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ON UNIQUE CONTINUATION FOR SOLUTIONS OF

THE SHRÖDINGER EQUATION ON TREES

AINGERU FERNÁNDEZ-BERTOLIN AND PHILIPPE JAMING

Abstract. We prove that if a solution of the time-dependent
Schrödinger equation on an homogeneous tree with bounded po-
tential decays fast at two distinct times then the solution is trivial.
For the free Schrödinger operator, we use the spectral theory of
the Laplacian and complex analysis and obtain a characterization
of the initial conditions that lead to a sharp decay at any time. We
then use the recent spectral decomposition of the Schrödinger oper-
ator with compactly supported potential due to Colin de Verdière
and Turc to extend our results in the presence of such potentials.
Finally, we use real variable methods first introduced by Escauri-
aza, Kenig, Ponce and Vegao to establish a general sharp result in
the case of bounded potentials.

1. Introduction

The aim of the present paper is to study uniqueness results for
Schrödinger equations with bounded potentials on homogeneous trees.
These results can be seen as a version for homogeneous trees of a dy-
namical interpretation of the Hardy Uncertainty Principle.
The Schrödinger equation ∂tu = i(∆u + V u) has been extensively

studied by mathematicians and physicists. Those studies take place
in various underlying spaces, both continuous (Rd, manifolds,...) and
discrete. In the discrete setting, on Zd, when the potential is chosen
randomly on each k ∈ Zd, this corresponds to the celebrated Anderson
model introduced by Anderson in [An] in order to describe the behavior
of a quantum particle in disordered medium. In this paper, we will be
dealing with the Schrödinger equation when the underlying space is
an homogeneous tree (also known as a Bethe lattice in the physics
community). The corresponding Anderson model has been introduced
very early on by Abou-Chacra, Thouless and Anderson [ACTA]. This
model allows to obtain closed form formulas for some models which
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is one of the reasons why it has also been extensively studied. (see
e.g. the books [CL, PF, St] and the surveys [Ab, Wa] for more on
the subject, for the tree case, one may further refer to [HES] and its
extensive bibliography).
Our aim here is to show that solutions of the Schrödinger equation

∂tu = i(∆u+V u) on an homogeneous tree can not be too sharply local-
ized at 2 different times when the potential V is bounded. In our study,
the potential is not random but the results directly apply to potentials
that are chosen randomly on each vertex of the tree with bounded ran-
dom variables (e.g. uniformly in some interval or Bernouilli random
variable so that the results apply in the so-called Anderson-Bernouilli
model). Our results may thus be seen as a dynamical version of the
Uncertainty Principle. Before outlining our results more precisely, let
us first explain what we mean by “localizing” and further explain our
motivations in this paper.
Let us start by recalling Hardy’s uncertainty principle [Ha] on the

real line: assume f ∈ L2(R) satisfies a decrease property like

(1.1) |f(x)| ≤ Ce−x2/β2

, |f̂(ξ)| ≤ Ce−4ξ2/α2

.

Then, if αβ < 4, f ≡ 0 while, in the end-point case,
1

αβ
=

1

4
, f =

Ce−x2/β2

. In other words, a function and its Fourier transform can not
both be localized below 2 sharply localized Gaussians.
Numerous authors have extended this result to higher dimensions,

replacing the point-wise estimate (1.1) by integral or even distribu-
tional conditions [Ho, BDJ, BD, De] and also replacing the underlying
space Rd by various Lie groups (see e.g. the work of Baklouti, Kani-
uth, Sitaram, Sundari, Thangavelu,... including [BK1, BK2, SST, Th1,
Th2]. The survey [FS] and the book [Th3] may be taken as a starting
point to further investigate the subject). Most of this work requires ei-
ther complex analysis or a reduction to a real variable setting in which
complex variable tools are available. A first difficulty appears here as
the decrease in the space variable and in the Fourier variable can no
longer be measured in the same way. This problem becomes even more
striking in the discrete setting. For instance, for functions on Z, the
Fourier transform is a periodic function, so that there is no decrease at
infinity.
To overcome this, one way is to consider a dynamical interpretation

of the uncertainty principle. To explain what we mean by this, let us
go back to the real line. Recall that the solution to the free Schrödinger
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equation ∂tu = i∆u, u(0, x) = u0(x) is given by the following represen-
tation formula:

u(x, t) = (4πit)−n/2

∫

Rn

e
i|x−y|2

4t u0(y) dy = (2πit)−n/2e
i|x|2
4t

̂
ei

|·|2
4t u0

( x
2t

)
.

Hence, the solution at a fixed time has, roughly speaking, the same
size as the Fourier transform of the initial data, and we can translate
decay properties of u0 and û0 into decay properties of u0 and u(x, T )
for a fixed time T , to have

|u0(x)| ≤ Ce−x2/β2

, u(x, T ) ≤ Ce−x2/α2

,
T

αβ
>

1

4
=⇒ u ≡ 0

and, if
T

αβ
=

1

4
, u0(x) = Ce−x2(1/β2+i/4T ).

This point of view has been used by Chanillo [Ch] to prove a dy-
namical uncertainty principle on complex semi-simple Lie groups by
reducing the problem to Hardy’s Uncertainty Principle on the real line.
At the same time, Escauriaza, Kenig, Ponce and Vega started a series
of papers [EKPV1, EKPV2, EKPV3] were they provide the first proof
of the Hardy Uncertainty Principle, in its dynamical version and up to
the end-point case, using real calculus. Their motivation is to consider
solutions of general linear Schrödinger equations ∂tu = i(∆u + V u),
only assuming size conditions for the potential V . The robustness of
both methods allows to extend their results to different settings, such as
for covariant Schrödinger evolutions, [BFGRV, CF], or heat evolutions
[EKPV4] but also to other underlying spaces [PS, BSTD, LuMu].
More recently, independently in [FB, FBV, JLMP], we began to

extend the previous results to the discrete setting, understanding the
Laplace operator as a finite-difference operator, acting on complex-
valued functions f : Z → C,

∆df(n) := f(n+ 1) + f(n− 1)− 2f(n).

For the free evolution, or for the linear evolution with a bounded
time-independent potential, as shown in [LyMa], one can use complex
analysis tools to give a discrete version of the Hardy Uncertainty Prin-
ciple. As in the continuous case, the critical decay is given by the
discrete heat kernel, given in terms of modified Bessel functions. How-
ever, this similarity leads also to the main difference between both
settings, because the critical decay is not Gaussian. More precisely, it
is shown that for α < 1 and u a C1([0, 1], ℓ2(Z))−solution, also called
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strong solution, of ∂tu = i∆du, satisfying

|u(n, 0)|+ |u(n, 1)| ≤ CIn(α) ∼
C√
|n|

(
eα

2|n|

)|n|
, n ∈ Z \ {0},

u ≡ 0. In the end-point case, α = 2, u(n, t) = Ci−ne−2itJn(1 − 2t),
where Jn is the Bessel function. This argument is also extended to
other type of problems, as shown in [ART] for Jacobi operators.
In the case of linear Schrödinger equations, one can give a dynamical

version of the Hardy Uncertainty Principle, only assuming that the po-
tential is bounded, which makes another difference with the continuous
case, since in the continuous case one requires to have some decay in
the potential, and the result is still open for bounded potentials.
In this case, the decay condition to assure that there is no fast de-

caying solution, is, for µ > 1,
∑

n∈Z
eµ(|n|+1) log(|n|+1)(|u(n, 0)|2 + |u(n, 1)|2) <∞.

This result is sharp in µ, in the sense that the complex analytic
part shows that there exist non-zero solutions that satisfy the previous
condition with µ = 1. A higher dimensional version of this result can be
found in [FBV], although the rate of decay µ depends on the dimension
and the sharp result is still open.

