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Abstract. The goal of video cosegmentation is to jointly extract the
common foreground regions and/or objects from a set of videos. In this
paper, we present an approach for video cosegmentation that uses graph-
based hierarchical clustering as its basic component. Actually, in this
work, video cosegmentation problem is transformed into a graph-based
clustering problem in which a cluster represents a set of similar super-
voxels belonging to the analyzed videos. Our graph-based Hierarchical
Video Cosegmentation method (or HVC) is divided in two main parts:
(i) supervoxel generation and (ii) supervoxel correlation. The former ex-
plores only intra-video similarities, while the latter seeks to determine
relationships between supervoxels belonging to the same video or to dis-
tinct videos. Experimental results provide comparison between HVC and
other methods from the literature on two well known datasets, showing
that HVC is a competitive one. HVC outperforms on average all the
compared methods for one dataset; and it was the second best for the
other one. Actually, HVC is able to produce good quality results with-
out being too computational expensive, taking less than 50% of the time
spent by any other approach.

Keywords: Graph-based segmentation, video cosegmentation, hierar-
chical clustering.

1 Introduction

The goal of video cosegmentation is to jointly extract the common foreground
regions and/or objects from a set of videos. The video cosegmentation can be
considered weakly supervised [7], since the presence of common foreground re-
gions and/or objects in multiple videos provides some indication that is not
available to the unsupervised problem of segmentation for a single video. That
additional information may help, but it may not be enough to reduce the ambi-
guity in video cosegmentation of general content, due to the presence of multiple
foreground regions and/or objects with low contrast to the background.
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3, PUC Minas and CAPES for the financial support to this work.
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Fig. 1. Outline of our method: each video is transformed into a video graph (step 1);
a hierarchy is computed from each video graph (step 2); the identification of video
segments (supervoxels) is made from each hierarchy (step 3); each set of supervoxels is
described (step 4) and a single supervoxel graph is generated (step 5); another hierarchy
is computed from supervoxel graph (step 6); a partition of supervoxel graph is obtained
(step 7); and, finally, the identification of connected components is made (step 8).

In this paper, we present a novel approach for video cosegmentation that
uses graph-based hierarchical clustering as its basic component. Our graph-based
Hierarchical Video Cosegmentation method (HVC) presents two main technical
contributions. The former is the adoption of a simple graph-based hierarchical
clustering method as key component of the framework which respects two impor-
tant principles of multi-scale set analysis, i.e., causality and location principles
[9]. Therefore, it is able to produce a set of video segments that are more homo-
geneous and whose borders are better defined using simple features to calculate
dissimilarity measure between neighboring pixels and voxels (instead of several
and expensive features which are very common in other approaches found in
the literature). The second one is the removal of the need for parameter tuning
and for the computation of a segmentation at finer levels, since it is possible to
compute any level without computing the previous ones.

The few existing methods for video cosegmentation are all based on low-
level features. In [11], the authors separated foreground and background regions
through an iterative process based on feature matching among video frame re-
gions and spatio-temporal tubes. The video cosegmentation method presented
in [4] can extract multiple foreground objects by learning a global appearance
model that connects segments of the same class. It also uses the Bag-of-Words
(BoW) representation for multi-class video cosegmentation. While BoW provides
more discriminative ability than basic color and texture features, they may be
susceptible to appearance variations of foreground objects in different videos,
due to factors such as pose change. In [15], the authors proposed a method
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which employs the object proposal [5] as the basic element, and uses the regu-
lated maximum weight clique method to select the corresponding nodes for video
multi-class segmentation. Finally, in [7], the authors proposed a multi-state se-
lection graph in which a node representing a video frame can take multiple labels
that correspond to different objects (also based on object proposal [5]). In addi-
tion, they used an indicator matrix to handle foreground objects that are missing
in some videos, and they also presented an iterative procedure to optimize an
energy function along with that indicator matrix.

