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HAMILTON-JACOBI EQUATIONS FOR OPTIMAL CONTROL ON

NETWORKS WITH ENTRY OR EXIT COSTS

Manh Khang Dao*

Abstract. We consider an optimal control on networks in the spirit of the works of Achdou et al.
[NoDEA Nonlinear Differ. Equ. Appl. 20 (2013) 413–445] and Imbert et al. [ESAIM: COCV 19 (2013)
129–166]. The main new feature is that there are entry (or exit) costs at the edges of the network leading
to a possible discontinuous value function. We characterize the value function as the unique viscosity
solution of a new Hamilton-Jacobi system. The uniqueness is a consequence of a comparison principle
for which we give two different proofs, one with arguments from the theory of optimal control inspired
by Achdou et al. [ESAIM: COCV 21 (2015) 876–899] and one based on partial differential equations
techniques inspired by a recent work of Lions and Souganidis [Atti Accad. Naz. Lincei Rend. Lincei
Mat. Appl. 27 (2016) 535–545].
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1. Introduction

A network (or a graph) is a set of items, referred to as vertices or nodes, which are connected by edges (see
Fig. 1 for example). Recently, several research projects have been devoted to dynamical systems and differential
equations on networks, in general or more particularly in connection with problems of data transmission or
traffic management (see for example Garavello and Piccoli [14] and Engel et al. [12]).

An optimal control problem is an optimization problem where an agent tries to minimize a cost which depends
on the solution of a controlled ordinary differential equation (ODE). The ODE is controlled in the sense that it
depends on a function called the control. The goal is to find the best control in order to minimize the given cost.
In many situations, the optimal value of the problem as a function of the initial state (and possibly of the initial
time when the horizon of the problem is finite) is a viscosity solution of a Hamilton-Jacobi-Bellman partial
differential equation (HJB equation). Under appropriate conditions, the HJB equation has a unique viscosity
solution characterizing by this way the value function. Moreover, the optimal control may be recovered from
the solution of the HJB equation, at least if the latter is smooth enough.

The first articles about optimal control problems in which the set of admissible states is a network (therefore
the state variable is a continuous one) appeared in 2012: in [2], Achdou et al. derived the HJB equation
associated to an infinite horizon optimal control on a network and proposed a suitable notion of viscosity solution.
Obviously, the main difficulties arise at the vertices where the network does not have a regular differential
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structure. As a result, the new admissible test-functions whose restriction to each edge is C1 are applied.
Independently and at the same time, Imbert et al. [17] proposed an equivalent notion of viscosity solution for
studying a Hamilton-Jacobi approach to junction problems and traffic flows. Both [2] and [17] contain first
results on comparison principles which were improved later. It is also worth mentioning the work by Schieborn
and Camilli [22], in which the authors focus on eikonal equations on networks and on a less general notion
of viscosity solution. In the particular case of eikonal equations, Camilli and Marchi established in [10] the
equivalence between the definitions given in [2, 17, 22].

Since 2012, several proofs of comparison principles for HJB equations on networks, giving uniqueness of the
solution, have been proposed.

1. In [3], Achdou et al. give a proof of a comparison principle for a stationary HJB equation arising from an
optimal control with infinite horizon (therefore the Hamiltonian is convex) by mixing arguments from the
theory of optimal control and PDE techniques. Such a proof was much inspired by works of Barles et al.
[6, 7], on regional optimal control problems in Rd (with discontinuous dynamics and costs).

2. A different and more general proof, using only arguments from the theory of PDEs was obtained by
Imbert and Monneau in [16]. The proof works for quasi-convex Hamiltonians, and for stationary and
time-dependent HJB equations. It relies on the construction of suitable vertex test functions.

3. A very simple and elegant proof, working for non convex Hamiltonians, has been very recently given by
Lions and Souganidis [19, 20].

The goal of this paper is to consider an optimal control problem on a network in which there are entry (or
exit) costs at each edge of the network and to study the related HJB equations. The effect of the entry/exit
costs is to make the value function of the problem discontinuous. Discontinuous solutions of Hamilton-Jacobi
equation have been studied by various authors, see for example Barles [4], Frankowska and Mazzola [13], and
in particular Graber et al. [15] for different HJB equations on networks with discontinuous solutions.

To simplify the problem, we will first study the case of junction, i.e., a network of the form G = ∪Ni=1Γi
with N edges Γi (Γi is the closed half line R+ei) and only one vertex O, where {O} = ∩Ni=1Γi. Later, we will
generalize our analysis to networks with an arbitrary number of vertices. In the case of the junction described
above, our assumptions about the dynamics and the running costs are similar to those made in [3], except that
additional costs ci for entering the edge Γi at O or di for exiting Γi at O are added in the cost functional.
Accordingly, the value function is continuous on G\ {O}, but is in general discontinuous at the vertex O. Hence,
instead of considering the value function v, we split it into the collection (vi)1≤i≤N , where vi is continuous
function defined on the edge Γi. More precisely,

vi (x) =

{
v (x) if x ∈ Γi\ {O} ,
limδ→0+ v (δei) if x = O.

Our approach is therefore reminiscent of optimal switching problems (impulsional control): in the present case
the switches can only occur at the vertex O. Note that our assumptions will ensure that v|Γi\{O} is Lipschitz
continuous near O and that limδ→0+ v (δei) does exist. In the case of entry costs for example, our first main
result will be to find the relation between v (O), vi (O) and vj (O) + cj for i, j = 1, N .

This will show that the functions (vi)1≤i≤N are (suitably defined) viscosity solutions of the following system

λui (x) +Hi

(
x,

dui
dxi

(x)

)
= 0 if x ∈ Γi\ {O} ,

λui (O) + max

{
−λmin

j 6=i
{uj (O) + cj} , H+

i

(
O,

dui
dxi

(O)

)
, HT

O

}
= 0 if x = O. (1.1)
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Figure 1. The network G (N = 5).

Here Hi is the Hamiltonian corresponding to edge Γi. At vertex O, the definition of the Hamiltonian has to be
particular, in order to consider all the possibilities when x is close to O. More specifically, if x is close to O and
belongs to Γi then:

• The term minj 6=i {uj (O) + cj} accounts for situations in which the trajectory enters Γi0 where ui0 (O) +
ci0 = minj 6=i {uj (O) + cj}.

• The term H+
i

(
O,

dui
dxi

(O)

)
accounts for situations in which the trajectory does not leave Γi.

• The term HT
O accounts for situations in which the trajectory stays at O.

The most important part of the paper will be devoted to two different proofs of a comparison principle
leading to the well-poseness of (1.1): the first one uses arguments from optimal control theory coming from
Barles et al. [6, 7] and Achdou et al. [3]; the second one is inspired by Lions and Souganidis [19] and uses
arguments from the theory of PDEs.

The paper is organized as follows: Section 2 deals with the optimal control problems with entry and exit costs:
we give a simple example in which the value function is discontinuous at the vertex O, and also prove results
on the structure of the value function near O. In Section 3, the new system of (1.1) is defined and a suitable
notion of viscosity solutions is proposed. In Section 4, we prove our value functions are viscosity solutions of the
above mentioned system. In Section 5, some properties of viscosity sub and super-solution are given and used
to obtain the comparison principle. Finally, optimal control problems with entry costs which may be zero and
related HJB equations are considered in Section 6.
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2. Optimal control problem on junction with entry/exit costs

2.1. The geometry

We consider the model case of the junction in Rd with N semi-infinite straight edges, N > 1. The edges are
denoted by (Γi)i=1,N where Γi is the closed half-line R+ei. The vectors ei are two by two distinct unit vectors

in Rd. The half-lines Γi are glued at the vertex O to form the junction G

G =

N⋃
i=1

Γi.

The geodetic distance d (x, y) between two points x, y of G is

d (x, y) =

{
|x− y| if x, y belong to the same egde Γi,

|x|+ |y| if x, y belong to different edges Γi and Γj .

2.2. The optimal control problem

We consider infinite horizon optimal control problems which have different dynamic and running costs for
each and every edge. For i = 1, N ,

• the set of control on Γi is denoted by Ai
• the system is driven by a dynamics fi
• there is a running cost `i.

Our main assumptions, referred to as [H] hereafter, are as follows:

[H0] (Control sets) Let A be a metric space (one can take A = Rd). For i = 1, N , Ai is a nonempty compact
subset of A and the sets Ai are disjoint.

[H1] (Dynamics) For i = 1, N , the function fi : Γi × Ai → R is continuous and bounded by M . Moreover,
there exists L > 0 such that

|fi (x, a)− fi (y, a)| ≤ L |x− y| for all x, y ∈ Γi, a ∈ Ai.

Hereafter, we will use the notation Fi (x) for the set {fi (x, a) ei : a ∈ Ai}.
[H2] (Running costs) For i = 1, N , the function `i : Γi×Ai → R is a continuous function bounded by M > 0.

There exists a modulus of continuity ω such that

|`i (x, a)− `i (y, a)| ≤ ω (|x− y|) for all x, y ∈ Γi, a ∈ Ai.

[H3] (Convexity of dynamic and costs) For x ∈ Γi, the following set

FLi (x) = {(fi (x, a) ei, `i (x, a)) : a ∈ Ai}

is non-empty, closed and convex.
[H4] (Strong controllability) There exists a real number δ > 0 such that

[−δei, δei] ⊂ Fi (O) = {fi (O, a) ei : a ∈ Ai} .

Remark 2.1. The assumption that the sets Ai are disjoint is not restrictive. Indeed, if Ai are not disjoint, then
we define Ãi = Ai × {i} and f̃i (x, ã) = fi (x, a) , ˜̀

i (x, ã) = `i (x, a) with ã = (a, i) with a ∈ Ai. The assumption
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[H3] is made to avoid the use of relaxed control. With assumption [H4], one gets that the Hamiltonian which will
appear later is coercive for x close to the O. Moreover, [H4] is an important assumption to prove Lemmas 2.7
and 5.3.

Let

M =
{

(x, a) : x ∈ G, a ∈ Ai if x ∈ Γi\ {O} , and a ∈ ∪Ni=1Ai if x = O
}
.

