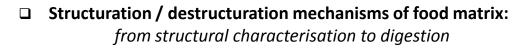


Steam-jet agglomeration of skim-milk powders : influence of the process parameters

M. Person¹²; B. Cuq²; A. Duri²; C. Le Floch-Fouéré¹; R. Jeantet¹ & P. Schuck¹
 ¹INRA, UMR 1253 Science and Technology of Milk and Eggs, F-35042 RENNES
 ²INRA, UMR 1208 Agropolymer Engineering and Emerging Technology, F-34060 MONTPELLIER

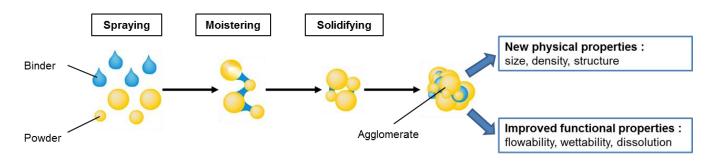
EuroDrying'2017 19-20-21 June 2017 - Liège



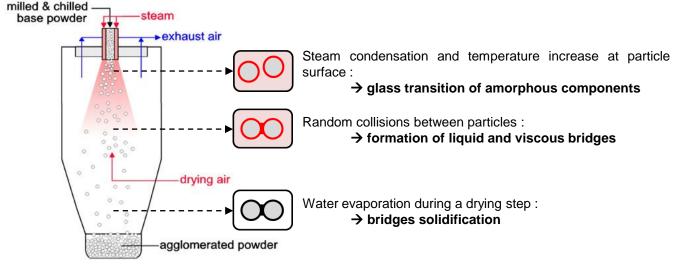
A multidisciplinary and multiscale approach, reinforced by two high-calibre facilities:

Dairy Platform

Biological Resource Centre


😍 STLO

- Dairy processing and cheese making: toward sustainable dairy systems
- Microbial interaction: food matrix and host cell


Agglomeration processes

- Processes consisting in combining fine primary particles to form larger ones with modified properties.
- Different technologies depending on the powder types and the target properties :
 - Dry agglomeration processes : use of pressure
 - <u>Wet agglomeration processes</u> : use of a binder

Steam-jet agglomeration

□ 3 main technologies are used for wet agglomeration : fluidized bed, high shear mixer and **steam-jet.**

Steam-jet agglomeration process (Palzer. 2011).

Production of agglomerates with high porosity and high dissolution rate

Skim-milk powders agglomeration

- ❑ Skim-milk powders are mainly composed of lactose (≈ 50% dry matter, amorphous state) and proteins (≈ 35% dry matter).
- Steam-jet agglomeration is used in order to obtain instant powders with improved rehydration properties.

↗ size, mass, porosity

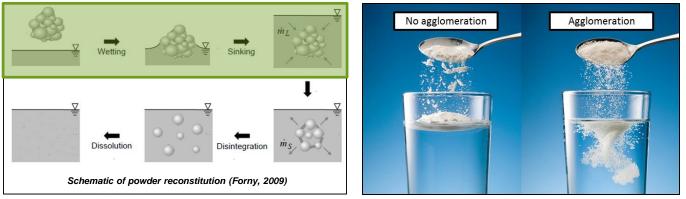
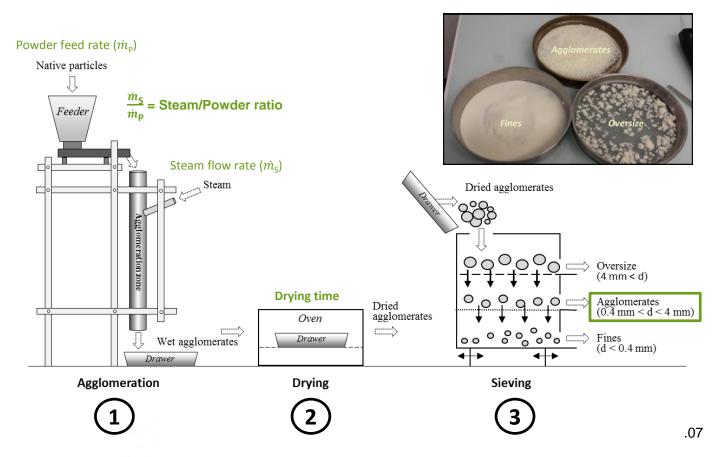