The paper is organized as follows. Section 2 presents concepts about graph-
based hierarchical clustering used in this work. While Section 3 describes our
method to cope with video cosegmentation problem, Section 4 presents experi-
mental results of our approach together with a comparative analysis with others
methods from the literature. Finally, we draw some conclusions in Section 5.

2 Graph-based hierarchical clustering

Following the seminal ideas proposed in [10], a hierarchy of partitions based on
observation scales can be computed using a criterion for region-merging popu-
larized by [6]. Moreover, it satisfies two important principles of multi-scale set
analysis, i.e., causality and location principles [9]. Namely, and in contrast with
the approach presented in [6], the number of regions is decreasing when the scale
parameter increases, and the contours do not move from one scale to another.

Thanks to that, one can compute the hierarchical observation scales for any
graph, in which the adjacent graph regions are evaluated depending on the order
of their merging in the fusion tree, i.e., the order of merging between connected
components on the minimum spanning tree (MST) of the original graph. Ac-
tually, one does not need to produce explicitly a hierarchy of partitions, since
a weight map with observation scales can be used to infer the desired hierar-
chy, e.g., by removing those edges whose weight is greater than a desired scale
value. This map is a new edge-weighted tree created from MST in which each
edge weight corresponds to the scale from which two adjacent regions connected
by this edge are correctly merged, i.e., there are no other sub-regions of these
regions that might be merged before these two.

Following [10], for computing the weight map of observation scales, we con-
sider the criterion for region-merging proposed in [6] which measures the evidence
for a boundary between two regions by comparing two quantities: one based on
intensity differences across the boundary, and the other based on intensity dif-
ferences between neighboring pixels within each region. More precisely, in order
to know whether two regions must be merged, two measures are considered. The
internal difference Int(X) of a region X is the highest edge weight among all the
edges linking two vertices of X in MST. The difference Diff (X,Y ) between two
neighboring regions X and Y is the smallest edge weight among all the edges
that link X to Y . Then, two regions X and Y are merged when:

Diff (X,Y ) ≤ min

{
Int(X) +

λ

|X|
, Int(Y ) +

λ

|Y |

}
(1)
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in which λ is a parameter used to prevent the merging of large regions, i.e.,
larger λ forces smaller regions to be merged.

The merging criterion defined by Eq. (1) depends on the scale λ at which the
regions X and Y are observed. More precisely, let us consider the (observation)
scale SY (X) of X relative to Y as a measure based on the difference between X
and Y , on the internal difference of X and on the size of X:

SY (X) = (Diff (X,Y )− Int(X))× |X|. (2)

Then, the scale S(X,Y ) is simply defined as:

S(X,Y ) = max(SY (X), SX(Y )). (3)

Thanks to this notion of a scale, Eq. (1) can be written as:

λ ≥ S(X,Y ). (4)

The core of [10] is the identification of the smallest scale value that can be
used to merge the largest region to another one while guaranteeing that the
internal differences of these merged regions are greater than the value calculated
for smaller scales. The hierarchization of this principle has been successfully
applied to several tasks: image segmentation [10], video segmentation [13, 14,
12], and video summarization [3]. In next section, we present our proposal to
extend its application to the video cosegmentation problem.

3 Proposed Method

In this work, video cosegmentation problem is transformed into a graph-based
clustering task in which a cluster (or connected component of the graph), com-
puted from a graph partition, represents a set of similar supervoxels belonging
to the analyzed videos. In order to do that, our proposed method, named HVC,
is divided in two main parts: (i) supervoxel generation; and (ii) supervoxel corre-
lation. The former explores only intra-video similarities, while the latter seeks to
determine relationships between supervoxels belonging to the same video (intra-
video similarity) or to distinct videos (inter-video similarity).

