
HAL Id: hal-01548855
https://hal.science/hal-01548855v1

Submitted on 26 Nov 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Copyright

Interactive Mapping Specification with Exemplar Tuples
Angela Bonifati, Ugo Comignani, Emmanuel Coquery, Romuald Thion

To cite this version:
Angela Bonifati, Ugo Comignani, Emmanuel Coquery, Romuald Thion. Interactive Mapping Speci-
fication with Exemplar Tuples. ACM International Conference on Management of Data (SIGMOD
2017), May 2017, Chicago, IL, United States. pp.667-682, �10.1145/3035918.3064028�. �hal-01548855�

https://hal.science/hal-01548855v1
https://hal.archives-ouvertes.fr

Interactive Mapping Specification with Exemplar Tuples ∗

Angela Bonifati Ugo Comignani Emmanuel Coquery Romuald Thion

University Lyon 1 & CNRS Liris
firstname.lastname@univ-lyon1.fr

ABSTRACT
While schema mapping specification is a cumbersome task
for data curation specialists, it becomes unfeasible for non-
expert users, who are unacquainted with the semantics and
languages of the involved transformations.

In this paper, we present an interactive framework for
schema mapping specification suited for non-expert users.
The underlying key intuition is to leverage a few exemplar
tuples to infer the underlying mappings and iterate the in-
ference process via simple user interactions under the form
of boolean queries on the validity of the initial exemplar
tuples. The approaches available so far are mainly assum-
ing pairs of complete universal data examples, which can be
solely provided by data curation experts, or are limited to
poorly expressive mappings.

We present several exploration strategies of the space of
all possible mappings that satisfy arbitrary user exemplar
tuples. Along the exploration, we challenge the user to re-
tain the mappings that fit the user’s requirements at best
and to dynamically prune the exploration space, thus reduc-
ing the number of user interactions. We prove that after the
refinement process, the obtained mappings are correct. We
present an extensive experimental analysis devoted to mea-
sure the feasibility of our interactive mapping strategies and
the inherent quality of the obtained mappings.

1. INTRODUCTION
Schema mappings [17] are declarative specifications, typ-

ically in first-order logic, of the semantic relationship be-
tween elements of a source schema and a target schema.
They constitute key data programmability primitives, lead-
ing database users to be empowered with programming fa-
cilities on top of large shared databases. Mappings are usu-
ally specified and tested in enterprise IT and several other

∗Corresponding author: Ugo Comignani. The research lead-
ing to these results has received funding from the ANR un-
der the DataCert grant (ANR-15-CE39-0009) and the Palse
Impulsion grant.

.

domains by data architects, also known as developers of en-
gineered mappings [12]. Several paradigms have been pro-
posed to aid data architects to specify engineered mappings.
The first paradigm relies on visual specification of mappings
using user-friendly graphical interfaces, as in several map-
ping designers [27, 11]. Such graphical tools help the data
architects design a mapping between schemas in a high-level
notation. A major drawback of these approaches is that the
generation of mappings in a programming language or in a
query language from graphical primitives is dependent of the
specific tool. As a consequence, the same graphical specifi-
cation might be translated into different and incomparable
declarative mappings by two different tools, leading to in-
consistencies. In order to tackle such impedance mismatch,
model management operators have been proposed in [12]
to provide a general-purpose mapping designer that can be
adapted to a wide variety of tools for data programmability.
Model management, however, is also suited for expert users.
The third paradigm is to generate the desired mappings from
representative data examples [5, 6, 22], i.e., a pair of source
and target instances, provided by the expert user. How-
ever, such data examples are assumed to be solutions of the
mapping at hand and representative of all other solutions.
Notwithstanding the progress made in mapping specifica-
tion thanks to the aforementioned approaches, all the above
paradigms have in common the fact that they are intended
for expert users. Such users are typically acquainted with
mapping specification tools and possess complete knowledge
of the mapping domains, the formal semantics of mappings
and their solution. Ultimately, they are capable of formu-
lating queries or writing customized code.

As also observed in [12], at the other end of the spectrum
lies end-users, who find relationships between data and build
mapping examples as they go, as in mining heterogeneous
data sources, web search, scientific and personal data man-
agement. More and more ordinary users are in fact con-
fronted on a daily basis with user-driven data exploration
scenarios, such as those exposed by dataspaces [18]. As a
consequence, the problem of mapping specification for such
classes of users is even more compelling.

To tackle the above problem, in this paper we set forth a
novel approach for Interactive Mapping Specification (IMS)
that bootstraps with exemplar tuples, corresponding to a
limited number of tuples provided by non-expert users. Such
tuples are employed to challenge the user with simple boolean
questions, which are intended to drive the inference process
of the mapping that the user has in mind and that is un-
known beforehand.

(i) Source instance ES : (ii) Canonical mapping: (iii) Target instance ET :

T (Travel):
IdOutwardFlight IdReturnFlight IdAgency

f0 f1 a0

TA (TravelAgency):
IdAgency Name Town

a0 TC L.A.

A (Airline):
IdAirline Name Town

a1 AF L.A.

F (Flight):
IdFlight From To IdAirline

f0 Miami L.A. a1

f1 L.A. Miami a1

T (idF0, idF1, idAg) ∧ TA(idAg, name, t)

∧ F (idF0, t
′, t, idAir) ∧ F (idF1, t, t

′, idAir)

∧A(idAir,name′, t)

→

∃idC0, idC1, idC2, idC3, idC4,Co(idC0,name, t)

∧Dpt(t′, idF0, idC1) ∧ Co(idC1, name′, t)

∧Arr(t, idF0, idC2) ∧ Co(idC2, name′, t)

∧Dpt(t, idF1, idC3) ∧ Co(idC3, name′, t)

∧Arr(t′, idF1, idC4) ∧ Co(idC4,name′, t)

Dpt (Departure):
Town IdFlight IdCompany
Miami f0 P1

L.A. f1 P2

Arr (Arrival):
Town IdFlight IdCompany
L.A. f0 P3

Miami f1 P4

Co (Company):
IdCompany Name Town

P0 TC L.A.
P1 AF L.A.
P2 AF L.A.
P3 AF L.A.
P4 AF L.A.

(iv) Final mapping after refinement:

Σfinal = {TA(idAg, name, t)→ ∃idC0,Co(idC0, name, t);

F (idF0, t
′, t1, idAir) ∧A(idAir, name′, t2)→ ∃idC1,Dpt(t′, idF0, idC1) ∧ Co(idC1,name′, t2);

F (idF0, t
′, t1, idAir) ∧A(idAir, name′, t2)→ ∃idC2,Arr(t1, idF0, idC2) ∧ Co(idC2, name′, t2)}

Figure 1: Running example: exemplar tuples (ES , ET) (i) and (iii), resp.; Canonical mapping (ii) and Final mapping (iv).

(IMS) Given exemplar tuples as an input pair (ES , ET) pro-
vided by a non-expert user and a mapping M that the user
has in mind, the Interactive Mapping Specification problem
is to discover, by means of boolean interactions, a mapping
M′ such that (ES , ET) satisfy M′ and M′ generalizes M.

Notice that the user-provided exemplar tuples may turn to
be not well chosen or even ambiguous with respect to the
mappingM that the user has in mind. Moreover, exemplar
tuples are not supposed to be solutions nor universal solu-
tions of the mapping that needs to be inferred. Whereas a
wealth of research on schema mapping understanding and re-
finement has been conducted in databases [31, 15, 5, 19, 20]
since the pioneering work of Clio [25], these approaches as-
sume more sophisticated input (such as an initial mapping to
refine and the schemas and schema constraints) and/or more
complex user interactions. Although exemplar tuples remi-
nisce data examples [6], they are fundamentally different in
that they are not meant to be universal. Furthermore, the
mappings we consider in this paper are unrestricted GLAV
mappings. We present a detailed comparison with previous
work in Section 5, and a comparative analysis with [7] in
Section 4.

Query specification has been recognized as challenging for
non-expert users and more time-consuming than executing
the query itself [23]. We argue that mapping specification is
even more arduous for such users, merely because mappings
embody semantic relationships between inherently complex
queries. Despite many recent efforts on query specification
for non-expert users [2, 1, 24, 16, 13], these works are not ap-
plicable to mapping specification for non-expert users, which
we address in this paper (for more details, we refer the reader
to Section 5).

Figure 1 illustrates our running scenario, where a non-
expert user needs to establish a mapping between two databases
exhibiting travel information. The source database schema
is made of four relations, Travel , TravelAgency , Airline and
Flight (abbreviated respectively as T , TA, A and F). The
target database schema contains three relations Departure,
Arrival and Company (resp. Dpt , Arr and Co).

The exemplar tuples provided by the user for the source
and target databases are reported in the left-hand and right-
hand sides of the Figure 1, as ES and ET respectively. We
can observe that the number of tuples per each table is small:
the user is not intended to provide a complete instance but
only a small set of representative tuples. We can also eas-
ily identify a few inherent ambiguities within the provided
exemplar tuples: the constant L.A. represents both the town
where the travel agency is located (in relation TA, which
contains travel agencies information) and the destination of
a flight (in the corresponding relation F). Moreover, both
the outward and the inward flights are operated by the same
airline company, namely a1. If we would consider these ex-
emplar tuples as the ground truth, we would translate them
into a canonical mapping illustrated in Figure 1 (ii). Such
mapping, however, reflects the ambiguities of the provided
exemplar tuples, by assuming that all solutions must have a
round trip operated by a unique airline and that the travel
agency selling this trip must be located in the same city
of the airline headquarters. Thus, from a logical viewpoint,
such a mapping is ways too specific. Moreover, such mapping
can be quite large and unreadable in real-world scenarios, as
it embeds all the exemplar tuples altogether. Our mapping
specification process builds upon end-user exemplar tuples,
which can be ambiguous and ill-defined. Hence, it aims at
deriving smaller refined and normalized mappings through
simple user interactions, in order to obtain more controllable
mappings closer to what the user has in mind (illustrated in
Figure 1 (iv)). The rest of the paper is devoted to explain
such a transformation.

The main contributions of our paper are summarized as
follows:

• We define a mapping specification process for non-expert
users that bootstraps with exemplar tuples, and works
for general GLAV mappings. The user is challenged with
boolean questions over even smaller refinement-driven tu-
ples generated from the initial exemplar tuples. The space
of possible solutions is represented as an upper semi-lattice,
on top of which a dynamic pruning keeps the number of
user interactions reasonably low.

• We prove that the generated mappings have irreducible
right-hand sides. Combined with redundant mapping elim-
ination, this guarantees that the obtained refined map-
pings are in normal form [21]. Intuitively, normalized
mapping are more self-explanatory and understandable
for end-users compared to monolithic canonical mappings.
• We prove that the refinement process always produces a

more general mapping than the canonical mapping. As
an example, an illustration of the obtained mapping for
our running example is in Figure 1 (iv), which can be
confronted with the canonical mapping of Figure 1 (ii).
• We propose and experimentally gauge several exploration

strategies of the upper semi-lattice corresponding to the
space of possible mappings, and we identify the ones that
entail less interactions with the final user. Moreover, we
experimentally gauge the effectiveness of our approach,
by comparing the sizes of exemplar tuples with the size of
universal solutions.
The rest of this paper is organized as follows. Section 2

introduces the notation used in the rest of our paper. Spe-
cific background on the mapping generation from exemplar
tuples is detailed in Section 3.1. The bulk of our approach
is described in Section 3.2 and an extensive experimental
study is presented in Section 4. Related work is devoted to
Section 5. We conclude the paper in Section 6.

