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Abstract:
This paper presents an actuator fault compensation approach for a class of Linear Parameter-Varying
(LPV) systems with noisy measurements. The proposed method is based on interval estimation assuming
that the fault vector and the external disturbances are unknown but bounded. The main idea consists
in designing a control law, based on a linear state feedback, to guarantee closed-loop stability. An
additive control, based on fault bounds, is used to compensate the impact of actuator faults on system
performances. The closed-loop stability of the robust fault compensation scheme is established in the
Lyapunov sense. Finally, the theoretical results are illustrated using a numerical example.
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1. INTRODUCTION

As the performance requirement, safety and reliability increase,
industrial systems can be affected by unexpected events and
even catastrophic disaster. Since actuator, sensor or component
failures can cause performance degradation and loss of stability,
it is important to design a control system to avoid damage and
reduce faults effect.

The area of Fault Tolerant Control (FTC) has attracted more and
more attention in the past decades. The objective of FTC is to
maintain desired performances and preserve stability conditions
in presence of faults. An interesting review on the FTC is
presented for instance in (Zhang and Jiang [2008]) and (Blanke
[1999]). In practical applications, many FTC methodologies
have been developed and applied to aircraft (Alwi et al. [2009]),
(Jiang and Zhang [2006]), space vehicles (Pirmoradi et al.
[2009]), (Varma and Kumar [2010]), power plants (Noura et al.
[2000]), (Ye et al. [2001]) and wind turbines (Sloth et al.
[2010]).

Generally speaking, FTC techniques are divided into Passive
and Active methods. Passive ones are based on robust control
techniques which handle only a class of predefined faults using
the same controller in faulty-free and faulty cases without re-
quiring information about the faults. In contrast to Passive FTC,
the Active ones require a Fault Detection and Diagnosis (FDD)
scheme to provide information about the fault and a reconfig-
uration mechanism in order to design a control law to achieve
stability and acceptable closed-loop system performance.

Various approaches of Active FTC methods are devoted to the
reconfiguration problem such as: output feedback (Mhaskar
et al. [2006]), fuzzy logic systems (Zhang et al. [2005]), eigen-
structure assignment (Jiang [1994]), neural networks (Zhang

et al. [2004]), multiple-model tracking (Zhang and Jiang
[2001]), compensation via additive input design (Efimov et al.
[2011]), (Dunia and Joe Qin [1998]), adaptive control (Diao and
Passino [2001]) and pseudo-inverse method (Bao et al. [2002]).

Industrial systems are usually affected by uncertainties, noises
and disturbances. Conventional observers may not be efficient
to solve the estimation problem. Therefore, interval observers,
used to compute the set of all admissible values instead of a
single point approximation, can be considered as an alternative.
An interval observer is composed of two classical ones allowing
one to compute two bounds which enclose in a guaranteed way
all the feasible states. Recently, several approaches are devel-
oped dealing with interval observers based on the assumption
that the noise, disturbance, and uncertainties are assumed to
be unknown but belongs to a given bounded sets (Raı̈ssi et al.
[2010]), (Mazenc and Bernard [2011]), (Efimov et al. [2013]),
(Chebotarev et al. [2015]) and (Lamouchi et al. [2016]).

In this paper, an Active FTC of Linear Parameter-Varying
systems against actuator faults is studied. The main idea is
designing the robust compensation controller based on inter-
val observer estimation to guarantee closed-loop stability and
compensate the faults effect. Only the control design scheme is
considered in this paper assuming that the FDD is implemented
and all the informations of faults are known.

The paper is organized as follows. Preliminaries are described
in Section 2. Section 3 presents the problem formulation. The
design of interval observer for LPV systems are developed
in Section 4. Section 5 is devoted to Fault compensation and
stability analysis. To show the effectiveness of the proposed
approach, numerical simulations are presented in Section 6.
Finally, the conclusions are drawn in Section 7.



2. PRELIMINARIES

In the sequel, the following notations and definitions are used.