Fig. 1 illustrates the steps of HVC method. First, each video is transformed
into a video graph (step 1). Then, to explore the intra-video similarity, a hierar-
chy is computed from each video graph (step 2) and the identification of video
segments (supervoxels) is made from each hierarchy (step 3). For each video, its
set of supervoxels is described (step 4) and a single supervoxel graph is generated
(step 5) containing all supervoxels from every video, in order to analyze both
intra and inter-video similarities. Again, another hierarchy is computed from
supervoxel graph (step 6) and a partition of supervoxel graph is obtained (step
7). And, finally, the identification of connected components (i.e., “cosegments”)
is made (step 8).

An example of HVC results can be seen in Fig. 2 for both parts: supervoxels
generation and correlation. The first part – supervoxel generation (steps 1 to 3) –
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Video 1 Video 2

Fig. 2. HVC results for two videos with the same pair of vases. First row presents some
samples of the original video frames. Video segments are illustrated at the second
line (i.e., pixels with the same color belong to the same supervoxel); and, finally,
cosegmentation results are presented at the third line (i.e., the same color is adopted
to present pixels from common regions between videos).

adopts a hierarchical video segmentation (very similar to HOScale method pro-
posed in [13, 14]) that helps producing supervoxels that are more homogeneous
and whose borders are better defined (HOScale exhibits high values for 3D seg-
mentation accuracy and boundary recall and a low undersegmentation error [13,
14]). The second part – supervoxels correlation (steps 4 to 8) – also utilizes
a graph-based hierarchical clustering method based on [10], but applied to a
complete graph generated from video segments obtained before. This removes
the need for parameter tuning, resulting in a method that is not dependent on
the hierarchical level, and consequently, making possible to compute any level
without computing the previous ones [10]. Moreover, this is done using simple
features to calculate dissimilarity measure between neighboring pixels and voxels
(more details are given in Section 4).

The method HVC depends on: (i) the dissimilarity measure used in video
graphs; (ii) the minimum size of a video segments (minvs); (iii) the number of
those segments (nvs) per video; (iv) the dissimilarity measure used in supervoxel
graph; (v) the minimum size of connected component (mincc) for eliminating
outliers during supervoxel clustering step; and (vi) the number of connected
components (ncc) used for obtaining a video cosegmentation.

4 Experiments

In order to evaluate our proposed method HVC, we used two well-known datasets:
(i) ObMiC [7, 8]; and (ii) MOViCS [4]. ObMiC dataset [7, 8] is composed of four
sets of video pairs each with two foreground objects in common, and the ground
truth is manually labeled for each frame. MOViCS dataset [4] contains four video
sets with 11 videos in total, and five frames of each video are labeled with ground
truth at the pixel level.

During supervoxel generation, video graphs are the ones induced by the 26-
adjacency pixel relationship, in which edge weights are calculated by a simple
color gradient computed using the Euclidean distance in Lab color space, and
we set nvs to 100, 200, 300, 400, and 500. The supervoxel graph is generated
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Fig. 3. Examples of heatmaps generated from objectness measure.

as a complete graph, combining every possible number of video segments. In
order to improve the strength of the relationship between supervoxels related
to objects (or foreground regions) belonging to the same video (i.e., intra-video
similarity) an objectness measure (i.e., a value which reflects how likely an image
window covers an object of any category [1]) was used. The average value of
objectness for every supervoxel was computed from the objectness values from its
pixels. Following [1], to calculate the objectness value for a pixel p, the objectness
measure was applied to 1,000 random windows for each video frame and the
measure obtained for each window is added if it contains the pixel p. Actually,
we adopted a normalized version of that objectness measure per pixel, called
heatmap, in which pixels values are rescaled to [0, 1] and used to produced a
pseudo-colored image where areas with high probability of containing an object
are shown in red, while dark blue indicates the absence of any object (see Fig. 3).
Finally, ncc is set to 5%, 10%, 15%, 20%, and 25% of the total number of nodes
of the supervoxel graph.

