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INTRODUCTION

A sound emitted in an enclosed space reacts with the different surfaces of the room, which produces reverberation. If a soft reverberation may be desired to give a feeling of space or to color a sound [START_REF] Wen | An evaluation measure for reverberant speech using decay tail modelling[END_REF], strong reverberation damages speech intelligibility and reduces automatic speech recognition performance of machines [START_REF] Yoshioka | Making machines understand us in reverberant rooms: Robustness against reverberation for automatic speech recognition[END_REF]. Hence, one can perform dereverberation to enhance the sound by estimating the anechoic signal. Most existing methods, known as suppression methods, process the reverberant signal by estimating the magnitude spectrogram of the late reverberation and removing it from the magnitude spectrogram of the input signal. The estimation of the late reverberation can be based on a wide variety of approaches, such as a stochastic model of the room impulse response (RIR) [START_REF] Lebart | A new method based on spectral subtraction for speech dereverberation[END_REF], a linear prediction model of speech [START_REF] Kinoshita | Suppression of late reverberation effect on speech signal using long-term multiple-step linear prediction[END_REF], or more recently on deep neural networks [START_REF] Xiao | Speech dereverberation for enhancement and recognition using dynamic features constrained deep neural networks and feature adaptation[END_REF].

However, once the dereverberated magnitude spectrogram is computed, suppression methods use the reverberant phase to synthesize the dereverberated signal. This is the main drawback of these methods, because using this corrupted phase reintroduces reverberation and distortion in the signal, as shown in [START_REF] Xiao | Speech dereverberation for enhancement and recognition using dynamic features constrained deep neural networks and feature adaptation[END_REF]. We know from [START_REF] Gerkmann | Phase estimation in speech enhancement; unimportant, important, or impossible?[END_REF] that phase estimation improves the predicted speech quality and we proposed in [START_REF] Belhomme | Anechoic phase estimation from reverberant signals[END_REF] a dereverberation method that uses phase information to improve the dereverberation performance. However, this method was restricted to linear chirp signals, assuming the signal amplitude to be known, and it focused on the estimation of the anechoic phase. We then proposed in [START_REF] Belhomme | Amplitude and phase dereverberation of monocomponent signals[END_REF] a method that jointly estimates the amplitude and phase of any kind of signals in a non-supervised way, resulting in high quality analysis/synthesis. This method performs dereverberation by computing local averages of time-frequency data, within areas where only one sinusoidal component is predominant. However, as soon as the components of the signal are too close in the time-frequency domain, which is generally the case for speech, the amount of time-frequency bins to be averaged is not sufficient and the dereverberation performance collapses. In this paper, we apply a harmonic model to the signal in order to get rid of this constraint and compute averages in the full frequency band, which allows us to process multicomponent signals. Previously, a dereverberation method exploiting the harmonic structure of signals had been introduced in [START_REF] Nakatani | Blind dereverberation of single channel speech signal based on harmonic structure[END_REF], but contrary to our method, [START_REF] Nakatani | Blind dereverberation of single channel speech signal based on harmonic structure[END_REF] requires a substantial training stage and does not derive a theoretical expression of the dereverberated amplitude and phase.

Section 2 introduces the amplitude and phase parameters used to model the signals, while Section 3 derives a method for estimating these parameters when analyzing an anechoic signal. In Section 4 we propose a method for estimating these parameters in presence of reverberation. This enables us to synthesize a dereverberated signal, whose dereverberation quality is evaluated in Section 5. Finally, in Section 6 some conclusions are drawn and ideas for future work are presented.

