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Protected node profile of Tries

Mehri Javanian1∗

1 Department of Statistics, University of Zanjan, Iran

In a rooted tree, protected nodes are neither leaves nor parents of any leaves. They have some practical motivations,
e.g., in organizational schemes, security models and social-network models. Protected node profile measures the
number of protected nodes with the same distance from the root in rooted trees. For no rooted tree, protected node
profile has been investigated so far. Here, we present the asymptotic expectations, variances, covariance and limiting
bivariate distribution of protected node profile and non-protected internal node profile in random tries, an important
data structure on words in computer science. Also we investigate the fraction of these expectations asymptotically.
These results are derived by the methods of analytic combinatorics such as generating functions, Mellin transform,
Poissonization and depoissonization, saddle point method and singularity analysis.

Keywords: Tries, Protected nodes, Tree profiles, Poissonization, Mellin transform, Recurrences, Generating func-
tions, Singularity analysis, Saddle point method

1 Introduction
Tries (invented by de la Briandais) are fundamental tree data structures for retrieval of information. The
information stored in a trie is a set of strings (see Knuth (1998) for more details). For simplicity, we
consider 0-1 strings to store in a trie. In a trie, the subject of this paper, strings are stored in leaves. More
precisely, a trie is built on n infinite 0-1 strings as follows: if n = 1 then the only string is stored in the
root as an external node; if n > 1, then the root is an internal node (empty node) and the strings with the
first bit “0” (“1”) are directed to the left (right) subtree; finally, the subtrees are constructed recursively by
the same rules, but by removing the first bit of all strings (cf. Figure 1).

A random trie with n external nodes is a trie built over n infinite 0-1 strings (a trie of size n) generated by
memoryless source, that is, we assume each string is a Bernoulli i.i.d. sequence with success probability
0 < p < 1 (the probability of occurring a “1”); we also use q := 1 − p ≤ p. Random tries have been
extensively studied; for more background, see Mahmoud (1992) or the survey Park et al. (2009), and the
references therein, for a thorough analysis of the profile (number of nodes at a given level) of tries.

By protected nodes, we mean the nodes with a distance of at least two to all the leaves. E.g., Figure 1
shows the protected nodes in blue color. Protected nodes were introduced by Cheon and Shapiro (2008)
as a guide in various organizational schemes. For instance, if leaves represent customers it may be worth-
while for many of the points in the tree to be non-protected. However if the leaves represent lobbyists or
computer hackers it may be a very good thing to have many points protected. In a security model with trie
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Fig. 1: A trie built on eight strings s1, . . . , s8 (i.e., s1 = 001110 . . ., s2 = 10110 . . ., s3 = 000 . . ., s4 = 10111 . . .,
etc.) with internal (circles), leaf (squares), protected (blue circles), and non-protected (white circles) nodes, and its
profiles.

structure, a protected node may be taken to represent an entity that has at least two buffers between itself
and a vulnerable point. Protected nodes have been investigated for many different random trees by many
authors; see for instance, Du and Prodinger (2012), Devroye and Janson (2014), Fuchs et al. (2016) and
the papers cited there.

For random tries, the mean and variance of the number of protected nodes have been obtained by
Gaither et al. (2012) and Gaither and Ward (2013) where the applications of this parameter such as se-
curity models with trie structures and social networks have been discussed. Moreover, Gaither and Ward
(2013) announced a central limit theorem, which was conjectured in their paper. This conjecture has been
confirmed by Fuchs et al. (2016); with proving (univariate and bivariate) central limit theorems for the
number of protected nodes. Also, Fuchs et al. (2016) have shown the all previous results can be derived
by approaches of Hwang et al. (2012), Fuchs et al. (2014) and Fuchs and Lee (2014).

In the present paper, we are concerned with the protected node profile defined as the number of protected
nodes with the same distance from the root in random tries. Throughout the paper, we write In,k, Xn,k

and Yn,k for, respectively, the number of internal nodes, the number of protected nodes and the number of
non-protected internal nodes at level k in a trie of size n. Namely, In,k = Xn,k + Yn,k (cf. Figure 1).

The paper is organized as follows. In the next section, we show that the probability generating functions
of Xn,k and Yn,k, satisfy a recurrence of the form

zn,k(u) =

n∑
l=0

(
n

l

)
plqn−lzl,k−1(u)zn−l,k−1(u), (n ≥ 0, k ≥ 1).

Therefore the expectations, the variances and covariance of Xn,k and Yn,k, satisfy a recurrence of the
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form

tn,k =

n∑
l=0

(
n

l

)
plqn−l

(
tl,k−1 + tn−l,k−1

)
, (n ≥ 0, k ≥ 1). (1)

In Sections 3 and 4, in order to derive the asymptotic approximations to the average profiles, variances
and covariance, we use a standard approach: first we consider the Poisson generating function fk(z) :=
e−z

∑
n tn,kz

n/n!, which, by (1) satisfies the functional equation

fk(z) = fk−1(pz) + fk−1(qz).

This equation can be solved explicitly by a simple iteration argument and asymptotically by using the
Mellin transform (see Flajolet et al. (1995) and Szpankowski (2001)). The final step is to invert from the
asymptotics of the Poisson generating function fk(z) to recover the asymptotics of tn,k. This last step is
guided by the Poisson heuristic, which roughly states that

if a sequence {an}n is ”smooth enough”, then an ∼ e−n
∑
j≥0 ann

j/j!,

where an ∼ bn if limn→∞ an/bn = 1. This Poisson heuristic is known as analytic de-Poissonization,
when justified by complex analysis and the saddle-point method. Our results show that for (ε > 0)

1

log(1/q)
+ ε ≤ 2

log(1/p) + log(1/q)
+ ε ≤ k ≤ p2 + q2

p2 log(1/p) + q2 log(1/q)
− ε, (2)

and

1

log(1/q)
+ ε ≤ k ≤ p2 + q2

p2 log(1/p) + q2 log(1/q)
− ε,

respectively, oscillating factors emerge in E(Xn,k) and E(Yn,k). Such a behavior is a consequence of an
infinite number of saddle-points appearing in the integrand of the associated Mellin integral transform.
This was first observed by Nicodème (2005). Then we investigate the ratio E(Xn,k)/E(Yn,k) for the
range of k in (2). We do not consider other ranges of k, because for k ≤ 1/ log(1/q), each level is almost
full of internal nodes, and for k ≥ (p2 + q2)/(p2 log(1/p) + q2 log(1/q)), E(Xn,k) and E(Yn,k) tend
to zero (see Park et al. (2009)). Also we prove that the variances of both profiles are asymptotically of
the same order as their expected values. We then show, in Section 5, that Xn,k and Yn,k, after a proper
normalization, have a bivariate normal limiting joint distribution for the range of k in (2), if and only if
the variances tend to infinity.