Then M is closed. We also define the function on M by

for all (x, a) ∈M, f (x, a) =

{
fi (x, a) ei if x ∈ Γi\ {O} and a ∈ Ai,
fi (O, a) ei if x = O and a ∈ Ai.

The function f is continuous on M since the sets Ai are disjoint.

Definition 2.2 (The speed set and the admissible control set). The set F̃ (x) which contains all the “possible
speeds” at x is defined by

F̃ (x) =

{
Fi (x) if x ∈ Γi\ (O) ,⋃N
i=1 Fi (O) if x = O.

For x ∈ G, the set of admissible trajectories starting from x is

Yx =

{
yx ∈ Lip

(
R+;G

)
:

{
ẏx (t) ∈ F̃ (yx (t)) for a.e. t > 0

yx (0) = x

}
.

According to Theorem 1.2 from [3], a solution yx can be associated with several control laws. We introduce
the set of admissible controlled trajectories starting from x

Tx =

{
(yx, α) ∈ L∞loc

(
R+;M

)
: yx ∈ Lip

(
R+;G

)
and yx (t) = x+

∫ t

0

f (yx (s) , α (s)) ds

}
.

Notice that, if (yx, α) ∈ Tx then yx ∈ Yx. Hereafter, we will denote yx by yx,α if (yx, α) ∈ Tx. For any
yx,α, we can define the closed set TO = {t ∈ R+ : yx,α (t) = O} and the open set Ti in R+ = [0,+∞) by
Ti = {t ∈ R+ : yx,α (t) ∈ Γi\ {O}}. The set Ti is a countable union of disjoint open intervals

Ti =
⋃

k∈Ki⊂N
Tik =

{
[0, ηi0) ∪

⋃
k∈Ki⊂N? (tik, ηik) if x ∈ Γi\ {O} ,⋃

k∈Ki⊂N? (tik, ηik) if x /∈ Γi\ {O} ,

where Ki = 1, n if the trajectory yx,α enters Γi n times and Ki = N if the trajectory yx,α enters Γi infinite
times.

Remark 2.3. From the above definition, one can see that tik is an entry time in Γi\ {O} and ηik is an exit
time from Γi\ {O} . Hence

yx,α (tik) = yx,α (ηik) = O.

Let C = {c1, c2, . . . , cN} be a set of entry costs and D = {d1, d2, . . . , dN} be a set of exit costs. We
underline that, except in Section 6, entry and exist costs are positive.
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In the sequel, we define two different cost functionals (the first one corresponds to the case when there is
a cost for entering the edges and the second one corresponds to the case when there is a cost for exiting the
edges):

Definition 2.4 (The cost functionals and value functions with entry/exit costs). The costs associated
to trajectory (yx,α, α) ∈ Tx are defined by

J (x; (yx,α, α)) =

∫ +∞

0

` (yx,α (t) , α (t)) e−λtdt+

N∑
i=1

∑
k∈Ki

cie
−λtik (cost functional with entry cost),

and

Ĵ (x; (yx,α, α)) =

∫ +∞

0

` (yx,α (t) , α (t)) e−λtdt+

N∑
i=1

∑
k∈Ki

die
−ληik (cost functional with exit cost),

where the running cost ` :M→ R is

` (x, a) =

{
`i (x, a) if x ∈ Γi\ {O} and a ∈ Ai,
`i (O, a) if x = 0 and a ∈ Ai.

Hereafter, to simplify the notation, we will use J (x, α) and Ĵ (x, α) instead of J (x; (yx,α, α)) and Ĵ (x; (yx,α, α)),
respectively.

The value functions of the infinite horizon optimal control problem are defined by:

v (x) = inf
(yx,α,α)∈Tx

J (x; (yx,α, α)) (value function with entry cost),

and

v̂ (x) = inf
(yx,α,α)∈Tx

Ĵ (x; (yx,α, α)) (value function with exit cost).

Remark 2.5. By the definition of the value function, we are mainly interested in a control law α such that
J (x, α) < +∞. In such a case, if |Ki| = +∞, then we can order {tik, ηik : k ∈ N} such that

ti1 < ηi1 < ti2 < ηi2 < · · · < tik < ηik < · · · ,

and

lim
k→∞

tik = lim
k→∞

ηik = +∞.

Indeed, assuming if limk→∞ tik = t < +∞, then

J (x, α) ≥ −M
λ

+
+∞∑
k=1

e−λtikci = −M
λ

+ ci

+∞∑
k=1

e−λtik = +∞,

in contradiction with J (x, α) < +∞. This means that the state cannot switch edges infinitely many times in
finite time, otherwise the cost functional is obviously infinite.
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The following example shows that the value function with entry costs is possibly discontinuous (the same
holds for the value function with exit costs).

Example 2.6. Consider the network G = Γ1 ∪ Γ2 where Γ1 = R+e1 = (−∞, 0] and Γ2 = R+e2 = [0,+∞). The
control sets are Ai = [−1, 1]× {i} with i ∈ {1, 2}. Set

(f (x, a) , ` (x, a)) =

{
(fi (x, (ai, i)) ei, `i (x, (ai, i))) if x ∈ Γi\ {O} and a = (ai, i) ∈ Ai,
(fi (O, (ai, i)) ei, `i (O, (ai, i))) if x = O and a = (ai, i) ∈ Ai,

where fi (x, (ai, i)) = ai and `1 ≡ 1, `2 (x, (a2, 2)) = 1 − a2. For x ∈ Γ2\ {O}, then v (x) = v2 (x) =
0 with optimal strategy consists in choosing α (t) ≡ (1, 2). For x ∈ Γ1, we can check that v (x) =

min

{
1

λ
,

1− e−λ|x|

λ
+ c2e

−λ|x|
}

. More precisely, for all x ∈ Γ1, we have

v (x) =


1

λ
if c2 ≥

1

λ
, with the optimal control α (t) ≡ (−1, 1),

1− e−λ|x|

λ
+ c2e

−λ|x| if c2 <
1

λ
, with the optimal control α (t) =

{
(1, 1) if t ≤ |x| ,
(1, 2) if t ≥ |x| .

Summarizing, we have the two following cases

1. If c2 ≥
1

λ
, then

v (x) =

0 if x ∈ Γ2\ {O} ,
1

λ
if x ∈ Γ1.

The graph of the value function with entry costs c2 ≥
1

λ
= 1 is plotted in Figure 2a.

2. If c2 <
1

λ
, then

v (x) =

0 if x ∈ Γ2\ {O} ,
1− e−λ|x|

λ
+ c2e

−λ|x| if x ∈ Γ1.

The graph of the value function with entry costs c2 =
1

2
< 1 =

1

λ
is plotted in Figure 2b.

Lemma 2.7. Under assumptions [H1] and [H4], there exist two positive numbers r0 and C such that for all
x1, x2 ∈ B (O, r0)∩G, there exists

(
yx1,αx1,x2

, αx1,x2

)
∈ Tx1

and τx1,x2
≤ Cd (x1, x2) such that yx1

(τx1,x2
) = x2.

Proof of Lemma 2.7. This proof is classical. It is sufficient to consider the case when x1 and x2 belong to
same edge Γi, since in the other cases, we will use O as a connecting point between x1 and x2. According to
Assumption [H4], there exists a ∈ Ai such that fi (O, a) = δ. Additionally, by the Lipschitz continuity of fi,

|fi (O, a)− fi (x, a)| ≤ L |x| ,

hence, if we choose r0 :=
δ

2L
> 0, then fi (x, a) ≥ δ

2
for all x ∈ B (O, r0) ∩ Γi. Let x1, x2 be in B (O, r0) ∩ Γi

with |x1| < |x2|: there exist a control law α and τx1,x2
> 0 such that α (t) = a if 0 ≤ t ≤ τx1,x2

and
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Figure 2. An example of value function with entry cost.

yx1,α (τx1,x2
) = x2. Moreover, since the velocity fi (yx1,α (t) , α (t)) is always greater than

δ

2
when t ≤ τx1,x2

, then

τx1,x2
≤ 2

δ
d (x1, x2) . If |x1| > |x2|, the proof is achieved by replacing a ∈ Ai by a ∈ Ai such that fi (O, a) = −δ

and applying the same argument as above.

2.3. Some properties of value function at the vertex

Lemma 2.8. Under assumption [H], v|Γi\{O} and v̂|Γi\{O} are continuous for any i = 1, N . Moreover, there
exists ε > 0 such that v|Γi\{O} and v̂|Γi\{O} are Lipschitz continuous in (Γi\ {O})∩B (O, ε). Hence, it is possible
to extend v|Γi\{O} and v̂|Γi\{O} at O into Lipschitz continuous functions in Γi ∩ B (O, ε). Hereafter, vi and v̂i
denote these extensions.

Proof of Lemma 2.8. The proof of continuity inside the edge is classical by using [H4], see [1] for more details.
The proof of Lipschitz continuity is a consequence of Lemma 2.7. Indeed, for x, y belong to Γi ∩ B (0, ε), by
Lemma 2.7 and the definition of value function, we have

v (x)− v (z) = vi (x)− vi (z) ≤
∫ τx,z

0

`i
(
yx,αx,z (t) , αx,z (t)

)
e−λtdt+ vi (z)

(
e−λτx,z − 1

)
.

Since `i is bounded by M (by [H2]), vi is bounded in Γi ∩ B (O, ε) and e−λτx,z − 1 is bounded by τx,y, there
exists a constant C such that

vi (x)− vi (z) ≤ Cτx,z ≤ CC |x− z| .

The last inequality follows from the Lemma 2.7. The inequality vi (z) − vi (x) ≤ CC |x− z| is obtained in a
similar way. The proof is done.
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Let us define the tangential Hamiltonian HT
O at vertex O by

HT
O = max

i=1,N
max
ai∈AOi

{−`j (O, aj)} = − min
i=1,N

min
ai∈AOi

{`j (O, aj)}, (2.1)

where AOi = {ai ∈ Ai : fi (O, ai) = 0} . The relationship between the values v(O), vi (O) and HT
O will be given

in the next theorem. Hereafter, the proofs of the results will be supplied only for the value function with entry
costs v, the proofs concerning the value function with exit costs v̂ are totally similar.