The symbol |.| denotes vector or corresponding induced ma-
trix Euclidean norm. For a measurable and locally essentially
bounded input u : N→R, the symbol ‖u‖[t0,t1) denotes its L∞-
norm ‖u‖[t0,t1) = sup{|ut |, t ∈ [t0, t1)},‖u‖= ‖u‖[0,+∞). The set
of all inputs u with the property ‖u‖ < ∞ is denoted by L∞.
For a matrix P = PT , the relation P ≻ 0 means that P is positive
definite. I and Ep denote respectively the (n×n) identity matrix
and the (p× 1) ones matrix. Given a matrix A ∈ R

m×n, define
A+ = max{0,A}, A− = max{0,−A} (similarly for vectors). A
matrix A ∈ R

n×n is called nonnegative if all its elements are
nonnegative.
A discrete-time dynamical system xk+1 = f (xk) is nonnegative
if for any integer k0 and any initial condition xk0 ≥ 0, the
solution x satisfies xk ≥ 0 for all integers k ≥ k0.

A system described by
xk+1 = Axk + uk,

with xk ∈ R
n and A ∈ R

n×n, is nonnegative if and only if the
matrix A is elementwise nonnegative, uk ≥ 0 and xk0 ≥ 0. In
this case the system is also called cooperative.
Lemma 1. Chebotarev et al. [2013]

Let x,x,x ∈ R
n if x ≤ x ≤ x then,
x+ ≤ x+ ≤ x+ and x− ≤ x− ≤ x− (1)

Similarly, let A,A,A ∈ R
m×n, if A ≤ A ≤ A then

A+ ≤ A+ ≤ A
+

and A
−
≤ A− ≤ A− (2)

✷

Lemma 2. Chebotarev et al. [2013]
Let x ∈ R

n be a vector such that x ≤ x ≤ x for some x,x ∈ R
n.

(1) If A ∈R
m×n is a constant matrix, then

A+x−A−x 6 Ax 6 A+x−A−x (3)
(2) If A ∈ R

m×n is a matrix satisfying A ≤ A ≤ A for some
A,A ∈R

m×n, then

A+x+ − A
+

x−−A−x++A
−

x− ≤ Ax

≤ A
+

x+−A+x−−A
−

x++A−x−. (4)

✷

3. PROBLEM FORMULATION

Consider a discrete-time LPV system:
{

xk+1 = (A+∆A(ρ))xk +Buk +wk

yk =Cxk + vk
(5)

where xk ∈ R
n is the state, uk ∈ R

q is the input, yk ∈ R
p is

the output; wk, vk are respectively the bounded disturbance
and noise. The vector of scheduling parameters ρ ∈ Π is
considered unknown and only the set of its admissible values
Π is given. ∆A : Π → R

n×n is a known piecewise continuous
matrix function.

An actuator fault can be modeled by an additive term in the
system (5). Therefore, the faulty system dynamics is given by:

{

xk+1 = (A+∆A(ρ))xk +Buk +F fk +wk

yk =Cxk + vk
(6)

where F ∈ R
n×q is a known matrix and fk ∈ R

q is the fault
vector. In the following, it is assumed that the matrix ∆A(ρ)
belongs to the interval [∆A,∆A]. The value of the scheduling
vector ρ is not available for measurement but it is easy to
compute ∆A and ∆A for a given set Π and a known function ∆A :
Π →R

n×n. The fault vector fk belongs into an interval [ f
k
, f k].

The disturbances wk are bounded by two known sequences
wk 6 wk 6 wk and the measurement noise vk is bounded by a
positive constant V .

Assumption 1. ∆A 6 ∆A(ρ) 6 ∆A for all ρ ∈ Π and some
known ∆A,∆A ∈ R

n×n. ✷

Assumption 2. f
k
6 fk 6 fk, ∀ fk ∈ R

q. ✷

Assumption 3. There exist wk , wk and V such that: wk 6 wk 6

wk and |vk|<V are satisfied ∀ k ∈ N. ✷.

