xnlao(is), Xn] + [ao(is), chy]xn.
By Prop. 4.2 we obtain:
01, s | < |xatllao(is), xaJu)ygs | + 1108 Gis)s oo ot |
< Ol o lul o).
Using (4.17) this yields:
(4.18) |(wltpnu = Vg"y ™ nw)ye | < On™ ol lul m o)
< OnHetwl g-1(g)lul -
We claim that
(.19 Ie*wlavy < Clwlgr e
Indeed, for g € CF(2) we have:
(€T wlG)age| = [(w]rTg)ys|

< Clwlgz g I ) oy

< CH“’HF&(Qﬁ—)* H.aHHl(Q)a
which implies (4.19). Therefore we deduce from (4.18) by duality that if

Tn = Ypu — Vo+7+1/}nU,

we have

(4.20) |71,m

me) < CnHul g
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Hence, 71, — 0 in HL(Q*%) as n — 0.

We now apply (4.17) once again replacing u by v, = ¢, Vg v iu. We
obtain since KoV v ¢p,u = 0 in Q*:

(w|vn - V0+'7+Un)7.lar = (U|[K07 wn]%—i_’ﬁl/}nu)yga
hence
|(wlvp — V()+’Y+Un)7{0+| < C“_lHeerHHfl(Q) ’|V()+’Y+T/JnUHH1(Q+)~

By (4.20) we have

Vot y ol 1o+ < Climul gg+y + CnHul gy < Clul g,
since |V, |0 < C. Finally we obtain as before that:
(421) o= Vo Y nu = V5T VT au — 0 in HE(QT),

as n — 0.

We note then that if U € Q and U = U n {s > 0}, we have Kopu =0
in U for n » 1, hence Kor1, = Koropn = 0in UT for n » 1. We can now
use the argument of ‘partial hypoellipticity at the boundary’ (see e.g. |Gr,
page 311]), which we now briefly explain.

We can introduce local coordinates on ¥ near 4% € ¥, and map U to a
neighborhood V' of (0,0) in R*% for d = dim ¥. We denoting by H™¢(R'*%)
the space of u € S'(R'*?) such that (D,)™(D,)u € L*(R'*%), and then

using the coordinates we define the spaces Hllotk_k(Q) and Hllotk’_k(Q*)

(the definition depends on the choice of coordinates, but this is not important
here). Then one deduces, using that Kor;, = 0in U * that rim — 0 also in

HERR(Q) for any k € N.

loc
We can now safely apply the boundary value operator v and deduce from

(4.20), (4.21) that:
Y rin — 0 in D'(X)2
Using the definitions of u, r;, and the fact that Cj = y*V," this yields:
UnCy [ — Cy Gy f — 0,
UnCo YnCy f — O bnCy nCq f — 0,

in D'(¥)? when n — o0, which entails the desired result. []

Proposition 4.9. The state wq is pure.

Proof. By Prop. 2.1 it suffices to find, for each f € C*(¥)?, a sequence
fn € C*(X)? such that:

|7 ’ an‘2

(4.22) im =
n=ton (A 4+ A7)

