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ABSTRACT

While most dereverberation methods focus on how to estimate the
magnitude of an anechoic signal in the time-frequency domain, we
propose a method which also takes the phase into account. By ap-
plying a harmonic model to the anechoic signal, we derive a formu-
lation to compute the amplitude and phase of each harmonic. These
parameters are then estimated by our method in presence of rever-
beration. As we jointly estimate the amplitude and phase of the
clean signal, we achieve a very strong dereverberation on synthetic
harmonic signals, resulting in a significant improvement of standard
dereverberation objective measures over the state-of-the-art.

Index Terms— dereverberation, phase, sinusoidal modeling,

1. INTRODUCTION

A sound emitted in an enclosed space reacts with the different
surfaces of the room, which produces reverberation. If a soft
reverberation may be desired to give a feeling of space or to color a
sound [1], strong reverberation damages speech intelligibility and
reduces automatic speech recognition performance of machines
[2]. Hence, one can perform dereverberation to enhance the
sound by estimating the anechoic signal. Most existing methods,
known as suppression methods, process the reverberant signal by
estimating the magnitude spectrogram of the late reverberation and
removing it from the magnitude spectrogram of the input signal.
The estimation of the late reverberation can be based on a wide
variety of approaches, such as a stochastic model of the room
impulse response (RIR) [3], a linear prediction model of speech
[4], or more recently on deep neural networks [5].

However, once the dereverberated magnitude spectrogram
is computed, suppression methods use the reverberant phase to
synthesize the dereverberated signal. This is the main drawback
of these methods, because using this corrupted phase reintroduces
reverberation and distortion in the signal, as shown in [5]. We know
from [6] that phase estimation improves the predicted speech qual-
ity and we proposed in [7] a dereverberation method that uses phase
information to improve the dereverberation performance. However,
this method was restricted to linear chirp signals, assuming the
signal amplitude to be known, and it focused on the estimation
of the anechoic phase. We then proposed in [8] a method that
jointly estimates the amplitude and phase of any kind of signals in
a non-supervised way, resulting in high quality analysis/synthesis.
This method performs dereverberation by computing local averages
of time-frequency data, within areas where only one sinusoidal
component is predominant. However, as soon as the components

of the signal are too close in the time-frequency domain, which is
generally the case for speech, the amount of time-frequency bins to
be averaged is not sufficient and the dereverberation performance
collapses. In this paper, we apply a harmonic model to the signal in
order to get rid of this constraint and compute averages in the full
frequency band, which allows us to process multicomponent sig-
nals. Previously, a dereverberation method exploiting the harmonic
structure of signals had been introduced in [9], but contrary to our
method, [9] requires a substantial training stage and does not derive
a theoretical expression of the dereverberated amplitude and phase.

Section 2 introduces the amplitude and phase parameters used
to model the signals, while Section 3 derives a method for estimat-
ing these parameters when analyzing an anechoic signal. In Section
4 we propose a method for estimating these parameters in presence
of reverberation. This enables us to synthesize a dereverberated sig-
nal, whose dereverberation quality is evaluated in Section 5. Finally,
in Section 6 some conclusions are drawn and ideas for future work
are presented.

2. MODELS AND NOTATIONS

2.1. Analysis framework

For all k ∈ [0,K − 1], let gk(t), t ∈ R, be the complex im-
pulse response of an analog band-pass filter, centered at frequency
fk > 0. We consider a sampling frequency fs > 0 and we as-
sume that the support of the frequency response of gk is included
in
[
− fs

2
, fs

2

]
. We choose gk(t) infinitely differentiable and denote

its time derivatives ġk =
dgk
dt

and g̈k =
d2gk
dt2

. For any analog

signal s(t) whose frequency support is also included in
[
− fs

2
, fs

2

]
,

we define ∀m ∈ Z, k ∈ [0,K − 1],

Sg[m, k] = (gk ∗ s) (tm), (1)

where ∗ denotes the convolution operator, tm = m R
fs

and
R is called the hop size. In the same way, we define
Sġ[m, k] = (ġk ∗ s) (tm) and Sg̈[m, k] = (g̈k ∗ s) (tm). From
now on, we consider that filters gk are designed so that Sg[m, k]
forms a short-term Fourier transform (STFT) of signal s.

