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* Clarins Laboratories, Pontoise, France.
t Université Paris-Est, LIGM UMR 8049, ESIEE Paris, France.

ABSTRACT

Reflectance confocal microscopy (RCM) is a powerful tool to
visualize the skin layers at cellular resolution. The dermal-
epidermal junction (DEJ) is a thin complex 3D structure. It
appears as a low-contrasted structure in confocal en-face sec-
tions, which is difficult to recognize visually, leading to un-
certainty in the classification. In this article, we propose an
automated method for segmenting the DEJ with reduced un-
certainty. The proposed approach relies on a 3D Conditional
Random Field to model the skin biological properties and im-
pose regularization constraints. We improve the restitution
of the epidermal and dermal labels while reducing the thick-
ness of the uncertainty area in a coherent biological way from
16.9 pm (ground-truth) to 10.3 pm.

Index Terms— Conditional Random Fields, Reflectance
confocal microscopy, image segmentation, skin modeling

1. INTRODUCTION

The characterization of skin conditions is a major challenge
for skin aging understanding. Skin aging is defined by a set
of cumulative alterations of its various components over the
years. The two major layers of the skin, the epidermis and
the dermis, are separated by the dermal-epidermal junction
(DEJ), which is also affected by skin aging.

The DEIJ is a complex, wave-like, 3D structure. Its peaks
and troughs, called dermal papillae, are due to projections of
the dermis into the epidermis. With skin aging, the DEJ’s ap-
pearance flattens, which could have important consequences
such as lower epidermal adhesion.

Reflectance confocal microscopy (RCM) is a powerful
tool for non-invasively assessing the skin architecture and cy-
tology. RCM images provide a representation of the skin at
the cellular level, with melanin and keratin working as natural
contrast agents [1]. Our data consists of depth-oriented (en-
face), in-vivo, confocal sections of the skin from the surface
to 200 pm. Several approaches to automatize confocal im-
age analysis have been proposed focusing on quantifiying the
epidermal state [2], performing computer-aided diagnostic of
skin lesions [3] and identifying the layers of human skin. In
fair skin, the DEJ detection is a difficult task since it appears

Uncertain

Fig. 1. Expert segmentation in 3 labels : Epidermis, Uncer-
tain and Dermis. The epidermis exhibits a well defined hon-
eycomb pattern, the dermis is textured by the collagen fiber
representation. One can notice the low-contrasted appearance
of the uncertain area.

as an amorphous and low-contrasted structure. Its segmenta-
tion could further improve skin aging quantification.

In the skin, the DEJ architecture is a thin layer of cells but
state-of-art methods define it as a thick transition zone due
to the difficulty in precisely locating it by visual inspection
(Fig. 1). Somoza et al. [4] used an unsupervised clustering
method to classify whole en-face image as a single distinct
layer, resulting in a good correlation between human classi-
fication and automated assessment. Kurugol et al. [5] de-
veloped a hierarchical method on small tiles to segment the
DEJ as a transition zone from the epidermis to the dermis.
In [6, 7], Hames et al. proposed a supervised classification
method based on a one-layer per depth strategy for the label-
ing of their training set. They have extended their method
to perform pixel-wise classification, allowing them to distin-
guish several skin strata in one image. Their algorithm uses
a 1D linear chain Conditional Random Field and structured
Support Vector Machine to model the skin structure.

In this paper, we provide a method to automatically seg-
ment the dermo-epidermal junction in 3 classes : epidermis
(ED), uncertain area (U), and dermis (D) using in vivo re-
flectance confocal microscopy on fair skin. Our proposed ap-



proach consists of a 3D Conditional Random Field, which al-
lows us to provide a spatial regularization on label distribution
and to model skin biological properties. The CRF model pre-
dicts a pixel label according to 1) its probabilities to belong
to one of the skin layers, and to 2) the labels of its neighbors.
The probability of a pixel to belong to one of the three classes
is estimated by a Random Forest classifier trained on rele-
vant features. The relations between pixel neighbors mimic
the skin layers behavior in 3D by imposing the transition or-
der between en-face sections. Such a model is represented in
Fig. 2. Our main result is a DEJ segmentation which respects
the high-confidence expert label while reducing the thickness
of the uncertain area.