2. PRELIMINARIES
We briefly introduce various concepts from the data ex-

change framework [17] that we use in this paper. Given two
disjoint countably infinite sets of constants C and variables
V, we assume a bijective function θ̄, such that if θ̄(x) = c,
then ci ∈ C is the constant associated to the variable xi ∈ V
and θ̄−1(c) = x. A tuple over a relation R has the form
R(c1, . . . , cn) where ci ∈ C, while an atom has the form
R(x1, . . . , xn) where xi ∈ V. The bijection θ̄ naturally ex-
tends to a bijection between (conjunctions of) atoms and
(sets of) tuples.

A (schema) mapping is a triple M = (S,T,Σ) with S
is a source schema, T is a target schema disjoint from S,
and Σ is a set of tuple-generating dependency (tgd for short)
over schemas S and T. A tgd is a first-order logical formula
the form φ(x) → ∃y, ψ(x, y) where x and y are vectors of
variables, x being universally quantified, and where both φ
and ψ are conjunctions of atoms. In this paper, we only
consider source-to-target tgd (s-t tgds for short), in which
atoms in φ are over relations in S and atoms in ψ are over
relation in T. We consider GLAV mappings where a tgd
can contain more than one atom in φ and in ψ.

An instance ET over T is a solution for a source instance
ES over S under a mapping M = (S,T,Σ) iff (ES , ET) |=
Σ. A mapping M = (S,T,Σ) logically entails a mapping
M′ = (S,T,Σ′), denoted byM |=M′, if for every (ES , ET)
if (ES , ET) |= Σ then (ES , ET) |= Σ′. Two mappings M

and M′ are logically equivalent, denoted by M≡lM′, if
M |= M′ and M′ |= M. When comparing mappings, we
say that M is more general than M′ if M |= M′. Infor-
mally, this means that tgds in M are triggered more often
than those in M′.

Let ES and ES
′ be two instances over the same schema.

A homomorphism from ES to ES is a function h from con-
stants in ES to constants in ES

′ such that for any tuple
R(c1, . . . , cn) in the instance ES , the tupleR(h(c1), . . . , h(cn))
belongs to ES . An instance ET is an universal solution for

the instance ES under a mapping M if ET is a solution for
ES and if for each solution ET

′ for ES under M, there ex-
ists a homomorphism h : ET → ET

′ such that h(c) = c for
every constant c appearing both in ET and ET

′.
It was shown in [17] that the result of chasing ES with

Σ is a universal solution. The application of the chase pro-
cedure, denoted by chase(Σ, ES), is as follows: for each tgd
φ(x) → ∃y, ψ(x, y) ∈ Σ, if there exists a substitution µ of
x such that all atoms in φ(x) can be mapped to tuples in
ES , extend this substitution to µ′ by picking a fresh new
constant for each variable in y and finally add all atoms of
ψ(x, y) instantiated to tuples with µ′ into ET . Another key
result of the literature that we use in this paper is borrowed
from [10] and states that Σ |= φ(x) → ∃y, ψ(x, y) if and
only if there exists a substitution µ′ extending an arbitrary
µ such that µ′(ψ(x, y)) ⊆ chase(Σ, µ(φ(x))).

Finally, we borrow two notions from [21]: split-reduced
mappings and σ-redundant mappings. While split-reduction
breaks a tgd into a logically equivalent set of tgds with right-
hand sides having non overlapping existentially quantified
variables, σ-redundancy encodes the presence of unnecessary
tgds. We report formal definitions below. Let σ : φ(x) →
∃y, ψ(x, y) be a tgd. We say that σ is split-reduced if there is
no pair of tgds σ1 : φ1(x)→ ∃y1, ψ1(x, y1) and σ2 : φ2(x)→
∃y2, ψ(x, y2) such that y1 ∩ y2 = ∅ and {σ}≡l {σ1;σ2}. A
mapping (S,T,Σ) is split-reduced if, for all tgd σ ∈ Σ, σ is
split-reduced. According to [21], given a mapping M, it is
always possible to find a split-reduced mapping M′ that is
equivalent to M. Let M = (S,T,Σ) be a schema mapping
and σ ∈ Σ a tgd. We say that M is σ-redundant, w.r.t.
logical equivalence, iff Σ \ {σ}≡l Σ. Such equivalence can
be tested using the chase procedure as a proof procedure for
the implication problem by checking whether Σ \ {σ} |= σ.

3. MAPPING REFINEMENT
In this section, we describe the key components of our in-

teractive mapping specification process, as depicted in Fig-
ure 2, along with proving its correctness.

3.1 Exemplar tuples and mappings
Exemplar tuples are defined as a pair of source and target

instances (ES , ET). Given an input pair (ES , ET), we build
a canonical mapping as follows. More precisely, given a pair
(ES , ET), the canonical mapping associated to (ES , ET) is
the tgd φ → ψ where φ = θ̄−1(ES) and ψ = θ̄−1(ET).
Informally, the left-hand side φ is constructed from ES by
replacing all tuples in ES by their atoms counterparts, with
the constants being replaced by variables. The right-hand
side of the canonical mapping is obtained in a similar fash-
ion.

Example 1. The canonical mapping corresponding to the
exemplar tuples of Figure 1 is represented in Figure 1 (ii).

However, notice that canonical mapping of Example 1 is
extremely rigid. For instance, we can observe that tuples in
the source relation TA are mandatorily needed in order to
obtain tuples in the target relation Arr . This is due to the
fact that the canonical mapping is the most specific mapping
obtained from the exemplar tuples: it contains all the atoms
corresponding to ES on its left-hand side. Since exemplar
tuples are not universal by definition 1, this mapping is far

1If exemplar tuples (ES , ET) were universal, then
(ES , ET) |= σ where σ is the canonical mapping associated
to (ES , ET).

Input: set of input pairs

Normalization

Atom refinement

Join refinement

Output: refined mapping Σfinal

(E1
S ,E

1
T)...(EnS ,E

n
T)

Σnorm

Answer: Yes or No
ΣatRef (normalized)

Question

Answer: Yes or No Σfinal (normalized)

Question

Figure 2: Interactive mapping specification process.

too constrained. The envisioned workaround is to refine the
canonical mapping into a less constrained one by leveraging
simple user interactions. Intuitively, the refinement of the
canonical mapping is done through the following steps: the
first is a pre-processing that leads to a normalized mapping,
in which the large tgd is divided into an equivalent set of
smaller ones; the second and the third steps revolve around
mapping refinement via user interactions that lets simplify
the left-hand sides of the tgds. We devote the rest of this
subsection to the first step, while we describe the latter steps
in the next subsections.

We define formal criteria that capture the quality of a
mapping M intuitively as follows: each tgd in Σ should
have a minimal right-hand side and there should be no spu-
rious tgd in Σ. To that purpose, we rely on the two pre-
viously introduced notions, i.e. split-reduced mappings and
σ-redundant mappings[21].

The splitting of the original mapping into smaller tgds
turns out to be convenient for mapping refinement, in that
it lets the user focus only on the necessary atoms implied in
the left-hand sides of each reduced tgd. However, as a side
effect of split-reduction, we may get redundant tgds in the
set Σ. Such redundant tgds are unnecessary and need to be
removed to avoid inquiring the user about useless mappings.
Finally, we say that (S,T,Σ) is normalized when each tgd
in Σ is split-reduced and there is no σ-redundant tgd in Σ.

Example 2. The normalization on the canonical map-
ping of Figure 1(ii) leads to the following set of tgds Σnorm
in which all left-hand sides are identical:

φ =T (idF0, idF1, idAg) ∧ TA(idAg,name, t)

∧ F (idF0, t
′, t, idAir) ∧ F (idF1, t, t

′, idAir)

∧A(idAir,name′, t)

Σnorm = {
φ→∃idC0,Co(idC0,name, t); (1)

φ→∃idC1,Dpt(t′, idF0, idC1) ∧ Co(idC1,name′, t); (2)

φ→∃idC2,Arr(t, idF0, idC2) ∧ Co(idC2,name′, t); (3)

φ→∃idC3,Dpt(t, idF1, idC3) ∧ Co(idC3,name′, t); (4)

φ→∃idC4,Arr(t′, idF1, idC4) ∧ Co(idC4,name′, t)} (5)

3.2 Refinement of mappings
The previous section has defined the pre-processing step

that leads to a normalized canonical mapping. We now in-
troduce the two refinement steps that constitute the core of
our proposal. The assumption underlying our approach is
that a non-expert user provides a pair of instances (ES , ET)
which is not universal and interacts via simple boolean an-
swers within the mapping refinement steps. For a given in-
put pair (ES , ET), the number of mappings satisfying it may
be quite large. Therefore, it is important to provide efficient
exploration strategies of the space of mappings in order to
reduce the number of questions to ask to the user. In the
rest of this section, for the ease of exposition, we assume that
the user provides a unique pair (ES , ET) of exemplar tuples.
However, in practice, the user should rather provide a set of
small instances, say (E1

S , E
1
T) . . . (EnS , E

n
T). As the questions

we ask to the user are centered around one tgd at a time and
because we do not assume that each (EjS , E

j
T) is universal,

our approach is fully applicable to a set of pairs of instances
as follows: (i) first compute the canonical mapping σi asso-
ciated to each pair (EjS , E

j
T), then (ii) split-reduce each σi

into Σi and finally (iii) remove redundant tgds in
⋃n
i=1 Σi.

Two successive steps are applied to each mapping during
refinement: the atom refinement step and the join refine-
ment step. We illustrate such steps in Figure 2, along with
the corresponding user interactions required to obtain the
final result, i.e., the refined tgds that meet the user’s re-
quirements. The atom refinement step aims at removing
unnecessary atoms in the left-hand side of the tgds within
the normalized mapping obtained in the pre-processing. The
join refinement step applies the removal of unnecessary joins
between atoms in each tgd as output by the previous step.
During both steps, the user is challenged with specific ques-
tions devoted to address ambiguities of the provided exem-
plar tuples and refine the normalized canonical mapping ob-
tained in the pre-processing step. We focus on the first step
in Section 3.3 and we postpone the description of the second
step to Section 3.4.

In our approach, we use universally quantified variables
as the targets of the refinement algorithms and assume that
the existential variables in the right-hand side of the tgds
are unambiguous (and appear as such in the input exemplar
tuples). In other words, value invention (e.g., the produc-
tion of labeled nulls in SQL) in the target exemplar tuples is
supposed to be correct and the user is not inquired about
them. This also implies that our algorithms do not cre-
ate fresh existential variables in the tgds. The introduction
of such variables would drastically increase the number of
mappings to explore and their coverage would entail non-
trivial extension of our algorithms, which we leave as future
work. Throughout this section, proofs are omitted for space
reasons and postponed to Appendix B.