Theorem 2.9. Under assumption [H], the value functions v and v̂ satisfy

v (O) = min

{
min
i=1,N

{vi (O) + ci} ,−
HT
O

λ

}
,

and

v̂ (O) = min

{
min
i=1,N

{v̂i (O)} ,−H
T
O

λ

}
.

Remark 2.10. Theorem 2.9 gives us the characterization of the value function at vertex O.

The proof of Theorem 2.9, makes use of Lemmas 2.11 and 2.12.

Lemma 2.11 (Value functions v and v̂ at O). Under assumption [H], then

max
i=1,N

{vi (O)} ≤ v (O) ≤ min
i=1,N

{vi (O) + ci} ,

and

max
i=1,N

{v̂i (O)− di} ≤ v̂ (O) ≤ min
i=1,N

{v̂i (O)} .

Proof of Lemma 2.11. We divide the proof into two parts.
Prove that maxi=1,N {vi (O)} ≤ v (O). First, we fix i ∈ {1, . . . , N} and any control law α such that (yO,ᾱ, ᾱ) ∈

TO. Let x ∈ Γi\ {O} such that |x| is small. From Lemma 2.7, there exists a control law αx,O connecting x and
O and we consider

α (s) =

{
αx,O (s) if s ≤ τx,O,
ᾱ (s− τx,O) if s > τx,O.

It means that the trajectory goes from x to O with the control law αx,O and then proceeds with the control
law ᾱ. Therefore

v (x) = vi (x) ≤ J (x, α) =

∫ τx,O

0

`i (yx,α (s)) e−λsds+ e−λτx,OJ (O, ᾱ) .

Since α is chosen arbitrarily and `i is bounded by M , we get

vi (x) ≤Mτx,O + e−λτx,Ov (O) .
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Let x tend to O then τx,O tend to 0 from Lemma 2.7. Therefore, vi (O) ≤ v (O). Since the above inequality
holds for i = 1, N , we obtain that

max
i=1,N

{vi (O)} ≤ v (O) .

Prove that v (O) ≤ mini=1,N {vi (O) + ci}. For i = 1, N ; we claim that v (O) ≤ vi (O) + ci. Consider x ∈ Γi\ {O}
with |x| small enough and any control law ᾱx such that (yx,ᾱx , ᾱx) ∈ Tx. From Lemma 2.7, there exists a control
law αO,x connecting O and x and we consider

α (s) =

{
αO,x (s) if s ≤ τO,x,
ᾱx (s− τO,x) if s > τO,x.

It means that the trajectory goes from O to x using the control law αO,x then proceeds with the control law
ᾱx. Therefore

v (O) ≤ J (O,α) = ci +

∫ τO,x

0

`i (yO,α (s)) e−λsds+ e−λτO,xJ (x, ᾱx) .

Since αx is chosen arbitrarily and `i is bounded by M , we get

v (O) ≤ ci +MτO,x + e−λτO,xvi (x)

Let x tend to O then τO,x tends to 0 from Lemma 2.7, then v (O) ≤ ci + vi (O) . Since the above inequality
holds for i = 1, N , we obtain that

v (O) ≤ min
i=1,N

{vi (O) + ci} .

Lemma 2.12. The value functions v and v̂ satisfy

v (O) , v̂ (O) ≤ −H
T
O

λ
(2.2)

where HT
O is defined in (2.1).

Proof of Lemma 2.12. From (2.1), there exists j ∈ {1, . . . , N} and aj ∈ AOj such that

HT
O = − min

i=1,N
min
ai∈AOi

{`i (O, ai)} = −`j (O, aj)

Let the control law α be defined by α (s) ≡ aj for all s, then

v (O) ≤ J (O,α) =

∫ +∞

0

`j (O, aj) e
−λsds =

`j (O, aj)

λ
= −H

T
O

λ
.

We are ready to prove Theorem 2.9.
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Proof of Theorem 2.9. According to Lemma 2.11 and Lemma 2.12,

v (O) ≤ min

{
min
i=1,N

{vi (O) + ci} ,−
HT
O

λ

}
.

Assuming that

v (O) < min
i=1,N

{vi (O) + ci} , (2.3)

it is sufficient to prove that v (O) = −H
T
O

λ
. By (2.3), there exists a sequence {εn}n∈N such that εn → 0 and

v (O) + εn < min
i=1,N

{vi (O) + ci} for all n ∈ N.

On the other hand, there exists an εn-optimal control αn, v (O) + εn > J (O,αn). Let us define the first time
that the trajectory yO,αn leaves O

tn := inf
i=1,N

Tni ,

where Tni is the set of times t for which yO,αn(t) belongs to Γi\ {O}. Notice that tn is possibly +∞, in which
case yO,αn (s) = O for all s ∈ [0,+∞). Extracting a subsequence if necessary, we may assume that tn tends to
t ∈ [0,+∞] when εn tends to 0.

If there exists a subsequence of {tn}n∈N (which is still noted {tn}n∈N) such that tn = +∞ for all n ∈ N, then
for a.e. s ∈ [0,+∞)

{
f (yO,αn (s) , αn (s)) = f (O,αn (s)) = 0,

` (yO,αn (s) , αn (s)) = ` (O,αn (s)) .

In this case, αn (s) ∈ ∪Ni=1A
O
i for a.e. s ∈ [0,+∞). Therefore, for a.e. s ∈ [0,+∞)

` (yO,αn (s) , αn (s)) = ` (O,αn (s)) ≥ −HT
O ,

and

v (O) + εn > J (O,αn) =

∫ +∞

0

` (O,αn (s)) e−λsds ≥
∫ +∞

0

(
−HT

O

)
e−λsds = −H

T
O

λ
.

By letting n tend to ∞, we get v (O) ≥ −H
T
O

λ
. On the other hand, since v (O) ≤ −H

T
O

λ
by Lemma 2.12, this

implies that v (O) = −H
T
O

λ
.
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Let us now assume that 0 ≤ tn < +∞ for all n large enough. Then, for a fixed n and for any positive δ ≤ δn
where δn small enough, yO,αn (s) still belongs to some Γi(n)\ {O} for all s ∈ (tn, tn + δ]. We have

v (O) + εn > J (O,αn)

=

∫ tn

0

` (yO,αn (s) , αn (s)) e−λsds+ ci(n)e
−λtn +

∫ tn+δ

tn

`i(n) (yO,αn (s) , αn (s)) e−λsds

+e−λ(tn+δ)J (yO,αn (tn + δ) , αn (·+ tn + δ))

≥
∫ tn

0

` (yO,αn (s) , αn (s)) e−λsds+ ci(n)e
−λtn +

∫ tn+δ

tn

`i(n) (yO,αn (s) , αn (s)) e−λsds

+e−λ(tn+δ)v (yO,αn (tn + δ))

=

∫ tn

0

` (yO,αn (s) , αn (s)) e−λsds+ ci(n)e
−λtn +

∫ tn+δ

tn

`i(n) (yO,αn (s) , αn (s)) e−λsds

+e−λ(tn+δ)vi(n) (yO,αn (tn + δ)) .

By letting δ tend to 0,

v (O) + εn ≥
∫ tn

0

` (yO,αn (s) , αn (s)) e−λsds+ ci(n)e
−λtn + e−λtnvi(n) (O) .

Note that yO,αn (s) = O for all s ∈ [0, tn], i.e., f (O,αn (s)) = 0 a.e. s ∈ [0, tn). Hence

v (O) + εn ≥
∫ tn

0

` (O,αn (s)) e−λsds+ ci(n)e
−λtn + e−λtnvi(n) (O)

≥
∫ tn

0

(
−HT

O

)
e−λsds+ ci(n)e

−λtn + e−λtnvi(n) (O)

=
1− e−λtn

λ

(
−HT

O

)
+ ci(n)e

−λtn + e−λtnvi(n) (O) .

Choose a subsequence {εnk}k∈N of {εn}n∈N such that for some i0 ∈ {1, . . . , N}, ci(nk) = ci0 for all k. By letting
k tend to ∞, recall that limk→∞ tnk = t, we have three possible cases

1. If t = +∞, then v (O) ≥ −H
T
O

λ
. By Lemma 2.12, we obtain v (O) = −H

T
O

λ
.

2. If t = 0, then v (O) ≥ ci0 + vi0 (O). By (2.3), we obtain a contradiction.

3. If t ∈ (0,+∞), then v (O) ≥ 1− e−λt

λ

(
−HT

O

)
+ [ci0 + vi0 (O)] e−λt. By (2.3), ci0 + vi0 (O) > v (O), so

v (O) >
1− e−λt

λ

(
−HT

O

)
+ v (O) e−λt.

This yields v (O) > −H
T
O

λ
, and finally obtain a contradiction by Lemma 2.12.
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3. The Hamilton-Jacobi systems. Viscosity solutions

3.1. Test-functions

Definition 3.1. A function ϕ : Γ1 × · · · × ΓN → RN is an admissible test-function if there exists (ϕi)i=1,N ,

ϕi ∈ C1 (Γi), such that ϕ (x1, . . . , xN ) = (ϕ1 (x1) , . . . , ϕN (xN )). The set of admissible test-function is denoted
by R (G).

3.2. Definition of viscosity solution

Definition 3.2 (Hamiltonian). We define the Hamiltonian Hi : Γi × R→ R by

Hi (x, p) = max
a∈Ai

{−pfi (x, a)− `i (x, a)}

and the Hamiltonian H+
i (O, ·) : R→ R by

H+
i (O, p) = max

a∈A+
i

{−pfi (O, a)− `i (O, a)} ,

where A+
i = {ai ∈ Ai : fi (O, ai) ≥ 0}. Recall that the tangential Hamiltonian at O, HT

O , has been defined
in (2.1).