=f- AT+ AL

We take
fn = @bn(C;)_ - C{S)fa
and note first that

(4.23) f-qfn=F - qn(CE —=Cf =tbnf - AT+ X)) f=F- AT+ A7)
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for n » 1, since f has compact support. It remains to compute the limit of
the denominator in (4.22), which we will denote by I, in the sequel. Since
Cy —Cq =2C3 —1and AT + A~ = ¢(2C3 — 1), we obtain:
I, = ¥, (204 — 1) f - q(2CE — Dy (2C4 — 1) f.
Next
(2CE — DYn(2CE — 1) = 4CE ¢, O — 2CE vy — 200, C + o,
which yields:
I = 80nCq f - qCEYnCS f — 40 CS f - qCqn f
— 4O f - qonCq f + 2000 f - qon f
— 40nf - qCqYnC [+ 20nf - aCGYnf
+ 200 f - qbnCG f — Unf - qnf.
Using that ¢Cg is hermitian by Thm. 4.5 we obtain:
I = 8f - qCEYnCvnCq f —4f - qCGYnCEYn f
—Af - qCSURCE f+2f -aCn f
—4f - qpnCqnCq f + 2f - qbnCq o f
+2f - qupCEf—F-qunf.
Next we use that f has compact support, hence for n » 1 we have:
I = 8f - qCnCEUnCo f —4Af - aCqnCS f
—4f - qCEURCEf +2f -aCS f
—4f - qCiYnCS f +2f -qCS f
+2f-qC5 f = f-af.
We now apply Prop. 4.8 i) and obtain that:
I = 8f - qbnCqnCq f — Af - qbnCg f
—Af - qurCqf+2f qCS f
—4f - qnCq f+2f - qCG f
+2f - qCG f— f-af +o(1).
Using again that f has compact support we obtain:
I, = 8f - qCEnCE f —8F - qCq f
+2f-qC5f = f-af +o(1)
=f-q2C4 —1)f + o(1).

Therefore
lim f, - AT+ A7) fo = F- (AT + A7),
which using (4.23) completes the proof of (4.22). []
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4.5. An example. For illustration let us consider the special case of an
ultra-static metric
g =—dt* + h(y)dy?,
where (3, h(y)dy?) is complete, and a constant mass term V (z) = m? > 0.
Then,
P=+a, K=-0+a,

where a = —A, + m? is essentially self-adjoint in L?(¥, |h]%dy) We denote
by € = 0 the square root of the closure of a.

As the set Q we can take | — T, T[xX for T > 0. The closed operator Kq
corresponds to Dirichlet boundary conditions at s = +T.

Let us denote by 6(s) the Heaviside step function.

We can easily compute K ! namely Kg Ly = w —r where

+0
u(s) = (2¢)71 / 0(s — s')e 7 L g(s" — 5)el (s )ds
—0
and

T‘(S) _ (26)—1(64T5 7 1)_1(6(2T_S)€’U+ — Syt — ey 4+ e(s+2T)E’U_),
and

T /
v :/ e u(s')ds’.

-T
A simple computation shows that the Calderén projector is
1 1 e~ 1th(Te)
+ _
(4.24) Ca = 2 ( e coth(Te) 1 ’

Note that the infrared singularity (occurring if 0 ¢ rs(e)) is completely
‘smoothed out’ by the Dirichlet boundary condition at {s = =T'} u {s = T'}.

Suppose now for simplicity that € > 0. In the limit when T — o0, the
right hand side of (4.24) converges to a projection that corresponds to the
ground state for P.

5. ANALYTIC HADAMARD PROPERTY

In this section we prove that the quasi-free state wq constructed in Thm.
4.5 is an analytic Hadamard state. We first recall well-known facts about the
representation of distributions as sums of boundary values of holomorphic
functions. We refer the reader to [H2, Chap. 3|, [Ko, Sec. 3.4| for details.

5.1. Distributions as boundary values of holomorphic functions.

5.1.1. Notation. We first introduce some notation.

- In the sequel a cone of vertex 0 in R™ which is convex, open and proper
will be simply called a convex open cone. If I',T” are two cones of vertex 0
in R we write I'" € ' if (I" n S*~ 1) € (I' n S*71).

- If T is a convex open cone we denote by
[:={¢eR": £-y=0, VyeTl}
its polar. I'? is a closed convex cone.

- Let © < R™ be open and let I' © R™ be a convex open cone. Then a
domain D < C” is called a tuboid of profile Q + il if:
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(1) Dc Q+il,
(2) for any zp € Q and any subcone IV € I" there exists a neighborhood
Q of ¢ in Q and r > 0 such that

Q+i{yel:0<|y|<r}cD.
- If D < C™ is open, we denote by &' (D) the space of holomorphic functions
in D.
- We write F' e 0(Q2+1I'0) if F € €0(D) for some tuboid D of profile 2 +iI".