In this paper we extend both approaches to homogeneous trees of
degree q + 1 (Bethe lattices), which we denote by Tq. This is a con-
nected graph with no loops, rooted in a point denoted by o, where every
vertex is adjacent to q + 1 other vertices, relation denoted by y ∼ x.
Thus, one can see Tq as a natural extension of the line Z, which can
be seen as a homogeneous tree of degree 2, and expect to have simi-
lar behavior for solutions to Schrödinger evolutions on Tq. As in the
line, we understand the Laplacian as the combinatorial Laplacian, that
is a finite-difference operator L only taking into account interactions
between nearest-neighbors (see Section 2 for a precise definition).
It is our aim here is to contribute to the understanding of the behav-

ior of solutions of Schrödinger equations on trees (see e.g. the recent
papers [AS, Ed, CdVT] for other directions) as well as to establish Un-
certainty Principles on trees (so far, we are only aware of one article
[As] dealing with that issue). Finally, homogeneous trees can also be
seen as a discrete analogs of hyperbolic spaces and more precisely 0-
hyperbolic spaces in the sense of Gromov. The Schrödinger operator
on real hyperbolic spaces has attracted a lot of attention recently (see
e.g. [AP, Ba, BCS, IS]) and we hope that this work will also lead to
new insight in that setting.
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We are now in position to describe our results. First, since the
spectral theory of the Laplacians on homogeneous trees is known (see
[CS]), we have all the ingredients to give a dynamic interpretation of
the Hardy Uncertainty Principle on Tq when there is no potential:

Theorem A. There exists a function Uq on Tq such that, if u is a

strong solution to the equation

i∂tu(x, t) = Lu(x, t) = u(x, t)− 1

q + 1

∑

y∼x

u(y, t), x ∈ Tq

with u(x, 0) = u0(x) and if at times t0 = 0 and t1 = 1, there is a κ
such that, for x 6= o

|u(x, ti)| ≤
κ√
|x|

(
e

2(q + 1)|x|

)|x|

then u0 = γUq for some γ ∈ C with |γ| ≤ κ.

The function Uq is explicitly given by an integral formula, see below.
Furthermore, in [CdVT], the authors develop the spectral theory for

compactly supported hermitian perturbations

Vf(x) =
∑

y∈Tq

V (x, y)f(y).

Hence, we extend the previous theorem to compactly supported per-
turbations of the free Schrödinger equation. The spectral theory in
[CdVT] is also extended to graphs isomorphic to a homogeneous tree
at infinity. These graphs, outside a finite sub-graph, look like Tq. Al-
though we do not include the details, it can be checked that the same
results are valid for this type of operators, which can be seen as an
extension of [AR], where the case of a finite number of threads (lines)
attached to a finite graph is studied.
The second part of the paper is devoted to the study of the simplified

problem ∂tu(x) = i(Lu(x) + V (x)u(x)), with a bounded potential V ,
using real variable calculus. This approach combines the main tech-
niques of [FBV, JLMP], to prove first that a fast decaying solution
at two different times preserves this decay at any interior time, and,
later, via a Carleman estimate with Gaussian weight, we give a lower
bound for the ℓ2−norm of the solution in a region far from the origin.
A combination of these two facts leads then to:

Theorem B (Uniqueness result). Let u ∈ C1([0, 1] : ℓ2(Tq)) be a

solution to ∂tu(x) = i(Lu(x) + V (x)u(x)) with V a bounded potential.
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If for µ > 1
∑

x∈Tq

e2µ|x| log(|x|+1)
(
|u(x, 0)|2 + |u(x, 1)|2

)
< +∞,

then u ≡ 0.

It is worth to mention that the Carleman inequality (see Lemma 5.3)
requires an extra term if we compare it to the case of the line. However,
we can take advantage of the good properties of the Gaussian weight
to neglect the effect of this extra term and conclude our result.
The paper is organized as follows: in Section 2 we introduce some no-

tations and preliminaries from the theory of entire functions as well as
a summary of the spectral theory of the adjacency matrix on Tq. These
notions can be found in [CdVT, Le], but we include them here to clarify
our presentation. Section 3 studies the free Schrödinger equation and
includes the proof of Theorem A. In Section 4 we use again complex
analytic tools to extend Theorem A and cover the case of compactly
supported potentials. Finally, Section 5 covers the real variable ap-
proach, proving Theorem B via a Carleman inequality and logarithmic
convexity of ℓ2 weighted norms.

2. Notations and preliminaries

2.1. Entire functions of exponential type. As in [JLMP], we will
use methods from complex analysis. For the reader’s convenience, we
begin by briefly outlining some definitions and facts on entire functions
of exponential type that we need. Details can be found in [Le] (see in
particular Lectures 8 and 9). Recall that an entire function f is said
to be of exponential type if for some k > 0

(2.2) |f(z)| ≤ C exp(k|z|).
In this case the type of an entire function f is defined by

(2.3) σ = lim sup
r→∞

logmax{|f(reiφ)|;φ ∈ [0, 2π]}
r

<∞.

In particular, an entire function f is of zero exponential type if for any
k > 0 there exists C = C(k) such that (2.2) holds.
Let f(z) be an entire function of exponential type, f(z) =

∑∞
n=0 cnz

n.
Then the type of f can be expressed in terms of its Taylor coefficients
as

(2.4) lim sup
n→∞

n|cn|1/n = eσ.



SHRÖDINGER EQUATION ON TREES 7

The growth of a function f of exponential type along different direc-
tions is described by the indicator function

hf (ϕ) = lim sup
r→∞

log |f(reiϕ)|
r

.

This function is the support function of some convex compact set If ⊂
C which is called the indicator diagram of f . In particular

(2.5) hf(ϕ) + hf (π + ϕ) ≥ 0.

For example the indicator function of eaz for a ∈ C is h(ϕ) = ℜ(aeiϕ)
and its indicator diagram consists of a single point, ā.
Clearly, hfg(ϕ) ≤ hf (ϕ) + hg(ϕ), implying that

Ifg ⊂ If + Ig := {z = z1 + z2 : z1 ∈ If , z2 ∈ Ig}.
2.2. Trees. Throughout this paper, q will be an integer, q ≥ 2. We
will denote by T = Tq the homogeneous tree of degree q + 1. This
means that the tree is formed by a connected graph with no loops
where every vertex is adjacent to q+1 other vertices, relation denoted
by y ∼ x.
A geodesic path (resp. geodesic ray, infinite geodesic) in T is a finite

(resp. one-sided infinite, resp. doubly infinite) sequence (xn) such that
two consecutive terms are adjacent, xn ∼ xn−1 and that does not turn
back xn+1 6= xn−1. We can then define the distance d(x, y) as the
number of points in the geodesic path which goes from x to y. In
particular, in a geodesic, d(xn, xm) = |n−m|.
Moreover, we fix a vertex of the tree T to be the root o and write

|x| = d(x, o). For an integer ℓ ≥ 0, we denote by Sℓ = {x ∈ T :
|x| = ℓ}. The boundary ∂T of T is defined as the set of infinite paths
starting at the root o. Then, we define, for a point x ∈ T and w ∈ ∂T,
the confluence point of x and w, denoted by x∧w as the last point lying
on w in the geodesic path joining o and x. Attached to this confluence
point we define the Buseman function hw and the HorocyclesHw

k , k ∈ Z

by

hw(x) = |x| − 2|x ∧ w| , and Hw
k = {x ∈ T : hw(x) = k}.

Every horocycle is infinite and every x ∈ Hw
k has one neighbor x− ∈

Hw
k−1 (its predecessor) and q neighbors in Hw

k+1 (its successors).
Now let ψℓ,k = |Sℓ ∩Hw

k | be the number of elements in an horocycle
Hk of length ℓ. When k ≥ 0,

ψℓ,k =





qk if ℓ = k

(q − 1)qk+p−1 if ℓ = k + 2p, p ≥ 1

0 otherwise
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and for k ≥ 1,

ψℓ,−k =





1 if ℓ = k

(q − 1)qp−1 if ℓ = k + 2p, p ≥ 1

0 otherwise

.
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Figure 1. The tree T2 and horocycles.

The so called Helgason-Fourier transform (see e.g. [CS]) of a function
f on the tree is defined by the formula

FT[f ](s, w) :=
∑

x∈T
f(x)q−(1/2+is)hw(x), s ∈ T, w ∈ ∂T,

where T = R/τZ, usually identified with the interval [−τ/2, τ/2), with
τ = 2π/ log q.
Moreover, the following inversion formula holds,

(2.6) f(x) =

∫

T

∫

∂T

q−(1/2−is)hw(x)FT[f ](s, w) dν(w) dµ(s), x ∈ T.

