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ABSTRACT 

Purpose of review 

Mathematical modeling approaches have brought important contributions to the study of 

pathogen spread in healthcare settings over the last twenty years. Here, we conduct a 

comprehensive systematic review of mathematical models of disease transmission in 

healthcare settings and assess the application of contact and patient transfer network data over 

time and their impact on our understanding of transmission dynamics of infections.  

Recent findings 

Recently, with the increasing availability of data on the structure of inter-individual and inter-

institution networks, models incorporating this type of information have been proposed, with 

the aim of providing more realistic predictions of disease transmission in healthcare settings. 

Models incorporating realistic data on individual or facility networks often remain limited to a 

few settings and a few pathogens (mostly MRSA).  

Summary 

To respond to the objectives of creating improved infection prevention and control measures 

and better understanding of HAI transmission dynamics, further innovations in data collection 

and parameter estimation in modeling is required. 
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Hospital-acquired infections; mathematical modeling; transmission; networks; systematic 
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INTRODUCTION 

Despite advances in biology and medicine, the burden of healthcare-associated infections 

(HAIs) has increased over the last decades [1]. Indeed, HAIs are the most frequent adverse 

event in health-delivery settings affecting up to one in three patients in intensive–care units 

(ICU) in developed countries [1]. The associated costs are estimated to be seven billion euros 

in Europe, and approximately six and a half  billion dollars in the US [2-4], where 722,000 

HAIs occur yearly in acute-care hospitals, resulting in 75,000 deaths [5]. 

The HAI burden stems notably from the emergence and spread of virulent infectious agents. 

Multi-drug resistant bacteria such as methicillin-resistant Staphylococcus aureus (MRSA) and 

carbapenemase-producing Enterobacteriaceae (CPE), and viruses such as influenza, severe 

acute respiratory syndrome (SARS), Middle East respiratory syndrome coronavirus and Ebola 

have become of concern for public health authorities in most countries [1]. Prevention 

measures such as hand-hygiene, isolation, antibiotic restrictions, staff cohorting and 

surveillance may significantly impact HAI rates, decreasing in particular MRSA and 

Clostridium difficile incidence by more than 70% [5]. 

Mathematical models have provided a theoretical framework for understanding complex 

transmission dynamics within healthcare settings for over 15 years [6-9]. Furthermore, they 

provide a quantitative approach to estimating the impact of various infection control strategies 

and their combined effects [6,7,9,10].  

Over recent years, detailed data informing on the interactions between patients and healthcare 

workers (HCWs) or patient transfers within and between healthcare settings have been 

integrated in such models. Patients transfers between hospitals have been increasingly studied 

[11], as well as data on contacts between patients and healthcare workers (HCWs), in 

particular, digital trace measuring face-to-face proximity [12,13] or individual movements 

[14]. 
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Here, we conduct a systematic review of mathematical models in healthcare settings using 

such real data on networks within institutions and between institutions. We present an 

overview of the methodological specificities related to the integration of network data in the 

different modeling studies and we study how they may improve our understanding and 

predictive capacity of HAI spread in healthcare settings. 



6 
 

 
METHODS 

We conducted a systematic search in three different databases: (1) MEDLINE (1946 to 

present), (2) Web of Science Core Collection (1956 to present), and (3) Institute of Electrical 

and Electronic Engineers (IEEE) Xplore Digital Library (1893 to present). Results included 

all articles published until January 26, 2017, the final day of the search. All results from the 

search query were independently screened by two reviewers for inclusion criteria eligibility 

and selection after review of titles, abstracts, and then full texts. Query structure, inclusion 

and exclusion criteria can be found in Appendix 1 and 2. 

We defined four lists to classify our selection results: 

 L: all studies meeting our first two inclusion criteria comprising of all mechanistic 

models of pathogen transmission within healthcare settings. We use the term “HAI” in 

a generic and inclusive way to encompass multidrug resistant organisms such as 

MRSA, ESBL producers, influenza, and VRE among other pathogens. 

 L1: all studies from list L incorporating real contact data (within institutions) 

 L2: all studies from list L incorporating real transfer data (between institutions and/or 

wards) 

 L3: all studies from list L that incorporate explicit contact or transfer network structure 

in healthcare settings without real data 

All studies using real data (L1 and L2) were analyzed regarding various characteristics such as 

pathogen studied, data sources, and model parameters. We also compared L1 and L2 models 

characteristics with L models characteristics using Fisher exact and Chi2 statistical tests. 
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RESULTS  

Our search retrieved a total of 5653 distinct records from the three databases (Figure 1). After 

screening titles and abstracts, a total of 216 studies were selected for list L, including eight 

papers added through reference searching. From this list, we identified a total of 28 models 

using intra-hospital contact data (L1) [15-40,41*,42*], 26 models using inter- or intra-hospital 

transfer data (L2) [43,44**,45-58,59*,60-66,67**,68], and 22 contact or transfer network 

healthcare models without real data (L3) [69-90]. 