3.3 Atom refinement
As discussed in Section 3.1, the normalization produces a

split-reduced mapping from the canonical mapping in which
each tgd has a large left-hand side, say φ. However, some
atoms in φ may be irrelevant, preventing the triggering of
a tgd and causing further ambiguities. Algorithm 1 applies
atom refinement on each normalized tgd to alleviate these
ambiguities. In the following, we explain its key components
and properties.

Algorithm 1 TgdsAtomRefinement(Σ)

Input: A set of tgds Σ to be atom refined.
Output: A set of tgds Σ′ where each tgd is atom refined.
1: Σ′ ← ∅
2: for all σ ∈ Σ do
3: let σ = φ→ ψ
4: Ecand ← generate set of possibles candidates from φ
5: Ev ← ∅
6: repeat
7: e← SelectAtomSet(Ecand, Ev)
8: if AskAtomSetValidity(σ,e)
9: ∨(Ev = ∅ ∧ Ecand = ∅) then

10: add e to Ev
11: remove supersets of e from Ev
12: remove e and its supersets from Ecand
13: else
14: remove e and its subsets from Ecand
15: end if
16: until Ecand = ∅
17: for all e ∈ Ev do
18: add the tgd (e→ ψ) to Σ′

19: end for
20: end for
21: return Σ′

3.3.1 Semilattice for Atom Refinement
The baseline structure for the atom refinement of a tgd

is the upper semilattice S = (P(φ),⊆) where P(φ) is the
set of all subsets of φ considered as a set of atoms. For all
elements Ex and Ey of P(φ) the least-upper-bound of the set
{Ex, Ey} is their union.

Example 3. Considering the tgds in Σnorm of Example 2,
each left-hand side is made of an identical conjunction φ.
The elements of the semilattice we consider are the subsets
of the set of atoms {T (idF0, idF1, idAg); TA(idAg,name, t);
F (idF0, t

′, t, idAir); F (idF1, t, t
′, idAir); A(idAir,name′, t)}.

The atom refinement does not create new existentially
quantified variables in the tgds. This restriction takes ef-
fect in line 4 of Algorithm 1 where each subset of left-hand
side atoms that does not contain the whole set of right-hand
side universal variables will be excluded from the set of can-
didates.

Example 4. We illustrate the atom refinement on Exam-
ple 2. As the process stay analogous for each tgd in Σnorm,
we focus on the tgd (3) which right-hand side is:

∃idC2,Arr(t, idF0, idC2) ∧ Co(idC2,name′, t)

The set of universally quantified variables in this conjunc-
tion is {t, idF0,name′}. A refined tgd needs to contain at
least these variables in its left-hand side. The smallest sub-
sets of the set of atoms given in Example 3 for which this as-
sumption is valid are: {F (idF0, t

′, t, idAir); A(idAir,name′, t)}
and {T (idF0, idF1, idAg); A(idAir,name′, t)}. Each set which
is not a superset of one of these two sets is pruned in line 4 of
Algorithm 1. The resulting semilattice is shown in Figure 3.

3.3.2 Exploring the semilattice
During the exploration of the space of possible candidates,

the user is challenged upon one element of the semilattice
at a time, as in line 8 of Algorithm 1. This element can

{T ;A} {F1;A}

{T ;TA;A} {T ;F2;A} {T ;F1;A} {TA;F1;A} {F1;F2;A}

{T ;TA;F2;A} {T ;TA;F1;A} {T ;F1;F2;A} {TA;F1;F2;A}

{T ;TA;F1;F2;A}

Figure 3: Atom sets semi-lattice on examples 4 and 5. With
atoms: T = T (idF0, idF1, idAg), A = A(idAir,name′, t),
TA = TA(idAg,name, t), F1 = F (idF0, t

′, t, idAir), and
F2 = F (idF1, t, t

′, idAir).

be chosen according to a given exploration strategy, corre-
sponding to the call of SelectAtomSet in line 7. We will
experimentally compare four different exploration strategies
in Section 4. An important property of the upper semilattice
of atom refinement implies that, once the user validates one
of the candidates, then all the supersets of such candidate
can be excluded from further exploration, thus effectively
pruning the search space.

Example 5. Assume, for the sake of the example, that we
employ a breadth-first bottom-up strategy, starting the explo-
ration of the upper semilattice in Figure 3 at its bottom-up
level with {F1;A} and {T ;A}. Following previous Exam-
ple 4, we are refining tgd (3). The user is asked about the
validity of {F1;A} (the dark gray box of Figure 3) with the
following question:

“Are the tuples F (f0, Miami, L.A., a1) and A(a1, AF, L.A.)
enough to produce Arr(a1, L.A., f0, P2) and Co(P2, AF, L.A.)?”

Assuming that the user will answer ‘Yes’ to this question,
the supersets of {F1;A} will be pruned (pale gray boxes of
Figure 3) and the following tgd will be output by the algo-
rithm:

F (idF0, t
′, t, idAir) ∧A(idAir,name′, t) (6)

→∃idC2,Arr(t, idF0, idC2) ∧ Co(idC2,name′, t)

Next, assume now that Algorithm 1 proceeds with {T ;A}
(bottom left gray box of Figure 3). The question asked is:

“Are the tuples T (travel0, f0, f1, a1) and A(a1, AF, L.A.)
enough to produce Arr(A1, L.A., f0, P2) and Co(P2, AF, L.A.)?”

We can observe that a positive answer implies an ambi-
guity, namely that the flight company is based in the same
town of the destination of the flight, which is not the case in
real-world examples. Hence, the user will be likely to answer
‘No’ to the above question.

This implies that we need to continue the exploration on
the next level of the semilattice, namely on the sets {T ;TA;A}
and {T ;F2;A}. Assuming that the user does not validate
these sets, he will be finally challenged about the last avail-
able set {T ;TA;F2;A} which he also labels as invalid. In the
end, for tgd (3), Algorithm 1 will output the single tgd (6).

We now state that when shifting from the initial canonical
mapping to its refined form as given by Algorithm 1, we
obtain a more general set of tgds. The proof as well as an
example are found in Appendix B.

Lemma 1. Let M = (S,T,Σ) be a canonical mapping
and let Σ′ be a mapping obtained from atom refinement of
M, then, for all source instances ES , there exists a mor-
phism µ such that µ(chase(Σ, ES)) ⊆ chase(Σ′, ES). By
the correctness of the chase procedure, the logical entailment
Σ′ |= Σ holds.

The following Lemma 2 states that the split-reduction step
is not necessary on the intermediate mappings obtained after
the atom refinement step.

Lemma 2. Given a normalized canonical mapping M =
(S,T,Σ), application of atom refinement on the tgds in Σ
always produces a mapping which is split-reduced.

3.3.3 Questioning about atoms set validity
In the atom refinement algorithm, the user is challenged

on the validity of the left-hand side atoms of the canonical
mapping at line 8 of Algorithm 1. We build on the corre-
spondence between these atoms and the tuples that appear
in the source ES to ask pertinent questions, as those shown
in Example 5. The AskAtomSetValidity(σ, e) subroutine
that appears in Algorithm 1 constructs a pair (ES

σ,e, ET
σ,e)

for each tgd σ = φ→ ψ by transforming the candidate sub-
set e of its left-hand side φ into ES

σ,e, formally ES
σ,e ={

θ̄(a)|a ∈ e
}

). Then the chase procedure is used to com-
pute ET

σ,e, formally ET
σ,e = chase({σ} , ES

σ,e).

Example 6. This example focuses on the generation of
the exemplar tuples underlying the questions of Example 5
while refining the tgd (3). We are challenging the user about
the validity of the set of atoms e = {F (idF0, t

′, t, idAir);
A(idAir,name′, t)}, which is a subset of the left-hand side
of the tgd (3). These atoms are built from the set ES

′ =
{F (f0, Miami, L.A., a1); A(a1, AF, L.A.)}, a subset the of in-
stance ES . We want to challenge the user whether the fol-
lowing generalization of the tgd (3) is sufficient:

σ = F (idF0, t
′, t, idAir) ∧A(idAir,name′, t)

→ ∃idC2,Arr(t, idF0, idC2) ∧ Co(idC2,name′, t)

The chase procedure applies σ on ES
′ to obtain the fol-

lowing instance E
′
T , from which the first question appearing

in Example 5 is derived:

ET
′ = {Arr(A1, L.A., f0, P2); Co(P2, AF, L.A.)}

3.4 Join refinement between variables of a tgd
In relational data, multiple occurrences of the same value

do not necessarily imply a semantic relationship between
the attributes containing such a value. An example from
our running scenario is the occurrence of the constant L.A.
both as the city where a travel agency is located and as the
arrival and departure city of flights booked by that travel
agency. However, the canonical mapping imposes such co-
occurrences that may be due to spurious use of the same
variable. Thus, the canonical mapping may introduce irrel-
evant joins in the left-hand side of the tgds. In order to
produce the mapping the user has in his mind, we primarily
need to distinguish relevant joins from irrelevant ones. This
section presets the join refinement step and details the join
Algorithm 2 that explores the candidate joins in each tgd by
inquiring the user about the validity of such joins.

We briefly recall a few notions on partitions before delving
into the actual details and internals of our join refinement

Algorithm 2 TgdsJoinRefinement(Σ)

Input: A set of tgds Σ to be join refined.
Output: A set of tgds Σ′ where each tgd is join refined.
1: Σ′ ← ∅
2: for all σ ∈ Σ do
3: let σ = φ(x)→ ∃y, ψ(x, y)
4: Σt ← {σ}
5: for all x ∈ x do
6: if variable x occurs more than once in φ then
7: Eexplored ← Σt
8: Σt ← ∅
9: for all σ′ ∈ Eexplored do

10: Σt ← Σt ∪VarJoinsRefinement(σ′, x)
11: end for
12: end if
13: end for
14: Σ′ ← Σ′ ∪ Σt
15: end for
16: return Σ′

algorithm. A partition of a set W is a set P of disjoint and
non-empty subsets of V called blocks, such that

⋃
b∈P b =W.

The set of all partitions of W is denoted by Part(W). Two
objects of W that are in the same block of a partition P are
denoted by a ≡P b. The set of all partitions of W form a
complete lattice under the partial order P0 ≤ P1 ⇔ ∀x, y ∈
W,
(
x ≡P0 y ⇒ x ≡P1 y

)
. This partial order formally

captures the intuitive notion of refinement of a partition.
As in conjunctive queries joins are encoded by multiple

occurrences of a variable, we refer to these variables as to
join variables, refining a join corresponds to replace some
occurrences with fresh variables. In Algorithm 2 this re-
placement of join variables by fresh ones is conducted by the
subroutine named VarJoinsRefinement which is detailed
in Algorithm 3. The subroutine explores the partitions of
these newly introduced variables and questions the user to
check if the joins are relevant (some fresh variables are uni-
fied) or not (they are kept renamed). A block in the set of
all partitions represents the variables to be unified together.