We refer to [CS] for the exact definitions of the measures ν and µ.
We will also need to distinguish between the neighbors and double

neighbors of a vertex of the tree. More precisely, for x ∈ T with |x| = n
we set
— xf = {y ∈ T : |y| = n + 1} and, if x 6= o, xp to be the unique

y ∈ T such that y ∼ x and |y| = n− 1. Note that |of | = q + 1 and, if
x 6= o, |xf | = q.
— xff = {y ∈ T : |y| = n + 2, yp ∈ xf} so that |off | = q(q + 1)

and, if x 6= o, |xff | = q2.
— If |x| ≥ 2, xpp = (xp)p.
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— If x 6= o, xpf = (xp)f \ {x} so that |y| = |x| if y ∈ xpf . Note that
if |x| = 1, |xpf | = q while otherwise |xpf | = q − 1.
In other words, xf is the set of daughters of x, xp the mother of x,

xpp is the grand-mother of x, xff the set of grand-daughters of x, xpf
the set of sisters of x.
Note that, for any function ϕ on T, and any n ≥ 1,

(2.7)
∑

|x|=n

∑

z∈xpf

ϕ(z) =

{
q
∑

|x|=1 ϕ(x) if n = 1

(q − 1)
∑

|x|=n ϕ(x) if n ≥ 2
.

Finally, we consider the adjacency operator A0 and the Laplace op-
erator L on T: for u a function on T,

A0u(x) =
∑

y∼x

u(y)

and

Lu(x) =

(
I − 1

q + 1
A0

)
u(x) = u(x)− 1

q + 1

∑

y∼x

u(y)

=
1

q + 1

∑

y∼x

(
u(x)− u(y)

)
.

We will denote by ‖ · ‖2 the ℓ2(T)-norm: if u : T → C,

‖u‖22 =
∑

x∈T
|u(x)|2

and by ‖ · ‖L2
x,t

the L2
t ℓ

2−norm: if u : [0, 1]×T → C,

‖u‖L2
x,t

=

∫ 1

0

∑

x∈T
|u(t, x)|2 dt.

3. Schrödinger equation on the tree

We want to study uniqueness properties of solutions to the Schrö-
dinger equation i∂tu = Lu assuming that they have fast decay at two
different times. Adapting the method developed in [JLMP] in the case
of the line to the tree, our main result in this Section is Theorem A
from the introduction, that is

Theorem 3.1.

Assume that u is a strong solution to the equation

(3.8) i∂tu(x, t) = Lu(x, t) = u(x, t)− 1

q + 1

∑

y∼x

u(y, t), x ∈ T
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with u(x, 0) = u0(x). Assume that there is a κ such that, at times

t0 = 0 and t1 = 1, for x 6= o

(3.9) |u(x, ti)| ≤
κ√
|x|

(
e

2(q + 1)|x|

)|x|
.

Then there exists a constant C such that u0 is the function that only

depends on |x| given by the integral representation formula

u0(x) =
C

q−|x|/2

∫ π

0

exp

(
−i q

1/2

q + 1
cos(z)

)
ϕ|x|(z) sin(z) dz

where

ϕj(z) =
q1/2 sin

(
z(j + 1)

)
− q−1/2 sin

(
z(j − 1)

)

q + q−1 − 2 cos(2z)
.

Remark 3.2. A change of variable allows us to write u0 as

u(|x|, 0) = C

q−|x|/2F [ψ|x|]

(
q1/2

q + 1

)

where F is the Fourier transform on R and

ψj(s) =
q1/2 sin

(
(j + 1) arccos s

)
− q−1/2 sin

(
(j − 1) arccos s

)

q + q−1 + 1− 2s2

on (−1, 1) and ψj = 0 on R \ (−1, 1).

Proof. Let us fix a ray w = 0y1y2 . . .. Let k ∈ Z. As we already noticed,
if x ∈ Hw

k , it has exactly one predecessor in Hw
k−1 and q successors in

Hw
k+1. Therefore,

L
(
q−(1/2+is)hw(x)

)
=

(
1− q1/2+is

q + 1
− q

q−1/2−is

q + 1

)
q−(1/2+is)hw(x).

For a solution u to (3.8), we consider the Fourier-Helgason transform
ũ(s, w, t) = FT[u(·, t)], whose evolution is given by

i∂tũ =

(
1− q1/2

q + 1
(qis + q−is)

)
ũ.

Hence, if we set σ = q1/2

2(q+1)
,

(3.10) ũ(s, w, t) = e−i
(
1−2σ(qis+q−is)

)
tũ(s, w, 0).
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Now we decompose,

ũ(s, w, t) =
∑

x∈T, hw(x)>0

u(x, t)q−hw(x)/2q−ishw(x)

+
∑

x∈T, hw(x)≤0

u(x, t)q−hw(x)/2q−ishw(x)

=
+∞∑

k=0

1

qk/2


∑

x∈Hw
k

u(x, t)


 ξk

+
+∞∑

k=1

qk/2


 ∑

x∈Hw
−k

u(x, t)



(
1

ξ

)k

where ξ = q−is.

Now write b0 = 1 and, for ℓ ≥ 1, bℓ =
1√
ℓ

(
e

2(q + 1)ℓ

)ℓ

so that if

tj ∈ {0, 1},

∣∣∣∣∣∣

∑

x∈Hw
k

u(x, tj)

∣∣∣∣∣∣
=

∣∣∣∣∣∣

∞∑

ℓ=0

∑

x∈Hw
k ∩Sℓ

u(x, tj)

∣∣∣∣∣∣
≤ κ

∞∑

ℓ=0

ψℓ,kbℓ

≤





κqk

(
bk + (q − 1)

∞∑

p=1

qp−1bk+2p

)
for k ≥ 0

κ

(
b−k + (q − 1)

∞∑

p=1

qp−1b−k+2p

)
for k ≤ −1

.

Using that (k + 2p)k+2p+1/2 ≥ kk+1/2 when k, p ≥ 1, and that
(2p)2p+1/2 ≥ 4 we get that, for k ≥ 1,

∞∑

p=1

qp−1bk+2p =

(
e

2(q + 1)

)k
1

q

∞∑

p=1

(
e
√
q

2(q + 1)

)2p
1

(k + 2p)k+2p+1/2

≤ 1√
k

(
e

2(q + 1)k

)k
e2

4(q + 1)2
(
1− e2q

4(q+1)2

) ≤ bk
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and the same bound holds for k = 0, thus

∣∣∣∣∣∣

∑

x∈Hw
k

u(x, tj)

∣∣∣∣∣∣
≤





κq for k = 0

κqk+1bk = κq
1√
k

(
eq

2(q + 1)k

)k

when k ≥ 1

κqb|k| = κq
1√
|k|

(
e

2(q + 1)|k|

)|k|
when k ≤ −1

.

It follows that

φ+
j (ξ, w) :=

+∞∑

k=0

q−k/2


∑

x∈Hw
k

u(x, tj)


 ξk

extends into an entire function in ξ of exponential type σ. Its indicator
diagram I+j is therefore included in the closed disc D̄(0, σ). On the
other hand

(3.11) φ−
j (ζ, w) :=

+∞∑

k=1

qk/2


 ∑

x∈Hw
−k

u(x, tj)


 ζk

extends into an entire function in ζ of exponential type σ as well and
its indicator diagram I−j is therefore also included in the disc D̄(0, σ).
Actually, a little more is shown, namely that

(3.12) |φ±
j (ξ, w)| ≤ Cqκe

σ|ξ|.

Let us now turn back to (3.10) which we write as

ũ(s, w, t) = e−i
(
1−2σ

(
ξ+ξ−1)

)
t
(
φ−
0 (ξ

−1, w) + φ+
0 (ξ, w)

)
.