The goal of this paper is to compute a control law using interval
observer in order to compensate the fault effect and to maintain
the required performances despite the appearance of actuator
faults and external disturbances.

Figure 1 shows a general schematic diagram for the proposed
approach. The Diagnosis module is composed of three main
sub-modules: fault detection consists to indicate whether a
fault has occurred or not, fault isolation is used to determine
the location of a fault in the system and fault estimation,
consists to estimate precisely the size and nature of a fault.
The Interval observer allows to estimate the upper and lower
bounds of the system state taking into account the presence of
fault in the system. Finally, a control law computation, based
on reconfiguration mechanism, consists in changing the control
action in order to compensate the fault effect on the system.

uk yk

fk

x
x

Interval
Observer

Control

Law

Computation

System

Diagnosis

Fig. 1. Active compensation under feedback control based on
interval observers.

It should be stressed that the Diagnosis module is not con-
sidered in this paper and only the control law computation is
considered assuming that the fault information is available.

4. INTERVAL OBSERVERS

Consider the following interval observer structure for (6):


















xk+1 = (A−LC)xk + χk +Buk +ϕk +wk

+Lyk + |L|VEp

xk+1 = (A−LC)xk + χ
k
+Buk +ϕ

k
+wk

+Lyk −|L|VEp

(7)



with χk =∆A
+

x+k −∆A+x−k −∆A
−

x+k +∆A−x−k , χ
k
= ∆A+x+k −

∆A
+

x−k − ∆A−x+k + ∆A
−

x−k , ϕk = F+ f k − F− f
k

and ϕ
k
=

F+ f
k
−F− f k.

Denote by ek = xk − xk and ek = xk − xk the interval estimation
errors; their dynamics follow:

{

ek+1 = (A−LC)ek +ψk

ek+1 = (A−LC)ek +ψ
k

(8)

with ψk = χk −∆A(ρ)xk +ϕk −F fk +wk −wk + |L|VEp+Lvk

and ψ
k
= ∆A(ρ)xk −χ

k
+F fk −ϕ

k
+wk −wk + |L|VEp −Lvk.

Clearly, ψk and ψ
k

are globally Lipschitz, it follows that for
xk ≤ xk ≤ xk and for a chosen submultiplicative norm ‖.‖, there
exist positive constants a1,a2,a3,b1,b2 and b3 such that (Zheng
et al. [2016]):

{

‖ψk‖6 a1‖xk − xk‖+ a2‖xk − xk‖+ a3
∥

∥

∥
ψ

k

∥

∥

∥
6 b1 ‖xk − xk‖+ b2‖xk − xk‖+ b3

(9)

Theorem 1. Assume that Assumptions 1-3 are satisfied, A−LC
is nonnegative and the initial state x0 verifies x0 ≤ x0 ≤ x0. If
there exist positive definite and symmetric matrices Q,P and W
such that the following Riccati matrix inequality is verified:

DT PD−P+DT PW−1PD+α(‖W +P‖)I+Q ≤ 0 (10)

where D = A− LC and α = 3max((a1
2 + b1

2),(a2
2 + b2

2)),
then xk,xk ∈ L

n
∞ .

Proof. According to Lemma 2 and Assumption 1, we have for
xk ∈ R

n:

∆A+x+k −∆A
+

x−k −∆A−x+k +∆A
−

x−k 6 ∆A(ρ)xk 6 (11)

∆A
+

x+k −∆A+x−k −∆A
−

x+k +∆A−x−k

According to Lemma 2 and Assumption 2, we have for any
fk ∈R

q:

F+ f
k
−F− f k 6 F fk 6 F+ f k −F− f

k
(12)

Since A−LC is assumed to be nonnegative, and by construction
ψk and ψ

k
are positive, then if x0 and x0 are chosen such that e0

and e0 are positive, the dynamics of interval estimation errors
ek and ek stay positive for all k ∈ N.