Example 7. Recall tgd (6) from Example 5 obtained after
the atom-refined mapping below:

F (idF0, t
′, t, idAir) ∧A(idAir,name′, t) (6)

→∃idC2,Arr(t, idF0, idC2) ∧ Co(idC2,name′, t)

There is an ambiguity on the use of the same town as
the town of arrival and departure of flights and the town
where a travel agency is located, as shown by the multiple
occurrences of the join variable t at four different positions.
Each occurrence of t is replaced with a fresh variable (namely
t1, t2, t3 and t4) yielding the following candidate tgd:

F (idF0, t
′, t1, idAir) ∧A(idAir,name′, t2)

→ ∃idC2,Arr(t3, idF0, idC2) ∧ Co(idC2,name′, t4)

In the corresponding semilattice of the set {t1, t2, t3, t4},
the supremum corresponds to the case where no refinement
is needed, all occurrences being replaced with the original t.

Given a variable x in a tgd σ = φ → ψ, we consider the
set of its occurrences in φ ∪ ψ. Since we do not wish to in-
troduce new existentially quantified variables, each variable

occurrence in ψ must be bound to at least one variable oc-
currence in φ. In order to achieve this, we only consider the
partitions in which all blocks contain at least one occurrence
in φ. Those partitions are called well-formed

Well-formed partitions are equipped with an upper semi-
lattice structure: given two partitions P and P ′, if P ≤ P ′
and P is well-formed, then P ′ is well-formed as well. In par-
ticular, if P ≤ P ′ then all unifications encoded by P are also
performed encoded in P ′. This means that if P is acceptable
for the user, then it is also the case for P ′. Conversely, if
P ′ is not acceptable for the user (i.e., some joins are miss-
ing), then neither is P. We employ these criteria to prune
the search space during the exploration of the semilattice of
occurrences of x.

Example 8. Following Example 7, t3 and t4 must be in
a partition containing either t1 or t2. This means that par-
titions containing one of the blocks {t3}, {t4} or {t3, t4} are
not well-formed and will be excluded.

Algorithm 3 Subroutine:VarJoinsRefinement(σ, x)

Input: A tgd σ.
Input: A variable x ∈ σ on which the refinement is made.
Output: A set of tgds Σ where each tgd is join refined for

variable x.
1: generate from σ a tgd σ′ where occurrences of x are

renamed with fresh variables and a morphism µorig such
that µorig(σ

′) = σ
2: let σ′ = φ′ → ψ′

3: Ecand ← generate set of possibles candidates from σ′

4: Ev ← ∅
5: repeat
6: P ← SelectPartition(Ecand, Ev)
7: σ′′ ← UnifyVariables(σ′,P)
8: if AskJoinsValidity(σ′′)
9: ∨(Ev = ∅ ∧ Ecand = ∅) then

10: add P to Ev
11: remove upper partitions of P from Ev
12: remove P and its upper partitions from Ecand
13: else
14: remove P and its lower partitions from Ecand
15: end if
16: until Ecand = ∅
17: Σ′ ← ∅
18: for all P ∈ Ev do
19: σ′′ ← UnifyVariables(σ′,P)
20: add σ′′ to Σ′

21: end for
22: return Σ′

Algorithm 2 implements the join refinement by iterating
variable refinements on each universal variable of each tgd.
As we do not consider the possibility of creating new joins,
but only the suppression of joins which already exists, each
original variable is considered separately. However, since
each call to VarJoinsRefinement may generate multiple
refined tgds, one for each refined join variable, we need to
combine these refinements. This is done by considering a set
Σt of tgds to be processed.

Subroutine VarJoinsRefinement(σ, x) explores the up-
per semilattice of a variable x in a tgd σ, asking questions
to the user in order to determine the proper join refinement.

In line 1, occurrences of x are replaced with fresh variables
yielding a tgd σ′ and a morphism µorig such that µorig(σ

′) =
σ. Line 3 initializes the semilattice by excluding malformed
partitions as stated above. The SelectPartition subrou-
tine selects a partition in the set of partitions and encodes
the specific exploration strategy on top of the semilattice.
Any suitable exploration strategy can be plugged in here,
as shown in the experimental study presented in Section 4.
Function UnifyVariables(σ,P) (lines 7 and 19 of the Al-
gorithm) returns a tgd corresponding to σ where variables
from the same block of a partition P are unified. The user is
asked about the validity of this unification in line 8 and the
search space and results are pruned according to his answer
in lines 11, 12 and 14.

One can easily prove the following Lemma, which is the
counterpart of Lemma 1 for join refinement. Hence, Lemma 3
establishes the logical entailment of the join-refined map-
ping.

Lemma 3. Let Σ be a mapping and let Σ′ be a mapping
obtained from Σ after join refinement, then Σ′ |= Σ.

Example 9. We recall the tgd (6) from Example 5:

F (idF0, t
′, t, idAir) ∧A(idAir,name′, t) (6)

→∃idC2,Arr(t, idF0, idC2) ∧ Co(idC2,name′, t)

Its set of universal variables is x = {idF0, t
′, t, idAir,name′}.

As Algorithm 2 only considers variables that appears several
times (line 6), we only consider t and idAir of x. Con-
sidering first the idAir variable, a renaming of each of its
occurrences to idAir1 and idAir2 leads to the following tgd:

F (idF0, t
′, t, idAir1) ∧A(idAir2,name′, t)

→ ∃idC2,Arr(t, idF0, idC2) ∧ Co(idC2,name′, t)

The semilattice contains two partitions {{idAir1} ; {idAir2}}
and {{idAir1; idAir2}}. The user is asked about the valid-
ity of {{idAir1} ; {idAir2}}, i.e., to have the identifier of an
airline company unrelated to its flight. The user will likely
answer ‘No’ to the above question, thus keeping the supre-
mum {{idAir1; idAir2}} of the semilattice valid. Since these
join is relevant, the tgd is not modified.

Then, we consider the t variable. A renaming of each of
its occurrences leads to the following tgd previously given in
Example 7:

F (idF0, t
′, t1, idAir) ∧A(idAir,name′, t2)

→ ∃idC2,Arr(t3, idF0, idC2) ∧ Co(idC2,name′, t4)

There are five partitions that do not create new existen-
tial variables, namely {{t1; t3} ; {t2; t4}}, {{t1; t4} ; {t2; t3}},
{{t1; t3; t4} ; {t2}}, {{t1} ; {t2; t3; t4}} and {{t1; t2; t3; t4}}. The
user is asked about the validity of the candidate partition
{{t1; t3} ; {t2; t4}} with the following question:

“Are the tuples F (f0, Miami, L.A.1, a1) and A(a1, AF, L.A.2)
enough to produce Arr(A1, L.A.1, f0, P2) and Co(P2, AF, L.A.2)?”

Since this partition is acceptable for the user, he will prob-
ably answer ‘Yes’. Therefore, the supremum {{t1; t2; t3; t4}}
of the semilattice is pruned and the following tgd is added to
the output:

F (idF0, t
′, t1, idAir) ∧A(idAir,name′, t2)

→ ∃idC2,Arr(t1, idF0, idC2) ∧ Co(idC2,name′, t2)

The exploration continues with the remaining candidate
partitions. However, as the remaining partitions either re-
late an airline’s headquarters to an arrival or a flight to a
company’s headquarters, the user will consistently answer
‘No’ to these questions.

The join refinement step preserves the split-reduction prop-
erty of mappings, as formalized in the following Lemma 4.
Hence, similarly to the atom refinement step and its associ-
ated Lemma 2, a split-reduction step following join refine-
ment is not necessary.

Lemma 4. Given a normalized mapping M = (S,T,Σ),
application of join refinement on the tgds in Σ always pro-
duces a mapping which is split-reduced.

However, both the atom and join refinement steps applied
to the various tgds do not guarantee a normalized mapping,
only a split-reduced one. As a consequence, similarly to atom
refinement, redundant tgds have to be suppressed.

In the join refinement step, the suppression of joins can
generate additional tuples in the target instance. For such
a reason, similarly to the generation of questions in the
atom refinement step, the source instance is again chased
to generate such additional tuples 2. Similarly to the sub-
routine described in Section 3.3.3 for atom refinement, the
AskJoinsValidity subroutine that appears in Algorithm 2
constructs a pair (ES

σ, ET
σ) by instantiating the left-hand

side of a candidate tgd σ to obtain a source instance ES
σ

and then chasing it to build ET
σ.

Example 10. We illustrate the questions asked to the user
in Example 9. We challenge the user on the validity of the
partition P = {{t1; t3} ; {t2; t4}} in the following tgd:

σ =F (idF0, t
′, t1, idAir) ∧A(idAir,name′, t2)

→ ∃idC2,Arr(t1, idF0, idC2) ∧ Co(idC2,name′, t2)

The instance ES
σ obtained from the left-hand side of σ

through the bijection θ̄ is the following:

ES
σ = {F (f0, Miami, L.A.1, a1); A(a1, AF, L.A.2)}

Chasing ES
σ with σ leads to:

ET
σ = {Arr(A1, L.A.1, f0, P2); Co(P2, AF, L.A.2)}

Those exemplar tuples are finally rewritten into questions as
shown in Example 9.

3.5 Final mapping
The pre-processing, the atom and join refinement steps

being defined, we are able to summarize the correctness of
our approach with the following Theorem 1.

Theorem 1. Let (ES , ET) be a pair of exemplar tuples
sets. Let M = (S,T,Σ) be the canonical mapping corre-
sponding to these exemplar tuples obtained after pre-processing.
Let M′ = (S,T,Σ′) be the refined mapping produced by our
framework. Then, for all instances ES over S, there exists a
morphism µ such that µ(chase(Σ, ES)) ⊆ chase(Σ′, ES), that
is, the refined mapping is a generalization of the canonical
one: M′ |=M.

2We recall that the chase is polynomial for Σ consisting of
only s-t tgds. Thus, repeating it several times as additional
tuples come, is appropriate.

If the user provides universal exemplar tuples at first (which
correspond to the data examples used in [7]), that is an ideal
pair (ES , ET) without extraneous atoms nor irrelevant joins,
the mapping he has in his mind is truly the canonical map-
ping. In this case, the following Theorem 2 shows that the
canonical mapping can be obtained by consistently answer-
ing ‘Yes’ only when the questions asked to the user are built
from the supremums of the semilattices in the atom and join
refinement steps. In other words, Theorem 2 states a form
of completeness of our approach: if there is an ideal answer,
the refinement process will not miss it.

Theorem 2. The refined mapping obtained when user al-
ways validates the supremums of the explored semilattices is
equivalent to the canonical mapping.

4. EXPERIMENTS
Our experimental study has three main objectives: (i) to

study the effectiveness of interactivity under different ex-
ploration strategies of the search space, (ii) to evaluate the
benefit of using exemplar tuples with respect to universal
solutions for mapping refinement, and (iii) to provide a com-
parative analysis with [7].
Experimental settings. We have implemented our frame-
work using OCaml 4.03 on a 2.6GHz 4-core, 16Gb laptop
running Fedora 24. We have borrowed mappings from seven
real integration scenarios of the iBench benchmark [9]. The
left part of Table 1 reports the size of each considered map-
ping scenario as the total number of tgds (|Σ|) and the aver-
age number of occurrences of their variables (N̄) defined as
N̄ = Σv∈VNv/|V |, with V being the set of distinct variables
and Nv the number of occurrences of each v variable within
the tgds. Since there exists a bijection between variables
and constants, N̄ also stands for the average number of oc-
currences of constants per instance in the exemplar tuples.
Methodology. In all experiments, we consider the iBench

mapping scenarios as the ideal mappings that the user has in
mind. Starting from these mapping scenarios, we construct
exemplar tuples as follows. Each tgd σ ∈ Σ of the form
φ → ψ is transformed into a pair of instances (ES

σ, ET
σ),

ES
σ (ET

σ, resp.) being generated by replacing each atom
in φ (ψ, resp.) by its tuple counterpart with freshly picked
constants for each variable in the tgd. Thus, for each sce-
nario Σ = {σ1, . . . , σn}, we obtain a set of exemplar tuples
EΣ = {(ES

σ1 , ET
σ1), . . . , (ES

σn , ET
σn)}.