Image from sternmaid.de

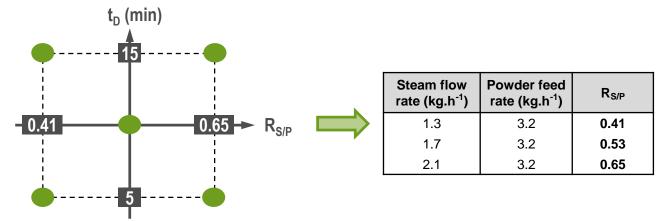
Objectives

- Quality control of industrial products remains experimental and empirical :
 - <u>Steam-jet agglomeration</u> → black box process (closed, fast, random collisions)
 - Instant properties → multi-factorial causes (structure, composition, physicochemical state)


□ Lack of knowledge → scientific publications 1997 – 2017 :

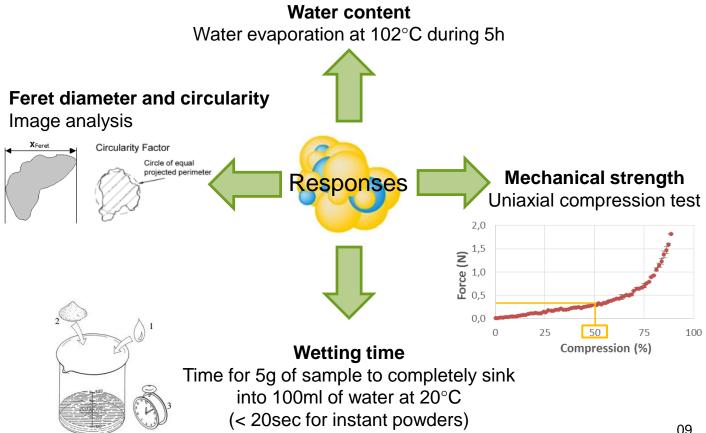
- Granulation & Agglomeration = 622 papers
- Granulation & Agglomeration + steam = 9 papers
- Granulation & Agglomeration + steam + milk = 1 paper

Martins P.C. (2008). Influence of a lipid phase on steam jet agglomeration of maltodextrin powders. Powder Technology, 185, 258 – 266.


➔ How can we <u>study</u> and <u>identify</u> the key process parameters that should be controlled ? .06

Steam-jet agglomeration pilot plant

Experimental strategy


- 2 process parameters were studied : the steam/powder ratio (R_{S/P}) and the drying time (t_D).
- □ 1 factorial design of experiment was performed in triplicate :

❑ Statistical analysis after standardization of the data → linear model with interaction :

Response = $\mathbf{a} \mathbf{R}_{S/P} + \mathbf{b} \mathbf{t}_{D} + \mathbf{c} (\mathbf{R}_{S/P} \mathbf{x} \mathbf{t}_{D}) + \text{constant}$

Characterization of the agglomerates

Wetting time measurement (Westergaard, 1994).

Structure of the pilot plant agglomerates

Raw material : Skim milk powder

Pilot plant agglomerate :

- Porous structure
- Irregular shape

Industrial agglomerate :

- Dense structure
- Spherical shape
- Regular surface

Response = $\mathbf{a} \mathbf{R}_{S/P} + \mathbf{b} \mathbf{t}_{D} + \mathbf{c} (\mathbf{R}_{S/P} \mathbf{x} \mathbf{t}_{D}) + \text{constant}$

a, b, c coefficients values of the linear model :

Responses	R _{S/P}	t _D	R _{S/P} x t _D	R²	
Circularity	-0.718 *	0.173	-0.078	0.528	Significant influence of the
Feret diameter (mm)	0.797 **	0.230	0.101	0.740	steam/powder ratio
Mechanical strength (N)	0.420 *	-0.794 **	0.056	0.741	
Water content (g.100 g ⁻¹)	0.355 *	-0.913 ***	-0.100	0.907	
Wetting time (s)	0.674 ***	0.480 **	0.339 **	0.901	

Significant differences are indicated (p < 0.05 (*), p < 0.01 (**), p < 0.001 (***)).

→ More liquid bridges comes with more steam available, leading to larger and less spherical agglomerates.

During the agglomeration step, the ratio control the **extent of agglomeration** in the studied range of values.

Response = $\mathbf{a} \mathbf{R}_{S/P} + \mathbf{b} \mathbf{t}_{D} + \mathbf{c} (\mathbf{R}_{S/P} \mathbf{x} \mathbf{t}_{D}) + \text{constant}$

a, b, c coefficients values of the linear model :

Responses	R _{S/P}	t _D	R _{S/P} x t _D	R²	
Circularity	-0.718 *	0.173	-0.078	0.528	_
Feret diameter (mm)	0.797 **	0.230	0.101	0.740	
Mechanical strength (N)	0.420 *	-0.794 **	0.056	0.741	Preponderant effect of
Water content (g.100 g ⁻¹)	0.355 *	-0.913 ***	-0.100	0.907	the drying time
Wetting time (s)	0.674 ***	0.480 **	0.339 **	0.901	

Significant differences are indicated (p < 0.05 (*), p < 0.01 (**), p < 0.001 (***)).