Let’s show now that the variables xk,xk stay bounded ∀k ∈ N.
Consider the positive definite quadratic Lyapunov function

V (ek,ek) = ek
T Pek + ek

T Pek (13)

The increment of ∆V is given by:

∆V =Vk+1 −Vk

= eT
k (D

T PD−P)ek + 2eT
k DT Pψk +ψT

k Pψk

+ eT
k (D

T PD−P)ek + 2eT
k DT Pψ

k
+ψT

k
Pψ

k

Furthermore, from (Zheng et al. [2016]), we have the following
inequalities:

2eT
k DT Pψk = 2eT

k DT PW−0.5W 0.5ψk

≤ eT
k DT PW−1PDek +ψT

k Wψk

2eT
k DT Pψ

k
= 2eT

k DT PW−0.5W 0.5ψ
k

≤ eT
k DT PW−1PDek +ψT

k
Wψ

k

This leads to:

∆V ≤ eT
k (D

T PD−P+DT PW−1PD)ek + eT
k (D

T PD−P

+ DT PW−1PD)ek +ψT
k (W +P)ψk +ψT

k
(W +P)ψ

k

≤ eT
k (D

T PD−P+DT PW−1PD)ek + eT
k (D

T PD−P

+ DT PW−1PD)ek + 3‖W +P‖(a2
1‖ek‖

2 + a2
2‖ek‖

2 + a2
3)

+ 3‖W +P‖(b2
1 ‖ek‖

2 + b2
2‖ek‖

2 + b2
3)

≤ eT
k (D

T PD−P+DT PW−1PD)ek + eT
k (D

T PD−P

+ DT PW−1PD)ek +α ‖W +P‖eT
k ek +α ‖W +P‖eT

k ek

+ 3‖W +P‖(a2
3 + b2

3)

≤ eT
k (D

T PD−P+DT PW−1PD+α ‖W +P‖ I)ek

+ eT
k (D

T PD−P+DT PW−1PD+α ‖W +P‖ I)ek

+ 3‖W +P‖(a2
3 + b2

3)

≤−eT
k QeT

k − eT
k QeT

k + 3‖W +P‖(a2
3 + b2

3).

By using (10) we get ∆V ≤ −eT
k QeT

k − eT
k QeT

k + β with β =

3‖W +P‖(a2
3 + b2

3) which provides the boundedness of the
dynamics of estimation errors ek,ek, therefore the variables
xk,xk stay bounded ∀k ∈ N. ✷

Since it is not always possible to compute a gain L such as
A−LC is nonnegative. This restriction can be relaxed through
a change of coordinates zk = Rxk with a nonsingular matrix
R such that the matrix E = R(A− LC)S is nonnegative where
S = R−1.(Mazenc et al. [2013], Efimov et al. [2013]).

An interval observer for the system (6) can be written in the
new coordinates z as follows:

{

zk+1 = Ezk + χz
k +RBuk +ϕz

k +ρz
k +RLyk + |F |VEp

zk+1 = Ezk + χz
k
+RBuk +ϕz

k
+ρz

k
+RLyk −|F |VEp

(14)

where χz
k = (σ+z+k −σ+z−k −σ−z+k +σ−z−k ), χ z

k
= (σ+z+k −

σ+z−k −σ−z+k +σ−z−k ), σ = S+(R+∆A−R−∆A)−S−(R+∆A−

R−∆A),σ = S+(R+∆A− R−∆A)− S−(R+∆A − R−∆A), ϕz
k
=

R+(F+ fk − F− fk) − R−(F+ fk − F− fk), ϕz
k = R+(F+ fk −

F− fk)−R−(F+ fk−F− fk),ρz
k
=R+wk−R−wk, ρz

k =R+wk−

R−wk, F = RL.