2. DATABASE

Our database consists of 23 annotated stacks of confocal im-
ages acquired from fifteen healthy volunteers with fair skin.
Volunteers were assigned to two groups: a 7-persons group
aged from 18 to 25 and another 8-persons group aged from
55 to 65. Image acquisition was carried out on the cheek
to further assess chronological aging. No cosmetic products
nor skin treatment were allowed on the day of the acquisi-
tions. Appropriate consent was obtained from all subjects be-
fore imaging. RCM images are acquired using a near-infra-
red reflectance confocal laser scanning microscope (Vivas-
cope 1500; Lucid Inc, Rochester, NY, USA) [8]. Each im-
age corresponds to a horizontal section with a 500 x 500 pm
field of view and a resolution of 1000 x 1000 pixels. On each
imaged site, stacks are acquired from the skin surface to the
reticular dermis with a step of 5 um. Visual labeling of the
DE]J is not easy to perform even for experts, therefore they
were asked to delineate the stacks in the 3 zones described in
Sec. 1 (see Fig. 1).

3. CONDITIONAL RANDOM FIELDS

An image y consists of M pixels i € S = [1, M] with ob-
served data y;, i.e, y = (y1, Y2, ..., Ynr) organized in layers
(en-face images) forming a 3D structure. We want to as-
sign a discrete label z; to a each pixel ¢ from a given set of
classes C = {Epidermis, Uncertain, Dermis}. The classifica-
tion problem can be formulated as finding the configuration &
that maximizes p(x | y), the posterior probability of the labels
given the observations.

A CRF is a model of p(x|y)with an associated graph
G = (V, E) where V is the set of vertices representing the im-
age pixels and F the set of edges modeling the interaction be-
tween neighbors [9]. Here, F is the usual 3D 6-connectivity.
The CRF model is represented in Fig. 2.

We use a model with pairwise interactions defined by :

p(z]y) o H%’(In)’) X H Vij(zi,xy,y), (1)
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Fig. 2. 3D CRF modelisation. The sets of nodes in gray and
in white belong to two different en-face sections. The edge
potentials of each en-face sections 1);;, (Eq. 3) are learned
for each depth. Edge potentials between en-face sections 1
(Eq.3) impose biological transition constraints.

where ¢, (x;,y) is the node potential linking the observations
to the class label at pixel ¢ and v);;(z;, z;,y) the interaction
potentials modeling the dependencies between the labels of
two neighboring pixels ¢ and j.

3.1. Node potential

The node potential is defined as the probability of a label x;
to take a value c given the observed data y by :

vi(wi,y) = plz; = c | fi(y)) (2)

with f;(y) a feature vector computed at pixel 7 from the ob-
served data.

In our case, each node potential is associated with the pre-
dicted class probability vector produced by a Random Forest
(RF) classifier. We apply the following classical features from
the literature [5, 7] : first and second order statistics, gray
level co-occurrence matrix contrast, energy and variance, Ga-
bor filter output and Laplacian variance.

We propose new features to estimate the distance of the
current pixel to the DEJ. The DEJ is an amorphous structure
compared to the epidermis, which appears as a honeycomb
pattern, and the dermis, which contains collagen fibers. Thus,
we expect low values of Laplacian variance in en-face sec-
tions around the DEJ location. For a pixel ¢ at a given en-face
section p, we calculate the feature vector for every en-face
section at its location. We define Dpg; as the distance to the
closest minimum. The Laplacian variance of the closest min-
ima is also added to the set of features. An example is pre-
sented in Fig.3.

3.2. Interaction potential

The interaction potential describes how likely x; is to take the
value c given the label ¢’ of one of its neighboring pixel j:

Vi (i, y) =pla; =c|x; =) 3
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Fig. 3. Laplacian variance and distance to the closest mini-
mum.

Prior information on skin structure is essential to deter-
mine efficiently the interaction potentials in our CRF model.
We know that several skin layers can co-exist in a single en-
face section. However, the skin layers follow a specific order
from the surface to inner layers : ED — DEJ (contained in the
uncertain area) — D. We define an incoherent transition as a
transition not following such a specific order.

In an en-face section, edges are modeled symmetrically
i.e 1;; = 1;; (dashed arrows in Fig. 2). Between en-face
sections, only coherent transitions are allowed, the edge po-
tentials thus depend of their direction, i.e ;; # ;; (plain
arrows in Fig 2).

The interaction potentials are modeled by a 3 x3 matrix
representing the transition probabilities between classes. We
estimate such transition probabilities from the frequency of
co-occurrence of classes (¢, ¢’) between neighboring pixels i
and j in the ground-truth images. Co-occurrence frequencies
are learned for each depth of en-face sections.