These exemplar tuples are used as a baseline in our exper-
imental study, as we expect that an “ideal” user, who does
not make any mistakes, would actually produce such exam-
ples. In order to introduce user ambiguities in the above
tuples, we have built alternative test cases, in which the
exemplar tuples EΣ are degraded . The degradation proce-
dure is meant to reproduce users’ common mistakes while
specifying exemplar tuples.

The first degradation is performed on atoms. It is parame-
trized by the total number of extraneous tuples added to EΣ ,
with the constraint that at most one tuple is added to each
individual instance ES

σi . An extraneous tuple is generated
by randomly choosing a source instance ES

σi , picking a tu-
ple at random within it, copying it and then replacing one
constant of the tuple with a fresh one.

The second degradation affects join paths. It is parame-
trized by the total number of unifications between constants
in the set EΣ , with the constraint that at most one unifica-
tion is applied within each pair of instances (ES

σi , ET
σi).

An extraneous unification is produced by choosing at ran-
dom two constants that appear in ES

σi and replacing one
with the other in all its occurrences in ES

σi and in ET
σi .

Example 11. By applying the degradation procedure on
the tgd σ from Example 10, the following exemplar tuples
may be yielded (ES

′σ, ET
′σ). An extraneous F atom is added

(first degradation) and where Miami and L.A.1 are unified
(second degradation), the degradations being underlined:

ES
′σ = {F (f0, L.A.1, L.A.1, a1); F (f0, L.A.1, L.A.1, a1);

A(a1, AF, L.A.2)}
ET
′σ = {Arr(A1, L.A.1, f0, P2); Co(P2, AF, L.A.2)}

In our experimental study, we have deteriorated each ini-
tial set of examples EΣ by respectively adding 0, 2, 5, 8 or 10
tuples without joins or by unifying 0, 2, 5, 8 or 10 variables
without added tuples. For each of the above configurations,
we repeated the degradation procedure 30 times in order to
obtain an equivalent number of degraded test cases.

Moreover, we simulate the user’s answers during the inter-
active part of our approach with the following assumption:
the user always replies correctly to a given challenge (i.e. an
input pair (ES , ET)) w.r.t. the original mapping Σ from the
scenario. In order to simulate the user answer, ES is chased
to obtain ET

′. ’Yes’ is produced as an answer if there exists
a substitution µ from ET into ET

′ such that µ(ET) ⊆ ET
′,

otherwise ’No’ is returned.
Impact of Mapping Refinement. In the first experi-
ment, we gauge the effectiveness of our interactive approach
with four exploration strategies. The BUBF (Bottom-Up
Breadth-First) strategy corresponds to the classical Apriori
algorithm for lattice exploration [3], its Bottom-Up Depth-
First variation being BUDF. TDBF and TDDF are the re-
spectively Breadth-First and Depth-First variations of the
Top-Down exploration of the lattice.

For atom refinement and join refinement, Table 1 presents
the average number of questions per tgd asked to the user
(x̄), and the maximum number of questions per tgd observed
(xm) for a scenario.

The maximum average number of questions for atom re-
finement in our experiments is about 6.7 questions per tgd.
Even if TDBF and TDDF strategies seem slightly more ef-
ficient than the other ones, all results have the same order
of magnitude and do not allow to make a clear choice of the
strategy. However, the situation is reverted for the experi-
ments on join refinement, which clearly show that only the
TDBF strategy exhibits an acceptable number of questions
per tgd (below 17). Indeed, the remaining strategies can
lead to more than one hundred questions per tgd.

This performance analysis on the employed strategies let
us conclude that in the remainder of our experimental as-
sessment, we can only focus on two out of the four strategies,
namely TDBF and BUBF. We thus decided to compare the
former, which is well-behaved by keeping low the number
of questions, with the latter, which implements the classical
Apriori algorithm [3].

Figure 4 summarizes our results on atom refinement for
the BUBF and TDBF strategies. The x axis of each scenario
is N̄ , which grows as the degradation introduces more tuples
(ranging from 0 to 10). The y axis corresponds to the total
number of user interactions divided by the number of tgds in
the scenario. The latter provides an estimate of the average

number of questions needed to recover the expected tgd from
exemplar tuples that contain errors.

In all scenarios but one, we can observe a strong linear
correlation between the number of interactions and N̄ . In-
tuitively, this illustrates the fact that the search space of Al-
gorithm 1 gracefully grows as the number of occurrences of
constants grows. This trend can be observed for all scenar-
ios with the exception of scenario a1-to-a2, which doesn’t
confirm the aforementioned strong correlation. We impute
this different behavior to the fact that that the majority of
the atoms of this scenario have a comparably lower arity,
which leads to a smaller increase of the number of variable
occurrences during the degradation process.

Figure 5 (a) and (b) summarize our experiments on join
refinement on the two strategies BUBF and TDBF, respec-
tively. For each strategy, a linear correlation between the
number of interactions and N̄ can be observed on scenarios
a1-to-a2, amalgam2 and dblp-amalgam. The relatively small
number of required user interactions shows the effectiveness
of questioning for join refinement, with comparable results to
the ones obtained for atom refinement. Also, with these sce-
narios, we can observe the superiority of TDBF over BUBF.

For the remaining scenarios, we can observe on one hand a
higher number of user interactions and, on the other hand,
the presence of outliers 3. This shows a higher burden of
join refinement on the final end user compared to atom re-
finement.

As an example, we can notice that the mapping scenario
SDB1-to-SDB3 is the most problematic since it inherently
embodies an extreme case for Algorithm 2. Through the bias
of this scenario, we can observe that the search space of join
refinement is quite sensitive to the number of partitions to
be explored in Algorithm 2. Thus, the number of partitions
(and then the number of joins on the same variable) heavily
depends on the involved scenario.

As also highlighted previously, in this extreme case it can
be seen that TDBF algorithm (Figure 5b) allows to obtain
a considerably lower number of questions than BUBF algo-
rithm (Figure 5a), leading to an acceptable number of ques-
tions (less than 20 for the worst case, when BUBF algorithm
leads to more than one hundred questions per example).

Finally, we measured the running time of TDBF and BUBF
as the time between two questions (i.e., the sum of the time
for lattice exploration between two questions and the time
to generate a new question). Notice that the total time does
not include the time to answer the question itself, which is
primarily user dependent. In all experiments such runtime
steadily stays below 26 ms per question, with an average of
3.3 ms across all questions. This confirms that our approach
is fast enough for an interactive experience as a real user
would not have to wait between questions.
Benefit of (non-universal) exemplar tuples. Our sec-
ond experiment aims to evaluate the benefit of using exem-
plar tuples as opposed to universal examples adopted in [7]
for the mapping inference process. For each scenario, we
apply the chase to all the source instances EiS to obtain
chase(M, EiS). This lets us compute the number of universal
exemplar tuples, which we compare with the number of tar-
gets (non-universal) exemplar tuples used in our approach.

3In Figure 5, to better illustrate the intervals of the maxi-
mum values of the number of occurrences variables and thus
to better describe the outliers, we have grouped such values
as shown in the upper right legend.

Scenarios Atom refinement Join refinement
TDBF TDDF BUBF BUDF TDBF TDDF BUBF BUDF

name |Σ| N̄ x̄ xm x̄ xm x̄ xm x̄ xm x̄ xm x̄ xm x̄ xm x̄ xm

a1-to-a2 8 2.5 1.6 2.4 2.2 4.1 2.2 4.1 2.0 2.9 4.1 6.5 3.8 6.5 3.9 6.5 3.9 8.0
amalgam2 71 1.3 0.4 0.5 0.3 0.6 0.3 0.6 1.0 4.1 0.3 0.5 0.4 0.6 0.4 0.6 1.9 7.7

dblp-amalgam 10 1.4 1.0 1.9 0.9 1.9 1.0 2.2 0.7 2.1 1.6 3.5 1.7 3.8 1.8 3.9 1.6 4.3
GUS-to-BIOSQL 8 1.5 1.2 2.3 1.7 3.1 2.0 3.7 1.9 3.8 2.6 5.0 2.8 5.9 2.8 5.6 2.5 5.9
SDB1-to-SDB2 10 1.5 1.0 3.2 2.0 2.9 2.3 3.3 2.5 4.4 3.9 6.1 6.5 50.2 6.5 50.2 4.3 13.8
SDB1-to-SDB3 11 1.5 2.3 3.2 3.1 5.4 4.0 6.6 4.1 6.7 5.3 16.1 11.1 135.9 11.4 136.2 13.1 136.8
SDB2-to-SDB3 9 2.1 0.7 1.4 0.8 1.9 0.9 1.9 1.0 1.7 3.2 6.2 5.6 43.6 5.6 43.6 3.8 8.4

Table 1: Scenarios characteristics; average (x̄) and maximum (xm) number of questions per tgd for each dataset refinement.

Average number of occurrences of constants per input pair (ES,ET) (i. e. N)

A
ve

ra
ge

 n
um

be
r o

f q
ue

st
io

ns
 p

er
 in

pu
t p

ai
r (

E
S
,E

T
)

1
2

3
4

2.5 2.6 2.7 2.8 2.9

a1−to−a2
0.

2
0.

3
0.

4
0.

5
0.

6

1.30 1.35

amalgam2

0.
5

1.
0

1.
5

2.
0

1.4 1.5 1.6 1.7

dblp−amalgam

1
2

3
4

1.5 1.6 1.7 1.8 1.9 2.0

GUS−to−BIOSQL

1
2

3
4

1.5 1.6 1.7 1.8

SDB1−to−SDB2

2
3

4
5

6

1.45 1.50 1.55 1.60 1.65 1.70 1.75

SDB1−to−SDB3

0.
5

1.
0

1.
5

2.1 2.2 2.3 2.4 2.5

SDB2−to−SDB3
Strategy:

BUBF
TDBF

Figure 4: Average number of questions per pair (ES , ET) versus N̄ on atom refinement using breadth-first strategies.