2.2. Signal model

The anechoic signal s(t) is modeled as the sum of Q complex har-
monic sinusoids sq(t), of log-amplitude λq(t) and phase ϕq(t):

s(t) =

Q∑
q=1

sq(t) =

Q∑
q=1

eλq(t)+jϕq(t) . (2)
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For the sake of conciseness, we denote λm,q = λq(tm) and
ϕm,q = ϕq(tm) the log-amplitude and phase of the q-th har-
monic at time tm, respectively, and we use the same notation for
the derivatives of λq(t) and ϕq(t).

As we enforce a harmonic model, we obtain harmonic ratios of
the frequency parameters: ϕ̇m,q = qϕ̇m,1 and ϕ̈m,q = qϕ̈m,1.
Furthermore, we also assume harmonic ratios of the log-amplitude
parameters: λ̇m,q = qλ̇m,1 and λ̈m,q = qλ̈m,1. This assumption
is technically necessary for our method, but it is also realistic in
the case of free oscillation, where high-frequency harmonics decay
faster than low-frequency ones.

In the neighborhood of time tm, sq(t) can then be approximated
by the following second-order Taylor expansion:

sq(t) = am,qe
jϕm,qeq(θ̇m(t−tm)+ 1

2
θ̈m(t−tm)2) (3)

where am,q = eλm,q . Parameters θ̇m and θ̈m are the first and
second-order time derivatives of θ(t) = λ1(t) + jϕ1(t) at time
tm, respectively.

2.3. Model of RIR

To model reverberation, we adopt the stochastic model of RIR
proposed in [10] which carries the information of the reverberation
time at 60 dB (RT60) [11]. We thus define the RIR h(t) = b(t)p(t),
where b(t) is a centered real-valued white noise of variance σ2,
damped by a decreasing envelope p(t) = e−αt1t≥0 of decay rate
α = 3 log(10)

RT60
.

The reverberant signal y(t) is obtained by the convolution of
h(t) and s(t):

y(t) = (h ∗ s) (t). (4)
As in (1), we denote Yg[m, k] the STFT of y(t) at time-frequency
bin [m, k].

3. SIGNAL PARAMETERS ESTIMATION

We show in this section how the amplitude and phase parameters
can be estimated from the anechoic signal. From (3), straightfor-
ward calculations lead to:

ṡq(t) = q
(
θ̇m + θ̈m (t− tm)

)
sq(t), (5)

∀t in the neighborhood of tm. We now assume that there is only
one significant harmonic q at time-frequency bin [m, k].

By noting that (ġk ∗ s) = (gk ∗ ṡ), (5) shows that ∀t in the
neighborhood of tm we have:

(ġk ∗ s) (t) = qθ̇m (gk ∗ s) (t)+

qθ̈m
(
(t− tm) (gk ∗ s) (t)−

(
g′k ∗ s

)
(t)
)
, (6)

with g′k(t) = tgk(t). Let wm,q[m′, k′] ≥ 0 be a time-frequency
mask measuring whether the same harmonic q is also dominant
at time-frequency bin [m′, k′]. Through this mask, θ̇m and θ̈m
are characterized from (6) as the unique minimum of the quadratic
function:∑

q,m′,k′

wm,q[m
′, k′]×

∣∣∣Sġ[m′, k′]− q (θ̇mSg[m′, k′] + θ̈mSm[m′, k′]
)∣∣∣2 , (7)

where Sm[m′, k′] = (tm′ − tm)Sg[m
′, k′]− Sg′ [m′, k′].

By differentiating (7) with respect to θ̇m and θ̈m and by zero-
ing the derivatives, we show that parameters θ̇m and θ̈m satisfy the
linear system1:

Am

[
θ̇m
θ̈m

]
= bm (8)

with

Am =

Q∑
q=1

q2
∑

wm,q

[
|Sg|2 S∗gSm
SgS

∗
m |Sm|2

]
(9)

and

bm =

Q∑
q=1

q
∑

wm,q

[
S∗gSġ
S∗mSġ

]
, (10)

where ∗ denotes the complex conjugate.

