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Transmissivity estimation by topological optimization in porous media

Introduction

In real situation of heterogeneous porous media recovering the hydraulic transmissivity distribution is an expensive and hard problem, saturated hydraulic transmissivity can be measured by both in situ and laboratory experiments. This leads to implement an expensive measurement campaign.

In most cases of hydrogeological studies, knowledge of the hydrogeological properties of the aquifer is a major problem in the development of a model [START_REF] Hariga | Land-sea interface identification and submarine groundwater exchange (sge) estimation[END_REF]. Parameters such as hydraulic transmissivity, storage coefficient, differ from one geological zone to another. In this work we study a complex inverse problem where we have to locate the interfaces between the geological zones and to estimate the values of the hydraulic transmissivity.

To solve the inverse problem of identification of hydraulic transmissivity, we will first locate the geological zones by the method of topological optimization, also called optimization of structures, where the geometry sought is the geological zones. In the second step, we will estimate the values of hydraulic transmissivity.

Topology optimization is a powerful design tool that may be exploited to support the design process of several engineering systems. The standard formulation addresses the issue of finding the distribution of isotropic material that minimizes an objective function for an assigned set of constraints.

Topolgy optimization methods have mostly been used in solving linear, 'single physics' problems with single constraints, such as in stiffiness optimization of mechanical structures with constraint on structural weight. The recent developments in theory, computational speed and large-scale optimization algorithms however, allow extensions of the topology optimization method to problems involving multiphysics, multiple constarints, large numbers of elements and non-linear modelling. Compared to the vast amount of literature on general topology optimization [START_REF] Bendsøe | Optimization of structural topology, shape, and materials[END_REF], examples of topology optimization methods to multiphysics problems are relatively few and are limited to thermally loaded structures [START_REF] Rodrigues | A material based model for topology optimization of thermoelastic structures[END_REF], piezo-electric material micro structures [START_REF] Silva | Optimal design of piezoelectric microstructures[END_REF].

Many of the work dealt with the inverse problem of estimating hydraulic transmissivity. We can cite the work of Weis, Clement and Ben Ameur [START_REF] Weis | The multidimensional refinement indicators algorithm for optimal parameterization[END_REF] who developed the adaptive parametrization method. The choice of a good parametrization is an important problem in hydrogeology. Different methods of parametrization are proposed in the literature. We quote the multi-scale parameterization used by Chavent and Liu [START_REF] Hariga | Land-sea interface identification and submarine groundwater exchange (sge) estimation[END_REF] And adaptive parametrization developed by Ben Ameur, Chavent and Jaffré [START_REF] Ben Ameur | Refinement and coarsening indicators for adaptive parametrization: application to the estimation of hydraulic transmissivities[END_REF].

The results found show that these methods are not fast. Indeed, the adaptive parameterization method is based on the resolution of several minimization problems to locate the correct parameterization. While the method used in this paper, allows us to locate the geological zones and to estimate the values of the constant transmissivities by solving a single optimization problem.

The topological optimization method identifies the geological zones from the complete data and with some observations within the domain. The purpose of my work is to compare the results found with other methods. Numerical tests show that the topological optimization method is faster to identify geological zones.

This paper is outlined as follows: section 2 is devoted to define the forward problem. In section 3, we deal with the problem of identification of hydraulic transmissivity. In Section 4 we illustrate the efficiency and robustness of the method by some numerical wath we end with concluding remarks.

The forward model

We consider a heterogeneous saturated porous domain Ω = ∪ B k=1 Z k , a boarded domain of R 2 containing B geological zones Z k . We denote by Γ 1 and Γ 2 a partition of the boundary ∂Ω, such that Γ 1 ∪ Γ 2 = ∂Ω and Γ 1 ∩ Γ 2 = ∅. Dirichlet conditions are given on Γ 1 and Neumann condition is given on Γ 2 as shown in figure 1. The forward problem is defined by the following incompressible Darcy equations: where:

   -div(T (y) • ∇h) = g(y) in Ω h = H on Γ 1 T (y)∇h • n = Φ on Γ 2 (1) 
• n is the outward normal on ∂Ω,

