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Driving and damping mechanisms for
transverse combustion instabilities in
liquid rocket engines

A. Urbano" i and L. Selle'

nstitut de Meécanique des Fluides de Toulouse (IMFT) — Université de Toulouse,
CNRS-INPT-UPS, Toulouse, France

This work presents the analysis of a transverse combustion instability in a reduced-
scale rocket engine. The study is conducted on a time-resolved database of
three-dimensional fields obtained via large-eddy simulation. The physical mechanisms
involved in the response of the coaxial hydrogen/oxygen flames are discussed through
the analysis of the Rayleigh term in the disturbance-energy equation. The interaction
between acoustics and vorticity, also explicit in the disturbance-energy balance,
is shown to be the main damping mechanism for this instability. The relative
contributions of Rayleigh and damping terms, depending on the position of the flame
with respect to the acoustic field, are discussed. The results give new insight into
the phenomenology of transverse combustion instabilities. Finally, the applicability of
spectral analysis on the nonlinear Rayleigh and dissipation terms is discussed.

Key words: acoustics, combustion, reacting flows

1. Introduction

Combustion instabilities result from the constructive coupling between acoustic
waves and combustion. Because unsteady combustion makes noise and acoustic waves
modulate flames, when these phenomena occur with specific phase and sufficient gain,
they lead to large pressure oscillations. Fluctuations of the order of the mean chamber
pressure are not uncommon, which is at best a nuisance but can lead to the destruction
of the combustion device. There are many mechanisms through which combustion
instabilities can occur. For example, the parametric instability described by Searby &
Rochwerger (1991) results from the wrinkling of a planar flame in a tube, triggered
by the unsteady acceleration of the acoustic field. It was also recently demonstrated
that even in anechoic environments, flames may respond to self-generated acoustics,
resulting in so-called intrinsic thermo-acoustic instabilities (Hoeijmakers et al. 2014;
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Courtine, Selle & Poinsot 2015). However, as proposed by Rogers & Marble (1956)
and later shown by Poinsot et al. (1987), the vast majority of combustion instabilities
stem from the interactions between acoustic eigenmodes of the combustion chamber,
coherent vortical structures and flame fronts.

A great deal of progress has been made since the seminal work of Rayleigh
(1878), specifically for laminar (Boyer & Quinard 1990; Schuller, Durox & Candel
2003; Blumenthal et al. 2013) and swirling turbulent flames (Giauque et al. 2005;
Candel et al. 2014). There is, however, to date no comprehensive theory for the
prediction and mitigation of combustion instabilities. The lack of fundamental
understanding is particularly striking in the field of liquid rocket engines (LREs).
Indeed, the high pressure and temperature at which LREs operate hinder the use of
modern visualisation techniques and quantitative laser diagnostics. Moreover, most
technologies for the injection of propellants use a multitude of coaxial injectors
(typically hundreds) arranged in a compact pattern. For these reasons, despite decades
of experimental investigation and the growing need for reliable and affordable access
to space, combustion instabilities in rocket engines are still not well understood.

With the advent of high-performance computing, large-eddy simulation (LES)
has proven to nicely complement experimental data. Single (Selle er al. 2004) and
multi-burner (Wolf et al. 2012) configurations have been computed successfully,
shedding light on the physical mechanisms involved in combustion instabilities. Over
the past ten years, LES has been applied to coaxial diffusion flames at operating
conditions relevant for rocket engines (Tucker et al. 2008; Huo & Yang 2011; Ruiz
et al. 2011; Schmitt et al. 2011). More recently, the first LES of a full LRE under
unstable operating conditions was performed by Urbano et al. (2016, 2017), giving
novel perspectives for the understanding of this type of combustion instability.

The objective of the present study is to take advantage of this unique numerical
simulation for a detailed analysis of the driving and damping mechanisms. The
configuration and database are first presented in §2. Then, in §3, the concept
of disturbance energy is presented and applied to the whole combustion chamber.
Finally, § 4 focuses on the behaviour of the individual coaxial flames. A methodology
that separates the contributions of the two dominant acoustic modes is proposed,
shedding light on the coupling mechanisms between acoustics, combustion and
hydrodynamics.