This holds a priori for ξ = q−is and thus extends to ξ ∈ C \ {0} and
every t. We write ũ(ξ, w, t) for the corresponding extension.
For t = 1 we obtain

φ±
1 (ξ, w) = −φ∓

1 (ξ
−1, w)

+ e−i exp
(
2iσ(ξ + ξ−1)

)(
φ±
0 (ξ, w) + φ∓

0 (ξ
−1, w)

)
.

It follows that I±1 ⊂ I±0 + 2iσ which in turn implies that I±1 is reduced
to iσ and I±0 is reduced to −iσ.
Let us now take t = 1/2. Then

ũ(ξ, w, 1/2) = e−i/2eiσ(ξ+ξ−1))
(
φ−
0 (ξ

−1, w) + φ+
0 (ξ, w)

)
.

Write ũ(ξ, w, 1/2) = u+(ξ) + u−(ξ
−1) where u+ (resp. u−) contains all

terms of positive (resp. negative) exponent in the Laurent series of ũ.
The indicator diagram of those functions coincide with {0} thus u± are
entire functions of 0 exponential type. On the other hand, (3.12) shows
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that u± are bounded. According to the Phragmen-Lindelöf principle
(see e.g. [Le, Lecture 6]) u+ and u− are constant and thus u is a
constant as well.
It follows that

ũ(s, w, 0) = Cw exp
(
i(1− σ(qis + q−is)

)

for some constant Cw that depends on the ray w. But, by definition,
for ξ = q−is

ũ(ξ, w, 0) =
∑

x∈T
u(x, 0)

(
ξ√
q

)hw(x)

and this extends to all ξ ∈ C\{0}, in particular to ξ =
√
q. This shows

that
Cw = exp

(
−i(1− σ(q1/2 + q−1/2)

)∑

x∈T
u(x, 0)

does not depend on w. We thus write Cw = C.
The integral formula for u(|x|, 0) then comes from the inversion for-

mula (2.6) and (see [CS])
∫

∂T

q−(1/2−is)hw(x)dν(w) = c(−s)q(−is−1/2)|x| + c(−s)q(is−1/2)|x|,

where c(s) = q1/2

q+1
q1/2+is−q−1/2−is

qis−q−is . �

As an immediate corollary, we have the following uniqueness prop-
erty for strong solutions to (3.8):

Corollary 3.3.

Assume that u is a strong solution to the equation (3.8). Assume that

there exists ǫ > 0 and κ such that, for x 6= o

|u(x, ti)| ≤
κ√
|x|

(
e

(2 + ǫ)(q + 1)|x|

)|x|
, t0 = 0, t1 = 1.

Then u ≡ 0.

4. Uniqueness for perturbed problems: the compact

support case

In this section we want to apply similar techniques to solutions to
equations of the form

(4.13) i∂tu(x, t) = Lu(x, t) + Vu(x, t), x ∈ T,

where Vu(x, t) =∑y∈T V (x, y)u(y, t) and V is a compactly supported

hermitian potential, V (y, x) = V (x, y). We denote its support as the
set K×K, where K is included in BR = {x ∈ T, |x| ≤ R} for some R.
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In [CdVT] there is an extension of the Helgason-Fourier transformation
in this context, and, for the sake of completeness, we recall here the
main features.
We define the operator

Af(x) =
∑

y∼x

f(x) +Wf(x) = A0f(x) +Wf(x),

where, W = −(q + 1)V, and we recall the Green’s functions of the
operator A0. For s ∈ T× iR+,

G0(λs)f(x) =
∑

y∈T
G0(λs, x, y)f(y), G0(λs, x, y) =

q(−1/2+is)d(x,y)

q1/2−is − q−1/2+is
.

We define, for s ∈ T and w ∈ ∂T the functions a(s, w, x) and
e(s, w, x) as the solutions to the following problems

a(s, w, x) = χKe0(s, w, x) + χKG0(λs)[Wa(s, w)](x),(4.14)

e(s, w, x) = e0(s, w, x) +G0(λs)[Wa(s, w)](x),(4.15)

where e0(s, w, x) = q−(1/2−is)hw(x). With this notation, the deformed
Fourier-Helgason transformation is defined as

F̃T[f ](s, w) =
∑

x∈T
f(x)e(s, w, x).

In [CdVT] it is shown that this formula is well defined for ℓ2(T)
functions and that it can be holomorphically extended to s ∈ S+ = T×
iR+. Here again, T = R/τZ, identified with the interval [−τ/2, τ/2),
and τ = 2π/ log q.
Further, there is a decomposition of ℓ2(T) = Hac ⊕Hpp where
— the space Hpp is finite dimensional, admits an orthonormal basis

of ℓ2(T) eigenfunctions associated to a finite set of eigenvalues.

— F̃T[f ] = 0 then f ∈ Hpp.
The actual statement [CdVT, Theorem 4.3] is stronger, but this is

enough for our needs.
Thanks to the deformed Fourier-Helgason transformation, we are

able to prove the main result of this section.

Theorem 4.1.

Let V be a bounded and compactly supported hermitian potential and

V be defined by Vu(x) =
∑

y∈T V (x, y)u(y).

Let u0 ∈ Hac and let u ∈ C1
(
[0, 1], ℓ2(T)

)
) be a solution to

i∂tu(x, t) = Lu(x, t) + Vu(x, t), x ∈ T, t ∈ [0, 1]
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with initial condition u(·, 0) = u0. Assume that, for some ǫ > 0, at
times t0 = 0 and t1 = 1 the solution satisfies the bound

(4.16) |u(x, tj)| ≤ C
1√
|x|

(
e

(2 + ǫ)(q + 1)|x|

)|x|
, j = 0, 1.

Then u ≡ 0.

Remark 4.2. Alternatively, we may impose the bounds (4.16) on πacu,
the projection of u on Hac and conclude that πacu = 0.
On the other hand, if u0 ∈ Hpp, Lu + Vu = λu, then u(x, t) =

e−iλtu0(x). Such a solution has therefore the same decrease rate at any
time. As shown in [CdVT], for certain V’s, Hpp may contain finitely
supported functions on T so that our theorem can not hold without
the restriction u0 ∈ Hac. However, in the case every element of Hpp is
finitely supported, then if u satisfies (4.16) so thus πacu. As a conse-
quence, the theorem remains valid provided we replace the conclusion
u ≡ 0 by u0 ∈ Hpp. Recall that this space is finite dimensional.
Note also that when V is diagonal, i.e. Vu(x) = V (x)u(x) then there

are no compactly supported eigenfunctions.

Proof. First note that if u0 ∈ Hac then u(·, t) ∈ Hac for all t.
As we did in the free case, for a fixed w ∈ ∂T we consider ũsc as the

deformed Fourier-Helgason transform

ũsc(s, w, t) =
∑

x∈T
u(x, t)e(s, w, x).

As u takes values in Hac, it is enough to show that ũsc = 0.
From [CdVT], we have again that

(4.17) ũsc(s, w, t) = e−i[1−2σ(qis+q−is)]tũsc(s, w, 0).

According to (4.14) we have

ũsc(s, w, t) =
∑

x∈T
u(x, t)q−hw(x)/2q−ishw(x)

+
∑

x∈T
u(x, t)

∑

y∈K

q−(1/2+is)d(x,y)

q1/2+is − q−1/2−is
[Wa(s, w)](y)

=
∑

x∈T
u(x, t)q−hw(x)/2ξhw(x)

+
∑

x∈T
u(x, t)

∑

y∈K

q−d(x,y)/2ξd(x,y)

q1/2ξ−1 − q−1/2ξ
[Wa(ξ, w)](y),
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with ξ = q−is. We are going to split the second sum in the regions x ∈
BR and x 6∈ BR. For the second region, notice that, if we denote by xK
the closest point inK to x, then for y ∈ K, d(x, y) = d(x, xK)+d(xK , y).
Hence, if x 6∈ BR, by (4.14),

∑

y∈K

(q−1/2ξ)d(x,y)

(q−1/2ξ)−1 − q−1/2ξ
[Wa(ξ, w)](y)

= (q−1/2ξ)d(x,xK)
(
a(ξ, w, xK)− (q−1/2ξ)−hw(xK)

)
.