• h (m) is the piezometric head which is the state variable,

• H and Φ are respectively the prescribed hydraulic head and flux,

• Z k ⊂ R 2 is the known geological zone and B their numbers,

• T (m 2 s -1 ) is a space dependant piecewise constant function supposed to be constant in each zone and discontinuous at the zones'interfaces, • g(y) is a linear combination of Dirac distribution representing injection/extraction wells in the domain:

g(y) = M j=1 α j δ(y -P j ) ( 2 
)
where M is the well number, δ is the Dirac operator, α j ∈ R and P j = (P xj , P yj ) for j = 1...M are respectively well's hydraulic flux and location. Note that in the forward problem (1), T , P j are known and h is the unknown and the problem (1) is well-posed and have a unique solution in the sens of Hadamard [START_REF] Hadamard | Lectures on Cauchy's problem in Linear Partial Differential Equation[END_REF].

We define

V = {v ∈ H 1 (Ω), v = H on Γ 1 }.
The weak formulation of (1) can be written as follows:

                 F ind h ∈ V such that : a(h, v) = l(v), ∀v ∈ V where a(h, v) = Ω T ∇h∇vdx ∀v ∈ V l(v) = Ω g(x)vdx + Γ2 Φvds.
(3) a(., .) is a bilinear form continue and coercive on V × V and l(.) is a linear form on V.

Lax-Milgram theorem provides the existence and the uniqueness of the solution of the direct problem [START_REF]Comsol Multiphysics[END_REF].

Frequently, in real situations the transmissivity, is unknown. However the hydraulic heads could be measured inside the domain. The studied inverse problem consists in locating interfaces between the geological zones, by identifying the different values of transmissivity.

Estimating the hydraulic transmissivity

We are interested in the estimation of hydraulic transmissivity in the forward problem [START_REF]Comsol Multiphysics[END_REF]. This parameter depends on the space variable. It is constant in pieces and presents discontinuities at the interface between the different geological zones.

The considered inverse problem consists in locating interfaces between the geological zones Z and identifying the different values of transmissivity T .

Inverse problem

The inverse problem can be defined as follows: Providing observations h obs and the source term g(x) = M j=1 α j δ(y -P j ) find the transmissivity distribution such that there exists a field u fulfilling the following system:

   -div(T (y) • ∇u) = g(y) in Ω u = H on Γ 1 T (y)∇u • n = Φ on Γ 2 (4) 
This inverse problem is posed as a minimization problem of reduced square function E [START_REF] Sun | Inverse Problems in Groundwater Modelling[END_REF].

With E defined by:

E(T, Z) = 1 2 Ω (u -h obs ) 2 dx. (5) 
Where h obs denotes these observations. These observations are added in order to improve the identification. It is straightforward to show that the functional E is quadratic, positive and hence convex with a minimum equal to zero.

The discrete formulation

The implementation of the above method was carried out using the Finite Element Method (FEM). Hence, the derivative of problem must be established on the basis of the FEM-discretized problem. The advantage of this fully discrete approach is that the exact gradient of the discrete objective function is computed; moreover, it is easily implementable in existing FEM software. All the computations have been run on Comsol Multiphysics [START_REF]Comsol Multiphysics[END_REF]. Suppose that triangulation T h of Ω characterized by n nodes and m elements. We denote by p 1 and p 2 respectively the number of nodes on the boundary Γ 1 and Γ 2 . Remind that, the unknown in this inverse problem are T and Z. Hereafter, we denote by:

• X well ∈ R s , the vector gathering the discretized design variables of g, s wells' number, • U ∈ R n is the discretized field solution of problems (4),

• H and Φ are respectively the prescribed hydraulic head and flux, • H dis and H obs ∈ R n contain the discretized Dirichlet boundary conditions on Γ 1 and the interior observations, • F Φ ∈ R n contain the discrete Neumann boundary conditions on Γ 2 • L is p 1 × n matrix containing zero and one, they are used to extract from U on Γ 1 , • P obs rectangular matrix used to extract terms at the location of the interior measurements, it's dimension depends on the number of measurements.

The discretized forms of problem ( 4) is as follows:

KU = F (X well ) + F Φ = F LU = H dis on Γ 1 (6) 
The discrete form of the functional E, defined in equation ( 5), is:

E(Z, T ) = 1 2 (P obs U -H obs ) ⊤ (P obs U -H obs ). ( 7 
)
We make a parameterization of the domain Ω by: Ω = (x 1 , . ) where x = (x 1 , x 2 , ..., x m ) is the vector of element densities us to give information about the searched zone (see figure 2). After this parameterization, the Topological optimization problem is written in the form:

min x E(x) (8) 
our optimization parameter is the vector x which gives us the loclisation of the geological zones. Afterwards, the values of the transmissivity can be determined.

