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Protected node profile of Tries

Mehri Javanian1∗

1 Department of Statistics, University of Zanjan, Iran

In a rooted tree, protected nodes are neither leaves nor parents of any leaves. They have some practical motivations,
e.g., in organizational schemes, security models and social-network models. In this paper, we introduce a new type
of profile, namely, the protected node profile which counts the number of protected nodes with the same distance
from the root in rooted trees. Here, we present the asymptotic expectations, variances, covariance and limiting
bivariate distribution of protected node profile and non-protected internal node profile in random tries, an important
data structure on words in computer science. Also we investigate the fraction of these expectations asymptotically.
These results are derived by the methods of analytic combinatorics such as generating functions, Mellin transform,
Poissonization and depoissonization, saddle point method and singularity analysis.

Keywords: Tries, Protected nodes, Tree profiles, Poissonization, Mellin transform, Recurrences, Generating func-
tions, Singularity analysis, Saddle point method

1 Introduction and Main Results
Tries (invented by de la Briandais) are fundamental tree data structures for retrieval of information. The
information stored in a trie is a set of strings (see Knuth (1998) for more details). For simplicity, we only
consider strings over a binary alphabet. The strings are stored in the leaves. More precisely, a trie is built
on n infinite 0-1 strings as follows: if n = 1 then the only string is stored in the root as an external node;
if n > 1, then the root is an internal node (empty node) and the strings with the first bit “0” (“1”) are
directed to the left (right) subtree; finally, the subtrees are constructed recursively by the same rules, but
by removing the first bit of all strings (cf. Figure 1).

A random trie with n external nodes is a trie built over n infinite 0-1 strings (a trie of size n) generated by
memoryless a source, that is, we assume each string is a Bernoulli i.i.d. sequence with success probability
0 < p < 1 (the probability of occurring a “1”); we also use q := 1 − p ≤ p. Random tries have been
extensively studied; for more background, see Mahmoud (1992) or Park et al. (2009), and the references
therein, for a thorough analysis of the profile (number of nodes at a given level) of tries.

By protected nodes, we mean the nodes with a distance of at least two to all the leaves. E.g., Figure
1 shows the protected nodes in black color. Protected nodes were introduced by Cheon and Shapiro
(2008) as a guide in various organizational schemes. For instance, if leaves represent customers it may
be worthwhile for many of the points in the tree to be non-protected. However if the leaves represent
lobbyists or computer hackers it may be a very good thing to have many points protected. In a security
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2 Mehri Javanian

Fig. 1: A trie built on eight strings s1, . . . , s8 (i.e., s1 = 001110 . . ., s2 = 10110 . . ., s3 = 000 . . ., etc.) with
internal (circles), leaf (squares), protected (black circles), and non-protected (white circles) nodes, and its profiles.

model with trie structure, a protected node may be taken to represent an entity that has at least two buffers
between itself and a vulnerable point. Protected nodes have been investigated for many different random
trees by many authors; see for instance, Du and Prodinger (2012), Devroye and Janson (2014), Fuchs
et al. (2016) and the papers cited there.

For random tries, the mean and variance of the number of protected nodes have been obtained by
Gaither et al. (2012) and Gaither and Ward (2013) where the above applications of this parameter such
as security models with trie structures and social networks have been discussed. Moreover, Gaither and
Ward (2013) announced a central limit theorem, which was conjectured in their paper. This conjecture
has been confirmed by Fuchs et al. (2016) who proved (univariate and bivariate) central limit theorems
for the number of protected nodes. Also, Fuchs et al. (2016) have shown that all previous results for tries
can be derived by approaches of Hwang et al. (2012), Fuchs et al. (2014) and Fuchs and Lee (2014).

In the present paper, we are concerned with the protected node profile defined as the number of protected
nodes with the same distance from the root in random tries. Throughout the paper, we write In,k, Xn,k

and Yn,k for, respectively, the number of internal nodes, the number of protected nodes and the number of
non-protected internal nodes at level k in a trie of size n. Namely, In,k = Xn,k + Yn,k (cf. Figure 1). We
also define γn,k := Cov(Xn,k, Yn,k) for the covariance of Xn,k and Yn,k; and

µ
[X]
n,k := E(Xn,k), µ

[Y ]
n,k := E(Yn,k), σ

[X]
n,k

2
:= V(Xn,k), σ

[Y ]
n,k

2
:= V(Yn,k),

for the expectations and variances, respectively.
In order to state our findings and the results about In,k in Park et al. (2009), we need the following

notations. For a real number α with (log 1
q )−1 < α < (log 1

p )−1, let

ρ = ρ(α) =
1

log(p/q)
log

1− α log(1/p)

α log(1/q)− 1
. (1)

Equivalently, α and ρ satisfy the equation

α =
p−ρ + q−ρ

p−ρ log(1/p) + q−ρ log(1/q)
.
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Furthermore, we set

α1 =
1

log(1/q)
, α0 =

2

log(1/p) + log(1/q)
,

α2 =
p2 + q2

p2 log(1/p) + q2 log(1/q)
, β(ρ) =

p−ρq−ρ log(p/q)2

(p−ρ + q−ρ)2
.

The generic symbol ε represents a suitably small and positive constant whose value may vary from one
occurence to another. The symbol f(n) = Θ(g(n)) means that there are positive constants C and C ′ such
that C|g(n)| ≤ |f(n)| ≤ C ′|g(n)|.

We briefly recall the results for E(In,k), V(In,k) and limiting distribution of In,k obtained by Park et al.
(2009). For p 6= q, ε > 0, ξ = o((log n)

1
6 ) and the normal distribution function Φ(x),

• If 1 ≤ k ≤ (α1 − ε) log n then level k is almost full of internal nodes and V(In,k)→ 0.

• If (α1 + ε) log n ≤ k ≤ (α0 − ε) log n then ρn,k := ρ(k/ log n) > 0 and

E(In,k) = 2k −G[I]
(
ρn,k, logp/q p

kn
) (p−ρn,k + q−ρn,k)kn−ρn,k√

2πβ(ρn,k)k

(
1 +O(k−1/2)

)
,

where G[I](ρ, x) =
∑
j∈Z Γ(ρ + itj)(ρ + itj + 1)e−2πijx is a positive 1-periodic function and

tj := 2πj/(log p/q). The oscillating function G[I](ρ, x) is consequence of an infinite number of
saddle points appearing in the integrand of the associated Mellin transform of Poisson generating
function of E(In,k). This was first observed by Nicodème (2005). There is also an oscillating
function in the formula of variance which is unbounded. The limiting distribution of In,k is normal.

• If k = α0(log n+ ξ
√
α0β(0) log n) then E(In,k) ∼ 2kΦ(−ξ).

• If (α0 + ε) log n ≤ k ≤ (α2 − ε) log n then −2 < ρn,k := ρ(k/ log n) < 0 and it is again the
infinite number of saddle points that yield the dominant asymptotic approximation. Namely,

E(In,k) ∼ −G[I]
(
ρn,k, logp/q p

kn
) (p−ρn,k + q−ρn,k)kn−ρn,k√

2πβ(ρn,k)k
,

(G[I](ρ, x) > 0, for ρ > 0; and G[I](ρ, x) < 0, for −2 < ρ < 0).