MODELS AND NOTATIONS

Analysis framework

For all k ∈ [0, K -1], let g k (t), t ∈ R, be the complex impulse response of an analog band-pass filter, centered at frequency f k > 0. We consider a sampling frequency fs > 0 and we assume that the support of the frequency response of g k is included in -fs 2 , fs 2 . We choose g k (t) infinitely differentiable and denote its time derivatives ġk = dg k dt and gk = d 2 g k dt 2 . For any analog signal s(t) whose frequency support is also included in

-fs 2 , fs 2 , we define ∀m ∈ Z, k ∈ [0, K -1], Sg[m, k] = (g k * s) (tm), (1) 
where * denotes the convolution operator, tm = m R fs and R is called the hop size.

In the same way, we define S ġ [m, k] = ( ġk * s) (tm) and Sg[m, k] = (g k * s) (tm). From now on, we consider that filters g k are designed so that Sg[m, k] forms a short-term Fourier transform (STFT) of signal s.

Signal model

The anechoic signal s(t) is modeled as the sum of Q complex harmonic sinusoids sq(t), of log-amplitude λq(t) and phase ϕq(t):

s(t) = Q q=1 sq(t) = Q q=1
e λq (t)+jϕq (t) .

(

) 2 
For the sake of conciseness, we denote λm,q = λq(tm) and ϕm,q = ϕq(tm) the log-amplitude and phase of the q-th harmonic at time tm, respectively, and we use the same notation for the derivatives of λq(t) and ϕq(t).

As we enforce a harmonic model, we obtain harmonic ratios of the frequency parameters: φm,q = q φm,1 and φm,q = q φm,1. Furthermore, we also assume harmonic ratios of the log-amplitude parameters: λm,q = q λm,1 and λm,q = q λm,1. This assumption is technically necessary for our method, but it is also realistic in the case of free oscillation, where high-frequency harmonics decay faster than low-frequency ones.

In the neighborhood of time tm, sq(t) can then be approximated by the following second-order Taylor expansion:

sq(t) = am,qe jϕm,q e q( θm(t-tm)+ 1 2 θm(t-tm) 2 ) (3) 
where am,q = e λm,q . Parameters θm and θm are the first and second-order time derivatives of θ(t) = λ1(t) + jϕ1(t) at time tm, respectively.

Model of RIR

To model reverberation, we adopt the stochastic model of RIR proposed in [START_REF] Polack | La transmission de l'énergie sonore dans les salles[END_REF] which carries the information of the reverberation time at 60 dB (RT60) [START_REF] Schroeder | New method of measuring reverberation time[END_REF]. We thus define the RIR h(t) = b(t)p(t), where b(t) is a centered real-valued white noise of variance σ 2 , damped by a decreasing envelope p(t) = e -αt 1 t≥0 of decay rate α = 3 log(10) RT 60 .

The reverberant signal y(t) is obtained by the convolution of h(t) and s(t): 

y(t) = (h * s) (t). (4) 

SIGNAL PARAMETERS ESTIMATION

We show in this section how the amplitude and phase parameters can be estimated from the anechoic signal. From (3), straightforward calculations lead to:

ṡq(t) = q θm + θm (t -tm) sq(t), (5) 
∀t in the neighborhood of tm. We now assume that there is only one significant harmonic q at time-frequency bin [m, k].

By noting that ( ġk * s) = (g k * ṡ), [START_REF] Xiao | Speech dereverberation for enhancement and recognition using dynamic features constrained deep neural networks and feature adaptation[END_REF] shows that ∀t in the neighborhood of tm we have: [START_REF] Gerkmann | Phase estimation in speech enhancement; unimportant, important, or impossible?[END_REF] with g k (t) = tg k (t). Let wm,q[m , k ] ≥ 0 be a time-frequency mask measuring whether the same harmonic q is also dominant at time-frequency bin [m , k ]. Through this mask, θm and θm are characterized from [START_REF] Gerkmann | Phase estimation in speech enhancement; unimportant, important, or impossible?[END_REF] as the unique minimum of the quadratic function:

( ġk * s) (t) = q θm (g k * s) (t)+ q θm (t -tm) (g k * s) (t) -g k * s (t) ,
q,m ,k wm,q[m , k ]× S ġ [m , k ] -q θmSg[m , k ] + θmSm[m , k ] 2 , (7) 
where