Topological optimization

The topology optimization problem consists of minimizing the functional E subject to a constraint the problem (6) :

       min x : E(x), subject to KU = F LU = H dis on Γ 1 x min < 0 < x i ; (i = 1, .., m) (9) 
To determine the solution of the problem (9) we will use the topological sensitivities of the Lagrangian. We write the discrete Lagrangian associated to the constraint (6) [START_REF] Mansouri | Identification of injection and extraction wells from overspecified boundary data[END_REF]:

L(x, U, λ) = E(x) + λ ⊤ (KU + Lp -F ) + q t (L ⊤ U -H dis ) ( 10 
)
With λ is the discrete adjoint field. So, to compute the topological derivative of E with respect to Z we will calculate the derivative of L with respect to Z, then we have:

∂L ∂x (x, U, λ) = ∂E ∂x (x) + λ ⊤ ( ∂K ∂x U + K ∂U ∂x + L ∂L ∂x - ∂F ∂x ) + q ⊤ L ⊤ ∂U ∂x = ∂U ∂x P ⊤ obs [(P obs U -H obs ) + λ ⊤ K + L ⊤ q] + λ ⊤ ∂K ∂x U + λ ⊤ ∂L ∂x -λ ∂F ∂x =0
We define λ as the solution of the discrete adjoint problem [START_REF] Mansouri | Identification of injection and extraction wells from overspecified boundary data[END_REF] Kλ

+ L ⊤ q = -P ⊤ obs (P obs U -H obs ) LU = 0 (11) 
The sensitivity of the objective function as:

∂E ∂x (x) = λ ⊤ ∂K ∂x U (12) 
So, finding the geological zones Z is to determine the elements x min . Then, the derivative in the equation ( 12) is calculated on each element x e :

∂E ∂x (x)| e = -λ ⊤ |e ∂(x e K e ) ∂x e U |e (13) 
= -λ ⊤ |e K e U |e (14) 
Where K e is the element stiffness matrix for element e.

It is noted that in the first step, we determine the location of geological zones. In the next step, we will minimize the same objective function following the T parameter:

min T E(Z * , T ) (15) 
To calculate the gradient of E by the hydraulic transmissivity we use the method of the adjoint state.

The gradient of E at T is defined by: 

∂E ∂T | e = e ∇U ( 
With Φ j , j = 1 : n the basic functions that generate the space V h (V h is the discreet space of V) and m is the number of nodes for each element e.

Numerical results

The algorithm of locating interfaces between the geological zones Z and identifying the different values of transmissivity T is carried out as described hereafter:

• Data: Domain geometry and boundaries ∂Ω: Γ 1 , Γ 2 , boundary data: H, Φ, and interior measurements H obs . • Result: Locating interfaces between the geological zones Z and identifying the different values of transmissivity T .

Initialization: Z = Ω.

Steps:

1. Find fields U by solving equation ( 6) .

2. Determine adjoint fields λ solution of (11).

3. Minimize the functional E(x) over all the domain in order to obtain the geometrical zones Z * . Numerically one determines the geological zones for the x min are negative as it is indicated in the equation ( 9). 4. Minimize the function E(Z * , T ) to identify the T * .

We define the relative error on the estimated values of the transmissivity by:

ε T = ( i (T i ex -T i id ) 2 ) 1/2 ( i (T i ex ) 2 ) 1/2 (17) 
In order to check the methodology with an hydrogeologic configuration, we consider the Rocky Mountain Arsenal example based on the detailed model in [START_REF] Konikow | Modeling chloride movement in the alluvial aquifer at the rocky mountain arsenal, colorado, Technical Report Water-Supply[END_REF]. We took the simplified idealization studied as a test case in SUTRA code developed by Voss in [START_REF] Voss | A finite element simulation model for saturated-unsaturated fluid density-dependant ground-water flow with energy transport or chemically reactive single-specie solute transport[END_REF]. The porous media is supposed isotropic and heterogeneous. Figure 3 shows the geometry and boundary conditions data. The domain is 6100 × 4880 m 2 heterogeneous rectangle with a porosity ω = 0.2, a constant transmissivity T 1 = 2.5 10 -4 m 2 /s and two impermeable bedrock outcrops represented by two rectangles with relative low transmissivity T 2 = T 3 = 2.5 10 -8 m 2 /s. The aquifer is bounded by a lake at the north with a constant piezometric head h n = 75m and a river at the south with linear piezometric head, varying from 5 m to 23.5 m and two impervious lateral borders. The aquifer is exploited by three wells (1, 2 and 3) pumping at a rate of Q 1 out = -0.5 10 -3 m 3 /s each. A contamination enters the system through a leaking waste isolation pond situated in the north at (2745 m, 4270 m) with a constant rate of Q 4 in = 1.8 10 -3 m 3 /s. The forward problem is solved by using a linear triangular finite element mesh characterized by 499 nodes and 921 elements. The resulting fields were used to extract overspecified data which were used to solve the inverse problem.

A. Identification of a single geological zone: In the following numerical experience, data are numerical measurements of the hydraulic head at each node of the computing mesh (full data). In the following figure 4 we present the gradient of the objective function at different iterations of the algorithm to identify a single geological zone.

During the iterations, we notice the appearance of a zone where the value of the objective gradient of the function during the minimization is the most negative on the unknown zone. The algorithm stops at iteration 49 when the misfit function is close to zero and it is clear that it converges towards the sought values of the aquifer transmissivity (figure 5).

For transmissivity's recovering, we present in table 1 computed values at final iterations of algorithm. In conclusion, the relative errors obtained on the transmissivity values is good. B. Identification of two geological zones: We stay for complete data and we are going to identify two geological zones. The algorithm converges in 61 iterations as it is indicated in the figure 6 when the misfit function is close to zero and it is clear that it converges towards the sought values of the aquifer transmissivity (figure 9). During the iterations, we find that the most negative of the gradient of the objective function is located on the nodes close to two unknown zones. C. Sensitivity with respect to the number of measurements: Let us reduce the number of measurements by taking only one measurement in each forth cell of the computing mesh [START_REF] Hariga | Land-sea interface identification and submarine groundwater exchange (sge) estimation[END_REF]. We present the obtained transmissivity's recovering during different algorithm's iterations in figure 10.

We note that as iterations increase the transmissivity distribution is changing to the looked one. We remark that transmissivity's recovering, we present in table 2 computed values at final iterations of algorithm, with respectively full data and 35% measurements. As expected in the first case relative error (0.005%) is less than in the second case (0.011%).

The relative errors obtained on the transmissivity values are good taking into account that the number of measurements are relatively small.

For this test we stop the algorithm at iteration 70 because the misfit function is close to zero ( Figure 5).

In conclusion, the identification of the geological zones and the estimation of the hydraulic transmissivity by the method of topological optimization give us good results. Indeed, the algorithm converges quickly to solve the two optimization problems (( 12) and ( 15)). Then, if we apply the adaptive parametrization method to solve this inverse problem, we will study many optimization problems [START_REF] Ben Ameur | Refinement and coarsening indicators for adaptive parametrization: application to the estimation of hydraulic transmissivities[END_REF] for the objective function.

Conclusion

In this paper, we used the topological optimization method to identify geological zones and in second step we identified hydraulic transmissivity. The proposed algorithm gives good results even when the number of observations is reduced.
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 45 Figure 4. Identification of a single geological zone at iterations 1, 2, 7, 10 ,15, 20, 25, 35 and 49.
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 6 Figure 6. Identification of two geological zones at iterations 1, 2, 3, 7, 10 ,20, 30, 45 and 61.
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 7 Figure 7. Decrease of the misfit function during the iterations in the case of full data.
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 8 Figure 8. The positions of the measurement nodes.
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 910 Figure 9. Decrease of the misfit function during the iterations in the case of 35% measurements.

Table 1 .

 1 Relative error for transmissivity's recovering.

	Z 1	Z

2 Tex 2.5 10 -4 m 2 /s 2.5 10 -8 m 2 /s T id 2.54 10 -4 m 2 /s 2.4 10 -8 m 2 /s ǫ T 0.0253

Table 2 .

 2 Relative error for transmissivity's recovering.

	Measurements	Example with full data	example with 35% data.
	ǫ T	0.031	0.052