Here, we recall there is a small mistake in the formula of E(In,k) in Park et al. (2009): G3(ρ, x)(=
G[I](ρ, x)) should be multiplied by −1. The asymptotic variance has the same formula as the
variance in the range (α1 + ε) log n ≤ k ≤ (α0− ε) log n, and In,k is again asymptotically normal.

• If k = α2(log n+ ξ
√
α2β(−2) log n) then E(In,k) ∼ 1

2Φ(ξ)n2(p2 + q2)k.

• If k ≥ (α2 + ε) log n then the oscillations appearing in the formula of E(In,k) disappear since the
behaviour of E(In,k) is dominated by a polar singularity. We thus have E(In,k) ∼ 1

2n
2(p2+q2)k−1

and V(In,k) ∼ E(In,k). Moreover, the limiting distribution of In,k is normal, when V(In,k)→∞,
whereas the limiting distribution of In,k is Poisson, when V(In,k) = Θ(1).
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In this paper, we consider the behavior of protected and non-protected internal node profiles in the range
(α1 + ε) log n ≤ k ≤ (α2 − ε) log n. If p = q, then we have α1 = α0 = α2 and this range (the saddle
point range) between α1 and α2 does not exist. Thus, we focus on the protected node and non-protected
node profiles of asymmetric tries (p 6= q).

In Section 2, we first give a recurrence with respect to the joint probability generating function of Xn,k

and Yn,k, and then the recurrences with respect to the Poissonized first two moments. The expected values,
variances and covariance of our profiles are discussed in Section 2. We also show that the variances are of
the same order as the expected values and therefore, are positive by the assertion of the following theorem.

Theorem 1.1 Consider ρn,k := ρ(k/ log n) and tj := 2πj/(log p/q). For some ε > 0 and the functions

ĝ[X](s) = 1 + s(p−s + q−s)− s(s+ 1)pq := −g[X](s),

g[Y ](s) = p−s + q−s − 1− (s+ 1)pq,

1. If α1 + ε ≤ k
logn ≤ α0 − ε then ρn,k > 0 and

µ
[X]
n,k = 2k − Ĝ[X]

(
ρn,k, logp/q p

kn
) (p−ρn,k + q−ρn,k)kn−ρn,k√

2πβ(ρn,k)k

(
1 +O(k−1/2)

)
,

where Ĝ[X](ρ, x) =
∑
j∈Z Γ(ρ+ itj)ĝ

[X](ρ+ itj)e
−2πijx is a positive 1-periodic function.

2. If α0 + ε ≤ k
logn ≤ α2 − ε then −2 < ρn,k < 0 and

µ
[X]
n,k = G[X]

(
ρn,k, logp/q p

kn
) (p−ρn,k + q−ρn,k)kn−ρn,k√

2πβ(ρn,k)k

(
1 +O(k−1/2)

)
,

where G[X](ρ, x) =
∑
j∈Z Γ(ρ+ itj)g

[X](ρ+ itj)e
−2πijx is a positive 1-periodic function.

3. If α1 + ε ≤ k
logn ≤ α2 − ε then ρn,k > −2 and

µ
[Y ]
n,k = G[Y ]

(
ρn,k, logp/q p

kn
) (p−ρn,k + q−ρn,k)kn−ρn,k√

2πβ(ρn,k)k

(
1 +O(k−1/2)

)
,

where G[Y ](ρ, x) =
∑
j∈Z Γ(ρ+ itj + 1)g[Y ](ρ+ itj)e

−2πijx is a positive 1-periodic function.

When p decreases and goes to 0.5+ such that α0 + ε ≤ k/ log n ≤ α2 − ε, then the amplitude of
oscillations in periodic functions G[X](ρ, x) and G[Y ](ρ, x) decreases and vanishes. For instance, as we
illustrate in Figure 2, the amplitude of oscillations in G[X](−0.1, x) (right plot) and G[Y ](−0.1, x) (left
plot) is a decreasing sequence with respect to p = 0.85, p = 0.75, p = 0.65 and p = 0.55. For p = 0.65
and p = 0.55, we can see that their amplitudes are almost zero, therefore the functions G[X](−0.1, x) and
G[Y ](−0.1, x) are constants. In Table 1, several examples are also given to confirm the following claim.

Theorem 1.2 Let ρn,k := ρ(k/ log n) and α0 + ε ≤ k
logn ≤ α2 − ε. Then

µ
[X]
n,k

µ
[Y ]
n,k

n→∞∼
G[X]

(
ρn,k, logp/q p

kn
)

G[Y ]
(
ρn,k, logp/q p

kn
) p→0.5+−→ ρn,k(1 + ρn,k)− 8ρn,k2ρn,k − 4

8ρn,k2ρn,k − 4ρn,k − ρn,k(1 + ρn,k)
.
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Tab. 1: Comparisons of magnitudes for x ∈ (0, 1) and −2 < ρ(α) < 0.

Functions of x p ρ(α)
-0.1 -1 -1.9

0.55 0.68 0.44 2.50
G[Y ](ρ(α), x) 0.75 0.72 0.37 1.81

0.95 0.73 0.15 0.49
0.55 8.93 0.56 2.50

G[X](ρ(α), x) 0.75 8.89 0.63 3.10
0.95 8.85 0.85 4.50
0.55 13.09 1.27 1.00

G[X](ρ(α),x)
G[Y ](ρ(α),x)

0.75 12.35 1.66 1.62
0.95 12.12 5.00 9.10

Fig. 2: The fluctuating part of the periodic functions G[Y ](−0.1, x) (left) and G[X](−0.1, x) (right) for p = 0.85,
p = 0.75, p = 0.65, p = 0.55 and for x ∈ [0, 1]; their amplitudes tends to zero when p→ 0.5+.

