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SPARSITY AND LOW-RANK AMPLITUDE BASED BLIND SOURCE SEPARATION

Fangchen Feng and Matthieu Kowalski

L2S, Univ Paris-Sud-CNRS-CENTRALESUPELEC, Université Paris-Saclay, Gif-sur-Yvette, France

ABSTRACT
This paper presents a new method for blind source separation prob-
lem in reverberant environments with more sources than micro-
phones. Based on the sparsity property in the time-frequency do-
main and the low-rank assumption of the spectrogram of the source,
the STRAUSS (SparsiTy and low-Rank AmplitUde based Source
Separation) method is developed. Numerical evaluations show that
the proposed method outperforms the existing multichannel NMF
approaches, while it is exclusively based on amplitude information.

Index Terms— Blind source separation, sparsity, low-rank,
multichannel non-negative matrix factorization

1. INTRODUCTION AND STATE OF THE ART

Blind source separation (BSS) recovers source signals from a num-
ber of observed mixtures without knowing the mixing system. Sep-
aration of the mixed sounds has several applications in the analysis,
editing, and manipulation of audio data [1]. In the real-world sce-
nario, convolutive mixture model is considered to take the room echo
and the reverberation effect into account:

xi(t) =

N∑
j=1

aij(t) ∗ sj(t), ∀i = 1, 2, . . . ,M, (1)

where sj is the j-th source and xi is the i-th mixture. N and M
are the number of source and microphones respectively (M can be
smaller than N ). aij is the impulse response from the j-th source to
the i-th microphone.

With the help of the Short Time Fourier Transform (STFT), the
wideband model (1) can be well approximated by the narrowband
model as:

x̃i(f, τ) '
N∑
j=1

âij(f)s̃j(f, τ) (2)

where f and τ are respectively the frequency and the time index.
x̃i(f, τ) and s̃j(f, τ) are the STFT coefficients of xi(t) and sj(t)
respectively. âij is the Fourier transform of the impulse response
aij .

The source separation problem for convolutive mixtures is a big
challenge, especially in the under-determined setting (M < N ).
In this case, the sparsity property of signals is a popular choice.
For example, the DUET method [2] proposes a sparsity based time-
frequency masking technique which is efficient for anechoic mix-
tures. In [3], the authors combine the sparsity with the ICA (In-
dependent Component Analysis) to solve the separation problem for
each f . However, given the permutation ambiguity of the estimation,
an extra step is necessary to determine the order of the estimation in
each frequency band.

At the same time, there is a growing interest for applying Non-
negative Matrix Factorization (NMF) based methods to music sig-
nals. After being used in [4] for polyphonic music transcription,

NMF has been applied in [5] for single-channel source separation.
The method developed in [5] is based on the assumption that the
magnitude coefficient matrix of the observation can be modeled as
a linear combination of basis functions. Let Xi ∈ RLF×LT

+ such
that Xi

f,τ = |xi(f, τ)|, where LF and LT are the total number of
frequency bands and time frames respectively, the NMF reads1:

Xi = ViHi, (3)

where Vi ∈ RLF×K
+ and each column of Vi contains one pattern

(frequency motif) ; Hi ∈ RK×LT
+ and each row of Hi contains the

activation coefficient for the corresponding pattern. K is the rank of
Xi. The NMF can be achieved through minimizing the measure of
fit:

D(X,VH) =

LF∑
f=1

LT∑
τ=1

d(Xf,τ , [VH]f,τ ), (4)

where (x, y) 7→ d(x, y) is a scalar cost function. Popular choices for
audio source separation are Kullback-Leibler (KL) divergence [6]
and Itakura-Saito (IS) divergence [7].

Based on the NMF model, the separation is then performed by
clustering to regroup the patterns corresponding to the sources. Au-
tomatic clustering of the components is a difficult task [5]. Some
unsupervised clustering methods have been proposed [8,9], but their
performance is limited [5]. Supervised clustering based on pattern
recognition produces better results [10, 11], but requires a training
stage.

The authors of [12–14] have generalized the single channel
NMF based methods to the multichannel case by extending the
generative model leading to the Itakura-Saito divergence. In the
multichannel scenario, the regroupment is tackled by exploiting the
spatial characteristics based on the covariance model [15]. These
algorithms are shown to have good performance for music sources.
However, they suffer from the high initialization sensitivity and high
computational costs.