Sm[m , k ] = (t m -tm)Sg[m , k ] -S g [m , k ].
By differentiating [START_REF] Belhomme | Anechoic phase estimation from reverberant signals[END_REF] with respect to θm and θm and by zeroing the derivatives, we show that parameters θm and θm satisfy the linear system1 :

Am θm θm = bm (8) 
with

Am = Q q=1 q 2 wm,q |Sg| 2 S * g Sm SgS * m |Sm| 2 (9) 
and

bm = Q q=1 q wm,q S * g S ġ S * m S ġ , ( 10 
)
where * denotes the complex conjugate.

In other respects, from (3) we derive that ∀t in the neighborhood of tm:

(g k * s) (t) = am,qe jϕm,q × n g k [n]e q θm t-tm-n fs + 1 2 θm t-tm-n fs 2 , (11) 
where

g k [n] = g k ( n fs ).
Hence am,q is characterized as the unique minimum of the function

m ,k wm,q[m , k ] |Sg[m , k ]| 2 am,q + am,q Gm,q[m , k ] 2 , (12) 
where

Gm,q[m , k ] = e q(t m -tm)( θm+ 1 2 θm(t m -tm)) × n g k [n]e -q n fs θm+ θm t m -tm-n 2fs . (13) 
By minimizing [START_REF] Jeub | A binaural room impulse response database for the evaluation of dereverberation algorithms[END_REF], am,q is obtained as:

am,q = wm,q|Sg| 2 wm,q|Gm,q| 2 .

(

) 14 
Besides, the phase ϕm,q of the q-th harmonic at time frame m is estimated by enforcing phase continuity between successive time frames:

ϕm,q = ϕm-1,q + q φm-1 R fs + q 2 φm-1 R fs 2 , m > 0, (15) 
with a random initial phase ϕ0,q. In conclusion, by analyzing s(t) with windows g k , ġk and g k , given a neighborhood Vm of time-frequency bins around frame m, we can estimate am,q, ϕm,q, θm and θm.

Finally, we estimate the STFT of the anechoic signal from (3):

Sg[m, k] = Q q=1 am,qe jϕm,q n g k [n]e -q n fs θm-θm n 2fs (16) 
and we reconstruct the signal s(t) by applying an inverse STFT to [START_REF] Savitzky | Smoothing and differentiation of data by simplified least squares procedures[END_REF]. This method gives an accurate estimation of the anechoic signal parameters. Let us see now how to take reverberation into account, in order to estimate the same parameters from a reverberant signal, and thus obtain a dereverberated signal.

ESTIMATION IN PRESENCE OF REVERBERATION

The goal is to estimate the quadratic terms in ( 9) and ( 10) from the reverberant signal y(t) defined in (4), instead of s(t). To do so, we use the fact that if the RIR h(t) is modeled as in Section 2.3, then for any analog real signals x1(t) and x2(t):

E b [(h * x1) × (h * x2)] = σ 2 p 2 * (x1 × x2), (17) 
where E b denotes the mathematical expectation w.r.t. b(t). This relation can be easily verified by using the fact that

E b [b(u)b(v)] = σ 2 δ(u -v)
, where δ(t) denotes the Dirac distribution. Moreover, it can be easily proved that the impulse response of the inverse filter of σ 2 p 2 is:

γ(t) = 1 σ 2 2αδ(t) + δ(t) . (18) 
By noting that (g k * y) = (h * g k * s), (17) leads to:

E b |g k * y| 2 = σ 2 p 2 * |g k * s| 2 . ( 19 
)
Applying the inverse filter γ(t) in ( 18) to (19) results in:

|g k * s| 2 = 1 σ 2 E b 2α|g k * y| 2 + 2 ((g k * y) * ( ġk * y)) . (20 
) By applying (20) to time tm, we thus obtain for every timefrequency bin [m, k]:

|Sg| 2 = 1 σ 2 E b 2α|Yg| 2 + 2 Y * g Y ġ . (21) 
Likewise, we derive the following expressions:

S * g S ġ = 1 σ 2 E b 2αY * g Y ġ + Y * g Yg + |Y ġ | 2 , (22) 
S * g S g = 1 σ 2 E b 2αY * g Y g + Y * ġ Y g + Y * g Y ġ , (23) 
|S g | 2 = 1 σ 2 E b 2α|Y g | 2 + 2 Y * g Y ġ , (24) 
S * g S ġ = 1 σ 2 E b 2αY * g Y ġ + Y * ġ Y ġ + Y * g Yg . (25) 
As, in practice, we do not have access to the mathematical expectation, we estimate it with a temporal smoothing by means of a first-order autoregressive filter of transfer function defined by the Z-transform 1-η 1-ηz -1 , with smoothing parameter η = 0.7. We thus obtain the estimation of the quadratic terms |Sg| 2 , S * g S ġ , S * g S g , |S g | 2 and S * g S ġ . From these estimations, we can compute matrix Am and vector bm as in ( 9) and [START_REF] Polack | La transmission de l'énergie sonore dans les salles[END_REF], in order to estimate θm and θm by following [START_REF] Belhomme | Amplitude and phase dereverberation of monocomponent signals[END_REF]:

θm θm = A -1 m bm. ( 26 
)
By following ( 14), the amplitude is then estimated with:

am,q = wm,q |Sg| 2 wm,q |Gm,q| 2 . ( 27 
)
The phase ϕm,q is then estimated by phase unwrapping as in Section 3, and the signal is reconstructed in the same way.

PERFORMANCE EVALUATION

In our previous work, the evaluation part was restricted to monocomponent signals because we did not introduce the harmonic model exploited in this paper. Now, we can apply our dereverberation method to harmonic signals. However, as speech signals are not always harmonic, we only deal with synthetic harmonic signals and propose in Section 6 a solution to process realistic speech signals.

Dataset and evaluation

In order to evaluate our method, we consider a multicomponent, harmonic, frequency-modulated signal. The sampling frequency fs is set to 16 kHz, allowing a maximum instantaneous frequency of 8 kHz. To ensure that the estimator performs well at every frequency, the simulated signal spans the entire frequency range, in 2 seconds. Its spectrogram is plotted in Figure 2-(a).

The anechoic signal is then convolved with simulated and real RIRs, of various RT60s. Simulated RIRs are generated according to the model presented in Section 2.3; real RIRs come from the AIR database [START_REF] Jeub | A binaural room impulse response database for the evaluation of dereverberation algorithms[END_REF], from which we select regularly spaced RT60s. At a same RT60, the real RIRs are much less reverberant than the simulated ones, which are modeled to emulate a diffuse-field reverberation. The spectrogram of a reverberant signal (with RT60 = 2.2 s) is plotted in Figure 2-(b). For this example we used a synthetic RIR to simulate an especially strong and diffuse reverberation.

To assess the performance of our method, we use objective measures from the REVERB challenge toolbox [START_REF] Kinoshita | A summary of the RE-VERB challenge: state-of-the-art and remaining challenges in reverberant speech processing research[END_REF]: the fwsegSNR to assess the level of reverberation (the higher the better) and the cepstral distance to assess the level of distortion (the lower the better); both are defined in [START_REF] Hu | Evaluation of objective quality measures for speech enhancement[END_REF]. We compare our approach with a state-ofthe-art suppression method [START_REF] Habets | Single-and multi-microphone speech dereverberation using spectral enhancement[END_REF], which focuses only on the magnitude of the STFT and ignores the phase information. Our previous work is not included in the benchmark, as it cannot deal with such multicomponent signals.