In Theorem 1.3, we derive the asymptotic variances and covariance of the profiles. The methods used to
derive these results are the same as the ones used for the expectations. We give examples in Table 2, that
the magnitudes of the periodic functions G[X]

V (ρ(α), x), G[Y ]
V (ρ(α), x) and GC(ρ(α), x) increase when

ρ(α) grows; and also their amplitudes decrease as p→ 0.5+.
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Theorem 1.3 For some ε > 0, if α1 + ε ≤ k
logn ≤ α2 − ε and tj = 2πj/(log p/q) then

σ
[X]
n,k

2
= G

[X]
V

(
ρn,k, logp/q p

kn
) (p−ρn,k + q−ρn,k)kn−ρn,k√

2πβ(ρn,k)k

(
1 +O(k−1/2)

)
,

σ
[Y ]
n,k

2
= G

[Y ]
V

(
ρn,k, logp/q p

kn
) (p−ρn,k + q−ρn,k)kn−ρn,k√

2πβ(ρn,k)k

(
1 +O(k−1/2)

)
,

γn,k = GC

(
ρn,k, logp/q p

kn
) (p−ρn,k + q−ρn,k)kn−ρn,k√

2πβ(ρn,k)k

(
1 +O(k−1/2)

)
,

where ρn,k = ρ(k/ log n) > −2 and

G
[X]
V (ρ, x) =

∑
j∈Z

Γ(ρ+ itj)g
[X]
V (ρ+ itj)e

−2πijx,

G
[Y ]
V (ρ, x) =

∑
j∈Z

Γ(ρ+ itj + 1)g
[Y ]
V (ρ+ itj)e

−2πijx,

GC(ρ, x) =
∑
j∈Z

Γ(ρ+ itj)gC(ρ+ itj)e
−2πijx,

are non-zero 1-periodic functions with

g
[X]
V (s) = 1− 2−s + s

(
p−s + q−s − 2p(p+ 1)−s−1 − 2q(q + 1)−s−1

)
−s(s+ 1)

(
2−s−2(p−s + q−s) + 3pq − pq2−s−1

)
+2pqs(s+ 1)(s+ 2)

(
p(p+ 1)−s−3 + q(q + 1)−s−3

)
−s(s+ 1)(s+ 2)(s+ 3)p2q22−s−4,

g
[Y ]
V (s) = p−s + q−s − 1 + (s+ 1)

(
2p(p+ 1)−s−2 + 2q(q + 1)−s−2

)
−(s+ 1)

(
2−s−2(p−s + q−s + 1) + 3pq

)
− (s+ 1)(s+ 2)(s+ 3)p2q22−s−4

+2pq(s+ 1)(s+ 2)
(
p(p+ 1)−s−3 + q(q + 1)−s−3 − 2−s−3

)
,

gC(s) = s
(
p(p+ 1)−s−1 + q(q + 1)−s−1

)
+ s(s+ 1)(s+ 2)(s+ 3)p2q22−s−4

−s(s+ 1)
(
p(p+ 1)−s−2 + q(q + 1)−s−2 − 3pq − 2−s−2(p−s + q−s)

)
−pqs(s+ 1)(s+ 2)

(
2p(p+ 1)−s−3 + 2q(q + 1)−s−3 − 2−s−3

)
+s
(
1− 2−s−1 − p−s − q−s

)
− s(s+ 1)pq2−s−2.

We then prove in Section 3, that both Xn,k and Yn,k, after proper normalization, are asymptotically
bivariate normally distributed for the range (α1 + ε) log n ≤ k ≤ (α2 − ε) log n.

Theorem 1.4 For (α1 + ε) log n ≤ k ≤ (α2 − ε) log n,

P

(
Xn,k − µ[X]

n,k

σ
[X]
n,k

≤ x,
Yn,k − µ[Y ]

n,k

σ
[Y ]
n,k

≤ y

)
= Φ(x, y; ρn,k) + o(1), (2)

where ρn,k := γn,k/σ
[X]
n,kσ

[Y ]
n,k and Φ(x, y; ρ) denotes the cumulative distribution function of bivariate

standard normal distribution with correlation parameter ρ.
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Tab. 2: Comparisons of magnitudes for x ∈ (0, 1) and ρ(α) > −2.

Functions of x p ρ(α)
-1.5 3.5 8.5

0.55 0.53 225 1.22×108

G
[Y ]
V (ρ(α), x) 0.75 0.42 1350 1.58×1010

0.95 0.13 5×105 2.50×1016

0.55 0.51 230 1.23×108

G
[X]
V (ρ(α), x) 0.75 0.68 1350 1.58×1010

0.95 0.85 5×105 2.50×1016

0.55 -0.05 -220 -1.24×108

GC(ρ(α), x) 0.75 -0.13 -1330 -1.50×1010

0.95 -0.74 -5×105 -3.50×1016

2 Asymptotic Expectations, Variances and Covariance
In this section, except for the proof of positivity of the periodic functions in the asymptotic expansions of
the expectations; for the proof of other results, we follow from known methods which were introduced by
Park et al. (2009). Namely, we first show that the joint probability generating function of Xn,k and Yn,k,
satisfies a recurrence of the form

zn,k(u,w) =

n∑
j=0

(
n

j

)
pjqn−jzj,k−1(u,w)zn−j,k−1(u,w), (n ≥ 0, k ≥ 1).

From the above recurrence, the expectations, the variances and covariance of Xn,k and Yn,k are seen to
satisfy a recurrence of the form

tn,k =

n∑
j=0

(
n

j

)
pjqn−j(tj,k−1 + tn−j,k−1), (n ≥ 0, k ≥ 1),

with suitable initial conditions. A standard approach is to consider the Poisson transform of tn,k, the
Poisson generating function fk(x) := e−x

∑
n tn,kx

n/n!, which in turn satisfies the functional equation

fk(x) = fk−1(px) + fk−1(qx). (3)

The equation (3) can be solved by a simple iteration argument and has the explicit solution,

fk(x) =

k∑
j=0

(
k

j

)
f0(pjqk−jx).

The asymptotic solution of (3) can be obtained by using the Mellin transform (see Flajolet et al. (1995)).
The final step is to invert from the asymptotics of fk(x) to recover the asymptotics of tn,k. This last step
is guided by the Poisson heuristic, which roughly states that

if a sequence {an}n is “smooth enough”, then an ∼ e−n
∑
j≥0 ann

j/j!,



8 Mehri Javanian

where an ∼ bn if limn→∞ an/bn = 1. This Poisson heuristic is known as analytic depoissonization,
when justified by complex analysis and the saddle point method.

2.1 Recurrences for the Poissonized Means and Second Moments
In a random trie of size n, the number of protected nodesXn,k at level k ≥ 1, can be computed recursively
by computing the number for the two subtrees at level k − 1. For k = 0, the root is protected, if and only
if neither the left nor the right subtree contains only one string. This leads to the following distributional
recurrence for Xn,k:

Xn,k
d
=

{
XBn,k−1 +X∗n−Bn,k−1, k ≥ 1;
1− I{1,n−1}(Bn), k = 0,

(n ≥ 2),

where IA(·) is the indicator function of A, Xn,k
d
= X∗n,k, Bn

d
= Binomial(n, p) and Xn,k, X∗n,k, Bn are

independent. Also, for k ≥ 0, X0,k = X1,k = 0.
Similarly, we have Y0,k = Y1,k = 0 for k ≥ 0, and

Yn,k
d
=

{
YBn,k−1 + Y ∗n−Bn,k−1, k ≥ 1;
I{1,n−1}(Bn), k = 0,

(n ≥ 2),

where Yn,k
d
= Y ∗n,k and Yn,k, Y ∗n,k, Bn are independent.

Let Fn,k(u,w) := E[uXn,kwYn,k ] be the joint probability generating function of Xn,k and Yn,k. Then

Fn,k(u,w) =

n∑
j=0

(
n

j

)
pjqn−jFj,k−1(u,w)Fn−j,k−1(u,w), (n ≥ 0, k ≥ 1), (4)

with the initial and boundary conditions

Fn,0(u,w) =

 u+ n(pqn−1 + pn−1q)(w − u), n ≥ 3;
u+ 2pq(w − u), n = 2,
1, n = 0, 1.