In this paper, we study the narrowband blind separation prob-
lem (2) using the two assumptions:

• Sparsity: for each observed time-frequency (t-f) bin, only one
source contributes to the mixtures.

• Low rank: each source can be decomposed using NMF.

We then propose a new multichannel NMF method by using only
the amplitude of the STFT coefficients of the observations, called
STRAUSS (SparsiTy and low-Rank Amplitude based Source Sepa-
ration). Although it is mentioned in [12] that phase information is
crucial for separation, we show that by concentrating on the ampli-
tude information, the proposed algorithms outperform the state of
the art approaches.

1NMF can also be applied to the squared modulus, but we stick here to
the modulus for the sake of simplicity



The rest of the paper is organized as follows. The proposed
STRAUSS approach is presented in Section 2. Section 3 reports
experimental results on the source separation. Section 4 concludes
the paper.

2. PROPOSED METHOD

In this section, we develop the proposed STRAUSS method that
takes advantage of both the sparsity and the low-rank assumptions.
First, the spectrograms of the observation are decomposed into com-
ponents using newly developed algorithms. Then, the regroupment
is performed using the spectral clustering technique. At last, the es-
timated source signals are reconstructed via Wiener filter.

2.1. Sparsity and low-rank assumption

The sparsity assumption for audio t-f coefficients is a popular choice
for source separation and is shown to have promising results for in-
stantaneous mixtures [16]. One extreme case of the sparsity assump-
tion is that for a given f and τ , there is only one activated (dominant)
source [2, 17]. This assumption can be written as follow:

Assumption 1 (Sparsity). For each time-frequency index f, τ , only
one source is active, such that

x̃i(f, τ) = âij∗(f)s̃j∗(f, τ), ∀i
where j∗ is the index of the activated source for the given f, τ .

We denote by Θj∗ the set that contains all the index f, τ where
the source j∗ is activated.

The low-rank assumption used by NMF methods lead to efficient
BSS algorithms in the convolutive setting for audio signals [14].
This second assumption reads:

Assumption 2 (Low rank). For all sources, and for all time-
frequency index,

|s̃j(f, τ)| =
Kj∑
k=1

vkj (f)hkj (t) , vkj (f), hkj (t) ≥ 0

where Kj << min{LF , LT } is the rank of the j-th source.

Combining Assumptions 1 and 2, one has for all mixtures i and
`, and for all (f, τ) ∈ Θj∗√
|x̃i(f, τ)||x̃`(f, τ)| =

√
|âij∗(f)||â`j∗(f)| · |s̃j∗(f, τ)|,

=

Kj∗∑
k=1

√
|âij∗(f)||â`j∗(f)| · vkj∗(f)hkj∗(τ)

=

Kj∗∑
k=1

ṽkj∗(f)hkj∗(τ) (5)

where ṽkj∗(f) =
√
|âij∗(f)||â`j∗(f)| · vkj∗(f). The last equation

in (5) shows the next proposition:

Proposition 1. Let the positive matrix Xi` ∈ RLF×LT
+ such that

Xi`
f,τ =

√
|x̃i(f, τ)||x̃`(f, τ)|. Let K =

∑N
j=1Kj . Then, Xi` has

a low-rank structure and can be factorized such that:

Xi` = Ṽi`H

with

Ṽ ∈ RLF×K
+ , Ṽi`

f,k =
√
|âij∗(f)||â`j∗(f)| · vkj∗(f), f ∈ Θj∗

and
H ∈ RK×LT

+ , Hk,τ = hkj∗(τ), τ ∈ Θj∗

One can remark that for all (i, `), the factorizations of Xi` share
the same activation matrix H, up to a permutation. Moreover, this
proposition shows that each column of Ṽi` contains a frequency mo-
tif that comes from only one source, say j∗, and is a weighted ver-
sion of the corresponding pattern vkj∗(f). The challenge now is to
perform a suitable clustering on Ṽi` for regroupment.

2.2. Joint-NMF and Clustering

From Proposition 1, one has that:

Xii = ṼiiH, Xi` = Ṽi`H

with

Ṽii
f,k = |âij∗(f)|vkj∗(f)

Ṽi`
f,k =

√
|âij∗(f)||â`j∗(f)| · vkj∗(f)

then, for all k,
Ṽii
f,k

Ṽi`
f,k

=

√
|âij∗(f)|
|â`j∗(f)| . (6)

The proposed idea is then to perform a joint-NMF of the observed
matrices Xi`, sharing the same activation matrix H, and then per-
forming the clustering on the ratios of the obtained pattern matrices
Ṽi`.