2. Configuration and database

The configuration is a 42-injector reduced-scale rocket engine that uses cryogenic
hydrogen and oxygen as propellants. The oxidiser to fuel ratio is r =6 and the mean
chamber pressure is p. = 80 bar. The operating conditions are transcritical in the
sense that the chamber pressure is above the critical pressure of both propellants,
and the injection temperature of oxygen is below its critical temperature. This engine
was designed and operated at DLR Lampoldshausen, and more details are given by
Groning et al. (2016) and Urbano et al. (2016). Figure 1 presents a longitudinal cut
of the temperature field in the combustion chamber and the computational domain,
which includes the injection manifolds, the 42 coaxial injectors, the combustion
chamber and the outlet nozzle.

For the considered operating conditions, the engine exhibits a strong combustion
instability, which is reproduced in the LES, as shown in figure 2 by the temporal
evolution of pressure fluctuations, p’, at a probe in the chamber. The dominant
frequency, fir = 10700 Hz, corresponds to the first transverse mode (1T) of the
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FIGURE 1. Overview of the computational domain and of a longitudinal cut of
instantaneous temperature field.
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FIGURE 2. (a) Temporal evolution of pressure fluctuations at a probe on the chamber
wall. (b,c) Transverse cuts showing the spatial structures of the two dominant pressure
modes calculated by Fourier transform. Respective frequencies: fj7 = 10700 Hz and fiz =
21400 Hz. The nodal lines are represented by the dashed white lines.

t (ms)

combustion chamber. The LES of Urbano er al. (2016) also demonstrated that the
second most energetic peak in the experimental spectra corresponds to the first radial
mode (1R) of the chamber at fijz = 21400 Hz. The spatial structures of these two
modes are presented in figure 2, showing the locations of the pressure antinodes and
nodal lines. These fields were obtained by performing Fourier transform of 150 3D
LES fields, from =5 ms to t = 6.5 ms. The LES was performed with the AVBP
solver, and details about the models and numerics can be found in Urbano et al
(2016, 2017).

3. Balance of disturbance energy

The present study uses the LES database described in §2 for the analysis of the
disturbance energy, E;, which is the extension of the concept of acoustic energy.
An exact transport equation for E; was initially derived by Myers (1991) and later
extended by Brear et al. (2012). Since we address here a transverse mode, the
influence of entropy perturbations is neglected. With the additional assumption of
chemical equilibrium, which is consistent with the combustion model, and neglecting
viscous terms, the balance equation of Brear et al. (2012) reads

9E,
=, tF=R+D. 3.1)

The total disturbance energy, E,, in the control volume, V, and its flux, F, through
the boundary, S, of this volume are written as
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FIGURE 3. Temporal evolution of R and D, integrated over the whole combustion

chamber.
Ed:/(pH/ —m-u —pHdv, 3.2)
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F=7[(m'H’+m/H/) -nds, 3.3)
s

where p is the density, u is the velocity, m (= pu) is the mass flux, £ =V x u is the
vorticity, £ =& x u, H is the total enthalpy and n is the normalised outward normal
to S. For all variables, the classical Reynolds decomposition is used: ¢ = ¢ + ¢'.
(Reynolds and time averaged variables are equal under the assumption of ergodicity.)
On the right-hand side of (3.1), the Rayleigh term, R, represents the contribution of
combustion, while D accounts for the interaction between acoustics and vortices. They
take the forms

R:/<Q>QMWmWNK (3.4)
v \PC

P

D:—/@%(+m“bﬂ% 3.5)
\%4

where o is the coefficient of thermal expansion, ¢, is the constant-pressure specific
heat capacity, p is the pressure and g is the heat release rate. It should be noted that
the formulation of the Rayleigh term in (3.4) is derived from general thermodynamics
and does not assume a specific equation of state. The signs of R and D are not known
a priori. As originally stated by Rayleigh (1878), R > 0 is a necessary condition for
a combustion instability to grow. Regarding (3.5), D > 0 corresponds to coherent flow
structures producing disturbance energy, which is the mechanism driving jet and cavity
noise. Conversely, D <0 indicates a damping of disturbance energy through vorticity.

Using the database described in §2 and enclosing the whole combustion chamber
in the volume V, the temporal evolution of R and D is plotted in figure 3. The mean
Rayleigh term is positive (R=470 kW), which confirms that the flames are indeed the
source of the acoustic activity and the engine is exhibiting a combustion instability.
Small fluctuations of R are visible in figure 3(a); their frequency, which is twice that
of the 1T mode, is discussed in § 4.2. Regarding D, displayed in figure 3(b), very large
fluctuations around zero are observed, indicating that the sign of the transfer of energy
between acoustics and vorticity strongly depends on the phase of the eigenmode. At
this point, one may speculate that the flow would be perturbed in different ways when
the acoustic pressure or acoustic velocity was at its respective peak. This will be
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R from equation (3.4). D from equation (3.5).