Notice that, from (4.14), it is easy to check that a(ξ, w, x) is a rational
polynomial in the variable ξ, so, since xK ∈ K, there existsM =M(R)
such that, for |ξ| large enough, to avoid the (finite number of) poles of

a(ξ, w, xK)− (q−1/2ξ)−hw(xK), we have
∣∣∣a(ξ, w, xK)− (q−1/2ξ)−hw(xK)

∣∣∣ ≤ C|ξ|M .

Moreover, thanks to the decay hypothesis, at t = 0 and t = 1 the
three different sums are holomorphic in the region {|ξ| > 1} except
perhaps at a finite number of poles. Let us study separately each sum
in that region. First,

|Φ1(ξ, w, t)| :=

∣∣∣∣∣
∑

x∈T
u(x, t)(q−1/2ξ)−hw(x)

∣∣∣∣∣

≤ C +
∑

x∈T, hw(x)<0

|u(x, t)||q−1/2ξ|−hw(x).

Following the same reasoning as in the free case for (3.11), we get

that this sum extends to an exponential function of type
√
q

(2+ǫ)(q+1)
.

Hence, at t = 0 and t = 1, for any α,

lim sup
r→∞

log |Φ1(re
iα, w, t)|
r

≤
√
q

(2 + ǫ)(q + 1)
.

Now, since for x ∈ BR, y ∈ K we have |d(x, y)| ≤ 2R, there exists
M =M(R) such that

|Φ2(ξ, ω, t)| :=

∣∣∣∣∣
∑

x∈BR

u(x, t)
∑

y∈K

(q−1/2ξ)d(x,y)

(q−1/2ξ)−1 − q−1/2ξ
[Wa(ξ, w)](y)

∣∣∣∣∣

≤ C‖V‖∞|ξ|M
∑

x∈BR

|u(x, t)|.
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Thus, since u ∈ ℓ2(T), at t = 0 and t = 1, for any α,

lim sup
r→∞

log |Φ2(re
iα, w, t)|
r

= 0.

Finally, we have to study |Φ3(ξ, w, t)|

:=

∣∣∣∣∣
∑

x 6∈BR

u(x, t)(q−1/2ξ)d(x,xK)
(
a(ξ, w, xK)− (q−1/2ξ)−hw(xK)

)∣∣∣∣∣

≤ |ξ|M
∑

x 6∈BR

|u(x, t)||q−1/2ξ|d(x,xK).

Let us consider, for j ≥ 1, the points x ∈ T such that |x| = R + j.
Notice that there are qR+j−1(q+1) such points and that, for each such

point, d(x, xK) ≤ j + 2R. Hence, setting bℓ =
1√
ℓ

(
e

(2+ǫ)(q+1)ℓ

)ℓ
,

∑

x 6∈BR

|u(x, t)||q−1/2ξ|d(x,xK) ≤
∑

j≥1

qR+j−1(q + 1)|bR+j |q−1/2ξ|j+2R

=
q + 1

q
|q−1/2ξ|R

∑

j≥1

|bR+j ||q1/2ξ|R+j.

Finally, the sum on the right-hand side is bounded by e
√

q|ξ|
(2+ǫ)(q+1) , so we

get

(4.18) lim sup
r→∞

log |Φ3(re
iα, w, t)|
r

≤
√
q

(2 + ǫ)(q + 1)
.

Gathering the results for Φi, i = 1, 2, 3 we conclude that, at t = 0
and t = 1, for any α,

lim sup
r→∞

log |ũsc(reiα, w, t)|
r

≤
√
q

(2 + ǫ)(q + 1)
.

Using (2.5), if ũsc 6≡ 0, we get that, at t = 0 and t = 1, for any α,

lim sup
r→∞

log |ũsc(reiα, w, t)|
r

≥ −
√
q

(2 + ǫ)(q + 1)
.

Now, let us recall that, from (4.17), if g(ξ) = exp{−i(1−2σ(ξ+ξ−1)}
ũsc(ξ, w, 1) = g(ξ)ũsc(ξ, w, 0)

and, furthermore,

lim sup
y→+∞

log |g(−iy)|
y

= 2σ =

√
q

(q + 1)
.
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We then have

lim sup
y→+∞

log |ũsc(−iy, , w, 1)|
y

=

√
q

(q + 1)
+ lim sup

y→+∞

log |ũsc(−iy, w, 0)|
y

≥
√
q

(q + 1)
−

√
q

(2 + ǫ)(q + 1)

>

√
q

(2 + ǫ)(q + 1)
,

which contradicts (4.18). Thus ũsc ≡ 0 thus u ≡ 0. �

5. Uniqueness for perturbed problems using Carleman

estimates

In this section we consider the simplified problem

(5.19) ∂tu = i(Lu+ V u)

where V = V (x, t) is a bounded potential.
We are going to begin this section by pointing out that a fast de-

caying solution at times t = 0 and t = 1 extends the fast decay to the
whole interval [0, 1]. This is given by an immediate extension of part
of the results in [JLMP]. We first need an auxiliary lemma:

Lemma 5.1.

Let u ∈ C1([0, T ],T) satisfy

∂tu(x, t) = i
(
Lu(x, t) + V (x, t)u+ F (x, t)

)
,

where V and F are complex valued functions in T× [0, T ] and bounded.

Let

ψα(x, t) = (1 + |x|)α|x|/(1+t), α ∈ (0, 1].

Then, for T > 0,

‖ψα(T )u(T )‖22 ≤ eCT

(
‖ψα(0)u(0)‖22 +

∫ T

0

‖ψα(s)F (s)‖22 ds
)
,

provided the right-hand side is finite.

Proof. Define f(x, t) = ψα(x, t)u(x, t) and H(t) = ‖f(t)‖22 for a fixed
α. We will just write ψ = ψα. Notice that ψ only depends on |x|, so
for |x| = n we write ψ(x) = ψ(n).
Formally,

∂tf = iψL(ψ−1f) + φtf + iV f + iψF = Sf +Af + iV f + iψF,
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where φ = logψ and

Sf = φtf +
i

q + 1

∑

y∼x

sinh(φ(x, t)− φ(y, t))f(y)

Af =
i

q + 1

∑

y∼x

cosh(φ(x, t)− φ(y, t))f(y)− if(x).

are symmetric and skew-symmetric operators respectively. Since

∂tH(t) = 2ℜ〈∂tf, f〉,

it is easy to check that ∂tH(t) is

≤ 2‖ψF‖2‖f‖2 + ‖V ‖∞‖f‖2

+

(
2φt(0) +

2√
q
| sinh(φ(1)− φ(0)|)

)
|f(o)|2

+
∑

n≥1,|x|=n

(
2φt(n) +

2
√
q

q + 1

∣∣ sinh
(
φ(n)− φ(n− 1)

)∣∣
)
|f(x)|2

+
2
√
q

q + 1

∑

n≥1,|x|=n

∣∣ sinh
(
φ(n+ 1)− φ(n)

)∣∣|f(x)|2.

The result follows after proving that the last three terms are bounded
by C‖f‖2, in the same spirit as in [JLMP]. To justify this formal
argument, we can prove again the same result (now rigorously) for
a truncated weight ψN and then let N → ∞ (See [JLMP] for this
argument in the line). �

This result shows that if we have a solution of (5.19) with fast decay
at time t = 0, the solution has fast decay at any future time, although
the decay gets worse with time. Our aim now is to use also the fast
decay at time t = 1 to improve the decay at future times.

Theorem 5.2.

Let γ > 0 and V a bounded potential. Let u be a strong solution of

(5.19) and assume that at times t = 0 and t = 1,

‖(1 + |x|)γ(1+|x|)u(x, t)‖2 < +∞, t ∈ {0, 1}.

Then, for all t ∈ [0, 1], ‖(1 + |x|)γ(1+|x|)u(t)‖2 < +∞.