- If F e 0(D) for some tuboid D of profile Q + iI", we write F' € Oyemp (2 +
il'0) and say that F is temperate, if for any K € €, any subcone I € T’
and r > 0 such that K +i{y € I" : 0 < |y| < r} < D, there exists
C,r > 0, N € N such that

(5.1) Fa+iy)| <Clyl ™, zek, yel’,0<lyl <r

5.1.2. Boundary values of holomorphic functions. If F' € Oyemp(Q +iI0) the
limit

(5.2) lim F(x +iy) = f(z) exists in D'(Q),
I'sy—0
for any IV € I" and is denoted by F(z +iI'0), (see e.g. [Ko, Thm. 3.6]).
If I',...,I'y are convex open cones such that Uiv 'Y = R™ then any

u € D'(Q) can be written as
N

(5.3) Z (z +10,0),

for some Fj € Oemp(€2 + iI'j0). The non-uniqueness of the decomposition
(5.3) is described by Martineau’s edge of the wedge theorem, which states
that

Fj(xz 4+ 1il;0) = 0 in D'(2)

|Mz

for Fj € Otemp($2 + iFjO) iff there exist Hj € Oiemp(2 + il';,0) for T'j, =
(Tj 4 Tg)eomv (A" denotes the convex hull of A) such that
Fj = Zij in Q+ iFj, ij; = *ij in ij,
k
see for example [Ko, Thm. 3.9].

5.2. The analytic wave front set. We now recall the definition of the
analytic wave front set of a distribution on R".

Definition 5.1. Let u € D'(Q) for @ < R" open and (2°,£°) € Q x R™\{0}.
Then (x°,£%) does not belong to the analytic wave front set WF,(u) if there
exists N € N, a neighborhood € of z° in Q and convex open cones Iy,
1<j <N, such that

N
Z Fj(z +1I';0) over €Y,
7=1

for Fj € Opemp(V +i150), 1 < j < N, and F; holomorphic near 2° if ¥ € ry.
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The equivalence of the above definition of the analytic wave front set with
other ones, in particular with the one introduced by Hoérmander (see e.g.
[H2, Def. 8.4.3], has been proved by Bony in [B].

The analytic wave front set is covariant under analytic diffeomorphisms,
which allows to extend its definition to distributions on a real analytic man-
ifold in the usual way.

We will often work with open sets of the form Q = I xY for I < R an open
interval and Y < R"~! open, writing x € Q as (¢,y). If ' =]0, +oo[, we will
write simply I 410 for the profiles I +iI'0. We denote by Giemp (L +10; D'(Y))
the space of temperate D’(Y)-valued holomorphic functions on some tuboid
D of profile I +1i0. This means that for each K € I there exist r > 0, N € N
such that for each bounded set B < D(Y") there exist Cp > 0 such that

sup |[(u(z,-), o(- Dy | < Cp|Imz|™, Reze K,+Imz>0,|Imz| <7,
peB

where (-, )y is the duality bracket between D’(Y) and D(Y).
Let us set 0, (s) = (s—2)~! for z € C\R. If u € D'(R x R"!) has compact
support, then

1
F = 5: _\¥zU 7F "
(221) = (o) P
belongs to Ciemp(R +10; D' (R™1)) and
U(S,y) = F(S + loay) - F(S - 10,y)7
where F(s £1i0,y) = lim g+ F(s +i0,y) in D'(R x R"~1).

5.3. Proof of the analytic Hadamard property. Let us fix a neighbor-
hood U of {0} x ¥ in R x X, a neighborhood U’ of ¥ in M and

X (U, =dt* + hu(y)dy®) — (U, 9)
the analytic isometric diffeomorphism given by the Gaussian normal coor-
dinates to ¥ in (M,g). We recall that x*P = 07 + r(t,y)d: + a(t,y,dy) =
P(t,y, 0, dy). Since P has analytic coefficients, P extends holomorphically

in z =t +is to a neighborhood W of {0} x ¥ in C x X. This holomorphic
extension will be denoted by

P, = P(z,y,0;,0y),

and P(t,y, 0, 0y) will be denoted by P;. The Wick rotated operator K =
P(is,y,—i0s, dy), defined on a neighborhood V' of {0} x ¥ in iR x X, will
henceforth be denoted by Pi.

