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This paper presents a new method for blind source separation problem in reverberant environments with more sources than microphones. Based on the sparsity property in the time-frequency domain and the low-rank assumption of the spectrogram of the source, the STRAUSS (SparsiTy and low-Rank AmplitUde based Source Separation) method is developed. Numerical evaluations show that the proposed method outperforms the existing multichannel NMF approaches, while it is exclusively based on amplitude information.

INTRODUCTION AND STATE OF THE ART

Blind source separation (BSS) recovers source signals from a number of observed mixtures without knowing the mixing system. Separation of the mixed sounds has several applications in the analysis, editing, and manipulation of audio data [START_REF] Comon | Handbook of Blind Source Separation: Independent component analysis and applications[END_REF]. In the real-world scenario, convolutive mixture model is considered to take the room echo and the reverberation effect into account:

xi(t) = N j=1 aij(t) * sj(t), ∀i = 1, 2, . . . , M, (1) 
where sj is the j-th source and xi is the i-th mixture. N and M are the number of source and microphones respectively (M can be smaller than N ). aij is the impulse response from the j-th source to the i-th microphone.

With the help of the Short Time Fourier Transform (STFT), the wideband model (1) can be well approximated by the narrowband model as:

xi(f, τ ) N j=1 âij(f )sj(f, τ ) (2) 
where f and τ are respectively the frequency and the time index. xi(f, τ ) and sj(f, τ ) are the STFT coefficients of xi(t) and sj(t) respectively. âij is the Fourier transform of the impulse response aij.

The source separation problem for convolutive mixtures is a big challenge, especially in the under-determined setting (M < N ). In this case, the sparsity property of signals is a popular choice. For example, the DUET method [START_REF] Yilmaz | Blind separation of speech mixtures via time-frequency masking[END_REF] proposes a sparsity based timefrequency masking technique which is efficient for anechoic mixtures. In [START_REF] Araki | Underdetermined blind separation for speech in real environments with sparseness and ICA[END_REF], the authors combine the sparsity with the ICA (Independent Component Analysis) to solve the separation problem for each f . However, given the permutation ambiguity of the estimation, an extra step is necessary to determine the order of the estimation in each frequency band.

At the same time, there is a growing interest for applying Nonnegative Matrix Factorization (NMF) based methods to music signals. After being used in [START_REF] Smaragdis | Non-negative matrix factorization for polyphonic music transcription[END_REF] for polyphonic music transcription, NMF has been applied in [START_REF] Virtanen | Monaural sound source separation by nonnegative matrix factorization with temporal continuity and sparseness criteria[END_REF] for single-channel source separation. The method developed in [START_REF] Virtanen | Monaural sound source separation by nonnegative matrix factorization with temporal continuity and sparseness criteria[END_REF] is based on the assumption that the magnitude coefficient matrix of the observation can be modeled as a linear combination of basis functions. Let

X i ∈ R L F ×L T + such that X i f,τ = |xi(f, τ )|,
where LF and LT are the total number of frequency bands and time frames respectively, the NMF reads1 :

X i = V i H i , (3) 
where

V i ∈ R L F ×K +
and each column of V i contains one pattern (frequency motif) ; H i ∈ R K×L T + and each row of H i contains the activation coefficient for the corresponding pattern. K is the rank of X i . The NMF can be achieved through minimizing the measure of fit:

D(X, VH) = L F f =1 L T τ =1 d(X f,τ , [VH] f,τ ), (4) 
where (x, y) → d(x, y) is a scalar cost function. Popular choices for audio source separation are Kullback-Leibler (KL) divergence [START_REF] Daniel | Algorithms for nonnegative matrix factorization[END_REF] and Itakura-Saito (IS) divergence [START_REF] Févotte | Itakura-Saito nonnegative factorizations of the power spectrogram for music signal decomposition[END_REF].

Based on the NMF model, the separation is then performed by clustering to regroup the patterns corresponding to the sources. Automatic clustering of the components is a difficult task [START_REF] Virtanen | Monaural sound source separation by nonnegative matrix factorization with temporal continuity and sparseness criteria[END_REF]. Some unsupervised clustering methods have been proposed [START_REF] Michael | Separation of mixed audio sources by independent subspace analysis[END_REF][START_REF] Dubnov | Extracting sound objects by independent subspace analysis[END_REF], but their performance is limited [START_REF] Virtanen | Monaural sound source separation by nonnegative matrix factorization with temporal continuity and sparseness criteria[END_REF]. Supervised clustering based on pattern recognition produces better results [START_REF] Vembu | Separation of vocals from polyphonic audio recordings[END_REF][START_REF] Helen | Separation of drums from polyphonic music using non-negative matrix factorization and support vector machine[END_REF], but requires a training stage.