In other respects, from (3) we derive that ∀t in the neighborhood
of tm:

(gk ∗ s) (t) = am,qe
jϕm,q×∑

n

gk[n]e
q

(
θ̇m

(
t−tm− n

fs

)
+ 1

2
θ̈m

(
t−tm− n

fs

)2
)
, (11)

where gk[n] = gk(
n
fs
). Hence am,q is characterized as the unique

minimum of the function∑
m′,k′

wm,q[m
′, k′]

(
|Sg[m′, k′]|2

am,q
+ am,q

∣∣Gm,q[m′, k′]∣∣2) ,
(12)

where

Gm,q[m
′, k′] = eq(tm′−tm)(θ̇m+ 1

2
θ̈m(tm′−tm))×∑

n

gk′ [n]e
−q n

fs

(
θ̇m+θ̈m

(
tm′−tm−

n
2fs

))
. (13)

By minimizing (12), am,q is obtained as:

am,q =

√ ∑
wm,q|Sg|2∑
wm,q|Gm,q|2

. (14)

Besides, the phase ϕm,q of the q-th harmonic at time frame m is
estimated by enforcing phase continuity between successive time
frames:

ϕm,q = ϕm−1,q + qϕ̇m−1
R

fs
+
q

2
ϕ̈m−1

(
R

fs

)2

, m > 0, (15)

with a random initial phase ϕ0,q . In conclusion, by analyzing
s(t) with windows gk, ġk and g′k, given a neighborhood Vm of
time-frequency bins around frame m, we can estimate am,q , ϕm,q ,
θ̇m and θ̈m.

Finally, we estimate the STFT of the anechoic signal from (3):

Sg[m, k] =

Q∑
q=1

am,qe
jϕm,q

∑
n

gk[n]e
−q n

fs

(
θ̇m−θ̈m n

2fs

)
(16)

1In equations (8) to (10), (14) and (27), indexes m′ and k′ have been
omitted for conciseness.
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and we reconstruct the signal s(t) by applying an inverse STFT
to (16). This method gives an accurate estimation of the anechoic
signal parameters. Let us see now how to take reverberation into
account, in order to estimate the same parameters from a reverberant
signal, and thus obtain a dereverberated signal.

4. ESTIMATION IN PRESENCE OF REVERBERATION

The goal is to estimate the quadratic terms in (9) and (10) from the
reverberant signal y(t) defined in (4), instead of s(t). To do so, we
use the fact that if the RIR h(t) is modeled as in Section 2.3, then
for any analog real signals x1(t) and x2(t):

Eb [(h ∗ x1)× (h ∗ x2)] = σ2p2 ∗ (x1 × x2), (17)

where Eb denotes the mathematical expectation w.r.t. b(t). This
relation can be easily verified by using the fact that Eb [b(u)b(v)] =
σ2δ(u − v), where δ(t) denotes the Dirac distribution. Moreover,
it can be easily proved that the impulse response of the inverse filter
of σ2p2 is:

γ(t) =
1

σ2

(
2αδ(t) + δ̇(t)

)
. (18)

By noting that (gk ∗ y) = (h ∗ gk ∗ s), (17) leads to:

Eb
[
|gk ∗ y|2

]
= σ2p2 ∗

(
|gk ∗ s|2

)
. (19)

Applying the inverse filter γ(t) in (18) to (19) results in:

|gk ∗ s|2 =
1

σ2
Eb
[
2α|gk ∗ y|2 + 2< ((gk ∗ y)∗ (ġk ∗ y))

]
. (20)

By applying (20) to time tm, we thus obtain for every time-
frequency bin [m, k]:

|Sg|2 =
1

σ2
Eb
[
2α|Yg|2 + 2<

(
Y ∗g Yġ

)]
. (21)

Likewise, we derive the following expressions:

S∗gSġ =
1

σ2
Eb
[
2αY ∗g Yġ + Y ∗g Yg̈ + |Yġ|2

]
, (22)

S∗gSg′ =
1

σ2
Eb
[
2αY ∗g Yg′ + Y ∗ġ Yg′ + Y ∗g Yġ′

]
, (23)

|Sg′ |2 =
1

σ2
Eb
[
2α|Yg′ |2 + 2<

(
Y ∗g′Yġ′

)]
, (24)

S∗g′Sġ =
1

σ2
Eb
[
2αY ∗g′Yġ + Y ∗ġ′Yġ + Y ∗g′Yg̈

]
. (25)

As, in practice, we do not have access to the mathematical expec-
tation, we estimate it with a temporal smoothing by means of a
first-order autoregressive filter of transfer function defined by the
Z-transform 1−η

1−ηz−1 , with smoothing parameter η = 0.7. We thus

obtain the estimation of the quadratic terms |̂Sg|2, Ŝ∗gSġ , Ŝ∗gSg′ ,

|̂Sg′ |2 and Ŝ∗g′Sġ . From these estimations, we can compute matrix

Âm and vector b̂m as in (9) and (10), in order to estimate ̂̇θm and̂̈
θm by following (8): [̂̇

θm̂̈
θm

]
= Â−1

m b̂m. (26)

By following (14), the amplitude is then estimated with:

âm,q =

√√√√ ∑
wm,q |̂Sg|2∑
wm,q ̂|Gm,q|2

. (27)

The phase ϕ̂m,q is then estimated by phase unwrapping as in Sec-
tion 3, and the signal is reconstructed in the same way.

5. PERFORMANCE EVALUATION

In our previous work, the evaluation part was restricted to mono-
component signals because we did not introduce the harmonic
model exploited in this paper. Now, we can apply our dereverbera-
tion method to harmonic signals. However, as speech signals are not
always harmonic, we only deal with synthetic harmonic signals and
propose in Section 6 a solution to process realistic speech signals.

5.1. Dataset and evaluation

In order to evaluate our method, we consider a multicomponent,
harmonic, frequency-modulated signal. The sampling frequency
fs is set to 16 kHz, allowing a maximum instantaneous frequency
of 8 kHz. To ensure that the estimator performs well at every
frequency, the simulated signal spans the entire frequency range, in
2 seconds. Its spectrogram is plotted in Figure 2-(a).

The anechoic signal is then convolved with simulated and real
RIRs, of various RT60s. Simulated RIRs are generated according
to the model presented in Section 2.3; real RIRs come from the
AIR database [12], from which we select regularly spaced RT60s.
At a same RT60, the real RIRs are much less reverberant than
the simulated ones, which are modeled to emulate a diffuse-field
reverberation. The spectrogram of a reverberant signal (with
RT60 = 2.2 s) is plotted in Figure 2-(b). For this example we
used a synthetic RIR to simulate an especially strong and diffuse
reverberation.

To assess the performance of our method, we use objective mea-
sures from the REVERB challenge toolbox [13]: the fwsegSNR to
assess the level of reverberation (the higher the better) and the cep-
stral distance to assess the level of distortion (the lower the better);
both are defined in [14]. We compare our approach with a state-of-
the-art suppression method [15], which focuses only on the magni-
tude of the STFT and ignores the phase information. Our previous
work is not included in the benchmark, as it cannot deal with such
multicomponent signals.

5.2. Estimator settings

We split the frequency axis in K = 256 bins, centered on the re-
duced frequencies νk = k+0.5

2K
for k ∈ [0,K − 1]. The analy-

sis/synthesis window of length 2K − 1 is defined as:

gk[n] = cos3
(
π n

2K

)
e2jπνkn, ∀n ∈ [−K + 1,K − 1]

and we choose a hop size of R = K
2

samples (75% overlap), which
can be proved to guarantee perfect reconstruction.