We now introduce the Hamilton-Jacobi system for the case with entry costs

λui (x) +Hi

(
x,

dui
dxi

(x)

)
= 0 if x ∈ Γi\ {O} ,

λui (O) + max

{
−λmin

j 6=i
{uj (O) + cj} , H+

i

(
O,

dui
dxi

(O)

)
, HT

O

}
= 0 if x = O, (3.1)

for all i = 1, N and the Hamilton-Jacobi system with exit costs

λûi (x) +Hi

(
x,

dûi
dxi

(x)

)
= 0 if x ∈ Γi\ {O} ,

λûi (O) + max

{
−λmin

j 6=i
{ûj (O) + di} , H+

i

(
O,

dûi
dxi

(O)

)
, HT

O − λdi
}

= 0 if x = O, (3.2)

for all i = 1, N and their viscosity solutions.

Definition 3.3 (Viscosity solution with entry costs).
• A function u := (u1, . . . , uN ) where ui ∈ USC (Γi;R) for all i = 1, N , is called a viscosity sub-solution

of (3.1) if for any (ϕ1, . . . , ϕN ) ∈ R (G), any i = 1, N and any xi ∈ Γi such that ui − ϕi has a local maximum
point on Γi at xi, then

λui (xi) +Hi

(
x,

dϕi
dxi

(xi)

)
≤ 0 if xi ∈ Γi\ {O} ,

λui (O) + max

{
−λmin

j 6=i
{uj (O) + cj} , H+

i

(
O,

dϕi
dxi

(O)

)
, HT

O

}
≤ 0 if xi = O.

• A function u := (u1, . . . , uN ) where ui ∈ LSC (Γi;R) for all i = 1, N , is called a viscosity super-solution
of (3.1) if for any (ϕ1, . . . , ϕN ) ∈ R (G), any i = 1, N and any xi ∈ Γi such that ui − ϕi has a local minimum
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point on Γi at xi, then

λui (xi) +Hi

(
xi,

dϕi
dxi

(xi)

)
≥ 0 if xi ∈ Γi\ {O} ,

λui (O) + max

{
−λmin

j 6=i
{uj (O) + cj} , H+

i

(
O,

dϕi
dxi

(O)

)
, HT

O

}
≥ 0 if xi = O.

• A functions u := (u1, . . . , uN ) where ui ∈ C (Γi;R) for all i = 1, N , is called a viscosity solution of (3.1) if
it is both a viscosity sub-solution and a viscosity super-solution of (3.1).

Definition 3.4 (Viscosity solution with exit costs).
• A function û := (û1, . . . , ûN ) where ûi ∈ USC (Γi;R) for all i = 1, N , is called a viscosity sub-solution

of (3.2) if for any (ψ1, . . . , ψN ) ∈ R (G), any i = 1, N and any yi ∈ Γi such that ûi − ψi has a local maximum
point on Γi at yi, then

λûi (yi) +Hi

(
yi,

dψi
dxi

(yi)

)
≤ 0 if yi ∈ Γi\ {O} ,

λûi (O) + max

{
−λmin

j 6=i
{ûj (O)} − λdi, H+

i

(
O,

dψi
dxi

(O)

)
, HT

O − λdi
}
≤ 0 if yi = O.

• A function û := (û1, . . . , ûN ) where ûi ∈ LSC (Γi;R) for all i = 1, N , is called a viscosity super-solution
of (3.2) if for any (ψ1, . . . , ψN ) ∈ R (G), any i = 1, N and any yi ∈ Γi such that ui − ψi has a local minimum
point on Γi at yi, then

λûi (yi) +Hi

(
yi,

dψi
dxi

(yi)

)
≥ 0 if yi ∈ Γi\ {O} ,

λûi (O) + max

{
−λmin

j 6=i
{ûj (O)} − λdi, H+

i

(
O,

dψi
dxi

(O)

)
, HT

O − λdi
}
≥ 0 if yi = O.

• A functions û := (û1, . . . , ûN ) where ûi ∈ C (Γi;R) for all i = 1, N , is called a viscosity solution of (3.2) if
it is both a viscosity sub-solution and a viscosity super-solution of (3.2).

Remark 3.5. This notion of viscosity solution is consitent with the one of [3]. It can be seen in Section 6 when
all the switching costs are zero, our definition and the one of [3] coincide.

4. Connections between the value functions and the
Hamilton-Jacobi systems

Let v be the value function of the optimal control problem with entry costs and v̂ be a value function of the
optimal control problem with exit costs. Recall that vi, v̂i : Γi → R are defined in Lemma 2.8 by{

vi (x) = v (x) if x ∈ Γi\ {O} ,
vi (O) = limΓi\{O}3x→O v (x) ,

and

{
v̂i (x) = v̂ (x) if x ∈ Γi\ {O} ,
v̂i (O) = limΓi\{O}3x→O v̂ (x) .

We wish to prove that v := (v1, v2, . . . , vN ) and v̂ := (v̂1, . . . , v̂N ) are respectively viscosity solutions of (3.1)
and (3.2). In fact, since G\ {O} is a finite union of open intervals in which the classical theory can be applied,
we obtain that vi and v̂i are viscosity solutions of

λu (x) +Hi (x,Du (x)) = 0 in Γi\ {O} .
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Therefore, we can restrict ourselves to prove the following theorem.

Theorem 4.1. For i = 1, N , the function vi satisfies

λvi (O) + max

{
−λmin

j 6=i
{vj (O) + cj} , H+

i

(
O,

dvi
dxi

(O)

)
, HT

O

}
= 0

in the viscosity sense. The function v̂i satisfies

λv̂i (O) + max

{
−λmin

j 6=i
{v̂j (O) + di} , H+

i

(
O,

dv̂i
dxi

(O)

)
, HT

O − λdi
}

= 0

in the viscosity sense.

The proof of Theorem 4.1 follows from Lemmas 4.2 and 4.5. We focus on vi since the proof for v̂i is similar.

Lemma 4.2. For i = 1, N , the function vi is a viscosity sub-solution of (3.1) at O.

Proof of Lemma 4.2. From Theorem 2.9,

λvi (O) + max

{
−λmin

j 6=i
{vj (O) + cj} , HT

O

}
≤ 0.

It is thus sufficient to prove that

λvi (O) +H+
i

(
O,

dvi
dxi

(O)

)
≤ 0

in the viscosity sense. Let ai ∈ Ai be such that fi (O, ai) > 0. Setting α (t) ≡ ai then (yx,α, α) ∈ Tx for all x ∈ Γi.
Moreover, for all x ∈ Γi\ {O}, yx,α (t) ∈ Γi\ {O} (the trajectory cannot approach O since the speed pushes it
away from O for yx,α ∈ Γi ∩ B (O, r)). Note that it is not sufficient to choose ai ∈ Ai such that f (O, ai) = 0
since it can lead to f (x, ai) < 0 for all x ∈ Γi\ {O}. Next, for τ > 0 fixed and any x ∈ Γi, if we choose

αx (t) =

{
α (t) = ai 0 ≤ t ≤ τ,
â (t− τ) t ≥ τ,

(4.1)

then yx.αx (t) ∈ Γi\ {O} for all t ∈ [0, τ ]. It yields

vi (x) ≤ J (x, αx) =

∫ τ

0

`i (yx,α (s) , ai) e
−λsds+ e−λτJ (yx,α (τ) , α̂) .

Since this holds for any α̂ (αx is arbitrary for t > τ), we deduce that

vi (x) ≤
∫ τ

0

`i (yx,αx (s) , ai) e
−λsds+ e−λτvi (yx,αx (τ)) . (4.2)

Since fi (·, a) is Lipschitz continuous by [H1], we also have for all t ∈ [0, τ ],

|yx,αx (t)− yO,αO (t)| =
∣∣∣∣x+

∫ t

0

fi (yx,α (s) , ai) eids−
∫ t

0

fi (yO,α (s) , ai) eids

∣∣∣∣
≤ |x|+ L

∫ t

0

|yx,α (s)− yO,α (s)|ds,
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where α0 satisfies (4.1) with x = O. According to Grönwall’s inequality,

|yx,αx (t)− yO,αO (t)| ≤ |x| eLt,

for t ∈ [0, τ ], yielding that yx,αx (t) tends to yO,αO (t) when x tends to O. Hence, from (4.2), by letting x→ O,
we obtain

vi (O) ≤
∫ τ

0

`i (yO,αO (s) , ai) e
−λsds+ e−λτvi (yO,αO (τ)) .

Let ϕ be a function in C1 (Γi) such that 0 = vi (O)− ϕ (O) = maxΓi (vi − ϕ). This yields

ϕ (O)− ϕ (yO,αO (τ))

τ
≤ 1

τ

∫ τ

0

`i (yO,αO (s) , ai) e
−λsds+

(
e−λτ − 1

)
vi (yO,αO (τ))

τ
.

By letting τ tend to 0, we obtain that

−fi (O, ai)
dϕ

dxi
(O) ≤ `i (O, ai)− λvi (O) .

Hence,

λvi (O) + sup
a∈Ai:fi(O,a)>0

{
−fi (O, a)

dvi
dxi

(O)− `i (O, a)

}
≤ 0

in the viscosity sense. Finally, from Corollary A.2 in Appendix A, we have

sup
a∈Ai:fi(O,a)>0

{
−fi (O, a)

dϕi
dxi

(O)− `i (O, a)

}
= max
a∈Ai:fi(O,a)≥0

{
−fi (O, a)

dϕi
dxi

(O)− `i (O, a)

}
.

The proof is complete.

Lemma 4.3. If

vi (O) < min

{
min
j 6=i
{vj (O) + cj} ,−

HT
O

λ

}
, (4.3)

then there exist τ̄ > 0, r > 0 and ε0 > 0 such that for any x ∈ (Γi\ {O})∩B (O, r), any ε < ε0 and any ε-optimal
control law αε,x for x,

yx,αε,x (s) ∈ Γi\ {O} , for all s ∈ [0, τ̄ ] .

Remark 4.4. Roughly speaking, this lemma takes care of the case λvi + H+
i

(
x,

dvi
dxi

(O)

)
≤ 0, i.e., the

situation when the trajectory does not leave Γi, see introduction.