Here, we focus mostly on the protected node and non-protected node profiles of asymmetric tries (when
p 6= q) since the symmetric tries (when p = q = 1/2) are comparatively easier. In the last section, we
briefly summarize our main results for symmetric tries.

2 Preliminaries
In a random trie of size n, the number of protected nodes at level k ≥ 1,Xn,k can be computed recursively
by computing the number for the two subtrees at level k − 1. For k = 0, the root is protected, if and only
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if neither the left nor the right subtree contains only one string. This leads to the following distributional
recurrence for Xn,k:

Xn,k
d
=

{
XBn,k−1 +X∗n−Bn,k−1, k ≥ 1;
1− I{1,n−1}(Bn), k = 0,

(n ≥ 2),

where IA(·) is the indicator function of A, Xn,k
d
= X∗n,k, Bn

d
= Binomial(n, p) and Xn,k, X∗n,k, Bn are

independent. Also, for k ≥ 0, X0,k = X1,k = 0.
Similarly, we have Y0,k = Y1,k = 0 for k ≥ 0, and

Yn,k
d
=

{
YBn,k−1 + Y ∗n−Bn,k−1, k ≥ 1;
I{1,n−1}(Bn), k = 0,

(n ≥ 2),

where Yn,k
d
= Y ∗n,k and Yn,k, Y ∗n,k, Bn are independent.

Let P [X]
n,k (u) := E[uXn,k ] and P [Y ]

n,k (u) := E[uYn,k ]. Then P [X]
n,k (u) and P [Y ]

n,k (u) are both solutions to
the following recurrence relation with respect to zn,k(u):

zn,k(u) =

n∑
l=0

(
n

l

)
plqn−lzl,k−1(u)zn−l,k−1(u), (n ≥ 0, k ≥ 1), (3)

with the initial and boundary conditions

P
[X]
n,0 (u) =

 u− n(pqn−1 + pn−1q)(u− 1), n ≥ 3;
u− 2pq(u− 1), n = 2,
1, n = 0, 1,

P
[Y ]
n,0 (u) =

 1 + n(pqn−1 + pn−1q)(u− 1), n ≥ 3;
1 + 2pq(u− 1), n = 2,
1, n = 0, 1.

Throughout the paper, we use the following notations. For a complex number s we define the function

T (s) = p−s + q−s.

For a real number α, the equation

α =
p−ρ + q−ρ

p−ρ log(1/p) + q−ρ log(1/q)
,

that (log 1
q )−1 < α < (log 1

p )−1, has the solution

ρ = ρ(α) =
1

log(p/q)
log

1− α log(1/p)

α log(1/q)− 1
. (4)

We also define the functions

α1 =
1

log(1/q)
, α0 =

2

log(1/p) + log(1/q)
,

α2 =
p2 + q2

p2 log(1/p) + q2 log(1/q)
, β(ρ) =

p−ρq−ρ log(p/q)2

(p−ρ + q−ρ)2
.
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3 Expectations of Xn,k, Yn,k and Their Ratio
Asymptotic approximations to the expectations of Xn,k, Yn,k are derived in this section. Also, we give
some result about the value of E(Xn,k)/E(Yn,k).

Let µ[X]
n,k := E(Xn,k) and µ[Y ]

n,k := E(Yn,k). Then from (3), µ[X]
n,k and µ[Y ]

n,k are both solutions to the
following recurrence with respect to µn,k:

µn,k =

n∑
j=0

(
n

j

)
pjqn−j

(
µj,k−1 + µn−j,k−1

)
, (n ≥ 0, k ≥ 1),

with the initial and boundary conditions

µ
[X]
n,0 =

 1− n(pqn−1 + pn−1q), n ≥ 3;
1− 2pq, n = 2,
0, n = 0, 1,

µ
[Y ]
n,0 =

 n(pqn−1 + pn−1q), n ≥ 3;
2pq, n = 2,
0, n = 0, 1.

It follows that the poisson transforms

M
[X]
k (x) :=

∑
n≥0

µ
[X]
n,k

xn

n!
e−x and M

[Y ]
k (x) :=

∑
n≥0

µ
[Y ]
n,k

xn

n!
e−x,

satisfy

M
[X]
k (x) =

k∑
j=0

(
k

j

)
M

[X]
0 (pjqk−jx) = 2k −

k∑
j=0

(
k

j

)
M̂

[X]
0 (pjqk−jx) := 2k − M̂ [X]

k (x), (5)

M
[Y ]
k (x) =

k∑
j=0

(
k

j

)
M

[Y ]
0 (pjqk−jx), (6)

for k ≥ 1 with initial conditions

M
[X]
0 (x) = 1− e−x − pxe−px − qxe−qx + pqx2e−x := 1− M̂ [X]

0 (x),

M
[Y ]
0 (x) = pxe−px + qxe−qx − xe−x − pqx2e−x.

Let M∗[X]
k (s) and M∗[Y ]

k (s) denote the Mellin transforms

M
∗[X]
k (s) =

∫ ∞
0

M
[X]
k (x)xs−1dx and M

∗[Y ]
k (s) =

∫ ∞
0

M
[Y ]
k (x)xs−1dx,

that M∗[X]
k (s) exists for s ∈ C with −2 < <(s) < 0; and M∗[Y ]

k (s) exists for s ∈ C with <(s) > −2.
Then (5) and (6) rewrite to

M̂
∗[X]
k (s) = (p−s + q−s)kM̂

∗[X]
0 (s), M

∗[Y ]
k (s) = (p−s + q−s)kM

∗[Y ]
0 (s),
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with initial conditions

M̂
∗[X]
0 (s) = Γ(s)

(
1 + s(p−s + q−s)− s(s+ 1)pq

)
,

M
∗[Y ]
0 (0) = Γ(s+ 1)

(
p−s + q−s − 1− (s+ 1)pq

)
.