We also fix an open set ) < V as in Prop. 3.2 and recall that C’% are

the associated Calderén projectors constructed in Sect. 4. Moreover for
f € D'(X)? we denote by Us f € D'(U) the solution of the Cauchy problem:

Ptu=OinU
psu = f.

We will first prove in Prop. 5.3 a result of independent interest about a key
property of Cg. In the C* case (see [GW2, Thm. 3.12]) it is known that
this property implies that w is a C* Hadamard state.



Analytic Hadamard states and Calderén projectors 29

We are indebted to Pierre Schapira for crucial help with the proof of Prop.
5.2, who also gave an extension of this result to the framework of D—modules
in [Sch].

Proposition 5.2. We have:
WF,(UsCE f) c Nt Vfe & (D)2

Proof. We only prove the proposition for C;{ , the proof for C, being similar.

In the sequel we set I =] — §, §[ where § > 0 will be chosen small enough.
We set

vi= =K' Sf, gi=vTv=CSf, u=UsCSf.
The proof will be split in several steps.

Step 1.

By the analytic propagation of singularities theorem (see [Kw, Thm. 3.3’|
or [H4, Thm. 7.1]), it suffices to prove that WF,(u) € N'* over I x Y} for a
neighborhood Y; € ¥ of some 4 € ¥. By a partition of unity argument, we
can also assume that supp f € Y where Y is an arbitrary open neighborhood
of Y7. In fact since Py,v = v*Sf and P is an elliptic operator with analytic
coefficients, we deduce from the Morrey-Nirenberg theorem (see e.g. [HI,
Thm. 7.5.1]) that if f = 0 near Y7, then v is analytic near {0} x Y7 hence g
is analytic near Y;. This implies that « is analytic near 3°.

Another observation is that by finite propagation speed, if gy = g near
Y1, then Usg = Usxgy near I x Y;. Therefore we can fix cutoff functions
Y e CP(I),¢ e CP(Y) with ¢ = 1 near 0, ) = 1 near ¥; and replace v by

xv for x(s,y) = ¥(s)y(y) so that
(5.4) vrxv = dg.

Step 2.
Writing z = ¢ + is motivates the following notation that we will use in the
sequel:

I'"=Tn{+t>0}, IT=1n{+s>0},
D=1xil, D¥ =] xil*, D' =71/ xil.
By Subsect. 5.1 we can write

(5.5) xv(s,y) =v'(is +0,y) — vl(is —0,y),

1

where v'/! are the restrictions to D! x Y; of

F(ey) = — 5o (), y)e
Since Pgv =4*Sf = (s) ® ho(y) + ¢'(s) ® h1(y) for hg, h1 € E'(X), we have
Pisxv = 3(s) ® ho(y) + 6'(s) ® ha(y) on I x Y1.
Using that §(s) = 5= (-2

=15 — ﬁ), this implies that
Pt = w in D' x vy,

where
1

2imz2

w(zy) = 5 ®holy) + 5 ®i(y) +7(z.),



30 ANALYTIC HADAMARD STATES AND CALDERON PROJECTORS
and r(z,y) € O(D;D'(N1)). Note that w € Cremp(DT;D'(Y1)). Let us now
set (see also Fig. 1):
uNt,y) = o+ 10, y) 0 € DI x 7).
We have
PNt y) = PNt +10,y) = w(t +10,y) in I x V7.

— -«

=

&

FIGURE 1. Relation between v, v"/! and u'/.