For the 3D case, constraints are added to the transition
matrix according to the edge direction. Between two pixels
7 and j belonging to adjacent en-face sections, if ¢ is above
J, ¥ij is equal to H(label;, label;), the transition matrix in
Table 1, and to H (2 — label;, 2 — label;) otherwise.

label; Epidermis | Uncertain | Dermis
label; (label 0) (label 1) | (label 2)
Epidermis (label 0) 0.58 0.38 0.04
Uncertain (label 1) 0 0.91 0.08
Dermis (label 2) 0 0 1

Table 1. Transition matrix H (label;, label;) with i above j
where values are the learned probabilities of transition be-
tween depth 80 and 85 pm. The null values ensure that in-
coherent transitions are impossible.

4. RESULTS & DISCUSSION

Our goal is to produce a precise information about the DEJ
shape, i.e. to simultaneously provide an accurate restitution of
the epidermal and dermal labels while reducing the uncertain
area.

We want to evaluate our set of features and the regulariza-
tion strategy. We consider three cases: 1) RFj; in which we
train the RF classifier on the classical set of features from the
literature, 2) RF,op in which we train the RF classifier on our
proposed set of features, and 3) CRF3Dy,, in which we train
the RF classifier on our proposed set of features followed by
the CRF modelisation.

To evaluate our proposed set of features, we compare the
mean accuracy of RFj; and RFp. Then, to validate our 3D
model, we compare the sensitivity for ED and D, to assess
the accurate restitution of those layers, and the specificity for
U that penalizes the classification of the epidermal or dermal
layers as uncertain area.

Each labeling is evaluated using a 10-fold cross-validation.
The optimal labels for Eq. (1) were computed with a LBP al-
gorithm using DGM Lib [10].

The mean accuracies of the RF classifications are pre-
sented in Table 2. Using features from the literature [5, 7],
we achieve a recall score of 90% on the high confidence la-
bels, epidermis and dermis, and 57% on the uncertain area.

Our proposed set of features allows us to increase the ac-
curacy on the uncertain area classification to 66%. These re-
sults suggest that our set of features is relevant to identify the
three skin labels according to the experts’ visual inspection.
However, the result of RF,, contains 7.1% of incoherent
transitions motivating the introduction of spatial constraints
with CRF3Dp.

ED | U | D
RFy;, | 0.89 | 0.57 | 0.97
RFpr0p | 0.90 | 0.66 | 0.97

Table 2. Results for the unregularized experiments. Mean
accuracy of the RF classifications of the three labels.

Sensitivity Specificity
ED D ED U D
RFpr0p 0.90 | 0.97 || 0.99 | 0.96 | 0.98
CRF3Dprop, | 096 | 0.98 || 0.99 | 0.98 | 0.98

Table 3. Sensitivity and specificity of the three labeling in the
unregularized vs. regularized cases.

Our regularization promotes spatial consistency and for-
bids incoherent layer transitions. The results of the regular-
ized CRF model, presented in Table 3, show that the epi-
dermal and dermal sensitivity are increased. The misclassi-
fication scores of high confidence labels improve with the 3D



CREF regularization from 9% to 4% for the epidermis and 3%
to 1% for the dermis.

The specificity of the uncertain detection is enhanced sug-
gesting a coherent expansion, in a biologically-coherent way,
of the high-confidence labels into the uncertain area.

We also compute the average thickness of our uncertain
area defined as the average distance between its two borders
for every pixel. In the manual annotation, the uncertain area
thickness is measured as 16.4 um. We estimate the thickness
of this area as 16.9 ym in the RF model. With our CRF 3D
model, the uncertain region thickness is reduced to 10.3 pm.

3D visualizations of the DEJ segmentations, obtained
with CRF3Dy,p, are presented in Fig. 4.

(b) Aged epidermis

Fig. 4. Visual appearance of the lower border of the epidermal
layer. Notice that the aged epidermis appears flatter than the
young epidermis, as expected. Colors encode the depth.

5. CONCLUSION

In this article, we have proposed an improved set of features
and a 3D Conditional Random Field regularization for the
modeling of skin structures. We have shown that the use of
a 3D CREF has a positive impact in terms of improved sensi-
tivity and specificity for the Epidermis and Dermis labeling.
We have also shown that the thickness of the uncertain region
is reduced significantly. With our method, the DEJ segmen-
tation is nearly always (more than 98% specificity) included
within the ground-truth. It allows us to get closer to the true
shape of the dermal epidermal junction. Our next aim will be
to develop measures for the shape of the DEJ to quantify its
changes within skin aging.
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