Hence, by the inverse Mellin transform (Flajolet et al. (1995))

M
[X]
k (x) = 2k − 1

2πi

∫ ρ+i∞

ρ−i∞
Γ(s)ĝ[X](s)(p−s + q−s)kx−sds, − 2 < ρ < 0, (7)

M
[Y ]
k (x) =

1

2πi

∫ ρ+i∞

ρ−i∞
Γ(s+ 1)g[Y ](s)(p−s + q−s)kx−sds, ρ > −2, (8)

where ρ := <(s) and

ĝ[X](s) = 1 + s(p−s + q−s)− s(s+ 1)pq := −g[X](s),

g[Y ](s) = p−s + q−s − 1− (s+ 1)pq.

We are mainly interested in the behaviour of M [X]
k (x) and M [Y ]

k (x) for x = n, since by analytic depois-
sonization we expect that E(Xn,k) ∼M [X]

k (n) and E(Yn,k) ∼M [Y ]
k (n).

Here, we evaluate the integrals (7) and (8) via the saddle point method (see Szpankowski (2001)).
Hence, it is natural to choose ρ = ρn,k as the saddle point of the function

T (s)kn−s = ek log T (s)−s logn,

that is the solution of the equation ∂
∂s (k log T (s)− s log n) = 0. Equivalently we must find ρ from

k

log n
=

p−ρ + q−ρ

p−ρ log(1/p) + q−ρ log(1/q)
, (9)

that is, the only real-valued saddle point ρ = ρn,k = ρ( k
logn ) (see (4)).

The integrands in (7) and (8), also has infinitely many complex-valued saddle points of the form sj :=
ρ+ 2πij/(log p/q) (j = ±1,±2, . . .). This is due to the fact

T (ρ+ it) = p−ρ−it
(

1 +
(q
p

)−ρ−it)
= p−ρ · e−it log p

(
1 +

(q
p

)−ρ · eit log pq) .
Now by putting t = 2πj/(log p/q), we have

T
(
ρ+ 2πij/(log p/q)

)
= p−ρ · e−2πij(log p)/(log p/q)

(
1 +

(q
p

)−ρ · e2πij)
= e−2πij(log p)/(log p/q)T (ρ).

Consequently the behaviour of T (s)kx−s around s = sj is almost the same as that of T (s)kx−s around
s = ρ. This phenomenon gives a periodic leading factor in the asymptotics of M [X]

k (n) and M [Y ]
k (n);

and also of µ[X]
n,k = E(Xn,k) and µ[Y ]

n,k = E(Yn,k).



Protected node profile of Tries 7

Theorem 3.1 Consider ρn,k = ρ(k/ log n) and tj = 2πj/(log p/q). For some ε > 0,

1. If α1 + ε ≤ k
logn ≤ α0 − ε then

µ
[X]
n,k = 2k − Ĝ[X]

(
ρn,k, logp/q p

kn
) (p−ρn,k + q−ρn,k)kn−ρn,k√

2πβ(ρn,k)k

(
1 +O(k−1/2)

)
,

where Ĝ[X](ρ, x) =
∑
j∈Z Γ(ρ+ itj)ĝ

[X](ρ+ itj)e
−2πijx is a non-zero 1-periodic function.

2. If α0 + ε ≤ k
logn ≤ α2 − ε then

µ
[X]
n,k = G[X]

(
ρn,k, logp/q p

kn
) (p−ρn,k + q−ρn,k)kn−ρn,k√

2πβ(ρn,k)k

(
1 +O(k−1/2)

)
,

where G[X](ρ, x) =
∑
j∈Z Γ(ρ+ itj)g

[X](ρ+ itj)e
−2πijx is a non-zero 1-periodic function.

3. If α1 + ε ≤ k
logn ≤ α2 − ε then

µ
[Y ]
n,k = G[Y ]

(
ρn,k, logp/q p

kn
) (p−ρn,k + q−ρn,k)kn−ρn,k√

2πβ(ρn,k)k

(
1 +O(k−1/2)

)
,

where G[Y ](ρ, x) =
∑
j∈Z Γ(ρ+ itj + 1)g[Y ](ρ+ itj)e

−2πijx is a non-zero 1-periodic function.

Proof: By evaluating the integrals (7) and (8) via the saddle point method, the proof is quite identical to
that of Theorem 2 in Park et al. (2009) (Lemma 7.5 in Drmota (2009)) with the new functions ĝ[X](s),
g[X](s) and g[Y ](s). 2

Remark 1 For the sake of the following global picture of a random trie, we only consider the three ranges
of k in Theorem 3.1:

• When 1 ≤ k
logn ≤ α1 − ε, each level is almost full of internal nodes, (In,k ≈ 2k, Xn,k ≈ 2k,

Yn,k ≈ 0); in particular, the variances of profiles, V(In,k), V(Xn,k) and V(Yn,k) tend to zero.

• When α1 + ε ≤ k
logn ≤ α0 − ε, ρn,k = ρ(k/ log n) > 0; and when α0 + ε ≤ k

logn ≤ α2 − ε,
−2 < ρn,k = ρ(k/ log n) < 0. For the second case, V(Xn,k)→∞, V(Yn,k)→∞, and we prove
the asymptotic bivariate normality of Xn,k and Yn,k.

• When k
logn ≥ α2 + ε, then E(In,k) and E(Xn,k) tend to zero.
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Tab. 1: Comparisons of magnitudes for x ∈ (0, 1) (Since α0 ≤ α ≤ α2 then −2 < ρ(α) < 0).

Functions of x p ρ(α)
-0.1 -1 -1.9

Oscillation

0.55 0.68 0.44 2.50 Almost flat
G[Y ](ρ(α), x) 0.75 0.72 0.37 1.91 Non-flat

0.95 0.73 0.15 0.49 Non-flat
0.55 8.90 0.56 2.50 Almost flat

G[X](ρ(α), x) 0.75 8.89 0.63 3.10 Non-flat
0.95 8.85 0.85 4.50 Non-flat
0.55 13.09 1.27 1.00 Almost flat

G[X](ρ(α),x)
G[Y ](ρ(α),x)

0.75 12.35 1.66 1.62 Non-flat
0.95 12.12 5.00 9.10 Non-flat

Fig. 2: The fluctuating part of the functions G[Y ](−1, x) (red curve), G[X](−1, x) (blue curve) and
G[X](−1, x)/G[Y ](−1, x) (green curve), for x ∈ (0, 1) and p = 0.75.