By taking first and second partial derivatives with respect to u,w on both sides of (4); and then substituting
u = 1, w = 1, we see that µ[X]

n,k, µ[Y ]
n,k, ν[X]

n,k := E(X2
n,k), ν[Y ]

n,k := E(Y 2
n,k) and ζ [XY ]

n,k := E(Xn,kYn,k)
satisfy the following recurrences for n ≥ 0, k ≥ 1:

µ
[X]
n,k =

n∑
j=0

(
n

j

)
pjqn−j

(
µ
[X]
j,k−1 + µ

[X]
n−j,k−1

)
, µ

[Y ]
n,k =

n∑
j=0

(
n

j

)
pjqn−j

(
µ
[Y ]
j,k−1 + µ

[Y ]
n−j,k−1

)
,

ν
[X]
n,k =

n∑
j=0

(
n

j

)
pjqn−j

(
ν
[X]
j,k−1 + ν

[X]
n−j,k−1

)
+ 2

n∑
j=0

(
n

j

)
pjqn−jµ

[X]
j,k−1µ

[X]
n−j,k−1,

ν
[Y ]
n,k =

n∑
j=0

(
n

j

)
pjqn−j

(
ν
[Y ]
j,k−1 + ν

[Y ]
n−j,k−1

)
+ 2

n∑
j=0

(
n

j

)
pjqn−jµ

[Y ]
j,k−1µ

[Y ]
n−j,k−1,

ζ
[XY ]
n,k =

n∑
j=0

(
n

j

)
pjqn−j

(
ζ
[XY ]
j,k−1 + ζ

[XY ]
n−j,k−1

)
+

n∑
j=0

(
n

j

)
pjqn−j

(
µ
[X]
j,k−1µ

[Y ]
n−j,k−1 + µ

[Y ]
j,k−1µ

[X]
n−j,k−1

)
,
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with µ[X]
n,0 = ν

[X]
n,0 , µ[Y ]

n,0 = ν
[Y ]
n,0 and ζ [XY ]

n,0 = 0, for n ≥ 0; and

µ
[X]
n,0 =

 1− n(pqn−1 + pn−1q), n ≥ 3;
1− 2pq, n = 2,
0, n = 0, 1,

µ
[Y ]
n,0 =

 n(pqn−1 + pn−1q), n ≥ 3;
2pq, n = 2,
0, n = 0, 1.

It follows that the transforms

M
[X]
k (x) :=

∑
n≥0

µ
[X]
n,k

xn

n!
e−x, M

[Y ]
k (x) :=

∑
n≥0

µ
[Y ]
n,k

xn

n!
e−x,

N
[X]
k (x) :=

∑
n≥0

ν
[X]
n,k

xn

n!
e−x, N

[Y ]
k (x) :=

∑
n≥0

ν
[Y ]
n,k

xn

n!
e−x,

Z
[XY ]
k (x) :=

∑
n≥0

ζ
[XY ]
n,k

xn

n!
e−x, Ck(x) := Z

[XY ]
k (x)−M [X]

k (x)M
[Y ]
k (x),

V
[X]
k (x) := N

[X]
k (x)−M [X]

k (x)2, V
[Y ]
k (x) := N

[Y ]
k (x)−M [Y ]

k (x)2,

and the transform M̂
[X]
0 (x) := 1−M [X]

0 (x) satisfy

M
[X]
k (x) =

k∑
j=0

(
k

j

)
M

[X]
0 (pjqk−jx) = 2k −

k∑
j=0

(
k

j

)
M̂

[X]
0 (pjqk−jx) := 2k − M̂ [X]

k (x), (5)

M
[Y ]
k (x) =

k∑
j=0

(
k

j

)
M

[Y ]
0 (pjqk−jx), Ck(x) =

k∑
j=0

(
k

j

)
C0(pjqk−jx), (6)

V
[X]
k (x) =

k∑
j=0

(
k

j

)
V

[X]
0 (pjqk−jx), V

[Y ]
k (x) =

k∑
j=0

(
k

j

)
V

[Y ]
0 (pjqk−jx), (7)

for k ≥ 1 with

M
[X]
0 (x) = 1− e−x − pxe−px − qxe−qx + pqx2e−x,

M
[Y ]
0 (x) = pxe−px + qxe−qx − xe−x − pqx2e−x,

V
[X]
0 (x) = N

[X]
0 (x)−M [X]

0 (x)2 = M
[X]
0 (x)−M [X]

0 (x)2

= e−x − e−2x + pxe−px + qxe−qx − 2pxe−x(1+p) − 2qxe−x(1+q) + 2pqx2e−2x

−3pqx2e−x − p2x2e−2px − q2x2e−2qx + 2p2qx3e−x(1+p) + 2pq2x3e−x(1+q) − p2q2x4e−2x,
V

[Y ]
0 (x) = N

[Y ]
0 (x)−M [Y ]

0 (x)2 = M
[Y ]
0 (x)−M [Y ]

0 (x)2

= pxe−px + qxe−qx + 2px2e−x(1+p) + 2qx2e−x(1+q) + 2p2qx3e−x(1+p) + 2pq2x3e−x(1+q)

−p2x2e−2px − q2x2e−2qx − 2pqx3e−2x − p2q2x4e−2x − 3pqx2e−x − xe−x − x2e−2x,
C0(x) = −M [X]

0 (x)M
[Y ]
0 (x)

= xe−x + pxe−(1+p)x + qxe−(1+q)x + p2x2e−2px + q2x2e−2qx + 3pqx2e−x + pqx3e−2x

−xe−2x − pxe−px − qxe−qx − px2e−(1+p)x − qx2e−(1+q)x − pqx2e−2x

−2pq2x3e−(1+q)x − 2p2qx3e−(1+p)x + p2q2x4e−2x.
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Consider Īn,k := 2k − In,k. By Section 6.2 in Park et al. (2009), for k ≥ 1,

V
[I]
k (x) =

k∑
j=0

(
k

j

)
V

[I]
0 (x)(pjqk−jx), and V

[I]
0 (x) = (x+ 1)e−x(1− (x+ 1)e−x),

where

V
[I]
k (x) :=

∑
n≥0

E(Ī2n,k)
xn

n!
e−x −

(∑
n≥0

E(Īn,k)
xn

n!
e−x

)2
.

From this definition, for k ≥ 0, we obtain

2Ck(x) = V
[I]
k (x)− V [X]

k (x)− V [Y ]
k (x). (8)

2.2 Depoissonization

In this section, we first derive the asymptotic approximations to µ[X]
n,k and µ[Y ]

n,k. We are mainly interested

in the behaviour of M [X]
k (x), M [Y ]

k (x), for x = n, since by analytic depoissonization we expect that
µ
[X]
n,k ∼M

[X]
k (n), µ[Y ]

n,k ∼M
[Y ]
k (n).