2.2.1. Joint-NMF

Sticking to the stereo setting for the sake of simplicity, i.e. M = 2,
we first perform the following joint-NMF:

Ṽ11, Ṽ22, Ṽ12,H = argmin
V11,V22,V12,H

D(X11,V11H)

+D(X22,V22H) +D(X12,V12H)

(7)

where D(X,Y) can be IS or KL divergence. Such a minimiza-
tion can be tackled by using multiplicative update rules adapted from
classical NMF decomposition (See Appendix A for details).

2.2.2. Clustering and source reconstruction

The ratios given by (6) can be sensitive to small numbers. In order
to avoid such instabilities, we consider the following element-wise
ratios:

R1 =
Ṽ11

Ṽ12
= R2 =

Ṽ12

Ṽ22

Then, we select the elements in R1 and R2 that are close enough
w.r.t a given threshold ε to construct a matrix R

Rf,k =


R1
f,k+R2

f,k

2
if
∣∣∣∣Ṽ11

f,kṼ
22
f,k −

(
Ṽ12
f,k

)2∣∣∣∣ < ε

0 otherwise
(8)

We use the spectral clustering [18] on the columns of R, where
the sparse correlation coefficient2 is used as the distance between

2The sparse correlation coefficient calculates the correlation coefficient
only on the commun support of two vectors.



any two columns. The separated sources are then estimated from
the amplitude of their STFT coefficients using a Wiener filtering [7].
The STRAUSS method is summarized in Algorithm 1:

Algorithm 1 (STRAUSS).

1. Calculate the amplitude matrices X11, X22 and X12 from
the observations;

2. Find Ṽ11, Ṽ22, Ṽ12 and H by solving (7) (See Appendix A);

3. Calculate R according to (8);

4. Perform the clustering for the columns of R using spectral
clustering;

5. Reconstruct the estimated source using Wiener filtering.

3. EXPERIMENTS

3.1. Experimental setup

We evaluated the proposed method with both IS and KL divergence
for stereo music mixtures (M = 2) that contained three music parts
(N = 3). The room impulse responses were simulated via the tool-
box in [19]. The distance between the two microphones varied from
4 cm to 1 m. The reverberation time (RT60) was set from 50 ms to
400 ms. For each case, we created 10 mixtures using sources from
the datasets [20, 21]. The mixtures were down-sampled to 14.7 kHz
and truncated to 8 s. We chose a tight STFT with a Hann window of
length 1024 samples (69.7 ms) with 50% overlap, using the LTFAT
implementation [22].

The separation performance was evaluated using the Signal-to-
Distorsion Ratio (SDR), Signal-to-Interference Ratio (SIR), source
Image to Spatial distortion Ratio (ISR) and Signals to Artifacts Ratio
(SAR) [23]. The SDR reveals the overall quality of each estimated
source. SIR indicates the crosstalk from other sources. ISR measures
the amount of spatial distortion and SAR is related to the amount of
musical noise. The average result over the 10 mixtures is given.

For the proposed algorithms, the rank for the NMF decompo-
sition of the observations was set to 12, using 500 iterations of the
multiplicative update rules. The parameter3 in (8) was set to ε =
10−4.

The proposed algorithms are denoted by STRAUSS-IS and
STRAUSS-KL depending on the chosen divergence for the NMF.
STRAUSS approach is compared with the MNMF [12] and the
”Full rank” method of [15]. All the algorithms are initialized ran-
domly with 10 different initializations. For the proposed STRAUSS
approach, we also used a deterministic initialization based on the
complex SVD [24], and are denoted by STRAUSS-IS-SVD and
STRAUSS-KL-SVD.

For the purpose of comparison, we also developed oracle ver-
sions of the proposed algorithms: after the NMF step initialized
by the complex SVD, the original sources were used as the refer-
ence for clustering. These oracle versions of the algorithms are de-
signed to illustrate the best clustering achievable, and are denoted by
STRAUSS-IS-Oracle and STRAUSS-KL-Oracle.