Theorem 3.2 Let αn,k := k
logn . When p→ 1

2

+
, then ρ0(αn,k) := limp→ 1

2
+ ρ(αn,k) =

αn,k
1−αn,k log 2 and

µ
[X]
n,k

µ
[Y ]
n,k

−→


∞, if αn,k → α0

+;
ρ0(αn,k)

(
1+ρ0(αn,k)

)
−8ρ0(αn,k)2ρ0(αn,k)−4

8ρ0(αn,k)2
ρ0(αn,k)−4ρ0(αn,k)−ρ0(αn,k)

(
1+ρ0(αn,k)

) , if α0 < αn,k < α2;

1, if αn,k → α2
−.

Proof: By (4), it is easy to see that ρ0(α) = α
1−α log 2 . Then from Theorem 3.1, as p→ 1

2

+,

µ
[X]
n,k

µ
[Y ]
n,k

=
G[X]

(
ρn,k, logp/q p

kn
)

G[Y ]
(
ρn,k, logp/q p

kn
) −→ Γ

(
ρ0(αn,k)

)
g[X](ρ0(αn,k))

Γ
(
ρ0(αn,k) + 1

)
g[Y ](ρ0(αn,k))

=
g[X]

(
ρ0(αn,k)

)
ρ0(αn,k)g[Y ]

(
ρ0(αn,k)

) .
Substituting g[X]

(
ρ0(αn,k)

)
and g[Y ]

(
ρ0(αn,k)

)
, we obtain the result. 2

Table 1 and Figure 2 give several examples that confirm the claims in Theorem 3.2.
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4 Variances and Covariance

Asymptotic approximations to the variances of Xn,k, Yn,k and their covariance, σ[X]
n,k

2
:= V(Xn,k),

σ
[Y ]
n,k

2
:= V(Yn,k) and γn,k := Cov(Xn,k, Yn,k) respectively, are derived in this section.

Let N [X]
k (x) :=

∑
n≥0 E(X2

n,k)x
n

n! e
−x and N [Y ]

k (x) :=
∑
n≥0 E(Y 2

n,k)x
n

n! e
−x. Now define the Pois-

son variances, V [X]
k (x) := N

[X]
k (x) −M [X]

k

2
(x) and V [Y ]

k (x) := N
[Y ]
k (x) −M [Y ]

k

2
(x). Then from (3)

and similar to (5) and (6), for k ≥ 1, it yields

V
[X]
k (x) =

k∑
j=0

(
k

j

)
V

[X]
0 (x)(pjqk−jx), V

[Y ]
k (x) =

k∑
j=0

(
k

j

)
V

[Y ]
0 (x)(pjqk−jx), (10)

with initial conditions

V
[X]
0 (x) = N

[X]
0 (x)−M [X]

0

2
(x) = M

[X]
0 (x)−M [X]

0

2
(x),

= e−x − e−2x + pxe−px + qxe−qx − 2pxe−x(1+p) − 2qxe−x(1+q) + 2pqx2e−2x

−3pqx2e−x − p2x2e−2px − q2x2e−2qx + 2p2qx3e−x(1+p) + 2pq2x3e−x(1+q) − p2q2x4e−2x,

V
[Y ]
0 (x) = N

[Y ]
0 (x)−M [Y ]

0

2
(x) = M

[Y ]
0 (x)−M [Y ]

0

2
(x),

= pxe−px + qxe−qx + 2px2e−x(1+p) + 2qx2e−x(1+q) + 2p2qx3e−x(1+p) + 2pq2x3e−x(1+q)

−p2x2e−2px − q2x2e−2qx − 2pqx3e−2x − p2q2x4e−2x − 3pqx2e−x − xe−x − x2e−2x.

Consider Īn,k := 2k − In,k. By Section 6.2 in Park et al. (2009), for k ≥ 1,

V
[I]
k (x) =

k∑
j=0

(
k

j

)
V

[I]
0 (x)(pjqk−jx), and V

[I]
0 (x) = (x+ 1)e−x(1− (x+ 1)e−x),

where V [I]
k (x) :=

∑
n≥0 E(Ī2n,k)x

n

n! e
−x −

(∑
n≥0 E(Īn,k)x

n

n! e
−x)2. Hence, by (10) and for k ≥ 1,

2Ck(x) =

k∑
j=0

(
k

j

)(
V

[I]
0 (pjqk−jx)− V [X]

0 (pjqk−jx)− V [Y ]
0 (pjqk−jx)

)
,

= 2

k∑
j=0

(
k

j

)
C0(pjqk−jx), (C0(x) := −M [X]

0 (x)M
[Y ]
0 (x)), (11)

with Ck(x) :=
(
V

[I]
k (x)− V [X]

k (x)− V [Y ]
k (x)

)
/2, i.e. the Poisson covariance with initial condition

C0(x) = −
(
pxe−px + qxe−qx − xe−x − pqx2e−x

)(
1− e−x − pxe−px − qxe−qx + pqx2e−x

)
.
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Thus, for ρ > −2, we have

V
[X]
k (x) =

1

2πi

∫ ρ+i∞

ρ−i∞
Γ(s+ 1)g

[X]
V (s)(p−s + q−s)kx−sds, (12)

V
[Y ]
k (x) =

1

2πi

∫ ρ+i∞

ρ−i∞
Γ(s)g

[Y ]
V (s)(p−s + q−s)kx−sds, (13)

Ck(x) =
1

2πi

∫ ρ+i∞

ρ−i∞
Γ(s)gC(s)(p−s + q−s)kx−sds, (14)

where

g
[X]
V (s) = 1− 2−s + s

(
p−s + q−s − 2p(p+ 1)−s−1 − 2q(q + 1)−s−1

)
−s(s+ 1)

(
2−s−2(p−s + q−s) + 3pq − pq2−s−1

)
+2pqs(s+ 1)(s+ 2)

(
p(p+ 1)−s−3 + q(q + 1)−s−3

)
−s(s+ 1)(s+ 2)(s+ 3)p2q22−s−4,

g
[Y ]
V (s) = p−s + q−s − 1 + (s+ 1)