For each frame m, the neighborhood Vm corresponds to the
time-frequency bins [m′, k′] where |m − m′| ≤ L. We choose a
width of L = 10 time frames. On Vm, the weightswm,q[m′, k′] are
defined as the product of a temporal mask wm[m′] and a harmonic
mask wq[m′, k′]. The temporal mask is directly a function of the
distance between time frames m and m′:

wm[m′] = e−
1
2
|m−m′|

L

2

,

while the harmonic mask is defined as:

wq[m
′, k′] =


1
2
− 1

2
cos
(
π
k′−kq+dq+1

dq+1

)
if kq+1 ≥ k′ ≥ kq

1
2
− 1

2
cos
(
π
dq−1+k

′−kq
dq−1

)
if kq−1 ≤ k′ < kq
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Figure 1: Superposition of harmonics trajectories (white) and the
corresponding mask wm,q[m′, k′] for the 5-th harmonic

0.0 0.5 1.0 1.5
Time (s)

0
1000
2000
3000
4000
5000
6000
7000
8000

Fr
e
q
u
e
n
cy

 (
H

z)

Anechoic signal

0.0 0.5 1.0 1.5
Time (s)

0
1000
2000
3000
4000
5000
6000
7000
8000

Fr
e
q
u
e
n
cy

 (
H

z)

Reverberant signal

0.0 0.5 1.0 1.5
Time (s)

0
1000
2000
3000
4000
5000
6000
7000
8000

Fr
e
q
u
e
n
cy

 (
H

z)

Dereverberated signal

Figure 2: (a) Anechoic, (b) reverberant and (c) dereverberated

for k in [kq−1, kq+1], where kq matches the peak of the magnitude
spectrogram at frame m, corresponding to the q-th harmonic. The
distances dq−1 and dq+1 are defined as dq−1 = kq − kq−1 and
dq+1 = kq+1 − kq; we set k0 = 0 and kQ+1 = K.

The weights wm,q[m′, k′] = wm[m′]wq[m
′, k′] are thus com-

puted from the magnitude spectrogram of either s(t) (ORACLE
performance, as in Figure 1) or y(t). If a simple peak detection
is sufficient to estimate the kq for anechoic signals, it is not robust
enough for reverberant signals. As reverberation smears the mag-
nitude spectrogram, the q-th peak at frame m may correspond to
another harmonic at a previous frame. This results in a noisy fluc-
tuation of the kq , that we smooth over time with a Savistky-Golay
filter [16] in order to recover a more continuous variation.

5.3. Results

The scores are plotted in Figures 3 and 4. We see that derever-
beration improves both the fwsegSNR and the cepstral distance.
Moreover, the scores of the dereverberated signal obtained with our
method (green) always show a significant improvement w.r.t. the
baseline method (black) regarding the fwsegSNR. However, an error
on kq at frame m results in a slight shift of the frequency content,
which degrades the cepstral distance (in Figure 3 but not in Figure
4, where the RIRs are less reverberant).

If we accurately locate the harmonics (ORACLE) the proposed
method almost achieves a perfect reconstruction and the scores are
nearly independent of the reverberation time (blue lines); an exam-
ple with an initial RT60 = 2.2 s is plotted in Figure 2-(c).
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Figure 3: Objective measures on simulated RIRs
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Figure 4: Objective measures on real RIRs

6. CONCLUSION

Instead of only estimating the STFT magnitude of the anechoic sig-
nal to perform dereverberation, we proposed a method for jointly
estimating the magnitude and phase of the STFT. If the harmon-
ics of the reverberant signal are well located, our estimator almost
achieves a perfect reconstruction, on both synthetic and real RIRs.

The performance of the proposed method is limited by the har-
monics localization. For monocomponent signals, a peak detection
is sufficient to estimate the time-frequency bins [m, k] where the
component is predominant, but when dealing with multiple com-
ponents smeared by reverberation, it is not robust enough. This
is why we need a more robust estimation of the kq to remove the
artifacts (that sound like vibratos) in strong reverberant conditions
(RT60 ≥ 1 s).

Future work will tackle speech signals, by applying either the
presented method or another method based on a noisy signal model,
depending on whether Vm includes voiced sections or fricative and
plosive sounds.
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