Average number of occurrences of constants per input pair (ES,ET) (i. e. N)

A
ve

ra
ge

 n
um

be
r o

f q
ue

st
io

ns
 p

er
 in

pu
t p

ai
r (

E
S
,E

T
)

2
4

6
8

2.50 2.55 2.60 2.65 2.70

a1−to−a2

0.
3

0.
4

0.
5

0.
6

0.
7

1.270 1.275 1.280

amalgam2

1
2

3
4

1.38 1.40 1.42 1.44 1.46

dblp−amalgam

5
10

15

1.50 1.55 1.60

GUS−to−BIOSQL

10
20

30
40

50

1.50 1.55 1.60 1.65

SDB1−to−SDB2

0
50

10
0

1.45 1.50 1.55

SDB1−to−SDB3

0
10

20
30

40

2.1 2.2 2.3 2.4 2.5

SDB2−to−SDB3 Max. number
 of occurrences
 for variables:

2..4
5
6
7..12

(a) Using the bottom-up breadth-first (BUBF) strategy

Average number of occurrences of constants per input pair (ES,ET) (i. e. N)

A
ve

ra
ge

 n
um

be
r o

f q
ue

st
io

ns
 p

er
 in

pu
t p

ai
r (

E
S
,E

T
)

2
3

4
5

6

2.50 2.55 2.60 2.65 2.70

a1−to−a2

0.
3

0.
4

0.
5

0.
6

1.270 1.275 1.280

amalgam2

1
2

3

1.38 1.40 1.42 1.44 1.46

dblp−amalgam

2
3

4
5

6
7

1.50 1.55 1.60

GUS−to−BIOSQL

4
6

8

1.50 1.55 1.60 1.65

SDB1−to−SDB2

4
6

8
10

12
14

16

1.45 1.50 1.55

SDB1−to−SDB3

2
4

6
8

10
12

2.1 2.2 2.3 2.4 2.5

SDB2−to−SDB3 Max. number
 of occurrences
 for variables:

2..4
5
6
7..12

(b) Using the top-down breadth-first (TDBF) strategy

Figure 5: Average number of questions per pair (ES , ET) versus N̄ on join refinement using breadth-first strategies.

Number of added degradations

R
at

io
 b

et
w

ee
n

to
ta

l s
iz

e
of

 c
ha

se
d

an
d

or
ig

in
al

 ta
rg

et
 in

st
an

ce
s

(%
)

0
10

20
30

40
50

0 5 10 15

a1−to−a2

0
10

0
30

0

0 5 10 15 20

amalgam2

0
20

40
60

80

0 5 10 15 20

dblp−amalgam

0
50

10
0

15
0

20
0

0 5 10 15

GUS−to−BIOSQL

0
10

0
20

0
30

0
40

0

0 5 10 15 20

SDB1−to−SDB2

0
10

0
20

0
30

0

0 5 10 15 20

SDB1−to−SDB3

0
20

40
60

80

0 5 10 15

SDB2−to−SDB3

Figure 6: Growth of the ratio r wrt. number of degradations.

Concretely, for exemplar tuples {(E1
S , E

1
T); . . . ; (EnS , E

n
T)}

and the corresponding expected mapping M, we calculate

the ratio r =
Σni=1| chase(M,EiS)|

Σni=1|E
i
T |

−1 of additional atoms in the

generated solution. In order to get a comprehensive view of
the effects of atom and join degradations, both degradations
occur together in this experiment. Precisely, in Figure 6, we
present the results where an equal number of atom and join
degradations are used. The x axis corresponds to the total
number of degradations (e.g., the value 20 corresponds to
the case with 10 atoms and 10 join degradations), while the
y axis corresponds to the aforementioned ratio r.

In all the employed scenarios, we can observe the effective-
ness and practicality of using exemplar tuples as opposed to
the universal data examples of EIRENE: universal exemplar
tuples are from 30% to 458% larger than the non-universal
ones used in our approach. Moreover, in all scenarios, we
can observe a strong linear correlation between the number
of degradations and the number of additional target tuples
needed by universal examples. Hence, the more degrada-
tions the exemplar tuples have, the larger is the benefit of
using our approach. Notice that the scenario that is the less
sensitive to the variation of the number of degradations is
amalgam2, which is also the scenario with the greatest num-
ber of tgds. Such a scenario is also among those that ex-
hibited the maximum benefit of using fewer exemplar tuples
rather. Although the precise amount of gain is clearly de-
pendent on the dataset and on the number of degradations,
we can observe that, in all scenarios, the advantage of using
non-universal exemplar tuples is non-negligible, thus making
our approach a practical solution for mapping specification.
Relative benefit of interactivity. A key contribution
of our mapping specification method is that it helps the
user to interactively correct errors (e.g., unnecessary atoms
during atom refinement, collisions of constants during join
refinement) that may appear in the exemplar tuples. In this
section, we aim at quantifying this benefit via a comparison
with a baseline approach, i.e., the one in which refinement
steps are disabled. As a baseline, we adopted the canonical

Scenarios Number of extraneous atoms added
0 2 5 8 10

SDB2-to-SDB3 0 12.4 27.0 36.9 -
SDB1-to-SDB2 0 11.1 23.8 33.3 38.5
SDB1-to-SDB3 0 7.3 16.2 23.6 28.0
dblp-amalgam 0 12.2 25.3 35.5 40.7
GUS-to-BIOSQL 0 11.7 25.8 35.7 -

a1-to-a2 0 8.3 18.5 26.6 -
amalgam2 0 3.1 7.5 10.9 12.8

Average 0 9.5 20.6 28.9 30

Table 2: Relative difference (in percent) between EIRENE and
our system.

GLAV generation performed in EIRENE4. As EIRENE is not
intended to handle errors in its input data examples, we
had to make sure that exemplar tuples in our case are an
acceptable input for EIRENE, in particular that they pass the
so-called “homomorphism extension test”. In other words,
we bootstrap our algorithms on universal exemplar tuples
(ES , ET) in order to warrant such comparison.

We use the sum of the number of left-hand side atoms of
the tgds as the comparison criterion: the larger it is, the
more “complex” is the mapping for the end user. This opti-
mality criterion is inspired by a compound measure proposed
in [21]. Notice that this comparison only deals with extra-
neous atoms during atom refinement and does not consider
collision of values, which is done during join refinement. For
such a reason, and also due to the fact that here we are
compelled to use universal data examples instead of few ar-
bitrary exemplar tuples in order to compare with EIRENE,
this comparison should be taken with a grain of salt.

The obtained results are presented in Table 2. If no ex-
traneous atom is added to the left-hand sides of mappings,
then there is no qualitative difference between the two ap-
proaches. However, when extraneous atoms are introduced,
a remarkable difference can be observed: EIRENE’s canonical
mapping is about 20% larger on average (across all scenar-
ios) when 5 such atoms are introduced, and goes up to 30%
on average with 10 atoms. Hence, our mappings are notice-
ably simpler than EIRENE’s ones. Such an improvement is
both beneficial for the readability of mappings as well as for
their efficiency because spurious atoms are eliminated.

5. RELATED WORK
A pioneering work on the usage of data examples in map-

ping understanding and refinement [31] relies on Clio’s [25]
schema correspondences as specified in a graphical user in-
terface. By leveraging such correspondences, Yan et al. [31]
propose alternative data associations among relevant source
instances leading to construct mappings in an incremental
fashion with the intervention of the mapping designer. The
dichotomy between the expected user instance and the gen-
erated instance has been further investigated in Routes [15].
The input required by Routes consists of both a source in-
stance and a mapping that the user readily intends to debug.
The user then builds test cases for the mapping at hand by
probing values in the target instance, and the system returns
a provenance trace to explain how and why the probed val-
ues are computed. This approach closely resembles testing
as done for software development. By opposite, our method
requires as inputs a source and target exemplar tuples and

4For the sake of fairness, EIRENE’s canonical GLAV are split-
reduced and σ-redundant tgds are suppressed.

no prior mapping connecting them. The final objective of
our approach, which especially targets users unfamiliar with
schema mappings, is to build the mapping that the user had
in mind via simple boolean user interactions. To draw a
comparison with software development, our method gener-
ates a specification (i.e. a mapping expressed in first-order
logic) starting solely from supplied unit test cases (i.e. small
exemplar tuples).

As in Yan et al. [31], Muse [5] leverages data examples to
differentiate between alternative mapping specifications of
the designer and drives the mapping design process based
on the designer’s actions. However, the techniques proposed
in [5] are more sophisticated than the ones in [31], in that
they address the problem of the grouping semantics of map-
pings and their alternative semantics in case of ambiguity.
Muse also poses a number of yes/no questions to the designer
to clarify the grouping semantics. However, the number
of questions are driven by the schema elements along with
schema constraints that are used to reduce the number of
questions. In our approach, we do not assume prior knowl-
edge of the schema constraints. TRAMP [19] and Vagabond

[20] focus on the understandability of user errors in map-
pings by using provenance. However, explanations returned
by Vagabond are to be interpreted by users who are familiar
with the mapping language and its underlying semantics.

The use of data examples as evaluation tools has begun
in [4, 29], which investigated the possibility of uniquely char-
acterizing a schema mapping by means of a set of data ex-
amples. Hence, such unique characterization, up to logical
equivalence of the obtained mappings, using a finite set of
universal data examples was shown to be possible only in
the case of LAV dependencies and for fragments of GAV
dependencies [4, 29]. As a negative result, it was shown
in [4] that already simple s-t tgds mappings, such as copy
E(x, y) → F (x, y), cannot be characterized by a finite set
of universal data examples under the class of GLAV map-
pings. Given the impossibility of uniquely characterizing
GLAV mappings in real settings, [6, 7] made the choice of
being less specific. Precisely, they decided to characterize,
for a given schema mapping, the set of valid“non-equivalent”
mappings with respect to the class of GLAV. To achieve
that, they rely on the notion of “most general mapping”. It
was shown that, given a schema mapping problem, a most
general mapping always exists in the class of GLAV map-
pings if there exists at least one valid mapping for the con-
sidered problem [6]. In EIRENE [7], the authors show how
the user can generate a mapping that fits universal data ex-
amples given as input. Whereas EIRENE expects a set of
universal data examples, we lift the universality assumption
arguing that universal data examples are hard to be pro-
duced by a non-expert user. Moreover, as we have shown
in Section 4, universal target instances tend to be signifi-
cantly larger than our exemplar tuples. The only previous
work targeting non-expert users is MWeaver [26], where the
user is asked to toss tuples in the target instance by fetch-
ing constants within the available complete source instance.
However, this work has different assumptions with respect
to ours: it aims at searching a source sample among all pos-
sible samples satisfying the provided target tuples, focusing
on GAV mappings only. Our system inspects a few input
tuples, on which interactive refinement is enabled, and ex-
pressive GLAV mappings can be inferred via simple user
feedback.

All the aforementioned approaches are meant to produce
the best exact mapping. However, one can use data exam-
ples to produce approximate mappings. Gottlob and Senel-
lart propose a cost-based method to estimate the best ap-
proximate mapping given a set of possible repairs of the
initial mapping [22]. The cost function takes account for
the length of the generated tgds and the number of repairs
that are needed to obtain a tgd that fully explain the in-
stance ET . Approximation of schema mappings has been
considered recently in [28] by considering more expressive
fragments of GLAV and GAV.

Cate et al. [14] show how computational learning (i.e.,
the exact learning model introduced by D. Angluin [8] and
the Probably Approximately Correct model introduced by
L. Valiant [30]) can be used to infer mappings from data
examples. Their analysis is restricted to GAV schema map-
pings.