(
2p(p+ 1)−s−2 + 2q(q + 1)−s−2

)
−(s+ 1)

(
2−s−2(p−s + q−s + 1) + 3pq

)
− (s+ 1)(s+ 2)(s+ 3)p2q22−s−4

+2pq(s+ 1)(s+ 2)
(
p(p+ 1)−s−3 + q(q + 1)−s−3 − 2−s−3

)
,

gC(s) = s
(
p(p+ 1)−s−1 + q(q + 1)−s−1

)
+ s(s+ 1)(s+ 2)(s+ 3)p2q22−s−4

−s(s+ 1)
(
p(p+ 1)−s−2 + q(q + 1)−s−2 − 3pq − 2−s−2(p−s + q−s)

)
−pqs(s+ 1)(s+ 2)

(
2p(p+ 1)−s−3 + 2q(q + 1)−s−3 − 2−s−3

)
+s
(
1− 2−s−1 − p−s − q−s

)
− s(s+ 1)pq2−s−2.

Theorem 4.1 For some ε > 0, if α1 + ε ≤ k
logn ≤ α2 − ε and tj = 2πj/(log p/q) then

σ
[X]
n,k

2
= G

[X]
V

(
ρn,k, logp/q p

kn
) (p−ρn,k + q−ρn,k)kn−ρn,k√

2πβ(ρn,k)k

(
1 +O(k−1/2)

)
,

σ
[Y ]
n,k

2
= G

[Y ]
V

(
ρn,k, logp/q p

kn
) (p−ρn,k + q−ρn,k)kn−ρn,k√

2πβ(ρn,k)k

(
1 +O(k−1/2)

)
,

γn,k = GC

(
ρn,k, logp/q p

kn
) (p−ρn,k + q−ρn,k)kn−ρn,k√

2πβ(ρn,k)k

(
1 +O(k−1/2)

)
,

where ρn,k = ρ(k/ log n) > −2 satisfies the saddle point equation (9) and

G
[X]
V (ρ, x) =

∑
j∈Z

Γ(ρ+ itj)g
[X]
V (ρ+ itj)e

−2πijx,

G
[Y ]
V (ρ, x) =

∑
j∈Z

Γ(ρ+ itj + 1)g
[Y ]
V (ρ+ itj)e

−2πijx,

GC(ρ, x) =
∑
j∈Z

Γ(ρ+ itj)gC(ρ+ itj)e
−2πijx.
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Tab. 2: Comparisons of magnitudes for x ∈ (0, 1) (Since α1 ≤ α ≤ α2 then ρ(α) > −2).

Functions of x p ρ(α)
-1.5 3.5 8.5

Oscillation

0.55 0.53 225 1.22×108 Almost flat

G
[Y ]
V (ρ(α), x) 0.75 0.42 1350 1.58×1010 Non-flat

0.95 0.13 5×105 2.50×1016 Non-flat
0.55 0.51 230 1.23×108 Almost flat

G
[X]
V (ρ(α), x) 0.75 0.79 1350 1.58×1010 Non-flat

0.95 0.85 5×105 2.50×1016 Non-flat
0.55 -0.05 -220 -1.24×108 Almost flat

GC(ρ(α), x) 0.75 -0.15 -1330 -1.50×1010 Non-flat
0.95 -0.74 -5×105 -3.50×1016 Non-flat

Fig. 3: The fluctuating part of the functionsG[Y ]
V (−1.5, x) (red curve),G[X]

V (−1.5, x) (blue curve) andGC(−1.5, x)
(green curve), for x ∈ (0, 1) and p = 0.75.

Proof: By evaluating the integrals (12), (13) and (14) via the saddle point method, the proof is similar to
that of Theorem 3.1 with the new functions g[X]

V (s), g[Y ]
V (s) and gC(s). 2

We give examples in Table 2, that the magnitudes of the periodic functionsG(1)
V (ρ(α), x),G(2)

V (ρ(α), x)
and GC(ρ(α), x) increase when ρ(α) grows; and also their amplitudes decrease as p → 0.5+, and have
oscillation, otherwise. Figure 3 illustrates the oscillation of these functions for ρ(α) = −1.5 and p = 0.75.

5 Limiting Joint Distribution
In this section, for the second range in Theorem 3.1, i.e. α0 + ε ≤ k

logn ≤ α2 − ε (−2 < ρn,k < 0), we
prove the limiting joint distribution ofXn,k and Yn,k is bivariate normal if V(Xn,k)→∞, V(Yn,k)→∞.

Let Fn,k(u,w) := E[uXn,kwYn,k ] denote the joint probability generating function of Xn,k and Yn,k.
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Then

Fn,k(u,w) =

n∑
l=0

(
n

j

)
pjqn−jFj,k−1(u,w)Fn−j,k−1(u,w), (n ≥ 0, k ≥ 1),

with

Fn,0(u,w) =

 u+ n(pqn−1 + pn−1q)(w − u), n ≥ 3;
u+ 2pq(w − u), n = 2,
1, n = 0, 1.

Thus Fk(x, u, w) :=
∑
n≥0 Fn,k(u,w)x

n

n! satisfies the functional equation

Fk(x, u, w) = Fk−1(px, u, w)Fk−1(qx, u, w), (k ≥ 1),

with the initial condition

F0(x, u, w) = ex + (1− u)(1 + x− ex) + (w − u)(pxeqx + qxepx − x− pqx2).

By iterating this functional equation, we obtain

Fk(x, u, w) =
∏

0≤j≤k

F0(pjqk−jx, u, w)(
k
j), (k ≥ 1). (15)

In the proof of Theorem 5.1, we need the following upper bound for the depoissonization procedure.

Proposition 5.1 Uniformly for k ≥ 1, r ≥ 0, |θ| ≤ π, |u| = 1 and |w| = 1

|Fk(reiθ, u, w)| ≤ er−crθ
2

, (16)

for some constant c > 0 independent of k, r and θ.

Proof: In order to prove the above upper bound, we need the following second inequality which is hold
for r ≥ r0 ≈ 2.9183, c1 := 2/(3π2):

(2 + r + pqr2)
(
ec1qrθ

2/2 + 1
)
≤
(

2 + r +
r2

4

)
(er/6 + 1) ≤ er. (17)

For r ≤ r0, we consider the expansion

F0(x, u, w) = 1 + x+
x2

2

(
u− 2pq(u− w)

)
+
∑
j≥3

xj

j!