Publication Trends 

Publication of mathematical models of pathogen spread in healthcare settings has greatly 

increased in recent years (Figure 2) (p < 10-11, Spearman’s rank correlation). The first models 

including real network data were published in 2002 and used directly observed within-

hospital data on inter-individuals contacts [31,34]; the first model including data on inter-

facility transfers was published in 2007 [47]. From these first publications on, the number of 

yearly published L1 (p = 0.03, Spearman’s rank correlation) and L2 (p = 0.02, Spearman’s 

rank correlation) models have been increasing. Overall, since 2002, L1 and L2 models 

represent 27% of L models, with an increasing portion of L2 models (Suppl Figure 1).   

Pathogens studied and epidemic situations 

MRSA was the most studied pathogen in L1 and L2 models (44.1%) followed by: influenza 

(13.6%), vancomycin-resistant Enterococci (8.5%), HAIs in general (8.5%), C. difficile 

(5.1%) and CPE (5.1%) (Figure 3). The distribution of pathogens studied in L1 and L2 models 

did not differ significantly from that observed in all models (p = 0.09, Fisher exact test). 

In general, L1 and L2 models either simulated outbreaks of these pathogens in a susceptible population 

or assessed the impact of long-term infection prevention and control on the ongoing epidemic of 

prevalent HAIs.  
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Healthcare settings  

Out of 54 L1 and L2 models, 49 (91%) took place in acute-care settings (Table 1A). The mean 

number of healthcare settings in general included in the models was 122 [range: 1-3306], with 

a median at one of L1 and at 98 of L2 models. Ward-level description of HAI spread was 

present in 35% of publications (19/54), of which most modeled one intensive-care unit (Table 

1B). Only Karkada et al.’s study was an outlier, analyzing a total of 3306 ICUs in the US 

[58]. L1 models had a median study size of 100 patients [range: 2-3329] and 34 HCWs [range: 

1-19508]. L2 models incorporated a median of seven million transfers [range: 130,000-13 

million]. 

Data sources 

All transfer data were collected using electronic patient records such as national medical and 

surveillance registers [43,53,54], hospital discharge summaries [45,47-49,51,60,62,65], or 

insurance databases [58]. Data used to collect the contact patterns between patients and 

HCWs came from four main sources: (1) shadowing – direct observation of interactions 

between patients and HCWs –, (2) surveys, (3) medical records and (4) individual wireless 

proximity sensors recording the identity of other sensors located in a close area. Historically, 

between 2002 to 2006, shadowing was the first source of data on contact networks in 

healthcare settings(Figure 4) [20,31,32,34,37]. During the period 2007-2011, new methods of 

contact data collection appeared such as medical records [19,25,28] and surveys 

[17,18,38,40,41*]. Finally, following technology innovations, proximity sensors were 

introduced in four studies published over the period 2012-2016 [24,35,36,42*]. 

Types of models  

L1 and L2 models were mostly agent-based, rather than compartmental (43 vs. 12 models), 

and stochastic, rather than deterministic (53 vs. 4 models) [39]. These were significant 

differences with L models (p <10-5, Chi2 test). 
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Model Objectives 

L1 and L2 models all aimed at either assessing control interventions or better understanding 

HAI spread and the impact of social networks. Inclusion of data on social networks allowed 

simulating more innovative and realistic infection prevention and control strategies, including 

heterogeneous hand-hygiene compliance or cohorting levels [16,19,22,27,31,32,34,35]. Hand-

hygiene compliance was the most common intervention studied 

[20,22,27,29,31,34,35,37,39,40,41*,46,56], along with antibiotic exposure [32,33], targeted or 

screening of patient groups or universal screening of all patients at admission [48,51,57], 

isolation [26,46,57], and HCW vaccination [17-19]. Other models explored the role of 

patient-HCW interactions through variations in cohorting by modifying patient: HCW ratios 

[16,31,34], social interactions in hospitals [24,28,36], and hospital system-wide spread and 

control through patient movement [45,47-50,59*,60-66]. In addition, data on transfers within 

a healthcare network gave insights into sentinel selection for development of more effective 

sentinel surveillance systems [43,50,55,58] and supported improved coordinated regional 

control [23,45,59*,61,68]. Finally, some models explicitly assessed the underlying network 

structure of interactions through social network analyses of patient flows in hospitals 

[19,23,30,35,87,89] and between hospitals [50,53-55,58,64,65]. 

Parameter Estimations and Model Cross-Validation 

Around 17% of L1 or L2 papers included model parameter estimation using observed infection 

or colonization data, rather than simple calibration or using values from the literature. Model 

predictions were rarely cross validated with independent data-sets (eight publications overall). 