The authors of [START_REF] Sawada | Multichannel extensions of non-negative matrix factorization with complex-valued data[END_REF][START_REF] Arberet | Nonnegative matrix factorization and spatial covariance model for under-determined reverberant audio source separation[END_REF][START_REF] Ozerov | Multichannel nonnegative matrix factorization in convolutive mixtures for audio source separation[END_REF] have generalized the single channel NMF based methods to the multichannel case by extending the generative model leading to the Itakura-Saito divergence. In the multichannel scenario, the regroupment is tackled by exploiting the spatial characteristics based on the covariance model [START_REF] Duong | Under-determined reverberant audio source separation using a full-rank spatial covariance model[END_REF]. These algorithms are shown to have good performance for music sources. However, they suffer from the high initialization sensitivity and high computational costs.

In this paper, we study the narrowband blind separation problem (2) using the two assumptions:

• Sparsity: for each observed time-frequency (t-f) bin, only one source contributes to the mixtures.

• Low rank: each source can be decomposed using NMF.

We then propose a new multichannel NMF method by using only the amplitude of the STFT coefficients of the observations, called STRAUSS (SparsiTy and low-Rank Amplitude based Source Separation). Although it is mentioned in [START_REF] Sawada | Multichannel extensions of non-negative matrix factorization with complex-valued data[END_REF] that phase information is crucial for separation, we show that by concentrating on the amplitude information, the proposed algorithms outperform the state of the art approaches.

The rest of the paper is organized as follows. The proposed STRAUSS approach is presented in Section 2. Section 3 reports experimental results on the source separation. Section 4 concludes the paper.

PROPOSED METHOD

In this section, we develop the proposed STRAUSS method that takes advantage of both the sparsity and the low-rank assumptions. First, the spectrograms of the observation are decomposed into components using newly developed algorithms. Then, the regroupment is performed using the spectral clustering technique. At last, the estimated source signals are reconstructed via Wiener filter.

Sparsity and low-rank assumption

The sparsity assumption for audio t-f coefficients is a popular choice for source separation and is shown to have promising results for instantaneous mixtures [START_REF] Feng | A unified approach for blind source separation using sparsity and decorrelation[END_REF]. One extreme case of the sparsity assumption is that for a given f and τ , there is only one activated (dominant) source [START_REF] Yilmaz | Blind separation of speech mixtures via time-frequency masking[END_REF][START_REF] Arberet | A robust method to count and locate audio sources in a multichannel underdetermined mixture[END_REF]. This assumption can be written as follow:

Assumption 1 (Sparsity). For each time-frequency index f, τ , only one source is active, such that

xi(f, τ ) = âij * (f )sj * (f, τ ), ∀i
where j * is the index of the activated source for the given f, τ .

We denote by Θj * the set that contains all the index f, τ where the source j * is activated.

The low-rank assumption used by NMF methods lead to efficient BSS algorithms in the convolutive setting for audio signals [START_REF] Ozerov | Multichannel nonnegative matrix factorization in convolutive mixtures for audio source separation[END_REF]. This second assumption reads: Assumption 2 (Low rank). For all sources, and for all timefrequency index,

|sj(f, τ )| = K j k=1 v k j (f )h k j (t) , v k j (f ), h k j (t) ≥ 0
where Kj << min{LF , LT } is the rank of the j-th source.

Combining Assumptions 1 and 2, one has for all mixtures i and , and for all (f, τ

) ∈ Θj * |xi(f, τ )||x (f, τ )| = |âij * (f )||â j * (f )| • |sj * (f, τ )|, = K j * k=1 |âij * (f )||â j * (f )| • v k j * (f )h k j * (τ ) = K j * k=1 ṽk j * (f )h k j * (τ ) (5) 
where

ṽk j * (f ) = |âij * (f )||â j * (f )| • v k j * (f ).
The last equation in [START_REF] Virtanen | Monaural sound source separation by nonnegative matrix factorization with temporal continuity and sparseness criteria[END_REF] shows the next proposition:

Proposition 1. Let the positive matrix X i ∈ R L F ×L T + such that X i f,τ = |xi(f, τ )||x (f, τ )|. Let K = N j=1 Kj.
Then, X i has a low-rank structure and can be factorized such that:

X i = Ṽi H with Ṽ ∈ R L F ×K + , Ṽi f,k = |âij * (f )||â j * (f )| • v k j * (f ), f ∈ Θj * and H ∈ R K×L T + , H k,τ = h k j * (τ ), τ ∈ Θj *
One can remark that for all (i, ), the factorizations of X i share the same activation matrix H, up to a permutation. Moreover, this proposition shows that each column of Ṽi contains a frequency motif that comes from only one source, say j * , and is a weighted version of the corresponding pattern v k j * (f ). The challenge now is to perform a suitable clustering on Ṽi for regroupment.