FIGURE 4. Maps of mean Rayleigh and dissipation terms, averaged over volumes isolating
individual flames. Time averaged over the limit cycle (5 <7< 6.5 ms).

confirmed in §4. The mean value of D is negative (D = —14 kW), hence it will be
referred to as the dissipation term. The role of D in the dissipation of disturbance
energy will be further explained in §4.

4. Analysis of individual flames

The evolution of the source terms in the disturbance-energy balance (3.1), integrated
over the whole combustion chamber, only gives a global view of the combustion
instability. As expected, it was shown in §3 that the Rayleigh term, R, is driving
the instability while the acoustics/vorticity coupling represented by D is globally
dissipative. It is now interesting to focus on the spatial distribution of source terms
and on the individual response of the flames. For this purpose, the combustion
chamber is divided into 42 subvolumes, each enclosing a single flame. Boundaries
separating individual flames are located at equal distances from neighbouring injectors.
Equations (3.4) and (3.5) are now integrated over these individual volumes to draw
maps of the contributions of the flames to the total disturbance energy.

4.1. Maps of mean contributions

The distribution of the mean Rayleigh term, R, for individual flames is shown in
figure 4(a). Comparing with the spatial structure of the 1T mode (figure 2), which is
the dominant mode, it appears that the contribution of the flames located at pressure
antinodes is greater than that of the flames close to the nodal line. This is consistent
with the fact that the Rayleigh term is proportional to the magnitude of the pressure
fluctuations. Moreover, R is positive everywhere, meaning that all 42 flames are
driving the instability. Regarding the mean acoustics/vorticity interaction term, D,
drawn in figure 4(b), one can see that while the outer flames, located at a pressure
antinode of the 1T mode, have a positive contribution, the two inner injector rings
provide significant dissipation, i.e. D <O.

4.2. Spectral analysis

The additional information yielded by the spatial distribution of R and D in figure 4 is
now complemented by a spectral analysis. The objective is to isolate the contributions
of the two dominant eigenmodes: the 1T and 1R depicted in figure 2. This analysis is
conducted here by performing Fourier transforms (FTs) on the time-resolved database
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of 3D LES fields. Similar results (not shown here) have been obtained via the dynamic
mode decomposition methodology of Schmid (2010), which may be more efficient
for samples with fewer limit-cycle oscillations. Because (3.4) and (3.5) are nonlinear
functions of the flow variables, their spectral analysis is not straightforward. It is,
however, investigated whether the spectral analysis of R and D could be useful. The
present analysis neglects nonlinear interactions between modes, which is a limitation,
especially given the large amplitudes encountered in combustion instabilities. The
results are therefore not quantitative but still allow qualitative interpretation.

4.2.1. Contributions of the flames
The Rayleigh term is analysed first. The pressure and heat release rate spectral
decompositions are written as

p'(x, 1) = p(x) cos(wt — ¢”(x)),}

- 4.1
¢/ (x, 1) = §(x) cos(wf — $7(x), “.D

where x is the spatial coordinate, ¢ is the time, p and ¢” (respectively g and ¢?) are the
modulus and phase of the pressure (respectively heat release rate) mode. Combination
with (3.4) yields

R= / (“)iaa (1 cosQut — (@ + ¢7)) + cos(¢” — d)"))
Vv pCp 2

The first observation is that for a mode with pulsation w, the associated Rayleigh
contribution oscillates at 2w. This explains the fluctuations in figure 3(a) at twice the
frequency of the 1T mode. Consequently, in the FT of R, the contribution of the 1T

mode corresponds to the peak at 2f . Its magnitude, denoted R, is obtained from (4.2),

ié—l/<°‘>“dv (4.3)
=3 ), g, pgdv. .

On the other hand, taking the average of (4.2) yields

av.  4.2)

R= / <O‘> G cos(¢” — ¢7) dV. (4.4)
\4 /OCp

Consequently, the mean Rayleigh source term R in a given control volume is related
to the peak in the FT of R at twice the frequency of the considered mode through

R =2R cos(¢” — ¢). (4.5)

Equation (4.5) therefore establishes that under the assumption of linear interaction, the
FT of R is qualitatively indicative of the contribution of the modes to the disturbance-
energy budget. (Equation (4.5) is strictly valid only when the phase difference (¢* —
¢?) is constant in V.)