Let M̂∗[X]
k (s) and M∗[Y ]

k (s) denote the Mellin transforms

M̂
∗[X]
k (s) =

∫ ∞
0

M̂
[X]
k (x)xs−1dx and M

∗[Y ]
k (s) =

∫ ∞
0

M
[Y ]
k (x)xs−1dx,

so that M̂∗[X]
k (s) exists for s ∈ C with <(s) > 0; and M∗[Y ]

k (s) exists for s ∈ C with <(s) > −2. Then
(5) and (6) can be rewritten to

M̂
∗[X]
k (s) = (p−s + q−s)kM̂

∗[X]
0 (s), M

∗[Y ]
k (s) = (p−s + q−s)kM

∗[Y ]
0 (s),

with

M̂
∗[X]
0 (s) = Γ(s)

(
1 + s(p−s + q−s)− s(s+ 1)pq

)
,

M
∗[Y ]
0 (s) = Γ(s+ 1)

(
p−s + q−s − 1− (s+ 1)pq

)
.

Hence, by the inverse Mellin transform (Flajolet et al. (1995)) and definition ρ := <(s),

M
[X]
k (x) = 2k − 1

2πi

∫ ρ+i∞

ρ−i∞
Γ(s)ĝ[X](s)(p−s + q−s)kx−sds, ρ > 0, (9)

M
[Y ]
k (x) =

1

2πi

∫ ρ+i∞

ρ−i∞
Γ(s+ 1)g[Y ](s)(p−s + q−s)kx−sds, ρ > −2, (10)

For a complex number s we define the function

T (s) := p−s + q−s.
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Here, we evaluate the integrals (9) and (10) via the saddle point method. Thus, it is natural to choose
ρ = ρn,k as the saddle point of the function

T (s)kn−s = ek log T (s)−s logn,

that is the solution of the equation ∂
∂s (k log T (s)− s log n) = 0. Equivalently we must find ρ from

k

log n
=

p−ρ + q−ρ

p−ρ log(1/p) + q−ρ log(1/q)
, (11)

that is, the only real-valued saddle point ρ = ρn,k = ρ( k
logn ) (see (1)).

The integrands in (9) and (10), also has infinitely many complex-valued saddle points of the form
sj := ρ+ 2πij/(log p/q) (j = ±1,±2, . . .). This is due to the fact

T (ρ+ it) = p−ρ−it
(

1 +
(q
p

)−ρ−it)
= p−ρ · e−it log p

(
1 +

(q
p

)−ρ · eit log pq) .
Now by putting t = 2πj/(log p/q), we have

T
(
ρ+ 2πij/(log p/q)

)
= p−ρ · e−2πij(log p)/(log p/q)

(
1 +

(q
p

)−ρ · e2πij)
= e−2πij(log p)/(log p/q)T (ρ). (12)

Consequently the behaviour of T (s)kx−s around s = sj is almost the same as that of T (s)kx−s around
s = ρ. This phenomenon gives a periodic leading factor in the asymptotics of M [X]

k (n), M [Y ]
k (n); and

also of µ[X]
n,k, µ[Y ]

n,k.
Proof of Theorem 1.1. By evaluating the integrals (9) and (10) via the saddle point method, the proof
is quite identical to that of Theorem 2 in Park et al. (2009) (Lemma 7.5 in Drmota (2009)) with the new
functions ĝ[X](s), g[X](s) and g[Y ](s). It remains to show that G[Y ](ρ, x) and G[X](ρ, x) are positive.

For x ∈ [0, 1] and ρ > −2,

G[Y ](ρ, x) =
∑
j∈Z

Γ(ρ+ itj + 1)
(
p−ρ−itj + q−ρ−itj − 1− (ρ+ itj + 1)pq

)
e−2πijx

= q−ρ
∑
j∈Z

Γ(ρ+ itj + 1)e−2πij
(
x+ log q

log p/q

)
+ p−ρ

∑
j∈Z

Γ(ρ+ itj + 1)e−2πij
(
x+ log p

log p/q

)
−
∑
j∈Z

Γ(ρ+ itj + 1)e−2πijx − pq
∑
j∈Z

Γ(ρ+ itj + 2)e−2πijx. (13)

Since Γ(ρ+itj)e
−2πijx/(log p/q) is the Fourier transform of f(j) := (log p/q)e−e

j(log p/q)+x(
ej(log p/q)+x

)ρ
,

for ρ > 0, then by Poisson summation formula,∑
j∈Z

Γ(ρ+ itj)e
−2πijx/(log p/q) = log(p/q)

∑
j∈Z

e−e
j(log p/q)+x(

ej(log p/q)+x
)ρ
. (14)
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Therefore, from (13) and (14), for ρ > −1 and x ∈ [0, 1], we get

G[Y ](ρ, x) = log(p/q)
∑
j∈Z

(
pe−p(p/q)

j+x

(p/q)(j+x)(ρ+1) − pqe−(p/q)
j+x

(p/q)(j+x)(ρ+2)
)

+ log(p/q)
∑
j∈Z

(
qe−q(p/q)

j+x

(p/q)(j+x)(ρ+1) − e−(p/q)
j+x

(p/q)(j+x)(ρ+1)
)

= log(p/q)
∑
j∈Z

(
h11(j + x)− h12(j + x) + h21(j + x)− h22(j + x)

)
, (15)

where

h11(x) := pe−p(p/q)
x

(p/q)x(ρ+1), h21(x) := qe−q(p/q)
x

(p/q)x(ρ+1),

h12(x) := pqe−(p/q)
x

(p/q)x(ρ+2), h22(x) := e−(p/q)
x

(p/q)x(ρ+1).

Define h(x) := pe−(p/q)
x

(p/q)x(ρ+1). By using the inequality eq(p/q)
x

> q(p/q)x + 1, it follows that

h11(x) > h12(x) + h(x), for x ∈ R. (16)

Furthermore, since p(p/q)x > 0 it follows that ep(p/q)
x

> 1 and consequently qep(p/q)
x

+ p > q+ p = 1
which is equivalent to

h21(x) + h(x) > h22(x). (17)

Summing up the inequalities (16) and (17), we get

h11(x)− h12(x) + h21(x)− h22(x) > 0, for x ∈ R.

Then the positivity of the function G[Y ](ρ, x) follows by (15), for ρ > −1. Also, we have

inf
−2<ρ≤−1
0≤x≤1

G[Y ](ρ, x) ≥ 0.1 > 0.