Besides mapping specification and learning, researchers
have investigated the problem of inferring relational queries [2,
1, 24, 13]. The work in [2, 1] focuses on learning quanti-
fied Boolean queries by leveraging schema information un-
der the form of primary-foreign key relationships between
attributes. Their goal is to disambiguate a natural language
specification of the query, whereas we use raw tuples to guess
the unknown mapping that the user has in mind. In [13],
the problem of inferring join predicates in relational queries
is addressed. Consistent equi-join predicates are inferred
by questioning the user on a unique denormalized relation.
We differ from their work as follows: we focus on mapping
specification and consider the broad class of GLAV map-
pings whereas they focus on query specification for a limited
fragment of (equi-join) queries. Finally, [24] presents the ex-
emplar query evaluation paradigm, which relies on exemplar
queries to identify a user sample of the desired result of the
query and a similarity function to identify database struc-
tures that are similar to the user sample. For the latter,
the input database is assumed to be known, which is not
an assumption in our framework. Since exemplar queries
are answered upon an input database, they are considered
as unambiguous, whereas this is not necessarily the case in
our framework, whose goal is to refine and disambiguate ex-
emplar tuples to derive the unknown mapping that the user
has in mind.

6. CONCLUSIONS
We have addressed the problem of interactive schema map-

ping inference starting from arbitrary sets of exemplar tu-
ples, as provided by non-expert users. We have shown that
simplification of the mappings is possible by alternating nor-
malization and refinement steps, the latter under the form
of simple boolean questions.

This paper lays the foundations of an envisaged practical
framework. Much work is left to be done in order to make
mapping specification an activity for non-expert users, for
instance by adding features like error acceptance in user re-
sponses. Also, after such improvements, a user study with
a carefully chosen statistical protocol is needed in order to
evaluate the practicality of the approach and capture the
user behavior when using our system. A further direction
of future work is devoted to enhance the lattice exploration,
for instance by leveraging machine learning methods.

APPENDIX
A. REFERENCES

[1] A. Abouzied, D. Angluin, C. H. Papadimitriou, J. M.
Hellerstein, and A. Silberschatz. Learning and
verifying quantified boolean queries by example. In
Proceedings of PODS, pages 49–60, 2013.

[2] A. Abouzied, J. M. Hellerstein, and A. Silberschatz.
Playful query specification with dataplay. PVLDB,
5(12):1938–1941, 2012.

[3] R. Agrawal and R. Srikant. Fast algorithms for mining
association rules in large databases. In VLDB’94,
pages 487–499, 1994.

[4] B. Alexe, B. T. Cate, P. G. Kolaitis, and W.-C. Tan.
Characterizing schema mappings via data examples.
TODS, 36(4):23:1–23:48, 2011.

[5] B. Alexe, L. Chiticariu, R. J. Miller, and W. C. Tan.
Muse: Mapping understanding and design by example.
In Proceedings of the ICDE, pages 10–19, 2008.

[6] B. Alexe, B. ten Cate, P. G. Kolaitis, and W. C. Tan.
Designing and refining schema mappings via data
examples. In Proceedings of SIGMOD, pages 133–144,
2011.

[7] B. Alexe, B. Ten Cate, P. G. Kolaitis, and W.-C. Tan.
Eirene: Interactive design and refinement of schema
mappings via data examples. Proceedings of VLDB,
2011.

[8] D. Angluin. Queries and concept learning. Machine
Learning, 2(4):319–342, 1987.

[9] P. C. Arocena, B. Glavic, R. Ciucanu, and R. J.
Miller. The ibench integration metadata generator.
Proceedings of VLDB, 9(3):108–119, 2015.

[10] C. Beeri and M. Y. Vardi. A proof procedure for data
dependencies. JACM, 31(4):718–741, 1984.

[11] Z. Bellahsene, A. Bonifati, and E. Rahm, editors.
Schema Matching and Mapping. Data-Centric Systems
and Applications. Springer, 2011.

[12] P. A. Bernstein and S. Melnik. Model management
2.0: Manipulating richer mappings. In SIGMOD, 2007.

[13] A. Bonifati, R. Ciucanu, and S. Staworko. Learning
join queries from user examples. ACM Trans.
Database Syst., 40(4):24:1–24:38, Jan. 2016.

[14] B. T. Cate, V. Dalmau, and P. G. Kolaitis. Learning
schema mappings. ACM TODS, 38(4):28, 2013.

[15] L. Chiticariu and W.-C. Tan. Debugging schema
mappings with routes. In Proceedings of the 32nd

international conference on Very large data bases,
pages 79–90. VLDB Endowment, 2006.

[16] G. I. Diaz, M. Arenas, and M. Benedikt. Sparqlbye:
Querying RDF data by example. PVLDB,
9(13):1533–1536, 2016.

[17] R. Fagin, P. G. Kolaitis, R. J. Miller, and L. Popa.
Data exchange: semantics and query answering.
Theoretical Computer Science, 336(1):89–124, 2005.

[18] M. J. Franklin, A. Y. Halevy, and D. Maier. A first
tutorial on dataspaces. PVLDB, 1(2):1516–1517, 2008.

[19] B. Glavic, G. Alonso, R. J. Miller, and L. M. Haas.
Tramp: Understanding the behavior of schema
mappings through provenance. Proc. VLDB Endow.,
3(1-2):1314–1325, Sept. 2010.

[20] B. Glavic, J. Du, R. J. Miller, G. Alonso, and L. M.

Haas. Debugging data exchange with vagabond.
PVLDB, 4(12):1383–1386, 2011.

[21] G. Gottlob, R. Pichler, and V. Savenkov.
Normalization and optimization of schema mappings.
VLDB J., 20(2):277–302, 2011.

[22] G. Gottlob and P. Senellart. Schema mapping
discovery from data instances. Journal of the ACM
(JACM), 57(2):6, 2010.

[23] H. V. Jagadish, A. Chapman, A. Elkiss,
M. Jayapandian, Y. Li, A. Nandi, and C. Yu. Making
database systems usable. In Proceedings of SIGMOD,
pages 13–24, 2007.

[24] D. Mottin, M. Lissandrini, Y. Velegrakis, and
T. Palpanas. Exemplar queries: Give me an example
of what you need. PVLDB, 7(5):365–376, 2014.

[25] L. Popa, Y. Velegrakis, M. A. Hernández, R. J. Miller,
and R. Fagin. Translating web data. In Proceedings of
VLDB, pages 598–609, 2002.

[26] L. Qian, M. J. Cafarella, and H. Jagadish.
Sample-driven schema mapping. In Proceedings of
SIGMOD, pages 73–84. ACM, 2012.

[27] P. Shvaiko and J. Euzenat. A survey of schema-based
matching approaches. Journal on Data Semantics,
pages 146–171, 2005.

[28] B. ten Cate, P. G. Kolaitis, K. Qian, and W.-C. Tan.
Approximation algorithms for schema-mapping
discovery from data examples. In Alberto Mendelzon
International Workshop on Foundations of Data
Management, page 24, 2015.

[29] B. Ten Cate, P. G. Kolaitis, and W.-C. Tan. Database
constraints and homomorphism dualities. In CP.
Springer, 2010.

[30] L. G. Valiant. A theory of the learnable. Commun.
ACM, 27(11):1134–1142, Nov. 1984.

[31] L. Yan, R. J. Miller, L. M. Haas, and R. Fagin.
Data-driven understanding and refinement of schema
mappings. In Proceedings of SIGMOD, pages 485–496,
2001.

B. PROOFS
We report in this section the proofs omitted in the bulk

of the paper, along with an additional auxiliary lemma. For
the formal development, we assume a countably infinite set
N of labeled nulls.

Lemma 1. Let M = (S,T,Σ) be a canonical mapping
and let Σ′ be a mapping obtained from atom refinement of
M, then, for all source instances ES , there exists a mor-
phism µ such that µ(chase(Σ, ES)) ⊆ chase(Σ′, ES). By
the correctness of the chase procedure, the logical entailment
Σ′ |= Σ holds.

Proof. For each tgd σ = φ → ψ ∈ M there exists at
least one tgd σ′ = φ′ → ψ ∈M′ that is an atom refinement
of σ. Then, φ′ must correspond to a node in the semilattice,
such that φ′ ⊆ φ. We introduce an function ref :M→M′
that associate to each σ in M one of its refinements (that
may be arbitrarily chosen if there are several such tgds in
M′).

Let ν be an instantiation mapping to compute chase(M, ES).
That is, there exists a tgd σ = φ → ψ ∈ M such that
ν(φ) ⊆ ES and ν(ψ) ⊆ chase(M, ES). Moreover each ex-
istential variable in ψ is mapped by ν to a fresh labeled

null, which means that is ν−1 is defined for such values.
Since φ′ ⊆ φ, ν(φ′) ⊆ ES . Therefore, there exists an
instantiation mapping ν′ such that (1) ν′(φ′) ⊆ ES (2)
ν′(ψ′) ⊆ chase(M′, ES) and (3) for all variables x in φ′,
ν′(x) = ν(x). However, ν′ and ν can differ in two ways:
the domain of ν′ can be smaller than the domain of ν and
the labeled nulls that are assigned to existential variables
in ψ can be different because the chase generate fresh null
values at each tgd application. By construction of Ep in Al-
gorithm 1, any variable x in ψ is either an existential vari-
able or a universal variable in φ′. Thus, every variable x
in ψ is either mapped to fresh null values by ν and ν′ or,
alternatively, ν(x) = ν′(x). We introduce µν a morphism
from ν(ψ) ⊆ chase(M, ES) to ν′(ψ) ⊆ chase(M′, ES), de-
fined as µν(c) = c if there exists x in φ′ such that ν(x) = c
and µν(c) = ν′(ν−1(c)) otherwise (that if c is a fresh value
generated by chase(M, ES)).

Let us consider two instantiation mappings ν1 and ν2 used
in chase(M, ES) and their associated morphisms µν1 and
µν2 . Let c be a value in dom(µν1) ∩ dom(µν2). If c is
fresh and in dom(µν1), it means than it is the image of
an existential variable by ν1, which means that it cannot be
the image of any variable by ν2, and thus c 6∈ dom(µν2)
which contradicts c ∈ dom(µν1) ∩ dom(µν2). Thus c is
not fresh, thus µν1(c) = c = µν2(c). We define µ{ν1,ν2}
as µ{ν1,ν2}(c) = µν1(c) if c ∈ dom(µν1) and µ{ν1,ν2}(c) =
µν2(c) otherwise. One can remark that µ{ν1,ν2} |dom(µν1)=

µν1 and µ{ν1,ν2} |dom(µν2)= µν2 . By iterating this construc-
tion on the finite set Λ of all instantiation mappings ν used
in chase(M, ES), we can build a morphism µ = µΛ.

Let t be a tuple in chase(M, ES). There exists an instan-
tiation morphism ν used in chase(M, ES) and a tgd φ→ ψ
such that t ∈ ν(ψ). Since µν(ν(ψ)) ⊆ chase(M′, ES) and
µ |dom(µν)= µν we deduce µ(t) ∈ chase(M′, ES).

The following Example 12 shows that the previous prop-
erty would not hold if Algorithm 1 is allowed to create new
existential variables.