Proof. For 1/2 < b < 1, let φb(n) = γ(1+n) logb(1+n), n ∈ N∪{0}. Set
f = eφb(|x|)u and, as before H(t) = ‖f(t)‖22. The previous lemma shows
that H(t) is finite for all t, so the subsequent formal computations are
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justified. We will show that, for some C > 0,

Hb(t) ≤ eCt(1−t)Hb(0)
1−tHb(1)

t

≤ eCt(1−t)‖(1 + |x|)γ(1+|x|)u(0)‖2(1−t)
2 ‖(1 + |x|)γ(1+|x|)u(1)‖2t2 .

The result will follow by letting b → 1 and applying the monotone
convergence theorem.
In order to prove our claim, we write again ∂tf = Sf + Af + iV f

and, as shown in [JLMP], the claim follows from a lower bound

(5.20) 〈[S,A]f, f〉 ≥ −C‖f‖2,

with S,A the operators defined in the previous lemma, in this case for
the weight eφb . Since φb does not depend on t, it is easy to check that
(q + 1)2〈[S,A]f, f〉 is

=
∑

x∈T

∑

y∼x

∑

z∼y

sinh
(
2φb(|y|)− φb(|x|)− φb(|z|)

)
f(z)f(x)

= sinh
(
2φb(1)− 2φb(0)

)
|f(o)|2

+2 sinh
(
2φb(1)− φb(0)− φb(2)

)
ℜ
∑

z∈off

f(z)f(o)

+
∑

x∈T\{0}
sinh

(
2φb(|x| − 1)− 2φb(|x|)

)∑

z∈xpf

f(z)f(x)

+
∑

x∈T\{0}
sinh

(
2φb(|x| − 1)− 2φb(|x|)

)
|f(x)|2

+2ℜ
∑

x∈T\{0}
sinh

(
2φb(|x|+ 1)− φb(|x|)− φb(|x|+ 2)

)∑

z∈xff

f(z)f(x)

+
∑

x∈T\{0}
q sinh

(
2φb(|x|+ 1)− 2φb(|x|)

)
|f(x)|2

= S1 + · · ·+ S6.

As for each n, there exists γn such that, for every 1/2 < b < 1,
|Φb(n)| ≤ γn, there exists a constant C such that S1, S2 ≥ −C‖f‖2.
As in [JLMP], there exists a constant κ such that, for every n,

| sinh
(
2φb(n + 1) − φb(n) − φb(n + 2)

)
| ≤ κ. Further, |xff | = q2

so that Cauchy-Schwarz shows that there is a contant C such that
S5 ≥ −C‖f‖2.
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Next, if |x| ≥ 2,
∣∣∣∣∣∣

∑

z∈xpf

f(z)f(x)

∣∣∣∣∣∣
≤ 1

2

∑

z∈xpf

(
|f(z)|2 + |f(x)|2

)

=
q − 1

2
|f(x)|2 + 1

2

∑

z∈xpf

|f(z)|2,

while if |x| = 1,
∣∣∣∣∣∣

∑

z∈xpf

f(z)f(x)

∣∣∣∣∣∣
≤ q

2
|f(x)|2 + 1

2

∑

z∈xpf

|f(z)|2,

But then

S3 ≥ −1

2

∑

x∈T\{0}
sinh

(
2φb(|x|)− 2φb(|x| − 1)

) ∑

z∈xpf

|f(z)|2

−q − 1

2

∑

|x|≥2

sinh
(
2φb(|x|)− 2φb(|x| − 1)

)
|f(x)|2

−q
2

∑

|x|=1

sinh
(
2φb(1)− 2φb(0)

)
|f(x)|2

= −(q − 1)
∑

x∈T\{0}
sinh

(
2φb(|x|)− 2φb(|x| − 1)

)
|f(x)|2

−
∑

|x|=1

sinh
(
2φb(1)− 2φb(0)

)
|f(x)|2

= Sa
3 + Sb

3

since each x ∈ T\{0} appears q−1 or q times in the first sum if |x| ≥ 2
or |x| = 1. It follows that Sb

3 ≥ −C‖f‖2 and

Sa
3 + S4 + S6 ≥ q

∑

x∈T\{0}
ψb(|x|)|f(x)|2 ≥ 0

where

ψb(n) = sinh
(
2φb(n+ 1)− 2φb(n)

)
− sinh

(
2φb(n)− 2φb(n− 1)

)
≥ 0

due to the properties of the function (1 + x) logb(1 + x) for x > 0 and
1/2 < b < 1, see [JLMP]. �

As it happens in the continuous case, or in the line, uniqueness holds
from an argument related to Carleman inequalities. Here we prove the
following Carleman inequality
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Lemma 5.3 (Carleman inequality on the tree).
Let ϕ : [0, 1] → R be a smooth function, β > 0 and γ > 1

2β
. There

exists R0 = R0(‖ϕ‖∞ + ‖ϕ′‖∞ + ‖ϕ′′‖∞, β, γ) such that, if R > R0,

α ≥ γR logR and if g is a function on T× [0, 1], g ∈ C1
0([0, 1], ℓ

2(T))
has its support contained in the set

{(x, t) : |x|/R + ϕ(t) ≥ β},

then

sinh
2α

R2
cosh

4αβ

R
‖eα(

|x|
R

+ϕ)
2

g1|x|≥1‖2L2
x,t

≤ (q + 1)2‖eα(
|x|
R

+ϕ(t))
2

(i∂t + L)g‖2L2
x,t

+

∫ 1

0

sinh
4α

R

(
1

2R
+ ϕ

)∑

|x|=1

∣∣∣eα(
1
R
+ϕ(t))

2

g(x)
∣∣∣
2

dt.

Proof. Let φ be defined by φ(n) = α
( n
R

+ ϕ(t)
)2
. For f = eφg we

have,

eφ(i∂t + L)g = Sf +Af,

where

Sf = i∂tf +
1

q + 1

∑

y∼x

cosh(φ(x, t)− φ(y, t))f(y, t)− f,

Af = −iφtf +
1

q + 1

∑

y∼x

sinh(φ(x, t)− φ(y, t))f(y, t).

We need to give a lower bound for the commutator, which immedi-
ately implies the result using the fact that

‖eα(
|x|
R

+ϕ(t))
2

(i∂t + L)g‖2L2
x,t

≥ 〈[S,A]f, f〉.

To simplify notation, we will not explicitly write the dependence of
f on the time variable t so that f(x) means f(x, t), x ∈ T, t ∈ [0, 1].
A simple computation shows that

(5.21) 〈[S,A]f, f〉 =
∫ 1

0

S(t) dt
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where

(5.22) S(t) :=
∑

x∈T
φtt(x)|f(x)|2

+
2

q + 1

∑

x∈T

∑

y∼x

(φt(x)− φt(y)) cosh(φ(x)− φ(y))f(y)f(x)

+
1

(q + 1)2

∑

x∈T

∑

y∼x

∑

z∼y

sinh(2φ(y)− φ(x)− φ(z))f(z)f(x).

As in the previous proof, we split them into sums over mothers and
daughters. Recall that the root has only daughters while the rest of the
points in the tree have a single mother and q daughters. Further, the
function φ(x, t) only depends on |x|, the distance of a point in the tree
to the root o. We therefore decompose the sums in (5.22) as follows:
S(t) = S1 + · · ·+ S7 where

— The first sum in (5.22) is S1 =
∑

n≥0

∑

|x|=n

φtt(n)|f(x)|2.

— For the second sum in (5.22), each pair x ∼ y appears twice, once
|x| = |y| + 1, once with |x| = |y| − 1. Therefore, this sum can be
rewritten as

S2 =
4

q + 1
Im
∑

n≥1

∑

|x|=n

(φt(n)−φt(n−1)) cosh(φ(n)−φ(n−1))f(xp)f(x).