The comparison between R and the FT of R is presented in figure 5 for the 1T
mode. They are qualitatively very similar, despite being quantitatively different. The
agreement is favoured by the fact that R is positive everywhere under these conditions.
Caution would be needed in the case of sign change, as shown in §4.2.2. Figure 5(b)
confirms that the flames located close to the pressure nodal line have a marginal
contribution to the disturbance-energy budget. The flames driving the combustion
instability are those located at a pressure antinode.
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FT of R (rms) at 2fir. R from equation (4.4).

FIGURE 5. Comparison of Rayleigh maps for the 1T mode, obtained using the FT of R
and the reconstruction of R using the FT of pressure and heat release rate fluctuations.

4.2.2. Interaction between acoustics and vorticity

The same methodology is applied to (3.5), which was shown in §3 to be the main
source of dissipation of disturbance energy. Taking advantage of the fact that m - ¢ =0,
equation (3.5) is recast as (cf. appendix A)

D=/(m’-§+m-§/+2§-m)dV. (4.6)
|4

Using similar notations to those in §4.2.1, the spectral decompositions of density,
velocity and vorticity fluctuations are

p'(x, 1) = p(x) cos(wt — ¢ (x)),
u)(x, 1) = it;(x) cos(wt — " (x)), 4.7)
£ (x, 1) = &(x) cos(wt — ¢} (x)),

where the subscript i € {1, 2, 3} indicates the component in the Cartesian frame of
reference. Tedious but straightforward algebra shows that (cf. appendix A)

D= / (Dy + D,)dV, (4.8)
\%4
where
Dy = g, [piiy cos(wt — ¢}) + pitg cos(wt — ¢*)]
+ e &ii; cos(wt — ¢)) + e cos(wt — ¢7)] (4.9)
and

D, = pie™Ew; [% cosQwt — (¢” + ¢;)) + cos(¢p” — ¢,ﬁ‘)}
+ e i |4 cos(2et — (¢ + @) + cos(@f — 9|
+ pie i |} cos(2wt — (¢ + 9})) cos(9f — )

+ 1 cosut — (¢ + ¢;)) cos(¢” — ¢;) + 5 cos(¢” — ¢}) cos(¢f — ¢)|. (4.10)


https:/www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2017.227
https:/www.cambridge.org/core

FT of D (rms) at 2fir. D from equation (4.11).

FIGURE 6. Comparison of dissipation maps for the 1T mode, obtained using the FT of
D and the reconstruction of D using the FT of velocity and vorticity fluctuations.

Equations (4.8)—(4.10) indicate that D contains two fluctuating components, one at
the frequency of the considered acoustic mode and one at twice this frequency. The
corresponding average is

D = [ (e Empcos’ - g1) + pie i cos(of — 4))
\%4
+ L6 & i cos(¢” — @L) cos(¢ — ¢;)) av. 4.11)

Noting that D; =0, the peak at w in the FT of D is not related to the mean dissipation,
D. Unlike the Rayleigh term, the relation between D and the second peak in the FT
of D is not straightforward because of the many phase differences involved.

The comparison between the FTs of D and D is presented in figure 6 for the 1T
mode. It appears that because D changes sign, the two quantities are qualitatively
different. Figure 6(a) looks like the absolute value of D, meaning that the FT of D is
not a very useful diagnostic in this case. However, figure 6(b) provides a better picture
than figure 4(b) regarding the dissipation associated with the dominant acoustic mode.
It is clear that the flames located around the nodal line provide massive dissipation.
Indeed, flames at a pressure node experience strong transverse acoustic velocity, which
is known to induce flapping, jet flattening and flame shortening (Baillot et al. 2009;
Hardi ef al. 2014; Hakim et al. 2015). These motions take their energy from the
acoustic field, explaining the local dissipation.