Since P; is hyperbolic with respect to dt, we can extend u”/' to @/! €
D'(I x Y1) which solve

P! = w(t +10,y) in I x Yz,
@/(t,y) = ull(t,y) in I/ x Vs,

where Y, € Y7 is a neighborhood of 3° in . Since w(t + 10, %) and u"/!(t, )
are boundary values of holomorphic functions from DT, we know (see for
example [Ka, Thm. 4.3.10]) that

WF, (w(t +1i0,y)) < {r = 0} over I x Y7,

WFa(ur/l(t,y)) c {7 =0} over I'/' x Y.
By propagation of singularities (see [Kw, Thm. 3.3’| or [H4, Thm. 7.1|), this
implies that

WFa(ﬂr/l(t,y)) < {7 = 0} over I x Y.
Let us denote by o = (a1,...,ap—1) or = (S1,...,n—1) the elements of
{-1,1}""' = A= B and by v = (71,...,7,—1) the elements of C = A L B,
where L1 denotes the disjoint union.

We set A, = {y € R"1 : y;v; > 0}, and I, =]0, +o0[xA,. Since the
polar cones I'], cover WEF, (/") over I x Y, we can by [Ko, Thm. 3.9] write
/" as
(5.6) i) = Y UMz +1iT40), over T x Yz,

acA
for U/' € Gremp((I x Y2) + iT'40).

Similarly we have
(5.7) ulz) = vt +i0,y) = Y. Vi +iT50) over I x Yz,

BeB
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for Vg/l € Oremp((I'" x Y3) + iT'30). By Martineau’s edge of the wedge
theorem, see [Ko, Thm. 3.9|, we can find Hg{,ly, € ﬁtemp(([r/l x Yp) +il', 4/0),

for T v = (['y + I',y)°™ such that H, , = —H, , and:
(5.8) U = S HY, on (I x Ya) +iTa0,
y'eC
(5.9) vil'== Y mY, on (I x Ya) + iT40.
y'eC
Let us set
M (z,y) = > U2,y +1840) € Oremp(DH; D' (Y2)),
acA

so that @/'(t,y) = o/}t +i0,y) by (5.6). We obtain that

7Y (z,y) = Z Hr/l (z,y +1A,0)
acA'eC

- Z Hr/l o2,y +1A,0)
B'eB,acA

= Z Hr/ o(z,y +1Ag0)
B'eB,acA

- Z Hr/1 (z,y +1Ap0)
B'eB,yeC

— v/ (z,y) in DT A D'' x V3.

In the first line we use (5.8), in the second and fourth lines we use that H., ./ =

—H.,, in the third line the fact that Hg , € Otemp (I x Ya) +iT 5 ,0) and
the property of boundary values of holomorphic functions recalled in 5.1.2,
and in last line (5.9) and (5.7).

Summarizing we have:

(5.10) @t y) = 0\t + 10, y)

(5.1) Pi*/(2,y) = w(z,y) in D* x Ya,
' Mz, y) = v/ (z,y) in (Dt A DY) x Ys.
Step 3.
We now set

(5.12) 0= — ' € Oromp(DT; D' (V2)).

From (5.5), (5.11) we obtain

P,5=0in D¥ x Ya,
(5.13) o
xv(s,y) = 0(is,y) in I x Y3.
Let

(5.14) i(t,y) = 5(t +10,y) € D'(I x ).
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From (5.13) we have Pa(t,y) = 0 in I x Yo and WF,(a) < {r = 0} over
I x Y3. By microlocal ellipticity (see [SKK, Corr. 2.1.2] or [H4, Thm. 5.1|)
this implies that WF, (1) < N over I x Ya.

Step 4.

We claim that

(5.15) pxl = g on Ys.

Note that from (5.15) and finite propagation speed one can conclude that
@ = Uxg near I x Y3 for Y3 € Ys. Since WF, (@) € N'* over I x Y5 we obtain
the proposition, by the discussion in Step 1.