Theorem 2. Given a nonsingular matrix R such that E = R(A−
LC)S is nonnegative. The initial state z0 verifies z0 ≤ z0 ≤ z0. If
there exist positive definite and symmetric matrices Q,P and W
such that the following Riccati matrix inequality is verified

ET PE −P+ET PW−1PE +αz(‖W +P‖)I+Q ≤ 0 (15)

where E = R(A − LC)S and αz = 3 max((c1
2 + d1

2),(c2
2 +

d2
2)), then zk,zk ∈ L n

∞. ✷

Proof. The proof is similar to that of Theorem 1 . ✷



5. FAULT COMPENSATION AND STABILITY ANALYSIS

5.1 Fault Compensation

This section presents the design of an observer-based control
law, which can compensate the faults effect and stabilize the
systems (6). Since the interval observer (7) is composed of two
classical ones, an alternative control law can be computed by
using the lower and the upper bound (xk,xk).

The nominal control law is chosen as a state linear feedback:

un,k =−K
(xk + xk)

2
(16)

where K is a feedback gain.

Then, replacing the nominal control law (16) in the system
equations leads to the following closed-loop representation:

{

xk+1 = (A+∆A(ρ))xk +Bun,k +F fk +wk

yk =Cxk + vk
(17)

We propose in this paper to compute a new control law uk,ad
to be added to the nominal control law in order to compensate
the fault effect on the system. Therefore, the total control law
applied to the system is given by:

uk = un,k + uad,k (18)
Hence, the closed-loop state equation becomes:

{

xk+1 = (A+∆A(ρ))xk +Bun,k +Buad,k +F fk +wk

yk =Cxk + vk
(19)

The additional control law uad,k must be computed to make
the faulty system behavior as close as possible to the nominal
system one. In other terms, uad,k should satisfy:

F fk +Buad,k ≈ 0 (20)

Using the upper and the lower bounds of the fault described in
the previous section, the solution of (20) can be obtained by the
following relation if matrix B is of full row rank:

uad,k =−B∗F
f

k
+ f k

2
(21)

where B∗ is the pseudo-inverse of matrix B.

The fault magnitude is not exactly computed, the compensation
is only partially performed.

5.2 Stability analysis

In the presence of additive actuator fault, the closed loop system
is defined by:






xk+1 = (A+∆A(ρ))xk −
BK
2

(xk + xk)+F fk +Buad,k+wk

yk =Cxk + vk

(22)

The interval observer for the system (22) is defined as follows:










xk+1 = (A−LC−
BK
2

)xk −
BK
2

xk + χk + δ k

xk+1 = (A−LC−
BK
2

)xk −
BK
2

xk + χ
k
+ δ k

(23)

with δ k = ϕk −
1
2 F( f k + f

k
) + wk + Lyk + |L|VEp and δ k =

ϕ
k
− 1

2 F( f k + f
k
)+wk +Lyk −|L|VEp.

Theorem 3. Assume that Assumptions 1-3 are satisfied. The
initial state x0 verifies x0 ≤ x0 ≤ x0. Let

uk = un,k + uad,k (24)

If there exist matrices P∈R
2n×2n,P = PT ≻ 0,Q∈R

2n×2n,Q =
QT ≻ 0 and W ∈ R

2n×2n,W = W T ≻ 0 such that following
matrix inequality is verified:

Φ =





GT PG−P+Q GT P GT P
PG P P
PG P P−W



� 0,

with

G =







A−LC−
BK
2

−
BK
2

−
BK
2

A−LC−
BK
2






,

Then xk,xk and xk ∈ L ∞
n . ✷

Proof.