Proof of Lemma 4.3. Suppose by contradiction that there exist sequences {εn} , {τn} ⊂ R+ and {xn} ⊂ Γi\ {O}
such that εn ↘ 0, xn → O, τn ↘ 0 and a control law αn such that αn is εn-optimal control law and yxn,αn (τn) =
O. This implies that

vi (xn) + εn > J (xn, αn) =

∫ τn

0

` (yxn,αn (s) , αn (s)) e−λsds+ e−λτnJ (O,αn (·+ τn)) . (4.4)



HAMILTON-JACOBI EQUATIONS FOR OPTIMAL CONTROL ON NETWORKS WITH ENTRY OR EXIT COSTS 17

Since ` is bounded by M by [H1], then vi (xn) + εn ≥ −τnM + e−λτnv (O) . By letting n tend to ∞, we obtain

vi (O) ≥ v (O) . (4.5)

From (4.3), it follows that

min

{
min
j 6=i
{vj (O) + cj} ,−

HT
O

λ

}
> v (O) .

However, v (O) = min

{
min
j
{vj (O) + cj} ,−

HT
O

λ

}
by Theorem 2.9. Therefore, v (O) = vi (O) + ci > vi (O),

which is a contradiction with (4.5).

Lemma 4.5. The function vi is a viscosity super-solution of (3.1) at O.

Proof of Lemma 4.5. We adapt the proof of Oudet [21] and start by assuming that

vi (O) < min

{
min
j 6=i
{vj (O) + cj} ,−

HT
O

λ

}
.

We need to prove that

λvi (O) +H+
i

(
O,

dvi
dxi

(O)

)
≥ 0

in the viscosity sense. Let ϕ ∈ C1 (Γi) be such that

0 = vi (O)− ϕ (O) ≤ vi (x)− ϕ (x) for all x ∈ Γi, (4.6)

and {xε} ⊂ Γi\ {O} be any sequence such that xε tends to O when ε tends to 0. From the dynamic programming
principle and Lemma 4.3, there exists τ̄ such that for any ε > 0, there exists (yε, αε) := (yxε,αε , αε) ∈ Txε such
that yε (τ) ∈ Γi\ {O} for any τ ∈ [0, τ̄ ] and

vi (xε) + ε ≥
∫ τ

0

`i (yε (s) , αε (s)) e−λsds+ e−λτvi (yε (τ)) .

Then, according to (4.6)

vi (xε) − vi (O) + ε ≥
∫ τ

0

`i (yε (s) , αε (s)) e−λsds+ e−λτ [ϕ (yε (τ))− ϕ (O)]

−vi (O)
(
1− e−λτ

)
. (4.7)

Next, 
∫ τ

0

`i (yε (s) , αε (s)) e−λsds =

∫ τ

0

`i (yε (s) , αε (s)) ds+ o (τ) ,

[ϕ (yε (τ))− ϕ (O)] e−λτ = ϕ (yε (τ))− ϕ (O) + τoε (1) + o (τ) ,
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and {
vi (xε)− vi (O) = oε (1) ,

vi (O)
(
1− e−λτ

)
= o (τ) + τλvi (O) ,

where the notation oε (1) is used for a quantity which is independent on τ and tends to 0 as ε tends to 0. For

k ∈ N? the notation o(τk) is used for a quantity that is independent on ε and such that
o(τk)

τk
→ 0 as τ → 0.

Finally, O(τk) stands for a quantity independent on ε such that
O(τk)

τk
remains bounded as τ → 0. From (4.7),

we obtain that

τλvi (O) ≥
∫ τ

0

`i (yε (s) , αε (s)) ds+ ϕ (yε (τ))− ϕ (O) + τoε (1) + o (τ) + oε (1) . (4.8)

Since yε (τ) ∈ Γi for all ε, one has

ϕ (yε (τ))− ϕ (xε) =

∫ τ

0

dϕ

dxi
(yε (s)) ẏε (s) ds =

∫ τ

0

dϕ

dxi
(yε (s)) fi (yε (s) , αε (s)) ds.

Hence, from (4.8)

τλvi (O)−
∫ τ

0

[
`i (yε (s) , αε (s)) +

dϕ

dxi
(yε (s)) fi (yε (s) , αε (s))

]
ds ≥ τoε (1) + o (τ) + oε (1) . (4.9)

Moreover, ϕ (xε)− ϕ (O) = oε (1) and that
dϕ

dxi
(yε (s)) =

dϕ

dxi
(O) + oε (1) +O (s). Thus

λvi (O)− 1

τ

∫ τ

0

[
`i (yε (s) , αε (s)) +

dϕ

dxi
(O) fi (yε (s) , αε (s))

]
ds ≥ oε (1) +

o (τ)

τ
+
oε (1)

τ
. (4.10)

Let εn → 0 as n→∞ and τm → 0 as m→∞ such that

(amn, bmn) :=

(
1

τm

∫ τm

0

fi (yεn (s) , αεn (s)) eids,
1

τm

∫ τm

0

`i (yεn (s) , αεn (s)) ds

)
−→ (a, b) ∈ Rei × R

as n,m→∞. By [H1] and [H2]

{
fi (yεn (s) , αεn (s)) ei = fi (O,αεn (s)) + L |yεn (s)| = fi (O,αεn (s)) ei + on (1) + om (1) ,

`i (yεn (s) , αεn (s)) ei = `i (O,αεn (s)) + ω (|yεn (s)|) = `i (O,αεn (s)) ei + on (1) + om (1) .

It follows that

(amn, bmn) =

(
1

τm

∫ τm

0

fi (O,αεn (s)) eids,
1

τm

∫ τm

0

`i (O,αεn (s)) ds

)
+ on (1) + om (1)

∈ FLi (O) + on (1) + om (1) ,
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since FLi (O) is closed and convex. Sending n,m→∞, we obtain (a, b) ∈ FLi (O) so there exists a ∈ Ai such
that

lim
m,n→∞

(
1

τm

∫ τm

0

fi (yεn (s) , αεn (s)) eids,
1

τm

∫ τm

0

`i (yεn (s) , αεn (s)) ds

)
= (fi (O, a) ei, `i (O, a)) . (4.11)

On the other hand, from Lemma 4.3, yεn (s) ∈ Γi\ {O} for all s ∈ [0, τm]. This yields

yεn (τm) =

[∫ τn

0

fi (yεn (s) , αεn (s)) ds

]
ei + xεn .

Since |yεn (τm)| > 0, then

1

τm

∫ τm

0

fi (yεn (s) , αεn (s)) ds ≥ −|xεn |
τm

.

Let εn tend to 0, then let τm tend to 0, one gets fi (O, a) ≥ 0, so a ∈ A+
i . Hence, from (4.10) and (4.11),

replacing ε by εn and τ by τm, let εn tend to 0, then let τm tend to 0, we finally obtain

λvi (O) + max
a∈A+

i

{
−fi (O, a)

dϕ

dxi
(O)− `i (O, a)

}
≥ λvi (O) +

[
−fi (O, a)

dϕ

dxi
(O)− `i (O, a)

]
≥ 0.

5. Comparison principle and uniqueness

Inspired by [6, 7], we begin by proving some properties of sub and super viscosity solutions of (3.1). The
following three lemmas are reminiscent of Lemma 3.4, Theorem 3.1 and Lemma 3.5 in [3].

Lemma 5.1. Let w = (w1, . . . , wN ) be a viscosity super-solution of (3.1). Let x ∈ Γi\ {O} and assume that

wi (O) < min

{
min
j 6=i
{wj (O) + cj} ,−

HT
O

λ

}
. (5.1)

Then for all t > 0,

wi (x) ≥ inf
αi(·),θi

(∫ t∧θi

0

`i
(
yix (s) , αi (s)

)
e−λsds+ wi

(
yix (t ∧ θi)

)
e−λ(t∧θi)

)
,

where αi ∈ L∞ (0,∞;Ai), y
i
x is the solution of yix (t) = x+

[∫ t
0
fi
(
yix (s) , αi (s)

)
ds
]
ei and θi satisfies yix (θi) = 0

and θi lies in [τi, τi], where τi is the exit time of yix from Γi\ {O} and τi is the exit time of yix from Γi.

Proof of Lemma 5.1. According to (5.1), the function wi is a viscosity super-solution of the following problem
in Γi 

λwi (x) +Hi

(
x,

dwi
dxi

(x)

)
= 0 if x ∈ Γi\ {O} ,

λwi (O) +H+
i

(
O,

dwi
dxi

(O)

)
= 0 if x = O.

(5.2)
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Hence, we can apply the result in [3, Lemma 3.4]. We refer to [6] for a detailed proof. The main point of that
proof uses the results of Blanc [8, 9] on minimal super-solutions of exit time control problems.

Lemma 5.2 (Super-optimality). Under assumption [H], let w = (w1, . . . , wN ) be a viscosity super-solution
of (3.1) that satisfies (5.1); then there exists a sequence {ηk}k∈N of strictly positive real numbers such that
limk→∞ ηk = η > 0 and a sequence xk ∈ Γi\ {O} such that limk→∞ xk = O, limk→∞ wi (xk) = wi (O) and for
each k, there exists a control law αki such that the corresponding trajectory yxk (s) ∈ Γi for all s ∈ [0, ηk] and

wi (xk) ≥
∫ ηk

0

`i
(
yxk (s) , αki (s)

)
e−λsds+ wi (yxk (ηk)) e−ληk .

Proof of Lemma 5.2. According to (5.1) ŵi (O) < −H
T
O

λ
. Hence, this proof is complete by applying the proof of

Theorem 3.1 in [3].

Lemma 5.3. Under assumption [H], let u = (u1, . . . , uN ) be a viscosity sub-solution of (3.1). Then ui is
Lipschitz continuous in B (O, r)∩ Γi. Therefore, there exists a test function ϕi ∈ C1 (Γi) which touches ui from
above at O.