Joint-NMF and Clustering

From Proposition 1, one has that:

X ii = Ṽii H, X i = Ṽi H with Ṽii f,k = |âij * (f )|v k j * (f ) Ṽi f,k = |âij * (f )||â j * (f )| • v k j * (f ) then, for all k, Ṽii f,k Ṽi f,k = |âij * (f )| |â j * (f )| . ( 6 
)
The proposed idea is then to perform a joint-NMF of the observed matrices X i , sharing the same activation matrix H, and then performing the clustering on the ratios of the obtained pattern matrices Ṽi .

Joint-NMF

Sticking to the stereo setting for the sake of simplicity, i.e. M = 2, we first perform the following joint-NMF:

Ṽ11 , Ṽ22 , Ṽ12 , H = argmin V 11 ,V 22 ,V 12 ,H D(X 11 , V 11 H) + D(X 22 , V 22 H) + D(X 12 , V 12 H) (7) 
where D(X, Y) can be IS or KL divergence. Such a minimization can be tackled by using multiplicative update rules adapted from classical NMF decomposition (See Appendix A for details).

Clustering and source reconstruction

The ratios given by ( 6) can be sensitive to small numbers. In order to avoid such instabilities, we consider the following element-wise ratios:

R 1 = Ṽ11 Ṽ12 = R 2 = Ṽ12 Ṽ22
Then, we select the elements in R 1 and R2 that are close enough w.r.t a given threshold to construct a matrix R

R f,k =    R 1 f,k +R 2 f,k 2 if Ṽ11 f,k Ṽ22 f,k -Ṽ12 f,k 2 < ε 0 otherwise (8)
We use the spectral clustering [START_REF] Andrew | On spectral clustering: Analysis and an algorithm[END_REF] on the columns of R, where the sparse correlation coefficient 2 is used as the distance between any two columns. The separated sources are then estimated from the amplitude of their STFT coefficients using a Wiener filtering [START_REF] Févotte | Itakura-Saito nonnegative factorizations of the power spectrogram for music signal decomposition[END_REF]. The STRAUSS method is summarized in Algorithm 1: Algorithm 1 (STRAUSS).

1. Calculate the amplitude matrices X 11 , X 22 and X 12 from the observations;

2. Find Ṽ11 , Ṽ22 , Ṽ12 and H by solving (7) (See Appendix A);

3. Calculate R according to (8);

4. Perform the clustering for the columns of R using spectral clustering;

5. Reconstruct the estimated source using Wiener filtering.

EXPERIMENTS

Experimental setup

We evaluated the proposed method with both IS and KL divergence for stereo music mixtures (M = 2) that contained three music parts (N = 3). The room impulse responses were simulated via the toolbox in [START_REF] Lehmann | Prediction of energy decay in room impulse responses simulated with an image-source model[END_REF]. The distance between the two microphones varied from 4 cm to 1 m. The reverberation time (RT60) was set from 50 ms to 400 ms. For each case, we created 10 mixtures using sources from the datasets [START_REF] Vinyes | MTG MASS database[END_REF][START_REF] Araki | The 2011 signal separation evaluation campaign (sisec2011):-audio source separation[END_REF]. The mixtures were down-sampled to 14.7 kHz and truncated to 8 s. We chose a tight STFT with a Hann window of length 1024 samples (69.7 ms) with 50% overlap, using the LTFAT implementation [START_REF] Peter L Sondergaard | The linear time frequency analysis toolbox[END_REF]. The separation performance was evaluated using the Signal-to-Distorsion Ratio (SDR), Signal-to-Interference Ratio (SIR), source Image to Spatial distortion Ratio (ISR) and Signals to Artifacts Ratio (SAR) [START_REF] Vincent | Performance measurement in blind audio source separation[END_REF]. The SDR reveals the overall quality of each estimated source. SIR indicates the crosstalk from other sources. ISR measures the amount of spatial distortion and SAR is related to the amount of musical noise. The average result over the 10 mixtures is given.

For the proposed algorithms, the rank for the NMF decomposition of the observations was set to 12, using 500 iterations of the multiplicative update rules. The parameter 3 in (8) was set to = 10 -4 .

The proposed algorithms are denoted by STRAUSS-IS and STRAUSS-KL depending on the chosen divergence for the NMF. STRAUSS approach is compared with the MNMF [START_REF] Sawada | Multichannel extensions of non-negative matrix factorization with complex-valued data[END_REF] and the "Full rank" method of [START_REF] Duong | Under-determined reverberant audio source separation using a full-rank spatial covariance model[END_REF]. All the algorithms are initialized randomly with 10 different initializations. For the proposed STRAUSS approach, we also used a deterministic initialization based on the complex SVD [START_REF] Becker | Complex SVD initialization for NMF source separation on audio spectrograms[END_REF], and are denoted by STRAUSS-IS-SVD and STRAUSS-KL-SVD.