Therefore it remains to check (5.15). We recall that the cutoff functions
e CE(Y), x € CL(I xY) were introduced in Step 1 and that hg =~y xv.
Since Pt = 0 in I x Y3 and {t = t¢} are non-characteristic for P; for ¢ close
to tg, we know that @ € C*(I; D'(Ya)). For ¢ € D(Y2) we set

Uy (t) = Cult,-), ¢(-))y € C*(I),
55(2) = (2, ), 9Dy € Gremp(D).
By (5.14) we have
Uy(t) = lim 0,(t + i€), in D'(I).

e—0t

Since @, € C*(I) we deduce then from [Ko, Thm. 3.6| that
ip(t) = Tim Bp(t +ic) in (D).
In particular by (5.13) we have
p(0) = lim (xo(ie, ), o()y = (g X0 9)v
which by (5.4) implies that
@(0,y) = go(y) in D' (Ya),

g0
f -
or g < o

in D’(Y3). This completes the proof of (5.15). []

>. The same argument for ;% shows that i~10;a(0,y) = g1(y)

Proposition 5.3. The state wq constructed in Thm. 4.5 is an analytic
Hadamard state.

Proof. We recall that the spacetime covariances of wq are given by:
A% = (pp 0 G) o A 0 (p5 0 G),
for \* = qo C’ér. Since the solution of the Cauchy problem

P¢ =0,
ps¢ = [

¢ =Usf=G"opsoqf,

is given by:

we obtain

AT =Us0CZF o (pso@).
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Denoting by = = (t,y) the variables in M = R x 3 we obtain that the
distribution kernel A*(z,2’) solves the equation:

P(z,0.)A*(z,2") =0in M x M,
peAF (L a")(x) = r¥(y, 2'),
where 7¥(y,2') € D'(X x M)? is the distribution kernel of (C§ o po G).
We can now repeat verbatim the arguments in the proof of Prop. 5.2,

replacing ¥ by 3 x M, the extra variable 2’ playing simply the role of a
parameter. We obtain that

WF.(AY) c NE x T* M.

Since AT is hermitian, this also implies that WF,(A%)" < T*M x N'* hence
WF,(AY)Y c NEx NE. O
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APPENDIX A

A.1l. An auxiliary lemma.
Lemma A.1. Let v € £'(Q) be equal to ds ® f or ¢, ® f with £s < 0,
feCr(X). Then
(A1) rtKi e HH(QY) n C%(0F).
Proof. Let x,x1,x2 € CX(Q) be cutoff functions with x = 1 near suppwv,
x1 = 1 near supp x and 2 = 1 near supp x1. We then have:

riKalv = ringglxv + ri(l — XQ)K(;lXU

(A.2) B _ _
= TiX2K0 1X’U + ri(l - x2)K, 1[)(1,1(()]1(0 1X’U.

By assumption, yv € H_2%(Q). By elliptic regularity KO_1 D HE(Q) —
HEH2(Q), therefore [x1, Ko]Ky 'xv € H;1(). By the definition of Kj*
via quadratic forms, we know that K, ' : H~1(Q) — H}(Q), hence

r(1 = x2) Ko ', Kol Kg 'xo € HY(QF).
On the other hand, by elliptic regularity we know that (1 — XQ)KEI[Xl, K]
is infinitely smoothing, hence

rE(1— XQ)KO_I[Xl,KO]KO_IXU e CO(Q%).

Let us now consider the first term in the second line of (A.2). By Lemma
3.3 we know that XQKO_IX = x2Qx + R_o, where Q € U-2(Q) and R_,, has
a smooth, compactly supported kernel in €2 x Q. The term

riR,oov

obviously belongs to CX(%). Next, from [Gr, Thm. 10.25] we know that
X2Qx(0s ® ) and x2Qx(d, ® -) are Poisson operators. In particular by |Gr,
Thm. 10.29], x2Qx(0s ® -) and x2Qx(8. ® -) map CX(X)? into CP(OF)
continuously. Therefore,

rEx2 Ky v € CE(QF).
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In conclusion we get (A.1). [
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