For the stability analysis, we introduce the auxiliary system

ξk+1 = Gξk + χk + δk (25)

where ξk =

[

xk

xk

]

, χk =

[χ
k

χk

]

, δk =

[

δ k

δ k

]

To establish the asymptotic stability of the system (25), con-
sider the positive definite quadratic Lyapunov function:

Vk = ξk
T Pξk (26)

The increment of ∆V is given by:

∆V =Vk+1 −Vk

= ξ T
k GT PGξk − ξ T

k Pξk + ξ T
k GT Pχk + χT

k PGξk

+ χT
k Pχk + 2ξ T

k GT Pδk + 2δk
T Pχk + δk

T Pδk

= ξ T
k (GT PG−P)ξk + ξ T

k GT Pχk + χT
k PGξk

+ χT
k Pχk + 2ξ T

k GT Pδk + 2δk
T Pχk + δk

T (P−W)δk

+ ξ T
k Qξk − ξ T

k Qξk + δk
TWδk

=







ξk

χk

δk







T

Φ







ξk

χk

δk






− ξ T

k Qξk + δk
TWδk

Then xk and xk stay bounded for all uk ∈ R
q, k ∈ N, which

implies the same property for xk.

6. SIMULATIONS RESULTS

Consider the discrete-time LPV system subject to an additive
actuator fault:

{

xk+1 = (A+∆A(ρ))xk +Buk +F fk +wk,

yk =Cxk + vk,
(27)

A =





1.1 − 0.1 0.35
0.9 0.2 − 0.2
0.85 − 0.2 0.25



 ,B =





1
−1

0



 ,C =





1
0
0





T

For simulation we selected:

∆A(ρ) =





0.01sin(k) 0 0
0 0.02sin(k) 0
0 0 0.05cos(k)



,



∆A = −∆A =





0.01 0 0
0 0.02 0
0 0 0.05



 ,wk = [0 0.01sin(k) 0]T ,

wk =−wk = [0 0.01 0]T , vk = 0.01 cos(k) and V = 0.01.

An actuator time-varying fault signal is set up as:

fk =

{

0 i f k < 400
sin(0.01 k) i f k > 400

where F = [0 0.05 0]T , and it is assumed that the diagnosis
module deliver an uncertain estimation of fksuch that f

k
≤ fk ≤

f k with f
k
= 0.95 sin(0.01 k) and f k = 1.05 sin(0.01 k).

For L = [0.9 1.1 0.5]T , the matrix A−LC is not nonnegative.
Thus, a transformation of coordinates,

S =





−0.058 0.997 − 0.052
0.134 − 0.044 − 0.99
0.989 0.064 0.131



 is used such that E = R(A−

LC)S, is nonnegative. Consequently, the dynamic extension
(14) is an interval observer for the system (27) when in closed-
loop with uk = un,k + uad,k in the coordinates x with K =

[0.9365 − 0.3135 1.0157] and uad,k =−B∗F
f k+ f

k
2 .

The faulty case is considered in the simulations, that is, be-
fore 400s, the system operates in normal regime. At 400s, an
additive fault occurs in the actuator. Assuming that the fault
information is given, the fault compensation is applied at 600s.

The results of simulations are given in Fig.2, Fig.3, Fig.4, Fig.5
and Fig.6.
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Fig. 2. Evolution of the first component x1.

Fig.2, Fig.3 and Fig.4 present the evolution of the system states.
Fig.5 gives a zoom of the second component x2. Fig.6 present
the error bounds evolution in the faulty and faulty-free cases.
These figures allow to compare the system responses to the
faults without and with compensation. The results of using the
proposed control law show that the fault effect is handled and
the robustness of the closed-loop FTC system are guaranteed in
the presence of additive actuator faults and even with external
disturbances.
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Fig. 3. Evolution of the second component x2.
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Fig. 5. Zoom on the second component x2.
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Fig. 6. Evolution of the upper and lower bounds of the error
with compensation.

7. CONCLUSION

A methodology for actuator fault compensation for discrete-
time LPV systems has been proposed in this paper. The actuator
fault is considered as additive term, and the control is designed
based on an interval observer so that the closed-loop system
is robust against faults as well as the exogenous disturbances.
Simulation results show the robustness and effectiveness of the
proposed approach.

The design of fault identification module and the interaction
analysis with Fault Tolerant Control module will be investi-
gated in further works.
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