— For the last sum in (5.22), we need to distinguish more cases:
a) x = 0, y any daughter and z = 0. This happens q + 1 times and

leads to

S3 =
1

q + 1
sinh 2

(
φ(1)− φ(0)

)
|f(o)|2;

b) x ∈ T \ {0}, i.e. n := |x| ≥ 1 y is one of the q daughters of x and
z = x which leads to

S4 =
q

(q + 1)2

∑

n≥1

∑

|x|=n

sinh 2
(
φ(n+ 1)− φ(n)

)
|f(x)|2

while if y is the mother of x and z = x, we get

S5 =
1

(q + 1)2

∑

n≥1

∑

|x|=n

sinh 2
(
φ(n− 1)− φ(n)

)
|f(x)|2;

c) x ∈ T \ {0}, i.e. n := |x| ≥ 1, y is the mother of x and z is any
of the sisters of x, we get

S6 =
1

(q + 1)2

∑

n≥1

∑

|x|=n

∑

z∈xpf

sinh 2
(
φ(n− 1)− φ(n)

)
f(z)f(x);
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— Finally, all other terms x is the grand-mother of z and each such
couple (x, z) appears twice. As |z| ≥ 2, this may be written as

S7 =
2

(q + 1)2
ℜ
∑

n≥2

∑

|x|=n

sinh
(
2φ(n− 1)− φ(n)− φ(n− 2)

)
f(x)f(xpp).

Before estimating those quantities, as φ(n) = α
(
n
R
+ ϕ(t)

)2
, we ob-

tain

φt(n) = 2α
( n
R

+ ϕ
)
ϕ′

φtt(n) = 2α
[( n
R

+ ϕ
)
ϕ′′ + (ϕ′)2

]

φt(n)− φt(n− 1) =
2α

R
ϕ′

φ(n− 1)− φ(n) = −2α

R

(
n− 1/2

R
+ ϕ

)

φ(n) + φ(n+ 2)− 2φ(n+ 1) =
2α

R2
.

Let us now estimate S1 to S7. We will treat them from the simplest
to the most involved one rather than the order in which they appeared
in the above decomposition. We start with S1, which can be bounded
by

(5.23) S1 ≥ −2‖ϕ′′‖∞α
∑

n≥0

∣∣∣ n
R

+ ϕ
∣∣∣
∑

|x|=n

|f(x)|2.

To estimate S7, we write 2ℜ(f(x)f(xpp) = −|f(x) − f(xpp)|2 +
|f(x)|2 + |f(xpp)|2, then

S7 =
sinh 2α

R2

(q + 1)2

∑

n≥2

∑

|x|=n

(
|f(x)− f(xpp)|2 − |f(x)|2 − |f(xpp)|2

)

≥ − sinh 2α
R2

(q + 1)2


∑

n≥2

∑

|x|=n

|f(x)|2 +
∑

n≥2

∑

|x|=n

|f(xpp)|2



≥ − sinh 2α
R2

(q + 1)2


q(q + 1)|f(o)|2 + q2

∑

|x|=1

|f(x)|2

+(q2 + 1)
∑

n≥2

∑

|x|=n

|f(x)|2

(5.24)
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since o has q(q + 1) grand-daughters and thus appears q(q + 1) times
as an xpp, if |x| ≥ 1, it has q2 grand-daughters and thus will appear q2

times in the second sum.
Next, for S6, we use that f(z)f(x) ≥ −1

2
(|f(x)|2+ |f(z)|2) to obtain

S6 ≥ − 1

2(q + 1)2

∑

n≥1

∣∣sinh 2
(
φ(n− 1)− φ(n)

)∣∣×

×
∑

|x|=n

∑

z∈xpf

(|f(x)|2 + |f(z)|2)

= − 1

(q + 1)2


q
∣∣sinh 2

(
φ(0)− φ(1)

)∣∣ ∑

|x|=1

|f(x)|2

+(q − 1)
∑

n≥1

∣∣sinh 2
(
φ(n− 1)− φ(n)

)∣∣ ∑

|x|=n

|f(x)|2

 .

Here we use the fact that xpf has q elements if |x| = 1 and q − 1
elements otherwise for

∑
|x|=n

∑
z∈xpf

|f(x)|2 and we use (2.7) for the

second sum. Finally, using the expression of φ, we get

(5.25) S6 ≥ − 1

(q + 1)2


q sinh 4α

R

(
1

2R
+ ϕ

)∑

|x|=1

|f(x)|2

+(q − 1)
∑

n≥2

sinh
4α

R

(
n− 1/2

R
+ ϕ

) ∑

|x|=n

|f(x)|2

 .

Now, for S2, let us first introduce

Ψ(n) = cosh
(
φ(n)− φ(n− 1)

)

and
Σn =

∑

|x|=n

(
q1/2|f(x)|2 + q−1/2|f(xp)|2

)
.

We use the expression of φt and the fact that

2|f(x)f(xp)| ≤ q1/2|f(x)|2 + q−1/2|f(xp)|2

to bound S2 by

≥ − 4α|ϕ′|
(q + 1)R

∑

n≥1

Ψ(n)Σn

= −4α|ϕ′|
q1/2R

Ψ(1)|f(o)|2 − 4q1/2α|ϕ′|
(q + 1)R

∑

n≥1

∑

|x|=n

[
Ψ(n) + Ψ(n+ 1)

]
|f(x)|2
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since o will appear q + 1 times as an xp and each x with |x| ≥ 1 will
appear once as an x and q times as an xp. Using the expression of φ
we conclude that

(5.26) S2 ≥ −4α‖ϕ′‖∞
Rq1/2

cosh
2α

R

(
1

2R
+ ϕ

)
|f(o)|2

− 4q1/2α‖ϕ′‖∞
(q + 1)R

cosh
α

R2

∑

n≥1

cosh
2α

R

( n
R

+ ϕ
) ∑

|x|=n

|f(x)|2.

Next, write

S4 =
q − 1

(q + 1)2

∑

n≥1

∑

|x|=n

sinh 2
(
φ(n + 1)− φ(n)

)
|f(x)|2

+
1

(q + 1)2

∑

n≥1

∑

|x|=n

sinh 2
(
φ(n+ 1)− φ(n)

)
|f(x)|2

= Sa
4 + Sb

4.

We will group Sb
4 and S5 noticing that

sinh
4α

R

(
n+ 1/2

R
+ ϕ

)
− sinh

4α

R

(
n− 1/2

R
+ ϕ

)

= 2 cosh
4α

R

( n
R

+ ϕ
)
sinh

2α

R2
.

This leads to

(5.27) Sb
4 + S5 ≥

2

(q + 1)2
sinh

2α

R2

∑

n≥1

cosh
4α

R

( n
R

+ ϕ
) ∑

|x|=n

|f(x)|2.

We are now in position to estimate S1 + · · ·+ S7. Let us first isolate
all terms containing |f(o)|2. They appear in (5.23), S3, (5.24) and
(5.26).
The factor of |f(o)|2 is

A := −2α‖ϕ‖∞‖ϕ′′‖∞ +
1

q + 1
sinh

4α

R

(
1

2R
+ ϕ

)

− q sinh 2α
R2

q + 1
− 4α‖ϕ′‖∞

Rq1/2
cosh

2α

R

(
1

2R
+ ϕ

)
.

Now, the hypothesis of the lemma show that, if f(o) 6= 0, then

ϕ ≥ β > 0. Further, as α >
1

2β
R logR, it is easy to see that the

dominating term in A is the second one and that the other three can
be absorbed in it provided R is large enough. Thus A ≥ 0 if R is large
enough (depending on q, ‖ϕ‖∞, ‖ϕ′‖∞, ‖ϕ′′‖∞ and β).
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Next, we compute the factor of
∑

|x|=1

|f(x)|2. The one stemming from

Sa
4 and the one appearing in (5.25) give

[
q − 1

(q + 1)2
sinh

4α

R

(
3

2R
+ ϕ

)
− q

(q + 1)2
sinh

4α

R

(
1

2R
+ ϕ

)]

≥ − 1

(q + 1)2
sinh

4α

R

(
1

2R
+ ϕ

)
.

The remaining terms for |x| = 1 come from (5.27), (5.26), (5.24) and

(5.23). The factor of
∑

|x|=1

|f(x)|2 stemming from those terms is

2

(q + 1)2
sinh

2α

R2
cosh

4α

R

(
1

R
+ ϕ

)

− 4q1/2α‖ϕ′‖∞
(q + 1)R

cosh
α

R2
cosh

2α

R

(
1

R
+ ϕ

)

− q2 sinh 2α
R2

(q + 1)2
− 2‖ϕ′′‖∞α

∣∣∣∣
1

R
+ ϕ

∣∣∣∣.