➔ Increasing the drying time leads to the formation of dry and brittle agglomerates.

The drying step is crucial for the **storage evolution** to prevent **microbial growth**, **caking** or **breakage**.

Response = $\mathbf{a} \mathbf{R}_{S/P} + \mathbf{b} \mathbf{t}_{D} + \mathbf{c} (\mathbf{R}_{S/P} \mathbf{x} \mathbf{t}_{D}) + \text{constant}$

a, b, c coefficients values of the linear model :

Responses	R _{S/P}	t _D	$R_{S/P} x t_{D}$	R²
Circularity	-0.718 *	0.173	-0.078	0.528
Feret diameter (mm)	0.797 **	0.230	0.101	0.740
Mechanical strength (N)	0.420 *	-0.794 **	0.056	0.741
Water content (g.100 g ⁻¹)	0.355 *	-0.913 ***	-0.100	0.907
Wetting time (s)	0.674 ***	0.480 **	0.339 **	0.901

Strongest influence of the ratio, maximal at long drying time because of the interaction.

Significant differences are indicated (p < 0.05 (*), p < 0.01 (**), p < 0.001 (***)).

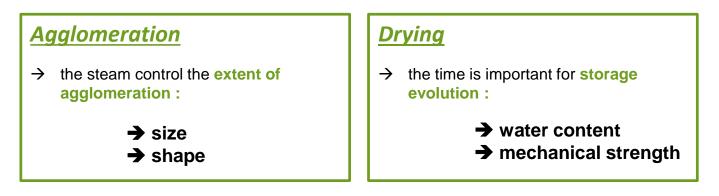
Response = $\mathbf{a} \mathbf{R}_{S/P} + \mathbf{b} \mathbf{t}_{D} + \mathbf{c} (\mathbf{R}_{S/P} \mathbf{x} \mathbf{t}_{D}) + \text{constant}$

a, b, c coefficients values of the linear model :

Responses	R _{S/P}	t _D	$R_{S/P} x t_{D}$	R²
Circularity	-0.718 *	0.173	-0.078	0.528
Feret diameter (mm)	0.797 **	0.230	0.101	0.740
Mechanical strength (N)	0.420 *	-0.794 **	0.056	0.741
Water content (g.100 g ⁻¹)	0.355 *	-0.913 ***	-0.100	0.907
Wetting time (s)	0.674 ***	0.480 **	0.339 **	0.901

Strongest influence of the ratio, maximal at long drying time because of the interaction.

Significant differences are indicated (p < 0.05 (*), p < 0.01 (**), p < 0.001 (***)).

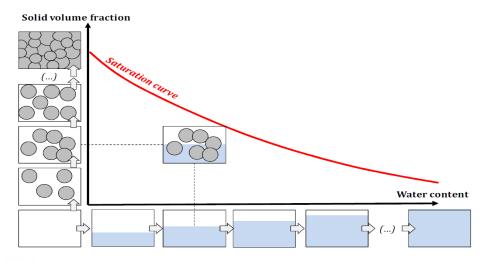

→ Instant properties are influenced by both agglomeration and drying steps → difficult to identify a key process parameter to control.

Is the influence of the process parameters due to :

- Structural modifications (size, density, porosity)?
 - **Physicochemical state** of the dairy components (lactose crystallization, protein denaturation)?

Conclusions

- □ A steam-jet agglomeration **pilot plant** was developed.
- Possible to study the influence of the process parameters on the agglomerates properties :



□ Interaction between the two process parameters → further studies needed to understand the instant properties mechanisms.

Perspectives

□ This pilot plant will allow to study :

 the agglomeration mechanisms → hydrotextural diagram (solid volume fraction vs water content).

Hydro-textural diagram to describe the agglomeration mechanisms (Barkouti 2012)

Perspectives

□ This pilot plant will allow to study :

- the agglomeration mechanisms → hydrotextural diagram (solid volume fraction vs water content).
- the **interactions** between the **raw material** properties, the **process** parameters and the **product** properties.
- the **correlations** between the agglomerates properties to understand the **mechanisms of the instant properties** (multivariate data analysis).

mathieu.person@inra.fr