Proof of Lemma 5.3. Since u is a viscosity sub-solution of (3.1), ui is a viscosity sub-solution of (5.2). Recal
that Hi (x, ·) is coercive for any x ∈ Γi ∩ B (O, r), we can apply the proof in Lemma 3.2 of [3], which is based
on arguments due to Ishii and contained in [18].

Lemma 5.4 (Sub-optimality). Under assumption [H], let u = (u1, . . . , uN ) be a viscosity sub-solution
of (3.1). Consider i = 1, N, x ∈ Γi\ {O} and αi ∈ L∞ (0,∞;Ai). Let T > 0 be such that yx (t) = x +[∫ t

0
fi (yx (s) , αi (s)) ds

]
ei belongs to Γi for any t ∈ [0, T ], then

ui (x) ≤
∫ T

0

`i (yx (s) , αi (s)) e−λsds+ ui (yx (T )) e−λT .

Proof of Lemma 5.4. Since u is a viscosity sub-solution of (3.1), ui is a viscosity sub-solution of (5.2). and

satisfies ui (O) ≤ −H
T
O

λ
. Hence, we can apply the proof in Lemma 3.5 of [3].

Remark 5.5. Under assumption [H], Lemmas 5.1–5.4 hold for vicosity sub- and super-solution û and ŵ
repestively, of the exit cost control problem if (5.1) replaced by

ŵi (O) < min

{
min
j 6=i
{ŵj (O)}+ di,−

HT
O

λ
+ di

}
.

Theorem 5.6 (Comparison Principle). Under assumption [H], let u be a bounded viscosity sub-solution of (3.1)
and w be a bounded viscosity super-solution of (3.1); then u ≤ w in G, componentwise. This theorem also holds
for viscosity sub- and super-solution û and ŵ, respectively, of the exit cost control problem (3.2).

We give two proofs of Theorem 5.6. The first one is inspired by [3] and uses the previously stated lemmas.
The second one uses the elegant arguments proposed in [19].

Proof of Theorem 5.6 inspired by [3]. We focus on u and w, the arguments used for the comparison of û and ŵ
are totally similar. Suppose by contradiction that there exists x ∈ Γi such that ui (x)−wi (x) > 0. By classical
comparison arguments for the boundary value problem, see [5], sup∂Γi {ui − vi}

+ ≥ supΓi {ui − vi}
+

, so we
have

ui (O)− wi (O) = max
x∈Γi
{ui (x)− wi (x)} > 0.
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By definition of viscosity sub-solution

λui (O) +HT
O ≤ 0. (5.3)

This implies λwi (O) +HT
O < 0. We now consider the two following cases.

Case 1: If wi (O) < minj 6=i {wj (O) + cj}, from Lemma 5.2 (using the same notations),

wi (xk) ≥
∫ ηk

0

`i
(
yxk (s) , αki (s)

)
e−λsds+ wi (yxk (ηk)) e−ληk .

Moreover, according to Lemma 5.4, we also have

ui (xk) ≤
∫ ηk

0

`i
(
yxk (s) , αki (s)

)
e−λsds+ ui (yxk (ηk)) e−ληk .

This yields

ui (xk)− wi (xk) ≤ [ui (yxk (ηk))− wi (yxk (ηk))] e−ληk ≤ [ui (O)− wi (O)] e−ληk .

By letting k tend to ∞, one gets

ui (O)− wi (O) ≤ [ui (O)− wi (O)] e−λη.

This implies that ui (O)− wi (O) ≤ 0 and leads to a contradiction.
Case 2: If wi (O) ≥ minj 6=i {wj (O) + cj}, then there exists j0 6= i such that

wj0 (O) + cj0 = min
j=1,N

{wj (O) + cj} = min
j 6=i
{wj (O) + cj} ≤ wi (O) ,

because ci > 0. Since cj0 is positive

wj0 (O) < min
j 6=j0
{wj (O) + cj} . (5.4)

Next, by Lemma 5.3, there exists a test function ϕi in C1 (Ji) that touches ui from above at O, it yields

λui (O)− λmin
j 6=i
{uj (O) + cj} ≤ λui (O) + max

{
−λmin

j 6=i
{uj (O) + cj} , H+

i

(
O,

dϕi
dxi

(O)

)
, HT

0

}
≤ 0.

Therefore

wj0 (O) + cj0 ≤ wi (O) < ui (O) ≤ min
j 6=i
{uj (O) + cj} ≤ uj0 (O) + cj0 .

Thus

wj0 (O) < uj0 (O) . (5.5)

Replacing index i by j0 in (5.3), we get

λwj0 (O) +HT
O < 0. (5.6)
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By (5.4) and (5.6), (5.1) holds true. Repeating the proof of Case 1 with j0, we reach a contradiction
with (5.5). It ends the proof.

The comparison principle can also be obtained alternatively, using the arguments which were very recently
proposed by Lions and Souganidis in [19]. This new proof is self-combined and the arguments do not rely at all
on optimal control theory, but are deeply connected to the ideas used by Soner [23, 24] and Capuzzo-Dolcetta
and Lions [11] for proving comparison principles for state-constrained Hamilton-Jacobi equations

Proof of Theorem 5.6 inspired by [19]. We start as in first proof. We argue by contradiction without loss of
generality, assuming that there exists i such that

ui (O)− wi (O) = max
Γi
{ui (x)− wi (x)} > 0.

Therefore wi (O) < −H
T
O

λ
. We now consider the two following cases.

Case 1: If wi (O) < minj 6=i {wj (O) + cj}, then wi is a viscosity super-solution of (5.2). Recall that by
Lemma 5.3, there exists a positive number L such that for i = 1, N , ui is Lipschitz continuous with
Lipschitz constant L in Γi ∩B(0, r). We consider the function

Ψi,ε : Γi × Γi −→ R

(x, y) −→ ui (x)− wi (y)− 1

2ε
[− |x|+ |y|+ δ (ε)]

2 − γ (|x|+ |y|) ,

where δ (ε) = (L+ 1) ε and γ ∈
(

0,
1

2

)
. It is clear that Ψi,ε attains its maximum Mε,γ at (xε,γ , yε,γ) ∈

Γi×Γi. By classical techniques, we check that xε,γ , yε,γ → O and that
(xε,γ − yε,γ)

2

ε
→ 0 as ε→ 0. Indeed,

one has

ui (xε,γ)− wi (yε,γ)− [− |xε,γ |+ |yε,γ |+ δ (ε)]
2

2ε
− γ (|xε,γ |+ |yε,γ |)

≥ max
Γi
{ui (x)− wi (x)− 2γ |x|} − δ2 (ε)

2ε
(5.7)

≥ ui (O)− wi (O)− (L+ 1)
2

2
ε. (5.8)

Since ui (O)− vi (O) > 0, the term in (5.8) is positive when ε is small enough. We also deduce from the
above inequality and from the boundedness of ui and wi that, maybe after the extraction of a subsequence,
xε,γ , yε,γ → xγ as ε→ 0, for some xγ ∈ Γi. From (5.7),

ui (xε,γ)− wi (yε,γ)− (|xε,γ | − |yε,γ |)2

2ε
− (− |xε,γ |+ |yε,γ |) δ (ε)

ε
≥ max

Γi
{ui (x)− wi (x)− 2γ |x|} .
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Taking the lim sup on both sides of this inequality when ε→ 0,

ui (xγ)− wi (xγ)− 2γ |xγ | ≥ max
Γi
{ui (x)− wi (x)− 2γ |x|}+ lim sup

ε→0

(|xε,γ | − |yε,γ |)2

2ε

≥ ui (O)− wi (O) + lim sup
ε→0

(|xε,γ | − |yε,γ |)2

2ε

≥ ui (O)− wi (O) + lim inf
ε→0

(|xε,γ | − |yε,γ |)2

2ε

≥ ui (O)− wi (O) .

Recalling that ui (O)−wi (O) = maxΓi (ui − wi), we obtain from the inequalities above that xγ = O and
that

lim
ε→0

(|xε,γ | − |yε,γ |)2

2ε
= 0. (5.9)

We claim that if ε > 0, then xε,γ 6= O. Indeed, assume by contradiction that xε,γ = O:
1. if yε,γ > 0, then

Mε,γ = ui (O)− wi (yε,γ)− 1

2ε
[|yε,γ |+ δ (ε)]

2 − γ |yε,γ | ≥ ui (yε,γ)− wi (yε,γ)− δ2 (ε)

2ε
− 2γ |yε,γ | .

Since ui is Lipschitz continuous in B (O, r) ∩ Γi, we see that for ε small enough

L |yε.γ | ≥ ui (O)− ui (yε,γ) ≥ |yε,γ |
2

2ε
+
|yε,γ | δ (ε)

ε
− γ |yε,γ | ≥

|yε,γ | δ (ε)

ε
− γ |yε,γ | .

Therefore, if yε,γ 6= O, then L ≥ L+ 1− γ which gives a contradiction since γ ∈
(

0,
1

2

)
.

2. Otherwise, if yε,γ = O, then

Mε,γ = ui (O)− wi (O)− δ2 (ε)

2ε
≥ ui (εei)− wi (O)− 1

2ε
[−ε+ δ (ε)]

2 − γε.

Since ui is Lipschitz continuous in B (O, r) ∩ Γi, we see that for ε small enough,

Lε ≥ ui (O)− ui (εei) ≥
|yε.γ |2

2ε
+
|yε.γ | δ (ε)

ε
− 2γ |yε.γ | ≥

|yε.γ | δ (ε)

ε
− 2γ |yε.γ | .

This implies that L ≥ −1

2
+ L+ 1− γ, which gives a contradiction since γ ∈

(
0,

1

2

)
.