(
u− j(pqj−1 + pj−1q)(u− w)

)
.

Define δ2 := 2pq and δj := j(pqj−1 + pj−1q), for j ≥ 3. It is easy to see that δj ≤ 0.75, for j ≥ 2 and
0.5 ≤ p ≤ 1. Thus∣∣F0(reiθ, eiϕ, eiψ)

∣∣ ≤ |1 + reiθ|+
∑
j≥2

rj

j!

∣∣(1− δj)eiϕ + δje
iψ
∣∣

≤ |1 + reiθ|+
∑
j≥2

rj

j!

≤ er−c2rθ
2

, (By (76) in Park et al. (2009)), (18)
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uniformly for 1 ≤ r ≤ r0, |θ| ≤ π and c2 := 2/(π2(1 + r0)2er0).
Now suppose r ≥ r0 ≈ 2.9183. We can rewrite F0(x, u, w) as follows:

F0(x, u, w) = ua1(px)a1(qx) + 1− u+ x+ w (xqa2(px) + xpa2(qx)) + wpqx2,

where a1(x) := ex − x and a2(x) := ex − 1− x. By (17) and applying Lemma 6 in Park et al. (2009),∣∣F0(reiθ, eiϕ, eiψ)
∣∣ ≤ a1(pr)a1(qr)e−c1rθ

2/2 + qra2(pr)e−c1prθ
2

+ pra2(qr)e−c1qrθ
2

+ 2 + r + pqr2

≤ (er + 2)e−c1qrθ
2

+ (2 + r + pqr2)
(

1− e−c1qrθ
2
)

≤ er−c1qrθ
2/2, (By (17)). (19)

Collecting the two inequalities (18) and (19), we obtain∣∣F0(reiθ, eiϕ, eiψ)
∣∣ ≤ er−crθ2 , (c := min{c1q/2, c2}),

uniformly for r ≥ 0, |θ| ≤ π. This implies (16) by (15). 2

Now, we prove the following lemma that is needed for the proof of Proposition 5.2.

Lemma 5.1 The function Qk(reiθ, u, w) is well-defined for r ≥ 0, |θ| ≤ ε, |u| = 1 and |w| = 1.

Proof: We first show that

A :=
∣∣1− (1− eiϕ)

(
1− a3(r)− a4(r)

)
− (1− eiψ)a4(r)

∣∣ > 0,

for r ≥ 0, |θ| ≤ ε, |u| = 1 and |w| = 1. By direct calculation, we have

A2 = 1 + va3(r)2 + za4(r)2 + (v + z − t)a3(r)a4(r)− va3(r)− za4(r)

≥ 1 + va3(r)2 + za4(r)2 − ta3(r)a4(r)− va3(r)− za4(r),

where v := 2(1− cosϕ), t := 2(1− cosψ) and z := 2(1− cos(ϕ− ψ)). Since

a4(r) ≤ sup
r≥0

0.5≤p≤1

a4(r) ≤ sup
r≥0

(
pre−pr + qre−qr − re−r

∣∣
p= 1

2

)
= sup

r≥0
re−r(er/2 − 1) ≈ 0.52069,

we have

A2 ≥ inf
r≥0

0.5≤p≤1
0≤v,t,z≤2

A2 ≥ inf
r≥0

0.5≤p≤1

(
1 + va3(r)2 + za4(r)2 − ta3(r)a4(r)− va3(r)− za4(r)

∣∣∣
v=z=2
t=0

)

= inf
r≥0

0.5≤p≤1

(
1 + 2a3(r)2 + 2a4(r)2 − 2a3(r)− 2a4(r)

)
= 1 + 2a3(r)2 + 2a4(r)2 − 2(a3(r) + a4(r))

∣∣∣ a3(r)=1
a4(r)=0.52069

≈ 0.50085 > 0.
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This proves the lemma when x = r; the assertion of the lemma follows from analyticity. 2

By the same arguments in proofs of Lemma 4 and Theorem 7 in Park et al. (2009), if −2 < ρ < 0 or
α0 ≤ k

logn ≤ α2, then for l = 0, 1, 2, . . ., we have the following estimates:

dl

dzl
M

[X]
k (z)

∣∣∣∣
z=neiθ

= O
(
n−lM

[X]
k (n)

)
,

dl

dzl
M

[Y ]
k (z)

∣∣∣∣
z=neiθ

= O
(
n−lM

[Y ]
k (n)

)
,

dl

dzl
V

[X]
k (z)

∣∣∣∣
z=neiθ

= O
(
n−lV

[X]
k (n)

)
,

dl

dzl
V

[Y ]
k (z)

∣∣∣∣
z=neiθ

= O
(
n−lV

[Y ]
k (n)

)
,

dl

dzl
Ck(z)

∣∣∣∣
z=neiθ

= O
(
n−lCk(n)

)
, σ

[X]
n,k

2
= Θ

(
µ
[X]
n,k

)
, σ

[Y ]
n,k

2
= Θ

(
µ
[Y ]
n,k

)
,

γn,k = Θ
(
σ
[X]
n,k

2
+ σ

[Y ]
n,k

2)
, γn,k ∼ Ck(n)− nM [X]

k

′
(n)M

[Y ]
k

′
(n)

σ
[X]
n,k ∼ V

[X]
k (n)− nM [X]

k

′
(n)

2

, σ
[Y ]
n,k ∼ V

[Y ]
k (n)− nM [Y ]

k

′
(n)

2

. (20)

Proposition 5.2 Assume that µ[X]
n,k → ∞ and µ

[Y ]
n,k → ∞. Then uniformly for |θ| ≤ θ0 := n−2/5,

ϕ = o(σ
[Y ]
n,k

−2/3
) and ψ = o(σ

[Y ]
n,k

−2/3
)

Fk(neiθ, eiϕ, eiψ) = exp

(
n− n

2
θ2 +M

[X]
k (n)iϕ+M

[Y ]
k (n)iψ − nM [X]

k

′
(n)θϕ− nM [Y ]

k

′
(n)θψ

−1

2
V

[X]
k (n)ϕ2 − 1

2
V

[Y ]
k (n)ψ2 − Ck(n)ϕψ +O(E)

)
, (21)

where

E := n|θ|3 + σ
[X]
n,k

2
|ϕ|θ2 + σ

[Y ]
n,k

2
θ2|ψ|+ σ

[X]
n,k

2
|θ|ϕ2 + σ

[Y ]
n,k

2
|θ|ψ2

+γn,k|θϕψ|+ σ
[Y ]
n,k

2
|ψ3 + ψϕ2 + ϕψ2|+ σ

[X]
n,k

2
|ϕ|3.