We have compared our method HVC against two cosegmentation methods
from the literature3: (i) Regulated Maximum Weight Cliques (RMWC) [15]; and
(ii) Multi-state Selection Graph (MSG) [7]. Differently from [7], the used MSG
implementation does not have any post-processing, since the available code does
not have any pixel-level refinement step in it. This allows a much fair comparison
among different approaches because we can focus on the actual results generated
by the cosegmentation methods (instead of considering improvements from post-
processing steps that may be applied to the results of any approach).

To assess the quality of obtained cosegmentation results, we adopted two
metrics (similar to [7]) to evaluate accuracy and error rate: (i) the average
Intersection-over-Union (IoU); and (ii) the average per-frame pixel error (pFPE),
respectively. We present IoU and pFPE scores that are optimal considering a
constant scale parameter for the whole database (ODS) and a scale parameter
varying for each video (OVS) (analogously to [2]). Thus, HVCD and HVCV stand
for the results of HVC with a constant scale parameter for the whole database
(ODS) and a scale parameter varying for each video (OVS), respectively.

Table 1 presents accuracy results on both datasets. The method HVCV out-
performs on average RMWC for both datasets (for MOViCS dataset, the dif-
ference in average accuracy is only 1%). The performance of MSG is very poor
on MOViCS dataset, but it has presented an average accuracy 5% greater than
HVCV on ObMiC dataset. As one can see in Fig. 4, good accuracy results are re-

3 RMWC is available at http://www.dromston.com/projects/video object cosegmentation.php

and MSG could be found at http://hzfu.github.io/proj video coseg.html
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Table 1. Accuracy results for different methods on ObMiC and MOViCS datasets.

(a) ObMiC dataset

Video class RMWC MSG HVCV HVCD

Dog 0.11 0.62 0.54 0.54
Monster 0.41 0.53 0.65 0.55
Skating 0.15 0.59 0.40 0.22
Person 0.23 0.32 0.26 0.22
Average 0.22 0.51 0.46 0.38

(b) MOViCS dataset

Video class RMWC MSG HVCV HVCD

Chicken 0.58 0.27 0.43 0.33
Giraffe 0.35 0.29 0.44 0.35
Lion 0.55 0.14 0.53 0.27
Tiger 0.40 0.10 0.47 0.36
Average 0.47 0.20 0.48 0.33

lated to low values of pFPE. Actually, MSG method presented the lowest pFPE
value on average for ObMiC dataset and the highest one for MOViCS dataset,
which could explain its good results for the former and poor performance for the
latter (e.g., see the results for video class Tiger on MOViCS dataset).

In order to assess qualitatively the obtained cosegmentation results, some ex-
amples for different approaches on ObMiC dataset are shown in Fig. 5. Results
are presented for two videos from each class, along with the original video frames
and the expected results (i.e., ground truth). For video class Dog, RMWC re-
sults were very poor, while MSG and HVC produced similar results (with a little
advantage for MSG method). The same pattern can be observed for video class
Skating (but in this case MSG method was even better). For video class Monster,
both RMWC and MSG methods have failed to identify one of the expected ob-
jects. Moreover, MSG method has assigned an instance of those objects from the

dog monster skating person avg
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0.6

(a) IoU on ObMiC dataset.
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Fig. 4. Accuracy and error on the ObMiC and MOViCS dataset for different methods.
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Dog Monster

Skating Person

Fig. 5. Cosegmentation results on ObMiC dataset. From top to bottom: original video
frames, ground truth, RMWC [15], MSG [7], and our proposed method HVC.

first video to a different one in the second video. Finally, for video class Person,
HVC was able to identify both persons (without the heads), while RMWC and
MSG have continued failing in identifying one of them. This is similar to what
happened for class Monster, except that in this case an object instance from
the first video was divided and assigned to distinct parts of the same object (by
RMWC) or to segments belonging to two different objects (by MSG).