In these aspects, L1 and L2 models did not differ from L models in general. 
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DISCUSSION 

Mathematical models of infections in healthcare settings have become more frequent over the 

years. This increase may be due to multiple factors including perceived usefulness of models 

as tools for understanding the impact of infection prevention and control in the health field, 

for understanding drivers of recent major epidemics such as the 2002-2003 SARS outbreak 

[15,78,91,92] and the 2014-2015 Ebola epidemic [42*,93-95], or growing awareness of 

factors contributing to the global impact of antibiotic resistance [96]. In parallel, increased 

availability of digitalized medical records or surveys, and development of sensor technology 

to monitor inter-individual contacts provide researchers with the means to build more realistic 

models. 

Review scope and limitations 

In this systematic review, we conducted an exhaustive search of articles studying pathogen 

spread in healthcare settings through mathematical modeling. Using complementary databases 

(PubMed, Web of Science, and IEEE Xplore Digital Library) was important and necessary to 

find the articles analyzed in this review. 

However, this review was subject to some limitations. Given that the scope of this review 

involves both health sciences and computational biology, we could have included more 

databases in the computer science field. In addition, we only considered publications in 

English and French, which may have limited the variety of country settings. Statistical models 

were excluded because they did not meet the objective of the review; however, these models 

may also improve the understanding of transmission dynamics of pathogen spread in 

healthcare settings. 

Main results of the review and implications for future work 

Several points which have been raised by our review may lead to recommendations for future 

modeling work. The range of pathogens, settings, and situations explored by models based on 
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real data on networks of individuals or facilities remains to this day highly restrictive. Hence, 

the increased realism in the description of social networks is counterbalanced by the current 

limitations in the range of investigated questions.  

First, 80% of L1/L2 models were set in a four developed countries (the US, UK, the 

Netherlands and France), while L models considered a wider variety of countries (Suppl 

Figure 2). This can be explained by their use of more advanced data management 

technologies, resulting in a better availability of relevant data, as well as by the presence of a 

very active community of modelers. However, healthcare-associated infections also represent 

a major issue in developing countries, mainly due to high antimicrobial resistance levels and 

difficulties to afford second-line treatments [97]. Future work should take these settings into 

account. 

Secondly, the most studied pathogen was MRSA, followed distantly by influenza, HAIs in 

general and vancomycin-resistant enterococci. Although this was true of all models of HAI 

spread, the domination of MRSA was even stronger in models incorporating data on observed 

networks. This may be explained by the large amount of available epidemiological data on 

MRSA in healthcare settings, reflecting the historical importance of MRSA in HAIs. In 

addition, data on MRSA carriage are easily collected from nasal or other surveillance swabs, 

while other pathogens such as Enterobacteriaceae require rectal swabs, which can be more 

difficult to obtain. While MRSA has indeed represented a major threat over the last decades, 

the incidence of MRSA infections currently seems to be declining in most developed 

countries, [97] yet other multi-resistant bacteria such as ESBL-producing Enterobacteriaceae 

become more prevalent [98,99]. Future models should definitely consider a wider range of 

pathogens. 

Thirdly, the vast majority of L1 and L2 models were set in acute-care settings, with most 

ward-level descriptions taking place in ICUs. ICUs are frequently modeled because of their 
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high risk of HAIs, raised by a high number of invasive procedures in critical-state patients, 

and require well-informed recommendations regarding control interventions. Consequently, 

research funding in ICUs is more prevalent and both data collection and implementation of 

control interventions are facilitated by better informed ICU HCWs compared to other wards. 

However, HAIs are also an issue in other types of hospital wards, in which lower HCW-to-

patient ratios and decreased risk awareness may lead to HAI outbreaks. On the health 

systems-level, the majority of L2 models described networks of hospitals linked by their 

shared patients; only a few recreated transfer networks between the wards of a given hospital 

in order to study how the impact of infection prevention and control interventions may vary 

depending on hospital ward specialties [46,51]. Intra-hospital spread has been shown to be 

one of the major reasons for transmission of SARS in Toronto, Canada, and Taiwan and 

MERS-CoV in Alhasa, Saudi Arabia, and Korea.[100-102] Future research should attempt to 

include ward-level modeling as it provides more specific and realistic patients and HCW 

interactions that are overlooked when modeling at the hospital level, and take into account 

wards other than ICUs.  

Additionally, models of HAI spread in settings outside acute-care should be developed. For 

instance, the importance of nursing homes in the overall spread of HAIs has been underlined. 