Proof: Define

Q(x, u, w) := log
(
e−xF0(x, u, w)

)
= log

(
1− (1− u)

(
1− a3(x)− a4(x)

)
− (1− w)a4(x)

)
,

where a3(x) := e−x(1 + x) and a4(x) := pxe−px + qxe−qx − xe−x − pqx2e−x. Let

Qk(x, u, w) :=

k∑
j=0

(
k

j

)
Q(pjqk−jx, u, w) = log

(
e−xFk(x, u, w)

)
.

First, we prove in Lemma 5.1 of Appendix that F0(reiθ, eiϕ, eiψ) is away from zero for r ≥ 0 and |θ| ≤ ε,
implying that Qk(x, u, w) is well-defined when | arg(x)| ≤ ε.
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We start from the expansion

Q(x, u, w) =

{ (
( 1
2 − pq)(1− u) + pq(1− w)

)
x2 +O

(
|2− u− w||x|3

)
, as x→ 0;

(1− u)
(
1 +O(|x|e−q<(x))

)
, as x→∞, | arg(x)| ≤ ε.

By the above expansion, we have

Qk(x, u, w) =
1

2πi

∫ ρ+i∞

ρ−i∞
x−sQ∗(s, u, w)(p−s + q−s)kds,

where −2 < ρ < 0 and Q∗(s, u, w) :=
∫∞
0
xs−1Q(x, u, w)dx is defined for −2 < <(s) < 0. Note that

Q(x, u, w) = (1− u)
(
1− a3(x)− a4(x)

)
+ (1− w)a4(x)− 1

2

(
(1− u)2

(
1− a3(x)− a4(x)

)2
+2(1− u)(1− w)

(
1− a3(x)− a4(x)

)
a4(x) + (1− w)2a4(x)2

)
+Q̂(x, u, w)(1− u)3 + Q̃(x, u, w)(1− u)2(1− w)

+Q̆(x, u, w)(1− u)(1− w)2 + Q̄(x, u, w)(1− w)3,

where the exact forms of Q̂, Q̃, Q̆ and Q̄ can be obtained by Taylor’s reminder formula and are of less
important here. We need instead the estimates (the assumptions in Lemma 8 in Park et al. (2009))

O(Q̂(x, u, w)) = O(Q̆(x, u, w)) = O(Q̃(x, u, w)) = O(Q̄(x, u, w)) = O
(
|x|6
)

= O
(
|x|2
)
,

as x→ 0 and

Q̃(x, u, w) = O(|x|e−q<(x)),
Q̆(x, u, w) = O(|x|2e−2q<(x)) = O(|x|e−q<(x)),
Q̄(x, u, w) = O(|x|3e−3q<(x)) = O(|x|e−q<(x)),
Q̂(x, u, w) = 1 +O(|x|e−q<(x)), (22)

as x→∞ in the sector {x : | arg(x)| ≤ ε}. By (5), (6), (10) and (11), this expansion gives

Qk(x, u, w) = (1− u)M
[X]
k (x) + (1− w)M

[Y ]
k (x) +

1

2
(1− u)2

(
V

[X]
k (x)−M [X]

k (x)
)

+
1

2
(1− w)2

(
V

[Y ]
k (x)−M [Y ]

k (x)
)

+ (1− u)(1− w)Ck(x)

+(1− u)3Q̂k(x, u, w) + (1− u)2(1− w)Q̃k(x, u, w)

+(1− u)(1− w)2Q̆k(x, u, w) + (1− w)3Q̄k(x, u, w),

where Q̃, Q̆ and Q̄ satisfy in (6); and Q̂ satisfy in (5).
Applying Lemma 8 in Park et al. (2009) and expansions in (22), we have Q̃k(x, u, w) = Θ(M

[Y ]
k (x)),

Q̆k(x, u, w) = Θ(M
[Y ]
k (x)) and Q̄k(x, u, w) = Θ(M

[Y ]
k (x)); and similarly Q̂k(x, u, w) = Θ(M

[X]
k (x)).
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These estimates yield, with x = neiθ,

Qk(x, u, w) = (1− u)M
[X]
k (x) + (1− w)M

[Y ]
k (x) +

1

2
(1− u)2

(
V

[X]
k (x)−M [X]

k (x)
)

+
1

2
(1− w)2

(
V

[Y ]
k (x)−M [Y ]

k (x)
)

+ (1− u)(1− w)Ck(x)

+O
(∣∣1− u∣∣3∣∣M [X]

k (neiθ)
∣∣)+O

(∣∣(2− u− w)3 − (1− u)3
∣∣∣∣M [Y ]

k (neiθ)
∣∣),

where theO-term holds uniformly for |θ| ≤ ε and |1−u| = o(1) and |(2−u−w)3−(1−u)3| = o(1). Since
µ
[X]
n,k → ∞ and µ[Y ]

n,k → ∞, this leads to (21) by expansions of M [X]
k (neiθ), M [Y ]

k (neiθ), V [X]
k (neiθ),

V
[Y ]
k (neiθ) and Ck(neiθ) at θ = 0, using the estimates in (20). 2

Theorem 5.1 For α0 + ε ≤ k
logn ≤ α2 − ε, if σ[X]

n,k

2
→∞ and σ[Y ]

n,k

2
→∞ then

P

(
Xn,k − µ[X]

n,k

σ
[X]
n,k

≤ x,
Yn,k − µ[Y ]

n,k

σ
[Y ]
n,k

≤ y

)
= Φ(x, y; ρn,k) + o(1),

where ρn,k := γn,k/σ
[X]
n,kσ

[Y ]
n,k and Φ(x, y; ρ) denotes the cumulative distribution function of bivariate

standard normal distribution with correlation parameter ρ.

Proof: Recall that θ0 := n−2/5. By Cauchy’s integral formula, (16) and (21), we have

E
(
eXn,kiϕ+Yn,kiψ

)
=

n!