Similarly, some results produced by different approaches on MOViCS dataset
are shown in Fig. 6. As before, results are presented for each class, along with
the original video frames and the expected results (i.e., ground truth), but some
classes have more than two results since they have more videos (03 for class
Tiger and 04 for class Lion). For classes Chicken and Lion, RMWC has shown
the best results followed closely by HVC method, while MSG results were very
poor (it has divided some objects and has also considered some similar object
instances as distinct). Finally, for classes Giraffe and Tiger, the opposite oc-
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Chicken Tiger

Giraffe Lion

Fig. 6. Cosegmentation results on MOViCS dataset. From top to bottom: original
video frames, ground truth, RMWC [15], MSG [7], and our proposed method HVC.

curred: HVC presented best results followed by RMWC (while MSG showed
some improvement only for class Giraffe).

It is worth to mention that, for the class Dog, the proposed method HVC
was not able to relate any segment of the second video to anyone belonging to
the first one. This problem probably occurs due to the low differences between
color averages of regions belonging to the same video. The same problem has
also happened with RMWC (see the third video of the class Tiger).

Table 2. Time spent for different methods on ObMiC and MOViCS datasets.

ObMiC dataset MOViCS dataset
Method Total Avg. per Frame Total Avg. per Frame
RMWC 14h28m25s 04m13s 128h24h50 14m59s
MSG 20h24m36s 05m57s 76h40h12 08m57s
HVC 06h33m10s 01m55s 34h04h11 03m59s
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Finally, HVC method is able to obtain very good results on both datasets us-
ing only a small amount of time. Table 2 presents total and average (per frame)
time spent for tested methods on both datasets. For ObMiC dataset, HVC spent
only 45.5% and 32.2% of the time spent on average by RMWC and MSG, respec-
tively; while it spent on average 26.6% and 44.5% of the time spent by RMVC
and MSG, respectively, for MOViCS dataset. The method MSG outperforms
HVC on ObMiC dataset, but since it uses a great number of (computational
expensive) features it took 211% more time to obtain the its results.

5 Conclusion

In this paper, we present a novel approach for video cosegmentation that uses
graph-based hierarchical clustering as its basic component. Our method HVC
presents two main technical contributions. The former is the adoption of a simple
graph-based hierarchical clustering method as key component of the framework
which respects two important principles of multi-scale set analysis, i.e., causality
and location principles [9]. Therefore, it is able to produce a set of video segments
that are more homogeneous and whose borders are better defined using simple
features to calculate dissimilarity measure between neighboring pixels and vox-
els (instead of several and expensive features which are very common in other
approaches found in the literature). The second one is the removal of the need
for parameter tuning and for the computation of a segmentation at finer levels,
since it is possible to compute any level without computing the previous ones.

In this work, video cosegmentation problem is transformed into a graph-based
clustering task in which a cluster (or connected component of the graph), com-
puted from a graph partition, represents a set of similar supervoxels belonging
to the analyzed videos. Our proposed method HVC is divided in two main parts:
(i) supervoxel generation; and (ii) supervoxel correlation. The former explores
only intra-video similarities, while the latter seeks to determine relationships
between supervoxels belonging to the same video (intra-video similarity) or to
distinct videos (inter-video similarity). Moreover, HVC uses simple features to
calculate dissimilarity measure between neighboring pixels and voxels.

Experimental results provide quantitative and qualitative comparison involv-
ing new approach and other methods from the literature on two well known
datasets, showing that HVC is a competitive approach. Concerning quality mea-
sures, HVC outperforms on average both tested methods for one dataset; and it
presents on average an accuracy of 5% less than the best method for the other
dataset. In spite of that, HVC method represents an attractive approach which
is able to produce good quality results without being too computational expen-
sive. When compared to the other methods, it took less than 50% of the time
spent by any other approach.

In order to improve and better understand our results, further works involve
inclusion of new features and automatic identification of the number of connected
components; and also the application to another datasets.
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