Now, we prove the positivity of the function Ĝ[X](ρ, x). For x ∈ [0, 1] and ρ > 0,

Ĝ[X](ρ, x) =
∑
j∈Z

Γ(ρ+ itj)
(
1 + (ρ+ itj)(p

−ρ−itj + q−ρ−itj )− (ρ+ itj)(ρ+ itj + 1)pq
)
e−2πijx

=
∑
j∈Z

Γ(ρ+ itj)e
−2πijx − pq

∑
j∈Z

Γ(ρ+ itj + 2)e−2πijx

+q−ρ
∑
j∈Z

Γ(ρ+ itj + 1)e−2πij
(
x+ log q

log p/q

)
+ p−ρ

∑
j∈Z

Γ(ρ+ itj + 1)e−2πij
(
x+ log p

log p/q

)
= log(p/q)

∑
j∈Z

(
e−(p/q)

j+x

(p/q)(j+x)ρ − pqe−(p/q)
j+x

(p/q)(j+x)(ρ+2)
)

+ log(p/q)
∑
j∈Z

(
pe−p(p/q)

j+x

(p/q)(j+x)(ρ+1) + qe−q(p/q)
j+x

(p/q)(j+x)(ρ+1)
)

≥ G[Y ](ρ, x) > 0.
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Let G∗(ρ, x) :=
∑
j∈Z Γ(ρ+ itj)

(
1 + (ρ+ itj)(p

−ρ−itj + q−ρ−itj )
)
e−2πijx. Then

sup
−2<ρ<0
0≤x≤1

G∗(ρ, x) ≤ −0.1 < 0,

for −2 < ρ < 0 and

Ĝ[X](ρ, x) = G∗(ρ, x)− pq log(p/q)
∑
j∈Z

e−(p/q)
j+x

(p/q)(j+x)(ρ+2)

≤ −0.1− pq log(p/q)
∑
j∈Z

e−(p/q)
j+x

(p/q)(j+x)(ρ+2) < 0.

Hence, G[X](ρ, x) = −Ĝ[X](ρ, x) > 0 for −2 < ρ < 0. 2

Proof of Theorem 1.2. When p → 0.5+, then tj := 2πj/(log p/q) → ∞ and Γ
(
ρn,k + itj

)
→ 0 for

j 6= 0. Hence, from Theorem 1.1, we have

µ
[X]
n,k

µ
[Y ]
n,k

n→∞∼
G[X]

(
ρn,k, logp/q p

kn
)

G[Y ]
(
ρn,k, logp/q p

kn
) p→0.5+−→ Γ(ρn,k)g[X](ρn,k)

Γ(ρn,k + 1)g[Y ](ρn,k)
=

g[X](ρn,k)

ρn,kg[Y ](ρn,k)
.

Substituting g[X](ρn,k) and g[Y ](ρn,k), we obtain the result. 2

Lemma 2.1 For ε > 0 and ρ, the solution of the equation (11), define

ρ0 :=

{
ρ, if ρ ≥ 1 and k ≥ α1(1 + ε) log n;
1, if ρ ≤ 1.

Then for l = 0, 1, 2, . . ., we have

dl

dxl
M

[X]
k (x)

∣∣∣∣
x=neiθ

= O
(
ρl0n
−lM

[X]
k (n)

)
,

dl

dxl
M

[Y ]
k (x)

∣∣∣∣
x=neiθ

= O
(
ρl0n
−lM

[Y ]
k (n)

)
. (18)

Proof: By the same proof of Lemma 4 in Park et al. (2009), the estimates (18) can be proved. 2

From (6) and (7); and similar to (9) and (10), for ρ > −2, we have

V
[X]
k (x) =

1

2πi

∫ ρ+i∞

ρ−i∞
Γ(s+ 1)g

[X]
V (s)(p−s + q−s)kx−sds, (19)

V
[Y ]
k (x) =

1

2πi

∫ ρ+i∞

ρ−i∞
Γ(s)g

[Y ]
V (s)(p−s + q−s)kx−sds, (20)

Ck(x) =
1

2πi

∫ ρ+i∞

ρ−i∞
Γ(s)gC(s)(p−s + q−s)kx−sds. (21)

Lemma 2.2 SinceM [Y ]
k (x), V [X]

k (x), V [Y ]
k (x) andCk(x) are functions with the same following estimate,{

O(x2), as x→ 0;
O(|x|e−q<(x)), as x→∞, | arg(x)| ≤ ε,
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then uniformly for all k = k(n) ≥ 1 and x = neiθ, |θ| ≤ ε,

V
[X]
k (x) = Θ(M

[Y ]
k (x)), V

[Y ]
k (x) = Θ(M

[Y ]
k (x)), Ck(x) = Θ(M

[Y ]
k (x)). (22)

Therefore

σ
[X]
n,k

2
= Θ(µ

[Y ]
n,k), σ

[Y ]
n,k

2
= Θ(µ

[Y ]
n,k), γn,k = Θ(µ

[Y ]
n,k). (23)

Proof: The assertion in (22) follows from Lemma 8 in Park et al. (2009). By analytic depoissonization

we expect µ[Y ]
n,k ∼M

[Y ]
k (n), σ[X]

n,k

2
∼ V [X]

k (n), σ[Y ]
n,k

2
∼ V [Y ]

k (n) and γn,k ∼ Ck(n). This proves (23). 2

Proof of Theorem 1.3. By evaluating the integrals (19), (20) and (21) via the saddle point method, the
proof is similar to that of Theorem 1.1 with the new functions g[X]

V (s), g[Y ]
V (s) and gC(s). The positivity

of G[Y ](ρ, x) in the asymptotic expansions of µ[Y ]
n,k has been proved in the proof of Theorem 1.1. Thus,

by (23), we have σ[X]
n,k

2
> 0 and σ[Y ]

n,k

2
> 0. 2

3 Limiting Joint Distribution
In this section, we prove the limiting joint distribution of Xn,k and Yn,k is bivariate normal, for our
interesting range, i.e. (α1 + ε) log n ≤ k ≤ (α2 − ε) log n.

Our method of the proof of Theorem 1.4 that is the same method which was used by Park et al. (2009)
to prove their univariate limit theorem, is roughly as follows. We start from deriving a closed-form
expression for the trivariate generating Fk(x, u, w) :=

∑
n≥0 Fn,k(u,w)xn/n! by using the recurrence

(4). We then will apply the Cauchy integral representation to prove (2), for which we need (for the
analytic depoissonization), a crude estimate for |Fk(neiθ, eiϕ, eiψ)| for |θ| away from zero, as well as a
more precise local expansion when |θ| is very close to zero.

By (4), we have the functional equation

Fk(x, u, w) = Fk−1(px, u, w)Fk−1(qx, u, w), (k ≥ 1),

with the initial condition

F0(x, u, w) = ex + (1− u)(1 + x− ex) + (w − u)(pxeqx + qxepx − x− pqx2).

By iterating this functional equation, we obtain

Fk(x, u, w) =
∏

0≤j≤k

F0(pjqk−jx, u, w)(
k
j), (k ≥ 1). (24)

In the proof of Theorem 1.3, we need the following upper bound for the depoissonization procedure.