2πi

∫
|x|=n

x−n−1Fk(x, eiϕ, eiψ)dx

=
n!n−n

2π

∫
|θ|≤θ0

x−n−1Fk(neiθ, eiϕ, eiψ)dθ +O
(
n−1/10e−cn

1/5
)

=
n!n−n

2π
en+M

[X]
k (n)iϕ+M

[Y ]
k (n)iψ− 1

2V
[X]
k (n)ϕ2− 1

2V
[Y ]
k (n)ψ2−Ck(n)ϕψ

×
∫ θ0

−θ0
e−

n
2 θ

2−nM [X]
k

′
(n)θϕ−nM [Y ]

k

′
(n)θψ

(
1 +O(E)

)
dθ +O

(
n−1/10e−cn

1/5
)
,

since E → 0 in the range of integration and when ϕ = o(σ
[X]
n,k

−4/5
) and ψ = o(σ

[Y ]
n,k

−4/5
). Applying

Stirling’s formula, extending the integration limits to ±∞ and making the change of variables θ 7→
θn−1/2, uniformly in ϕ and ψ, we obtain

E
(
eXn,kiϕ+Yn,kiψ

)
=

1√
2π
eM

[X]
k (n)iϕ+M

[Y ]
k (n)iψ−ϕ

2

2

(
V

[X]
k (n)−nM [X]

k

′
(n)

2
)
−ψ

2

2

(
V

[Y ]
k (n)−nM [Y ]

k

′
(n)

2
)

×e−ϕψ
(
Ck(n)−nM [X]

k

′
(n)M

[Y ]
k

′
(n)
)
×
∫ ∞
−∞

e−
(
θ+
√
nM

[X]
k

′
(n)ϕ+

√
nM

[Y ]
k

′
(n)ψ

)2
/2

×
(

1 +O
(

1 + |θ|3√
n

+
θ2

n

(
σ
[X]
n,k

2
|ϕ|+ σ

[Y ]
n,k

2
|ψ|
)

+
|θ|√
n

(
σ
[X]
n,k

2
ϕ2 + σ

[Y ]
n,k

2
ψ2

+ γn,k|ϕψ|
)

+ σ
[Y ]
n,k

2
|ψ3 + ψϕ2 + ϕψ2|+ σ

[X]
n,k

2
|ϕ|3

))
dθ,
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−→ exp
(
µ
[X]
n,kiϕ+ µ

[Y ]
n,kiψ −

ϕ2

2
σ
[X]
n,k

2
− ψ2

2
σ
[Y ]
n,k

2
− ϕψγn,k

)
×
(

1 +O
(
σ
[Y ]
n,k

2
|ψ3 + ψϕ2 + ϕψ2|+ σ

[X]
n,k

2
|ϕ|3

))
, (by (20)),

which implies the result by Lévy’s continuity theorem. 2

6 Main Results for Symmetric Tries
When p = q = 1/2, the major difference is reflected by the fact that α1 = α2, so that the saddle point
range between α1 and α2 does not exist, and most analysis we give above becomes much simpler. For
simplicity of presentation, we omit all error terms in our asymptotic estimates

Asymptotics of the expectations. From (5), we have

M
[X]
k (x) = 2k − 2ke−x/2

k

− xe−x/2
k+1

+ 2−k−2x2e−x/2
k

, (k ≥ 0).

By this and de-Poissonization procedures (Proposition 1 and Lemma 4 in Park et al. (2009)), we deduce

E(Xn,k) ∼
{

2k − n(1− 2−k−1)n−1, if 2−kn→∞;
M

[X]
k (n), if 4−kn→ 0.

In particular,

E(Xn,k) ∼
{

2k(1 + 2−2t2e−t − e−t − te−t/2), if 2−kn→ t ∈ (0,∞);
2−k−2n2, if 2−kn→ 0.

In a similar manner, we have, by (6),

M
[Y ]
k (x) = xe−x/2

k+1

− xe−x/2
k

− 2−k−2x2e−x/2
k

, (k ≥ 0).

Therefore, we have

E(Yn,k) ∼
{
n(1− 2−k−1)n−1, if 2−kn→∞;
M

[Y ]
k (n), if 4−kn→ 0.

This implies that

E(Yn,k) ∼
{
n(e−t/2 − e−t − 2−2te−t), if 2−kn→ t ∈ (0,∞);
2−k−2n2, if 2−kn→ 0.

Asymptotics of the variances. Similarly, by (10), we have

V
[X]
k (x) = 2k − 2ke−x/2

k

− xe−x/2
k+1

+ 2−k−2x2e−x/2
k

− 2k
(
1− e−x/2

k

− 2−kxe−x/2
k+1

+ 2−2k−2x2e−x/2
k)2

,

V
[Y ]
k (x) = xe−x/2

k+1

− xe−x/2
k

− 2−k−2x2e−x/2
k

− 2−k
(
xe−x/2

k+1

− xe−x/2
k

− 2−k−2x2e−x/2
k)2

,
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and, if n/2k →∞, then

V(Xn,k) ∼ V(Yn,k) ∼ E(Yn,k) ∼ n(1− 2−k−1)n−1;

and if n/4k → 0, then

V(Xn,k) ∼ V [X]
k (x), and V(Yn,k) ∼ V [Y ]

k (x),

uniformly in k. These approximations imply that

V(Xn,k) ∼
{

2k(1− e−t − te−t/2 + 2−2t2e−t)(e−t + te−t/2 − 2−2t2e−t), if 2−kn→ t ∈ (0,∞);
2−k−2n2, if 2−kn→ 0.

and

V(Yn,k) ∼
{
n
(
e−t/2 − e−t − 2−2te−t

)(
1− t(e−t/2 − e−t − 2−2te−t)

)
, if 2−kn→ t ∈ (0,∞);

2−k−2n2, if 2−kn→ 0.

Limiting joint distribution Theorem 5.1 holds when p = q = 1/2 by the same method of proof. Note
that the trivariate generating function becomes simpler (see (15))

Fk(x, u, w) =

(
ex/2

k

+ (1− u)
(

1 +
x

2k
− ex/2

k
)

+ (w − u)
( x

2k
ex/2

k

+
x

2k
ex/2

k

− x

2k
− x2

4k+1

))2k

.
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