3.2. Source separation results

Figure 1 shows the separation results obtained with the proposed
algorithms for RT60 = 250 ms with the microphone distance d =
4 cm.

3In practice, to make the algorithms more robust, we eliminated the ele-
ments in Ṽ11, Ṽ22 and Ṽ12 which are less than ε = 10−4
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Fig. 1. Source separation performance. For STRAUSS-IS/KL and
MNMF, bar represents the mean value and the error bar represents
the maximum and minimum value over 10 trials.

One can notice that the results obtained by the complex-SVD
initialization technique are better than the average performance with
random initializations, and, for STRAUSS-IS, clearly outperform
the average results of MNMF in terms of SDR and SIR. The oracle
results show that the SDR, SIR, ISR and SAR can only be improved
up to about 4 dB using only the amplitude of the sources.

On Figure 2 we display the performance of the STRAUSS-
IS/KL-SVD approaches as a function of the reverberation time
(RT60) in terms of SDR and SIR with a microphone distance
d = 4 cm, compared to the average results of the MNMF, and
the Full rank method.
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Fig. 2. Performance of the algorithms as a function of the reverber-
ation time.

Except the low reverberation condition (RT60 = 50 ms),
STRAUSS-SVD approaches appear to be robust to the reverber-
ation time and outperform the state of the art approaches in higher
reverberation situations.

Finally, Figure 3 shows the performance of the proposed algo-
rithms as a function of the microphone distance, for a reverberation



time RT60 = 250 ms.
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Fig. 3. Performance of the algorithms as a function of the micro-
phone distance

Although STRAUSS-IS-SVD decreases slightly as the distance
increases, it appears to be robust to the microphone distance and
outperforms the state of the art approaches in most of the situations
(except d = 1 m).

3.3. Computational time

The computational time of the STRAUSS algorithms, MNMF and
the Full rank method, with RT60 = 250 ms and d = 4 cm, are
reported in Table 1.

Table 1. Computational time for different algorithms
STRAUSS-IS STRAUSS-KL MNMF Full Rank

92.6 s 36.7 s 2381.4 s 3415.4 s

It is clear that the proposed algorithms are much faster than the
existing approaches.

4. CONCLUSION

We have developed a new approach, STRAUSS, based on the low-
rank and sparsity assumption of the sources which concentrates on
amplitude information of the STFT coefficients. Experimental re-
sults show that the derived algorithms outperform the state of the art
results for the under-determined convolutive mixtures, while being
twenty times faster. It is also interesting that these results are ob-
tained without using the phase information. Compared to the oracle
results, there is only 3 dB of improvement by using only the ampli-
tude of the coefficients. As stressed in [12] we are convinced that
the phase information must be used to improve the separation. This
work shows that there exists a great potential to improve separation
techniques of convolutive mixtures.

A. APPENDIX

Based on the algorithms proposed in [6, 25], the multiplicative up-
date rules can be obtained for IS and KL divergence as follows:

IS joint-NMF

V11 ← V11 ◦

√
(X11/X̂11,2)HT

X̂11,−1HT
(9)

V22 ← V22 ◦

√
(X22/X̂22,2)HT

X̂22,−1HT
(10)

V12 ← V12 ◦

√
(X12/X̂12,2)HT

X̂12,−1HT
(11)

H← H◦

√
V11(X11/X̂11,2) + V22(X22/X̂22,2) + V12(X12/X̂12,2)

V11,T X̂11,−1 + V22,T X̂22,−1 + V12,T X̂12,−1

(12)
KL joint-NMF

V11
f,k ← V11

f,k

∑
τ

Hk,τX
11
f,τ

X̂11
f,τ∑

τ Hk,τ
(13)

V22
f,k ← V22

f,k

∑
τ

Hk,τX
22
f,τ

X̂22
f,τ∑

τ Hk,τ
(14)

V12
f,k ← V12

f,k

∑
τ

Hk,τX
12
f,τ

X̂12
f,τ∑

τ Hk,τ
(15)

Hk,τ ← Hk,τ

∑
f

V11
f,kX

11
f,τ

X̂11
f,τ

+
∑
f

V22
f,kX

22
f,τ

X̂22
f,τ

+
∑
f

V12
f,kX

12
f,τ

X̂12
f,τ∑

f V
11
f,k +

∑
f V

22
f,k +

∑
f V

12
f,k

(16)
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