Proposition 3.1 Uniformly for k ≥ 1, r ≥ 0, |θ| ≤ π, |u| = 1 and |w| = 1

|Fk(reiθ, u, w)| ≤ er−crθ
2

, (25)

for some constant c > 0 independent of k, r and θ.
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Proof: In order to prove the above upper bound, we need the following inequality which holds for r ≥
r0 ≈ 2.9183, c1 := 2/(3π2):

(2 + r + pqr2)
(
ec1qrθ

2/2 + 1
)
≤
(

2 + r +
r2

4

)
(er/6 + 1) ≤ er. (26)

For r ≤ r0, we consider the expansion

F0(x, u, w) = 1 + x+
x2

2

(
u− 2pq(u− w)

)
+
∑
j≥3

xj

j!

(
u− j(pqj−1 + pj−1q)(u− w)

)
.

Define δ2 := 2pq and δj := j(pqj−1 + pj−1q), for j ≥ 3. It is easy to see that δj ≤ 0.75, for j ≥ 2 and
0.5 ≤ p ≤ 1. Thus∣∣F0(reiθ, eiϕ, eiψ)

∣∣ ≤ |1 + reiθ|+
∑
j≥2

rj

j!

∣∣(1− δj)eiϕ + δje
iψ
∣∣

≤ |1 + reiθ|+
∑
j≥2

rj

j!

≤ er−c2rθ
2

, (By (76) in Park et al. (2009)), (27)

uniformly for 1 ≤ r ≤ r0, |θ| ≤ π and c2 := 2/(π2(1 + r0)2er0).
Now suppose r ≥ r0 ≈ 2.9183. We can rewrite F0(x, u, w) as follows:

F0(x, u, w) = ua1(px)a1(qx) + 1− u+ x+ w (xqa2(px) + xpa2(qx)) + wpqx2,

where a1(x) := ex − x and a2(x) := ex − 1− x. By (26) and applying Lemma 6 in Park et al. (2009),∣∣F0(reiθ, eiϕ, eiψ)
∣∣ ≤ a1(pr)a1(qr)e−c1rθ

2/2 + qra2(pr)e−c1prθ
2

+ pra2(qr)e−c1qrθ
2

+ 2 + r + pqr2

≤ (er + 2)e−c1qrθ
2

+ (2 + r + pqr2)
(

1− e−c1qrθ
2
)

≤ er−c1qrθ
2/2, (By (26)). (28)

Collecting the two inequalities (27) and (28), we obtain∣∣F0(reiθ, eiϕ, eiψ)
∣∣ ≤ er−crθ2 , (c := min{c1q/2, c2}),

uniformly for r ≥ 0, |θ| ≤ π. This implies (25) by (24). 2

Now, define

Q(x, u, w) := log
(
e−xF0(x, u, w)

)
= log

(
1− (1− u)

(
1− a3(x)− a4(x)

)
− (1− w)a4(x)

)
, (29)

where a3(x) := e−x(1 + x) and a4(x) := pxe−px + qxe−qx − xe−x − pqx2e−x. Let

Qk(x, u, w) :=

k∑
j=0

(
k

j

)
Q(pjqk−jx, u, w) = log

(
e−xFk(x, u, w)

)
.
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In the following lemma, we prove that F0(reiθ, eiϕ, eiψ) is away from zero for r ≥ 0 and |θ| ≤ ε,
implying that Qk(x, u, w) is well-defined when | arg(x)| ≤ ε. This result is needed for the proof of
Proposition 3.2.

Lemma 3.1 The function Qk(reiθ, u, w) is well-defined for r ≥ 0, |θ| ≤ ε, |u| = 1 and |w| = 1.

Proof: We first show that

A :=
∣∣1− (1− eiϕ)

(
1− a3(r)− a4(r)

)
− (1− eiψ)a4(r)

∣∣ > 0,

for r ≥ 0, |θ| ≤ ε, |u| = 1 and |w| = 1. By direct calculation, we have

A2 = 1 + va3(r)2 + za4(r)2 + (v + z − t)a3(r)a4(r)− va3(r)− za4(r)

≥ 1 + va3(r)2 + za4(r)2 − ta3(r)a4(r)− va3(r)− za4(r),

where v := 2(1− cosϕ), t := 2(1− cosψ) and z := 2(1− cos(ϕ− ψ)). Since

a4(r) ≤ sup
r≥0

0.5≤p≤1

a4(r) ≤ sup
r≥0

(
pre−pr + qre−qr − re−r

∣∣
p= 1

2

)
= sup

r≥0
re−r(er/2 − 1) ≈ 0.52069,

we have

A2 ≥ inf
r≥0

0.5≤p≤1
0≤v,t,z≤2

A2 ≥ inf
r≥0

0.5≤p≤1

(
1 + va3(r)2 + za4(r)2 − ta3(r)a4(r)− va3(r)− za4(r)

∣∣∣
v=z=2
t=0

)

= inf
r≥0

0.5≤p≤1

(
1 + 2a3(r)2 + 2a4(r)2 − 2a3(r)− 2a4(r)

)
= 1 + 2a3(r)2 + 2a4(r)2 − 2(a3(r) + a4(r))

∣∣∣ a3(r)=1
a4(r)=0.52069

≈ 0.50085 > 0.

This proves the lemma when x = r; the assertion of the lemma follows from analyticity. 2

Proposition 3.2 For |θ| ≤ θ0 := n−2/5, ϕ = o(σ
[Y ]
n,k

−2/3
) and ψ = o(σ

[Y ]
n,k

−2/3
)

Fk(neiθ, eiϕ, eiψ) = exp

(
n− n

2
θ2 +M

[X]
k (n)iϕ+M

[Y ]
k (n)iψ − nM [X]

k

′
(n)θϕ− nM [Y ]

k

′
(n)θψ

−1

2
V

[X]
k (n)ϕ2 − 1

2
V

[Y ]
k (n)ψ2 − Ck(n)ϕψ +O(E)

)
, (30)

where

E := n|θ|3 + ρ20σ
[X]
n,k

2
|ϕ|θ2 + ρ20σ

[Y ]
n,k

2
θ2|ψ|+ ρ0σ

[X]
n,k

2
|θ|ϕ2 + ρ0σ

[Y ]
n,k

2
|θ|ψ2

+ρ0γn,k|θϕψ|+ σ
[Y ]
n,k

2
|ψ3 + ψϕ2 + ϕψ2|+ σ

[X]
n,k

2
|ϕ|3.
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Proof: We start from the expansion of the function Q(x, u, w) defined in (29),

Q(x, u, w) =

{ (
( 1
2 − pq)(1− u) + pq(1− w)

)
x2 +O

(
|2− u− w||x|3

)
, as x→ 0;

(1− u)
(
1 +O(|x|e−q<(x))

)
, as x→∞, | arg(x)| ≤ ε.