Factors such as long length-of-stay of nursing home residents have been shown to play an 

important role in both driving sustained endemics of infections and increasing the risk of 

epidemics in entire healthcare networks [44,60,63]. Similarly, the impact of transmission in 

[28] or readmission from [47] community settings on HAI transmission in healthcare settings 

is rarely assessed among models using real data. Research should focus on modeling nursing 

home and community settings with collected data to better understand the complexity of 

interactions within healthcare networks and their impact on transmission dynamics in 

healthcare settings. 
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Another important issue is the inclusion of observed colonization or infection data in 

modeling works to calibrate or validate model predictions. Although models incorporating 

data on inter-individual contacts or patient transfers are more likely to have access to patient 

medical records or disease status from healthcare workers, parameter estimation and model 

validation using colonization or infection data remains rare overall. A major objective of 

future research should be to include observed infection or carriage data collected 

simultaneously with the network data, among the same individuals. Another benefit of 

simultaneously collecting contact or transfer data and infection data would be the possibility 

of assessing the pertinence of network data to help predict HAI spread. Indeed, while most 

published models using network data implicitly assume that inter-individual contact and/or 

inter-facility patient transfer networks drive HAI spread, other factors may impact pathogen 

diffusion in healthcare settings. Depending on the involved pathogen, environmental 

contamination for instance may play a major part. It is therefore of the utmost importance to 

further investigate what portion of the pathogen-specific diffusion risk may be explained by 

network data [24]. 

Conclusion 

Our review assessed the use of contact and transfer network data in models over time and its 

impact on understanding infection transmission dynamics in healthcare settings. Models 

incorporating such data were limited to a small number of countries, settings, and pathogens, 

while there is a steady emergence of network graphs to study the contact and structure of 

patient movement and interactions with HCWs. These models give new insights into more 

effective HAI prevention and control strategies in both endemic and epidemic situations. 

Further innovations in data collection and use in modeling are required to improve 

understanding of transmission dynamics to reinforce existing recommendations and evaluate 

new control strategies. 
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Key Points 

 Mathematical models of infections in healthcare settings have become more frequent 

over the years 

 Increasing trends of models based on real data on networks of individuals or facilities 

are due to perceived usefulness as tools for infection prevention and control, increased 

availability of digitalized medical records or surveys, and development of sensor 

technology  

 The range of pathogens, settings, and situations explored by these models remains to 

this day highly restrictive which may reflect limited data availability, historical 

importance of certain infections (i.e. MRSA), and high-risk HAI settings that require 

more intensive HCW training and precautions (i.e. ICUs) 

 The main contributions of models in terms of using real data on networks are to 

develop more innovative and realistic HAI control strategies and to better 

understanding the impact of social networks on HAI spread  

Definitions 

 Compartmental model: a model where a population is sub-divided into groups 

corresponding to a status. For example, the SIR model is a basic compartmental model 

composed of three groups of people with the following status: susceptible, infected 

and recovered. Each compartment contains a certain number of people from the 

population presenting the status. 

 Agent-based model: rather than grouping people in a compartment in terms of their 

status, the agent-based model studies each individual separately. These models 

commonly study the connections between individuals (patients and/or HCWs) with 
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each other in terms of a shared environment (ward, room) or through their contacts 

(direct, indirect). 

 Deterministic model: a model in which the output is fully determined by the initial 

conditions and parameter values (usually a compartmental model formulated using 

differential equations) 

 Stochastic model: a model including inherent randomness, in which, for a given set of 

initial conditions and parameter values, an output distribution is provided to account 

for uncertainty in predictions (often used for small populations in which random 

fluctuations are important) 

 Social network: a network with components and links, and within the scope of our 

review, they are either contact networks of healthcare workers (nurses, physicians, 

etc.) and patients or of hospitals that are linked by their patient transfers.  

 Social network analysis: in the case of our review, it is the assessment of the contacts 

or healthcare system structures which can help identify “super-spreaders” that are 

highly linked and have the most potential to spread disease in the network 
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FIGURE LEGENDS 

 

Figure 1. PRISMA diagram reviewing literature sources for mathematical models that 

examined the transmission dynamics in healthcare settings.  
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Figure 2. Number of mathematical models of HAI spread in healthcare settings 

published over time. The total of all models published (L, in red), those using real contact 

data (L1, in green), those using real transfer data (L2, in purple), and those focusing on the 

impact of social networks without real data (L3, in blue) are depicted.  
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Figure 3. Pathogens modeled in models using real contact (L1) or transfer data (L2).  
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Figure 4. Contact data collection sources in models using real contact data (L1): changes 

over time. 

Supplementary Figure 1. Proportion of mathematical models of HAI spread in 

healthcare settings that include real network data published over time. The proportion of 

the total number of published models represented by those using real contact data (L1, in 

green), those using real transfer data (L2, in purple), and those focusing on the impact of 

social networks without real data (L3, in blue) is depicted for four time periods: 2001-04, 

2005-08, 2009-12, and 2013-16. 

Supplementary Figure 2. Country of study of the models using real contact (L1) or transfer 

data (L2). 

 

 

 