For the purpose of comparison, we also developed oracle versions of the proposed algorithms: after the NMF step initialized by the complex SVD, the original sources were used as the reference for clustering. These oracle versions of the algorithms are designed to illustrate the best clustering achievable, and are denoted by STRAUSS-IS-Oracle and STRAUSS-KL-Oracle.

Source separation results

Figure 1 shows the separation results obtained with the proposed algorithms for RT60 = 250 ms with the microphone distance d = 4 cm. 3 In practice, to make the algorithms more robust, we eliminated the elements in Ṽ11 , Ṽ22 and Ṽ12 which are less than = 10 -4 One can notice that the results obtained by the complex-SVD initialization technique are better than the average performance with random initializations, and, for STRAUSS-IS, clearly outperform the average results of MNMF in terms of SDR and SIR. The oracle results show that the SDR, SIR, ISR and SAR can only be improved up to about 4 dB using only the amplitude of the sources.

On Figure 2 we display the performance of the STRAUSS-IS/KL-SVD approaches as a function of the reverberation time (RT60) in terms of SDR and SIR with a microphone distance d = 4 cm, compared to the average results of the MNMF, and the Full rank method. Except the low reverberation condition (RT60 = 50 ms), STRAUSS-SVD approaches appear to be robust to the reverberation time and outperform the state of the art approaches in higher reverberation situations.

Finally, Figure 3 shows the performance of the proposed algorithms as a function of the microphone distance, for a reverberation time RT60 = 250 ms. Although STRAUSS-IS-SVD decreases slightly as the distance increases, it appears to be robust to the microphone distance and outperforms the state of the art approaches in most of the situations (except d = 1 m).

Computational time

The computational time of the STRAUSS algorithms, MNMF and the Full rank method, with RT60 = 250 ms and d = 4 cm, are reported in Table 1 

CONCLUSION

We have developed a new approach, STRAUSS, based on the lowrank and sparsity assumption of the sources which concentrates on amplitude information of the STFT coefficients. Experimental results show that the derived algorithms outperform the state of the art results for the under-determined convolutive mixtures, while being twenty times faster. It is also interesting that these results are obtained without using the phase information. Compared to the oracle results, there is only 3 dB of improvement by using only the amplitude of the coefficients. As stressed in [START_REF] Sawada | Multichannel extensions of non-negative matrix factorization with complex-valued data[END_REF] we are convinced that the phase information must be used to improve the separation. This work shows that there exists a great potential to improve separation techniques of convolutive mixtures.

A. APPENDIX

Based on the algorithms proposed in [START_REF] Daniel | Algorithms for nonnegative matrix factorization[END_REF][START_REF] Févotte | Majorization-minimization algorithm for smooth Itakura-Saito nonnegative matrix factorization[END_REF], the multiplicative update rules can be obtained for IS and KL divergence as follows:

IS joint-NMF V 11 ← V 11 • (X 11 / X11,2 )H T X11,-1 H T (9) 
V 22 ← V 22 • (X 22 / X22,2 )H T X22,-1 H T (10)

V 12 ← V 12 • (X 12 / X12,2 )H T X12,-1 H T (11) 
H ← H• V 11 (X 11 / X11,2 ) + V 22 (X 22 / X22,2 ) + V 12 (X 12 / X12,2 ) V 11,T X11,-1 + V 22,T X22,-1 + V 12,T X12,-1 (12) KL joint-NMF

V 11 f,k ← V 11 f,k τ H k,τ X 11 f,τ X11 f,τ τ H k,τ (13) 
V 22 f,k ← V 22 f,k τ H k,τ X 22 f,τ X22 f,τ τ H k,τ (14) 
V 12 f,k ← V 12 f,k τ H k,τ X 12 f,τ X12 f,τ τ H k,τ (15) 
H k,τ ← H k,τ f V 11 f,k X 11 f,τ X11 f,τ + f V 22 f,k X 22 f,τ X22 f,τ + f V 12 f,k X 12 f,τ X12 f,τ f V 11 f,k + f V 22 f,k + f V 12 f,k (16) 
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 1 Fig. 1. Source separation performance. For STRAUSS-IS/KL and MNMF, bar represents the mean value and the error bar represents the maximum and minimum value over 10 trials.
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 2 Fig. 2. Performance of the algorithms as a function of the reverberation time.
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 3 Fig. 3. Performance of the algorithms as a function of the microphone distance
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 1 . Computational

		time for different algorithms
	STRAUSS-IS STRAUSS-KL MNMF Full Rank
	92.6 s	36.7 s	2381.4 s	3415.4 s
	It is clear that the proposed algorithms are much faster than the
	existing approaches.			

NMF can also be applied to the squared modulus, but we stick here to the modulus for the sake of simplicity

The sparse correlation coefficient calculates the correlation coefficient only on the commun support of two vectors.