By the above expansion, we have

Qk(x, u, w) =
1

2πi

∫ ρ+i∞

ρ−i∞
x−sQ∗(s, u, w)(p−s + q−s)kds,

where −2 < ρ < 0 and Q∗(s, u, w) :=
∫∞
0
xs−1Q(x, u, w)dx is defined for −2 < <(s) < 0. Note that

Q(x, u, w) = (1− u)
(
1− a3(x)− a4(x)

)
+ (1− w)a4(x)− 1

2

(
(1− u)2

(
1− a3(x)− a4(x)

)2
+2(1− u)(1− w)

(
1− a3(x)− a4(x)

)
a4(x) + (1− w)2a4(x)2

)
+Q̂(x, u, w)(1− u)3 + Q̃(x, u, w)(1− u)2(1− w)

+Q̆(x, u, w)(1− u)(1− w)2 + Q̄(x, u, w)(1− w)3, (31)

where the exact forms of Q̂, Q̃, Q̆ and Q̄ can be obtained by Taylor’s reminder formula and are of less
important here. We need instead the estimates (the assumptions in Lemma 8 in Park et al. (2009))

O(Q̂(x, u, w)) = O(Q̆(x, u, w)) = O(Q̃(x, u, w)) = O(Q̄(x, u, w)) = O
(
|x|6
)

= O
(
|x|2
)
,

as x→ 0 and

Q̃(x, u, w) = O(|x|e−q<(x)),
Q̆(x, u, w) = O(|x|2e−2q<(x)) = O(|x|e−q<(x)),
Q̄(x, u, w) = O(|x|3e−3q<(x)) = O(|x|e−q<(x)),
Q̂(x, u, w) = 1 +O(|x|e−q<(x)), (32)

as x→∞ in the sector {x : | arg(x)| ≤ ε}. By (5), (6), (7) and (8), the expansion (31) gives

Qk(x, u, w) = (1− u)M
[X]
k (x) + (1− w)M

[Y ]
k (x) +

1

2
(1− u)2

(
V

[X]
k (x)−M [X]

k (x)
)

+
1

2
(1− w)2

(
V

[Y ]
k (x)−M [Y ]

k (x)
)

+ (1− u)(1− w)Ck(x)

+(1− u)3Q̂k(x, u, w) + (1− u)2(1− w)Q̃k(x, u, w)

+(1− u)(1− w)2Q̆k(x, u, w) + (1− w)3Q̄k(x, u, w),

where Q̃k, Q̆k and Q̄k satisfy in (6); and Q̂k satisfy in (5).
Applying Lemma 8 in Park et al. (2009) and expansions in (32), we have Q̃k(x, u, w) = Θ(M

[Y ]
k (x)),

Q̆k(x, u, w) = Θ(M
[Y ]
k (x)) and Q̄k(x, u, w) = Θ(M

[Y ]
k (x)); and similarly Q̂k(x, u, w) = Θ(M

[X]
k (x)).
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These estimates yield, with x = neiθ,

Qk(x, u, w) = (1− u)M
[X]
k (x) + (1− w)M

[Y ]
k (x) +

1

2
(1− u)2

(
V

[X]
k (x)−M [X]

k (x)
)

+
1

2
(1− w)2

(
V

[Y ]
k (x)−M [Y ]

k (x)
)

+ (1− u)(1− w)Ck(x)

+O
(∣∣1− u∣∣3∣∣M [X]

k (neiθ)
∣∣)+O

(∣∣(2− u− w)3 − (1− u)3
∣∣∣∣M [Y ]

k (neiθ)
∣∣),

where theO-term holds uniformly for |θ| ≤ ε and |1−u| = o(1) and |(2−u−w)3−(1−u)3| = o(1). Since
µ
[X]
n,k → ∞ and µ[Y ]

n,k → ∞, this leads to (30) by expansions of M [X]
k (neiθ), M [Y ]

k (neiθ), V [X]
k (neiθ),

V
[Y ]
k (neiθ) and Ck(neiθ) at θ = 0, using the estimates in (18). 2

Proof of Theorem 1.4. Recall that θ0 := n−2/5. By Cauchy’s integral formula, (25) and (30), we have

E
(
eXn,kiϕ+Yn,kiψ

)
=

n!

2πi

∫
|x|=n

x−n−1Fk(x, eiϕ, eiψ)dx

=
n!n−n

2π

∫
|θ|≤θ0

x−n−1Fk(neiθ, eiϕ, eiψ)dθ +O
(
n−1/10e−cn

1/5
)

=
n!n−n

2π
en+M

[X]
k (n)iϕ+M

[Y ]
k (n)iψ− 1

2V
[X]
k (n)ϕ2− 1

2V
[Y ]
k (n)ψ2−Ck(n)ϕψ

×
∫ θ0

−θ0
e−

n
2 θ

2−nM [X]
k

′
(n)θϕ−nM [Y ]

k

′
(n)θψ

(
1 +O(E)

)
dθ +O

(
n−1/10e−cn

1/5
)
,

since E → 0 in the range of integration and when ϕ = o(σ
[X]
n,k

−4/5
) and ψ = o(σ

[Y ]
n,k

−4/5
). Applying

Stirling’s formula, extending the integration limits to ±∞, making the change of variables θ 7→ θn−1/2

and the refined estimates (by Proposition 1 in Park et al. (2009)) γn,k ∼ Ck(n)−nM [X]
k

′
(n)2M

[Y ]
k

′
(n)2,

σ
[X]
n,k

2
∼ V

[X]
k (n) − nM [X]

k

′
(n)2, σ[Y ]

n,k

2
∼ V

[Y ]
k (n) − nM [Y ]

k

′
(n)2, uniformly for ϕ = o(σ

[X]
n,k

−2/3
) and

ψ = o(σ
[Y ]
n,k

−2/3
), we obtain

E
(
eXn,kiϕ+Yn,kiψ

)
=

1√
2π
eM

[X]
k (n)iϕ+M

[Y ]
k (n)iψ−ϕ

2

2

(
V

[X]
k (n)−nM [X]

k

′
(n)2
)
−ψ

2

2

(
V

[Y ]
k (n)−nM [Y ]

k

′
(n)2
)

×e−ϕψ
(
Ck(n)−nM [X]

k

′
(n)M

[Y ]
k

′
(n)
)
×
∫ ∞
−∞

e−
(
θ+
√
nM

[X]
k

′
(n)ϕ+

√
nM

[Y ]
k

′
(n)ψ

)2
/2

×
(

1 +O
(

1 + |θ|3√
n

+
θ2ρ20
n

(
σ
[X]
n,k

2
|ϕ|+ σ

[Y ]
n,k

2
|ψ|
)

+
|θ|ρ0√
n

(
σ
[X]
n,k

2
ϕ2 + σ

[Y ]
n,k

2
ψ2

+ γn,k|ϕψ|
)

+ σ
[Y ]
n,k

2
|ψ3 + ψϕ2 + ϕψ2|+ σ

[X]
n,k

2
|ϕ|3

))
dθ,

−→ exp
(
µ
[X]
n,kiϕ+ µ

[Y ]
n,kiψ −

ϕ2

2
σ
[X]
n,k

2
− ψ2

2
σ
[Y ]
n,k

2
− ϕψγn,k

)
×
(

1 +O
(
σ
[Y ]
n,k

2
|ψ3 + ψϕ2 + ϕψ2|+ σ

[X]
n,k

2
|ϕ|3

))
,

which implies the result by Lévy’s continuity theorem. 2
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