Example 12. Given a pair (ES , ET) such that ES = {R(x, y);
S(z)} and ET = {T (x)}. The canonical mapping corre-
sponding to (ES , ET) is Σ = {R(x, y) ∧ S(z)→ T (x)}. Sup-
pose that atom refinement allows the creation of existentially
quantified variables. By applying this refinement on Σ, we
may obtain the mapping Σ′ = {S(z) → ∃x, T (x)}. Chasing
ES under Σ and Σ′ will lead to following results:

chase(ES ,Σ) = {T (x)} chase(ES ,Σ
′) = {T (x1)}

for which there is no morphism µ such that µ(chase(ES ,Σ)) ⊆
chase(ES ,Σ

′), because the constant x has to be preserved.

Lemma 2. Given a normalized canonical mapping M =
(S,T,Σ), application of atom refinement step on the tgds in
Σ always produce a mapping which is split-reduced.

Proof (sketch). AsM is already normalized, it is split-
reduced. During the refinement step, only atoms in the left-
hand side are suppressed, so there is no way to break joins
between existentially quantified variables as they are located
only in the right-hand side. This means thatM′ is also split-
reduced.

Example 13. Given a normalized canonical mappingM =
(S,T,Σ), application of atom refinement step on the tgds in
Σ does not allow to avoid σ-redundant tgds.

We can exhibit a counter-example of σ-redundancy gener-
ation, given a normalized set of tgds Σ as follows:

Σ = {R(u, v) ∧R(x, y) ∧ S(y, z)→ T (u, v);

R(u, v) ∧R(x, y) ∧ S(y, z)→ T (x, y)}

Applying atom refinement on Σ allows to produce the follow-
ing refined set of tgds Σ′, where tgds are σ-redundant:

Σ′ = {R(u, v)→ T (u, v);R(x, y)→ T (x, y)}

Lemma 3. Let Σ be a mapping and let Σ′ be a mapping
obtained from Σ after join refinement, then Σ′ |= Σ.

Proof. Let σ = φ → ψ be a tgd and x be a uni-
versal variable in σ. First, we prove that for all σ′′ ∈
VarJoinsRefinement(σ, x), σ′′ |= σ.

Let σ′ = φ′ → ψ′ be the tgd obtained from σ by replac-
ing occurrences of x with a fresh variable, and µorig be the
morphism such that µorig(σ

′) = σ. Let σ′′ = φ′ → ψ′. As
σ′′ results from the unification of fresh variables in σ′, there
is a morphism µunif such that µunif (σ′) = σ′′. Let µσ′′ be
the morphism defined by: µσ′′(y) = x if y results from the
unification of fresh variables in σ′, µσ′′(y) = y otherwise. By
construction, µσ′′(σ′′) = σ. One can remark that existential
variables in ψ′′ are the same as the ones in ψ, thus µσ′′ is
injective for these variables.

In Algorithm 2, Σt contains tgds that are either elements
of Σ or obtained by applying VarRefinement to previous
elements of Σt. Because of line 9, VarRefinement always
returns at least one tgd. Thus, for each initial tgd σ in
Σ, there is a tgd σ′ in Σ′ coming from successive calls of
VarRefinement starting with σ. By transitivity of |= we
deduce that σ′ |= σ. Thus, Σ′ |= σ. Since this holds for all
tgds in Σ, we conclude that Σ′ |= Σ.

Lemma 4. Given a normalized mapping M = (S,T,Σ),
application of join refinement on the tgds in Σ always pro-
duces a mapping which is split-reduced.

Proof. By definition, if a tgd σ is split-reduced and con-
tain more than one atom in its right-hand side, these atoms
(at least two) are joined using existentially quantified vari-
ables. Since join refinement only focuses on universal vari-
ables, existential variables are preserved. Thus, all atoms in
the right-hand side of join refined tgds are joined together
using these existential variables, which means that join re-
fined tgds are also split-reduced.

As Σ is normalized, each of its tgd is split-reduced. Since
for each tgd in Σ, the application of the join refinement step
results in new tgds that are also split-reduced. Thus, the set
Σ′ of all these refined tgds is a split-reduced mapping.

Theorem 1. Let (ES , ET) be a pair of exemplar tuples
sets. Let M = (S,T,Σ) be the canonical mapping corre-
sponding to these exemplar tuples obtained after pre-processing.
Let M′ = (S,T,Σ′) be the refined mapping produced by our
framework. Then, for all instances ES over S, there exists a
morphism µ such that µ(chase(Σ, ES)) ⊆ chase(Σ′, ES), that
is, the refined mapping is a generalization of the canonical
one: M′ |=M.

Proof (sketch). This theorem follows from Lemma 1
and Lemma 3.

Theorem 2. The refined mapping obtained when user al-
ways validates the supremums of the explored semilattices is
equivalent to the canonical mapping.

Scenarios BUBF BUDF TDBF TDDF
x̄ s x̄ s x̄ s x̄ s

a1-to-a2 0.38 0.06 0.43 0.06 0.43 0.07 0.50 0.13
amalgam2 19.19 3.41 18.23 5.06 20.55 3.35 17.70 4.84

dblp-amalgam 0.55 0.25 0.54 0.25 0.71 0.34 0.63 0.31
GUS-to-BIOSQL 0.29 0.04 0.30 0.08 0.40 0.11 0.37 0.15
SDB1-to-SDB2 0.15 0.02 0.30 0.84 0.23 0.07 0.35 0.84
SDB1-to-SDB3 0.16 0.02 1.98 11.81 0.26 0.10 2.30 12.51
SDB2-to-SDB3 0.18 0.05 0.52 1.70 0.24 0.08 0.76 2.21

Table 3: Average executions times to produce a question (x̄) in milliseconds and their standard deviation (s).

Average number of occurrences of constants per input pair (ES,ET) (i. e. N)

A
ve

ra
ge

 n
um

be
r o

f q
ue

st
io

ns
 p

er
 in

pu
t p

ai
r (

E
S
,E

T
)

1
2

3
4

2.5 2.6 2.7 2.8 2.9

a1−to−a2

0.
2

0.
3

0.
4

0.
5

0.
6

1.30 1.35

amalgam2

0.
5

1.
0

1.
5

2.
0

1.4 1.5 1.6 1.7

dblp−amalgam

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

1.5 1.6 1.7 1.8 1.9

GUS−to−BIOSQL

1
2

3
4

1.5 1.6 1.7 1.8

SDB1−to−SDB2

3
4

5
6

1.45 1.50 1.55 1.60 1.65 1.70 1.75

SDB1−to−SDB3

0.
5

1.
0

1.
5

2.1 2.2 2.3 2.4

SDB2−to−SDB3

Figure 7: Average number of questions per per pair (ES , ET) versus N̄ on atom refinement using top-down depth-first (BUDF)
strategy.

Proof (sketch). Our framework first produces a nor-
malized version of the canonical mapping, which is logically
equivalent to the corresponding canonical mapping gener-
ated for universal exemplar tuple. In addition, the under-
lying assumption of our algorithms asserts that new con-
straints cannot be added and, by construction of the semi-
lattices, the supremum of each semilattice corresponds to
the case where no constraints are suppressed in both the
atom and join refinement. Therefore, if a user chooses to
keep only the supremum, the produced mapping will be log-
ically equivalent to the normalized canonical mapping. As
the normalized mapping is logically equivalent to the initial
canonical mapping, by transitivity the mapping produced by
our framework by choosing only the semilattices’ supremum
is also logically equivalent to this canonical mapping.

C. COMPLETE EXECUTION TIMES
We report in Table 3 the running times for all four explo-

ration strategies.

D. EXPERIMENTS: COMPLEMENTARY FIG-
URES

As supplementary material, we report the results for the
strategies TDDF and BUDF (omitted in the paper due to
space constraints) in Figures 7 and 8 for atom refinement
and Figure 9 for join refinement.

Average number of occurrences of constants per input pair (ES,ET) (i. e. N)

A
ve

ra
ge

 n
um

be
r o

f q
ue

st
io

ns
 p

er
 in

pu
t p

ai
r (

E
S
,E

T
)

1
2

3
4

2.5 2.6 2.7 2.8 2.9

a1−to−a2

0.
2

0.
3

0.
4

0.
5

0.
6

1.30 1.35

amalgam2

0.
5

1.
0

1.
5

1.4 1.5 1.6 1.7

dblp−amalgam

1.
0

1.
5

2.
0

2.
5

3.
0

1.5 1.6 1.7 1.8 1.9 2.0

GUS−to−BIOSQL

1
2

3

1.5 1.6 1.7 1.8

SDB1−to−SDB2

2
3

4
5

1.45 1.50 1.55 1.60 1.65 1.70 1.75

SDB1−to−SDB3

0.
5

1.
0

1.
5

2.1 2.2 2.3 2.4

SDB2−to−SDB3

Figure 8: Average number of questions per pair (ES , ET) versus N̄ on atom refinement using top-down depth-first (TDDF)
strategy.

Average number of occurrences of constants per input pair (ES,ET) (i. e. N)

A
ve

ra
ge

 n
um

be
r o

f q
ue

st
io

ns
 p

er
 in

pu
t p

ai
r (

E
S
,E

T
)

2
4

6
8

2.50 2.55 2.60 2.65 2.70

a1−to−a2

0.
3

0.
4

0.
5

0.
6

0.
7

1.270 1.275 1.280

amalgam2

1
2

3
4

1.38 1.40 1.42 1.44 1.46

dblp−amalgam

5
10

15

1.50 1.55 1.60

GUS−to−BIOSQL

10
20

30
40

50

1.50 1.55 1.60 1.65

SDB1−to−SDB2

0
50

10
0

1.45 1.50 1.55

SDB1−to−SDB3

0
10

20
30

40

2.1 2.2 2.3 2.4 2.5

SDB2−to−SDB3 Max. number
 of occurrences
 for variables:

2..4
5
6
7..12

(a) Using the bottom-up depth-first (BUDF) strategy

Average number of occurrences of constants per input pair (ES,ET) (i. e. N)

A
ve

ra
ge

 n
um

be
r o

f q
ue

st
io

ns
 p

er
 in

pu
t p

ai
r (

E
S
,E

T
)

2
3

4
5

6
7

8

2.50 2.55 2.60 2.65 2.70

a1−to−a2

0.
3

0.
4

0.
5

0.
6

0.
7

1.270 1.275 1.280

amalgam2

1
2

3
4

1.38 1.40 1.42 1.44 1.46

dblp−amalgam

5
10

15

1.50 1.55 1.60 1.65

GUS−to−BIOSQL

10
20

30
40

50

1.50 1.55 1.60 1.65

SDB1−to−SDB2

0
50

10
0

1.45 1.50 1.55

SDB1−to−SDB3

0
10

20
30

40

2.1 2.2 2.3 2.4 2.5

SDB2−to−SDB3 Max. number
 of occurrences
 for variables:

2..4
5
6
7..12

(b) Using the top-down depth-first (TDDF) strategy

Figure 9: Average number of questions per pair (ES , ET) versus N̄ on join refinement using depth-first strategies.

	Introduction
	Preliminaries
	Mapping refinement
	Exemplar tuples and mappings
	Refinement of mappings
	Atom refinement
	Semilattice for Atom Refinement
	Exploring the semilattice
	Questioning about atoms set validity

	Join refinement between variables of a tgd
	Final mapping

	Experiments
	Related Work
	Conclusions
	References
	Proofs
	Complete execution times
	Experiments: complementary figures