4.2.3. Application to the IR mode

The same methodology is now applied to the 1R mode in order to analyse how
the flames contribute to R and D for this mode which has a higher frequency and a
different spatial structure (cf. figure 2). The Rayleigh term, displayed in figure 7(a),
is positive, indicating that the 1R mode is also unstable. The flames in the inner ring,
located at a pressure antinode, provide most of the drive. The outer ring, also at a
pressure antinode, has a small contribution, which is speculated to be caused by a
phase mismatch between p’ and ¢'. The intermediate ring exhibits a small Rayleigh
term, which is consistent with the location of the pressure nodal line. The dissipation
map for the 1R mode plotted in figure 7(b) confirms the observation that the flames on
the pressure nodal line (i.e. the middle injector ring) provide dissipation. The analysis
for the 1R mode is therefore consistent with that of the 1T mode.

It is interesting to discuss the relative importance of the two source terms in
the two dominant unstable modes. For the 1T mode, the global Rayleigh index is
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R from equation (4.4). D from equation (4.11).

FIGURE 7. Maps of Rayleigh and dissipation terms for the 1R mode.

Rir = 160 kW and the dissipation D;; = —110 kW (these values are obtained by
integrating the maps of figures 5b and 6b). For the 1R mode, Rz = 30 kW and
Dz =1.2 kW. Despite its smaller Rayleigh index, the 1R mode reaches an amplitude
comparable to that of the 1T mode because of the large dissipation D7. This
illustrates the necessity to understand and quantify dissipation mechanisms, while
most studies of combustion instabilities focus solely on the Rayleigh index.

5. Conclusion

The analysis of disturbance-energy source terms presented in this work gives novel
perspectives on the mechanisms at play during transverse combustion instabilities in
an LRE. Using a time-resolved database of 3D fields from an LES, a spectral analysis
of the individual flame contributions was presented. The two source terms accounting
for the interaction between acoustics and unsteady combustion (R) and acoustics and
hydrodynamics (D) were studied. As expected, the well-known Rayleigh index, R,
drives the instability, with dominant contribution from the flames near a pressure
antinode. This indicates that for the determination of the combustion stability, the
response of these flames to the bulk pressure fluctuations at the injector outlets seems
to be more important than their response to transverse acoustic-velocity fluctuations.
A small mean dissipation results from D. However, the spectral analysis has shown
that flames located at a pressure node provide very large dissipation, affecting the
stability of the corresponding eigenmode. The associated mechanism is a transfer of
energy from the transverse acoustic-velocity field to the flapping motion of the flame.
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Appendix A. Derivation of the dissipation term (D)

Using the definition of the fluctuating quantities, the first term of equation (3.5) is
written as

—m' ¢ = —(m—m) - (¢ — )
=-m-t+m-L+m-—m-ZC. (A1)
Noting that m - { = pu - § x u =0, taking the average of (A1) yields
-m' - =m-Z¢. (A2)

Using (A1) and (A2), equation (4.6) easily follows from (3.5).

The goal is now to write (4.6) in terms of primitive variables — density, velocity
and vorticity. For this purpose, the averages and fluctuations of m and ¢ are written
as

m=pu+pu, (A3)
C=Exu+&xu, (A4)

m =pu + p'u+p'u — pw, (A5S)

U =Exu +Exu+& xu—§xu. (A6)

Using (A 3)-(A6), equation (4.6) is rearranged as (4.8), where D, and D, contain
respectively first- and second-order terms in the fluctuating quantities and are given

by

Dy=C-(pu' +pu)+m- (& xu' +& xu), (A7)
Dy=pu-[§ xu+&xw]+&xu-[puw+pul+pu & xuw—+pu-& xu.
(A8)

The spectral decompositions of density, velocity and vorticity fluctuations given by
(4.7) are used to express the fluctuating quantities in D, and D, and to obtain (4.9)
and (4.10). In particular, making use of trigonometric properties, the terms p'u’, &' x v’
and their averages have been replaced by

E xu' = L Eii[cosQwt — (¢] + ¢1)) + cos(¢; — Pi)], (A9)
& xu = LV Eii; cos(¢] — o), (A 10)

p'u' = 1 piig[cos 2wt — (¢° + ¢)) + cos(@” — ¢i)], (A1)
oW =} piii cos(¢” — ). (A12)

Only D, contributes to the time-average dissipation D because D;, which is first
order in the fluctuating quantities, has a zero time-average value. Therefore, taking
the average of (A 8) yields

D:2/[pu-’;"xu’+p/u’-‘;‘xu—l—p’u’-g’xu’]dv. (A13)
\%

Then, making use of (A 10) and (A 12) gives (4.11).
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