Therefore the claim is proved. It follows that we can apply the viscosity inequality for ui at xε,γ . Moreover,
notice that the viscosity super-solution inequality (5.2) holds also for yε,γ = 0 since Hi (O, p) ≤ H+

i (O, p)
for any p. Therefore

ui (xε,γ) +Hi

(
xε,γ ,

−xε,γ + yε,γ + δ (ε)

ε
+ γ

)
≤ 0,

wi (yε,γ) +Hi

(
yε,γ ,

−xε,γ + yε,γ + δ (ε)

ε
− γ
)
≥ 0.
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Subtracting the two inequalities,

ui (xε,γ)− wi (yε,γ) ≤ Hi

(
yε,γ ,

−xε,γ + yε,γ + δ (ε)

ε
+ γ

)
−Hi

(
xε,γ ,

−xε,γ + yε,γ + δ (ε)

ε
− γ
)
. (5.10)

Using [H1] and [H2], it is easy to see that there exists M i > 0 such that for any x, y ∈ Γi, p, q ∈ R

|Hi (x, p)−Hi (y, q)| ≤ |Hi (x, p)−Hi (y, p)|+ |Hi (y, p)−Hi (y, q)|
≤M i |x− y| (1 + |p|) +M i |p− q| .

It yields

ui (xε,γ)− wi (yε,γ) ≤M i

[
|xε,γ − yε,γ |

(
1 +

∣∣∣∣−xε,γ + yε,γ + δ (ε)

ε
− γ
∣∣∣∣)+ 2 |γ|

]
≤M i

[
|xε,γ − yε,γ |

(
γ + 1 +

δ (ε)

ε

)
+
|xε,γ − yε,γ |2

ε
+ 2 |γ|

]
.

Applying (5.9), let ε tend to 0 and γ tend to 0, we obtain that ui (O)−wi (O) ≤ 0, the desired contradiction.
Case 2: wi (O) ≥ minj 6=i {wj (O) + cj} = wj0 (O) + cj0 . Using the same arguments as in Case 2 of the first

proof, we get

wj0 < min

{
min
j 6=j0
{wj (O) + cj} ,−

HT
O

λ

}
and wj0 (O) < uj0 (O). Repeating Case 1, replacing the index i by j0, implies that wj0 (O) ≥ uj0 (O), the
desired contradiction.

Corollary 5.7 (Uniqueness). If v is the value function (with entry costs) and (v1, . . . , vN ) is defined by

vi (x) =

{
v (x) if x ∈ Γi\ {O} ,
limδ→0+ v (δei) if x = O,

then (v1, . . . , vN ) is the unique bounded viscosity solution of (3.1).
Similarly, if v̂ is the value function (with exit costs) and (v̂1, . . . , v̂N ) is defined by

v̂i (x) =

{
v̂ (x) if x ∈ Γi\ {O} ,
limδ→0+ v̂ (δei) if x = O,

then (v̂1, . . . , v̂N ) is the unique bounded viscosity solution of (3.2).

Remark 5.8. From Corollary 5.7, we see that in order to characterize the original value function with entry
costs, we need to solve first the Hamilton-Jacobi system (3.1) and find the unique viscosity solution (v1, . . . , vN ).
The original value function v with entry costs satisfies

v (x) =

vi (x) if x ∈ Γi\ {O} ,

min

{
mini=1,N {vi (O) + ci} ,−

HT
O

λ

}
, if x = O.
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The characterization of v (O) follows from Theorem 2.9. The characterization of the original value function with
exit costs v̂ is similar.

6. A more general optimal control problem

In what follows, we generalize the control problem studied in the previous sections by allowing some of the
entry (or exit) costs to be zero. The situation can be viewed as intermediary between the one studied in [3] when
all the entry (or exit) costs were zero, and that studied above when all the entry or exit costs were positive.
Accordingly, every result presented below will mainly be obtained by combining the arguments proposed above
with those used in [3]. Hence, we will present the results and omit the proofs.

To be more specific, we consider the optimal control problems with non-negative entry cost C =
{c1, . . . cm, cm+1, . . . cN} where ci = 0 if i ≤ m and ci > 0 if i > m, keeping all the assumptions and defini-
tions of Section 2 unchanged. The value function associated to C will be denoted by V. Similarly to Lemma 2.8,
V|Γi\{O} is continuous and Lipschitz continuous near O: therefore, it is possible to extend V|Γi\{O} at O. This
extension will be noted Vi. Moreover, one can check that Vi (O) = Vj (O) for all i, j ≤ m, which means that
V|∪mi=1Γi is a continuous function which will be noted Vc hereafter.

Combining the arguments in [3] and in Section 2 leads us to the following theorem.

Theorem 6.1. The value function V satisfies

max
i=m+1,N

{Vi (O)} ≤ V (O) = Vc (O) ≤ min

{
min

i=m+1,N
{Vi (O) + ci} ,−

HT
O

λ

}
.

Remark 6.2. In the case when ci = 0 for i = 1, N , V is continuous on G and it is exactly the value function of
the problem studied in [3].

We now define a set of admissible test-function and the Hamilton-Jacobi equation that will characterize V.

Definition 6.3. A function ϕ : (∪mi=1Γi) × Γm+1 × · · · × ΓN → RN−m+1 of the form ϕ (xc, xm+1, . . . , xN ) =
(ϕc (xc) , ϕm+1 (xm+1) , . . . , ϕN (xN )) is an admissible test-function if

• ϕc is continuous and for i ≤ m, ϕc|Γi belongs to C1 (Γi),
• for i > m, ϕi belongs to C1 (Γi),
• the space of admissible test-function is noted R (G).

Definition 6.4. A function U = (Uc, Um+1, . . . , UN ) where Uc ∈ USC
(
∪mj=1Γj ;R

)
, Ui ∈ USC (Γi;R) is called

a viscosity sub-solution of the Hamilton-Jacobi system if for any (ϕc, ϕm+1, . . . , ϕN ) ∈ R (G):

1. if Uc − ϕc has a local maximum at xc ∈ ∪mj=1Γj and if
• xc ∈ Γj\ {O} for some j ≤ m, then

λUc (xc) +Hj

(
x,

dϕc
dxj

(xc)

)
≤ 0,

• xc = O, then

λUc (O) + max

{
−λmin

j>m
{Uj (O) + cj} ,max

j≤m

{
H+
j

(
O,

dϕc

dx+
j

(O)

)}
, HT

O

}
≤ 0;

2. if Ui − ϕi has a local maximum point at xi ∈ Γi for i > m, and if
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• xi ∈ Γi\ {O}, then

λUi (xi) +Hi

(
x,

dϕi
dxi

(xi)

)
≤ 0,

• xi = O, then

λUi (O) + max

{
−λ min

j>m,j 6=i
{Uj (O) + cj} ,−λUc (O) , H+

i

(
O,

dϕi
dxi

(O)

)
, HT

O

}
≤ 0.

A function U = (Uc, Um+1, . . . , UN ) where Uc ∈ LSC
(
∪mj=1Γj ;R

)
, Ui ∈ LSC (Γi;R) is called a viscosity super-

solution of the Hamilton-Jacobi system if

Uc (O) ≥ Ui (O) , for i = m+ 1, N, (6.1)

and for any (ϕc, ϕm+1, . . . , ϕN ) ∈ R (G):

1. if Uc − ϕc has a local maximum at xc ∈ ∪mj=1Γj and if
• xc ∈ Γj\ {O} for some j ≤ m, then

λUc (xc) +Hj

(
x,

dϕc
dxj

(xc)

)
≥ 0,

• xc = O, then

λUc (O) + max

{
−λmin

j>m
{Uj (O) + cj} ,max

j≤m

{
H+
j

(
O,

dϕc

dx+
j

(O)

)}
, HT

O

}
≥ 0;

2. if Ui − ϕi has a local minimum point at xi ∈ Γi for i > m, and if
• xi ∈ Γi\ {O}, then

λUi (xi) +Hi

(
x,

dϕi
dxi

(xi)

)
≥ 0,

• xi = O for i > m then

λUi (O) + max

{
−λ min

j>m,j 6=i
{Uj (O) + cj} ,−λUc (O) , H+

i

(
O,

dϕi
dxi

(O)

)
, HT

O

}
≥ 0.

A function U = (Uc, U1, . . . , Um) where Uc ∈ C (∪j≤mΓj ;R) and Ui ∈ C (Γi;R) for all i > m is called a viscosity
solution of the Hamilton-Jacobi system if it is both a viscosity sub-solution and a viscosity super-solution of
the Hamilton-Jacobi system.

Remark 6.5. The term −λHC (O) in the above definition accounts for the situation in which the trajectory

enters ∪mj=1Γj. The term maxj≤m

{
H+
j

(
O,

dϕc

dx+
j

(O)

)}
accounts for the situation in which the trajectory

enters Γi0 where H+
i0

(
O,

dϕc

dx+
j

(O)

)
= maxj≤m

{
H+
j

(
O,

dϕc

dx+
j

(O)

)}
.
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Remark 6.6. In the case when ci = 0 for i = 1, N , i,e., m = N , the term −λminj>m Uj (O) + cj vanishes. This
implies that

max

{
−λmin

j>m
{Uj (O) + cj} ,max

j≤m

{
H+
j

(
O,

∂ϕc

∂e+
j

(O)

)}
, HT

O

}
= max
j=1,N

{
H+
j

(
O,

∂ϕc

∂e+
j

(O)

)}

= HO

(
∂ϕc

∂e+
1

(O) , . . . ,
∂ϕc

∂e+
N

(O)

)
.

where HO (p1, . . . , pN ) is defined in page 6 of [3]. This means that, in the case when all the entry costs cj vanish,
we recover the notion of viscosity solution proposed in [3].

We now study the relationship between the value function V and the Hamilton-Jacobi system.

Theorem 6.7. Let V be the value function corresponding to the entry costs C, then (Vc,Vm+1, . . . ,VN ) is a
viscosity solution of the Hamilton-Jacobi system.

Let us state the comparison principle for the Hamilton-Jacobi system.

Theorem 6.8. Let U = (Uc, Um+1, . . . , UN ) and W = (Wc,Wm+1, . . . ,WN ) be a bounded viscosity sub-solution
and a viscosity super-solution, respectively, of the Hamilton-Jacobi system. The following holds: U ≤ W in G,
i.e., Uc ≤Wc on ∪mj=1Γj, and Ui ≤Wi in Γi for all i > m.