Estimator settings

We split the frequency axis in K = 256 bins, centered on the reduced frequencies ν k = k+0.5

2K

for k ∈ [0, K -1]. The analysis/synthesis window of length 2K -1 is defined as:

g k [n] = cos 3 π n 2K e 2jπν k n , ∀n ∈ [-K + 1, K -1]
and we choose a hop size of R = K 2 samples (75% overlap), which can be proved to guarantee perfect reconstruction.

For each frame m, the neighborhood Vm corresponds to the time-frequency bins [m , k ] where |m -m | ≤ L. We choose a width of L = 10 time frames. On Vm, the weights wm,q[m , k ] are defined as the product of a temporal mask wm[m ] and a harmonic mask wq[m , k ]. The temporal mask is directly a function of the distance between time frames m and m :

wm[m ] = e -1 2 |m-m | L 2 ,
while the harmonic mask is defined as: The weights wm,q[m , k ] = wm[m ]wq[m , k ] are thus computed from the magnitude spectrogram of either s(t) (ORACLE performance, as in Figure 1) or y(t). If a simple peak detection is sufficient to estimate the kq for anechoic signals, it is not robust enough for reverberant signals. As reverberation smears the magnitude spectrogram, the q-th peak at frame m may correspond to another harmonic at a previous frame. This results in a noisy fluctuation of the kq, that we smooth over time with a Savistky-Golay filter [START_REF] Savitzky | Smoothing and differentiation of data by simplified least squares procedures[END_REF] in order to recover a more continuous variation.

wq[m , k ] =    1 2 -1 2 cos π k -kq +d q+1 d q+1 if kq+1 ≥ k ≥ kq 1 2 -1 2 cos π d q-1 +k -kq d q-1 if kq-1 ≤ k < kq

Results

The scores are plotted in Figures 3 and4. We see that dereverberation improves both the fwsegSNR and the cepstral distance. Moreover, the scores of the dereverberated signal obtained with our method (green) always show a significant improvement w.r.t. the baseline method (black) regarding the fwsegSNR. However, an error on kq at frame m results in a slight shift of the frequency content, which degrades the cepstral distance (in Figure 3 but not in Figure 4, where the RIRs are less reverberant).

If we accurately locate the harmonics (ORACLE) the proposed method almost achieves a perfect reconstruction and the scores are nearly independent of the reverberation time (blue lines); an example with an initial RT60 = 2.2 s is plotted in Figure 2-(c). 

CONCLUSION

Instead of only estimating the STFT magnitude of the anechoic signal to perform dereverberation, we proposed a method for jointly estimating the magnitude and phase of the STFT. If the harmonics of the reverberant signal are well located, our estimator almost achieves a perfect reconstruction, on both synthetic and real RIRs.

The performance of the proposed method is limited by the harmonics localization. For monocomponent signals, a peak detection is sufficient to estimate the time-frequency bins [m, k] where the component is predominant, but when dealing with multiple components smeared by reverberation, it is not robust enough. This is why we need a more robust estimation of the kq to remove the artifacts (that sound like vibratos) in strong reverberant conditions (RT60 ≥ 1 s).

Future work will tackle speech signals, by applying either the presented method or another method based on a noisy signal model, depending on whether Vm includes voiced sections or fricative and plosive sounds.

  As in (1), we denote Yg[m, k] the STFT of y(t) at time-frequency bin [m, k].
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 1 Figure 1: Superposition of harmonics trajectories (white) and the corresponding mask wm,q[m , k ] for the 5-th harmonic
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 2 Figure 2: (a) Anechoic, (b) reverberant and (c) dereverberated
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 3 Figure 3: Objective measures on simulated RIRs
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 4 Figure 4: measures on real RIRs
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In equations (8) to[START_REF] Polack | La transmission de l'énergie sonore dans les salles[END_REF], (14) and (27), indexes m and k have been omitted for conciseness.