Proof of Theorem 6.8. Suppose by contradiction that there exists i ∈ {1, . . . , N} and x ∈ Γi such that{
Uc (x)−Wc (x) > 0 if i ≤ m,
Ui (x)−Wi (x) > 0 if i > m,

then {
Uc (O)−Wc (O) = max∪mj=1Γj {Uc −Wc} > 0 if i ≤ m,
Ui (O)−Wi (O) = maxΓi {Ui −Wi} > 0 if i > m,

since the case where the positive maximum is achieved outside the junction leads to a contradition by classical
comparison results.

Case 1: Uc (O)−Wc (O) = max
∪mi=1Γi

(Uc −Wc) > 0

Sub-case 1-a: Wc (O) < minj>m {Wj (O) + cj}. Since Wc (O) < Uc (O) ≤ −H
T
O

λ
, the function Wc is a

viscosity super-solution of
λWc (x) +Hi

(
x,

dWc

dxi
(x)

)
= 0 if i ≤ m,x ∈ Γi\ {O} ,

λWc (O) +Hc

(
dWc

dx+
1

(O) , . . . ,
dWc

dx+
m

(O)

)
= 0 if x = O.

where Hc (p1, . . . , pm) = maxi≤mH
+
i (O, pi). Applying Lemma A.3 in Appendix A, we obtain that

Uc (O) ≤Wc (O) in contradiction with the assumption.
Sub-case 1-b: Wc (O) ≥ minj>m {Wj (O) + cj} = Wi0 (O) + ci0 . Since ci0 > 0, we first see that Wi0 (O) <

min

{
minj>m {Wj (O) + cj} ,Wc (O) ,−H

T
O

λ

}
. Hence, Wi0 is a viscosity super-solution of (5.2) replacing
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i by i0. Moreover, since

Ui0 (O) + ci0 ≥ min
j>m

(Uj (O) + cj) ≥ Uc (O) > Wc (O) > Wi0 (O) + ci0 ,

then Ui0 (O) > Wi0 (O). Applying the same argument as Case 1 in the second proof of Theorem 5.6
replacing i by i0, we obtain that Ui0 (O) ≤Wi0 (O), which is contradictory.

Case 2: Ui (O)−Wi (O) = max
Γi

(Ui −Wi) > 0 for some i > m. Using the definition of viscosity sub-solutions

and Case 1, we see that Wi (O) < Ui (O) ≤ Uc (O) ≤Wc (O).

Sub-case 2-a: Wi (O) < minj>m {Wj (O) + cj}. Since Ui (O) < −H
T
O

λ
, we first see that Wi (O) <

min

{
minj>m {Wj (O) + cj} ,Wc (O) ,−H

T
O

λ

}
. Hence, Wi is a viscosity super-solution of (5.2). Apply-

ing the same argument as in Case 1 in the second proof of Theorem 5.6, we see that Ui (O) ≤ Wi (O),
which is contradictory.

Sub-case 2-b: Wi (O) ≥ minj>m {Wj (O) + cj} = Wi0 (O) + ci0 . Since ci0 > 0, we can check that

Wi0 (O) < min

{
minj>m {Wj (O) + cj} ,Wc (O) ,−H

T
O

λ

}
. Hence, Wi0 is a viscosity super-solution

of (5.2) replacing i by i0. Moreover, since

Ui0 (O) + ci0 ≥ min
j>m

(Uj (O) + cj) ≥ Uc (O) > Wi (O) > Wi0 (O) + ci0 ,

then Ui0 (O) > Wi0 (O). Applying the same argument as Case 1 in the second proof of Theorem 5.6
replacing i by i0, we obtain that Ui0 (O) ≤Wi0 (O) which is contradictory.

Appendix A

Lemma A.1. For any a ∈ A+
i , there exists a sequence {an} such that an ∈ Ai and

fi (O, an) ≥ δ

n
> 0,

|fi (O, an)− fi (O, a)| ≤ 2M

n
,

|`i (O, an)− `i (O, a)| ≤ 2M

n
.

Proof of Lemma A.1. From assumption [H4], there exists aδ ∈ Ai such that fi (O, aδ) = δ. Since FLi (O) is
convex (by assumption [H3]), for any n ∈ N, a ∈ A+

i

1

n
(fi (O, aδ) ei, `i (O, aδ)) +

(
1− 1

n

)
(fi (O, a) , `i (O, a) ei) ∈ FLi (O) .

Then, there exists a sequence {an} such that an ∈ Ai and

1

n
(fi (O, aδ) , `i (O, aδ)) +

(
1− 1

n

)
(fi (O, a) , `i (O, a)) = (fi (O, an) , `i (O, an)) ∈ FLi (O) . (A.1)
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Notice that fi (O, a) ≥ 0 since a ∈ A+
i , this yields

fi (O, an) ≥ fi (O, aδ)

n
=
δ

n
> 0.

From (A.1), we also have

|fi (O, an)− fi (O, a)| = 1

n
|fi (O, aδ)− fi (O, a)| ≤ 2M

n
,

and

|`i (O, an)− `i (O, a)| = 1

n
|`i (O, aδ)− `i (O, a)| ≤ 2M

n
.

We can state the following corollary of Lemma A.1:

Corollary A.2. For i = 1, N and pi ∈ R,

max
a∈Ai s.t. fi(O,a)≥0

{−fi (O, a) pi − `i (O, a)} = sup
a∈Ai s.t. fi(O,a)>0

{−fi (O, a) pi − `i (O, a)} .

Lemma A.3. If Uc and Wc are respectively viscosity sub and super-solution of

λUc (x) +Hi

(
x,

dUc
dxi

(x)

)
≤ 0 if x ∈ Γi\ {O} ,

λUc (O) +Hc

(
dUc
dx1

(O) , . . . ,
dUc
dxm

(O)

)
≤ 0 if x = O,

and

λWc (x) +Hi

(
x,

dWc

dxi
(x)

)
≥ 0 if x ∈ Γi\ {O} ,

λWc (O) +Hc

(
dWc

dx1
(O) , . . . ,

dWc

dxm
(O)

)
≥ 0 if x = O,

then Uc (x) ≤Wc (x) for all x ∈
⋃m
i=1 Γi.

Proof of Lemma A.3. Assume that there exists x̂ ∈ Γi where 1 ≤ i ≤ m and Uc (x̂) −Wc (x̂) > 0. By classical
comparison principle for the boundary problem on Γi, one gets

Uc (O)−Wc (O) = max
Γi
{Uc (x)−Wc (x)} > 0.

Applying again classical comparison principle for the boundary problem for each edge Γj

Uc (O)−Wc (O) = max⋃m
i=1 Γi

{Uc (x)−Wc (x)} > 0.

For j = 1, N , we consider the function

Ψj,ε,γ : Γj × Γj −→ R
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(x, y) −→ Uc (x)−Wc (y)− 1

2ε
[− |x|+ |y|+ δ (ε)]

2 − γ (|x|+ |y|) ,

where δ (ε) = (L+ 1) ε, γ ∈
(

0,
1

2

)
.

The function Ψj,ε attains its maximum at (xj,ε,γ , yj,ε,γ) ∈ Γj ×Γj . Applying the same argument as in the second

proof of Theorem 5.6, we have xj,ε,γ , yj,ε,γ → O and
(xj,ε,γ − yj,ε,γ)

2

ε
→ 0 as ε→ 0. Moreover, for any j = 1,m,

xj,ε,γ 6= O. We claim that yj,ε,γ must be O for ε small enough . Indeed, if there exists a sequence εn such that
yj,εn,γ ∈ Γj\ {O}, then applying viscosity inequalities, we have

Uc (xj,εn,γ) +Hj

(
xj,εn,γ ,

−xj,εn,γ + yj,εn,γ + δ (εn)

εn
+ γ

)
≤ 0,

Wc (yj,εn,γ) +Hj

(
yj,εn,γ ,

−xj,εn,γ + yj,εn,γ + δ (εn)

εn
− γ
)
≥ 0.

Subtracting the two inequalities and using (5.10) with Hj , we obtain

Uc (xj,εn,γ)−Wc (yj,εn,γ) ≤M j |xj,εn,γ − yj,εn,γ |
(

1 +

∣∣∣∣−xj,εn,γ + yj,εn,γ + δ (εn)

εn
− γ
∣∣∣∣)+M j2γ.

Recall that we already have
(xj,εn,γ − yj,εn,γ)

2

εn
→ 0 as n→∞. Let n tend to∞ and γ tend to 0 then we obtain

Uc (O)−Wc (O) ≤ 0. It leads us to a contradiction. So this claim is proved.
Define the function Ψ :

⋃m
j=1 Γj → R by

Ψ|Γi (y) =
1

2ε

∑
j 6=i

{
[− |xi,ε,γ |+ δ (ε)]

2 − γ |xi,ε,γ |
}

+
1

2ε
[− |xi,ε,γ |+ |y|+ δ (ε)]

2
+ γ (− |xi,ε,γ |+ |y|) .

We can see that Ψ is continuous on
⋃m
j=1 Γj and belongs to C1 (Γj) for j = 1,m. Moreover, for j = 1,m and

for ε small enough, yj,ε,γ=O then the function Ψ + Wc has a minimum point at O. It yields

λWc (O) +Hc

(
−x1,ε,γ + δ (ε)

ε
, . . . ,

−xm,ε,γ + δ (ε)

ε

)
≥ 0.

By definition of Hc, there exists j0 ∈ {1, . . . ,m} such that

λWc (O) +H+
j0

(
O,
−xj0,ε,γ + δ (ε)

ε

)
≥ 0.

This implies

λWc (O) +Hj0

(
O,
−xj0,ε,γ + δ (ε)

ε

)
≥ 0

On the other hand, since xj0,ε,γ ∈ Γj0\ {O}, we have

λUc (xj0,ε,γ) +Hj0

(
xj0,ε,γ ,

−xj0,ε,γ + δ (ε)

ε

)
≤ 0.
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Subtracting the two inequalities and using properties of Hamiltonian Hj0 , let ε tend to 0 then γ tend to 0, we
obtain that Uc (O)−Wc (O) ≤ 0, which is contradictory.
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