The three last terms are again absorbed in the first one (see [FBV] for
details). We are thus left with

1

(q + 1)2
sinh

2α

R2
cosh

4α

R

(
1

R
+ ϕ

)∑

|x|=1

|f(x)|2

≥ 1

(q + 1)2
sinh

2α

R2
cosh

4αβ

R

∑

|x|=1

|f(x)|2

because of the support property of f .

For n ≥ 2 the factor of
∑

|x|=n

|f(x)|2 come from

— first those from Sa
4 and from (5.25) which now are

q − 1

(q + 1)2
sinh

4α

R

(
n+ 1/2

R
+ ϕ

)
− q − 1

(q + 1)2
sinh

4α

R

(
n− 1/2

R
+ ϕ

)
≥ 0,



28 AINGERU FERNÁNDEZ-BERTOLIN AND PHILIPPE JAMING

— the remaining ones coming from (5.23), (5.24), (5.26) and (5.27)

− 2‖ϕ′′‖∞α
∣∣∣ n
R

+ ϕ
∣∣∣− q2 + 1

(q + 1)2
sinh

2α

R2

− 4q1/2α‖ϕ′‖∞
(q + 1)R

cosh
α

R2
cosh

2α

R

( n
R

+ ϕ
)

+
2

(q + 1)2
sinh

2α

R2
cosh

4α

R

( n
R

+ ϕ
)
.

The first three terms are again absorbed in the last one (see [FBV] for
details). We are thus left with

1

(q + 1)2
sinh

2α

R2

∑

n≥2

cosh
4α

R

( n
R

+ ϕ
) ∑

|x|=n

|f(x)|2

≥ 1

(q + 1)2
sinh

2α

R2
cosh

4αβ

R

∑

n≥2

∑

|x|=n

|f(x)|2

because of the support property of f .
In summary, if R is large enough,

〈[S,A]f, f〉 ≥ −
∫ 1

0

1

(q + 1)2
sinh

4α

R

(
1

2R
+ ϕ

)∑

|x|=1

|f(x)|2 dt

1

(q + 1)2
sinh

2α

R2
cosh

4αβ

R

∫ 1

0

∑

n≥1

∑

|x|=n

|f(x)|2 dt

as announced. �

Even though we need a correction term in order to give the Carleman
estimate, we can adapt the argument in [FBV] to give again a lower
bound for solutions to Schrödinger evolutions on trees.

Theorem 5.4 (Lower bound for solutions to Schrödinger equations).
Let q ≥ 2, A,L, η > 0 then there exists R0 = R0(q, A, L) > 0 and

c = c(q, η) such that

— if V is a bounded function on T with

‖V ‖∞ = sup
t∈[0,1],x∈T

{|V (x, t)|} ≤ L,

— and u ∈ C1([0, 1] : ℓ2(T)) is a strong solution of

∂tu = i(Lu+ V u)
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that satisfies the bounds

∫ 1

0

∑

x∈T
|u(x, t)|2 dt ≤ A2 ,

∫ 1/2+1/8

1/2−1/8

|u(x0, t)|2 dt ≥ 1

for some x0 with |x0| = 2.
Then for R ≥ R0,

λ(R) ≡



∫ 1

0

∑

⌊R⌋−1≤|x|≤⌊R⌋+1

|u(x, t)|2 dt




1/2

≥ ce−(1+η)R logR.

Proof. For ǫ > 0 fixed let us define the following cut-off functions:
— we define θR, µ to be C∞(R) functions such that 0 ≤ θR, µ ≤ 1

and

(5.28) θR(x) =

{
1, |x| ≤ R− 1
0, |x| ≥ R

µ(x) =

{
1, |x| ≥ ǫ−1 + 1
0, |x| ≤ ǫ−1 .

— and a C∞([0, 1]) function ϕ such that 0 ≤ ϕ ≤ 2 + ǫ−1 and

(5.29) ϕ(t) =

{
2 + ǫ−1, t ∈ [1

2
− 1

8
, 1
2
+ 1

8
]

0, t ∈ [0, 1
4
] ∪ [3

4
, 1]

.

We are going to apply the previous lemma to

g(x, t) := θR(|x|)µ
( |x|
R

+ ϕ(t)

)
u(x, t), x ∈ T, t ∈ [0, 1].

Notice that the evolution of g is given by the expression

(i∂t + L)g = θRµ

( |x|
R

+ ϕ

)
(i∂tu+ Lu) + iϕ′θR(x)µ′

( |x|
R

+ ϕ

)
u

+θR(x)
1

q + 1

∑

y∼x

(
µ

( |y|
R

+ ϕ

)
− µ

( |x|
R

+ ϕ

))
u(y, t)

+
1

q + 1

∑

y∼x

(
θR(|y|)− θR(|x|)

)
µ

( |y|
R

+ ϕ

)
u(y, t).
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Using the bounds on the cut-off functions and the fact that |i∂tu +
Lu| = |V u| ≤ ‖V ‖∞|u| we get

|(i∂t + L)g| ≤ ‖V ‖∞|u|+ Cϕ

∣∣∣∣µ
′
( |x|
R

+ ϕ

)∣∣∣∣|u|

+
1

q + 1

∣∣∣∣∣
∑

y∼x

(
µ

( |y|
R

+ ϕ

)
− µ

( |x|
R

+ ϕ

))
u(y, t)

∣∣∣∣∣

+
1

q + 1

∑

y∼x

∣∣θR(|y|)− θR(|x|)
∣∣|u(y, t)|.

Thus, by means of the Carleman estimate with β = 1/ε and R large
enough,

(5.30) sinh(2α/R2) cosh(4α/ǫR)‖eα(
|x|
R

+ϕ)
2

g1|x|≥1‖L2
x,t

≤ c‖V ‖2∞‖eα(
|x|
R

+ϕ)
2

g‖2L2
x,t

+ c

∫ 1

0

∑

n≥0,|x|=n

e2α(
n
R
+ϕ)

2
∣∣∣µ′
( n
R

+ ϕ
)∣∣∣

2

|u(x, t)|2dt

+c

∫ 1

0

∑

n≥0,|x|=n

∑

y∼x

e2α(
n
R
+ϕ)

2
∣∣∣∣µ
( |y|
R

+ ϕ

)
− µ

( |x|
R

+ ϕ

)∣∣∣∣
2

|u(y, t)|2dt

+ c

∫ 1

0

∑

n≥0,|x|=n

∑

y∼x

e2α(
n
R
+ϕ)

2∣∣θR(|y|)− θR(|x|)
∣∣|u(y, t)|2dt

+

∫ 1

0

sinh
4α

R

(
1/2

R
+ ϕ

)∑

|x|=1

e2α(
1
R
+ϕ)

2

|g(x, t)|2dt.

Note that we used Cauchy-Schwarz in the third and fourth sums in the

form
∑

x∈T

∣∣∣∣∣
∑

y∼x

ψ(y)

∣∣∣∣∣

2

≤ (q + 1)
∑

x∈T

∑

y∼x

|ψ(y)|2.

We now study carefully the support of each term.
For the first term involving V : by taking α = cR logR with c ≥ ε/2

(5.31) sinh(2α/R2) cosh(4α/ǫR) ≥ 2cR
4c
ǫ
−1 logR,

so that, when R large enough (depending on L also now), the term on
the right, up to the term involving root o, is absorbed in the left-hand
side. Further, the remaining term is bounded by ce2α(2+ǫ−1)L2A2.
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For the term involving the derivative of the function µ, we easily see
that n

R
+ ϕ ≤ 1 + ǫ−1, and, therefore

∫ 1

0

∑

n≥0,|x|=n

e2α(
n
R
+ϕ)

2
∣∣∣µ′
( n
R

+ ϕ
)∣∣∣

2

|u(x, t)|2 dt ≤ ce2α(1+ǫ−1)A2.

Next we study the term involving the difference of µ functions, which
is similar to the last one. It is easy to check that if n

R
+ϕ ≥ ǫ−1+1+ 1

R
both functions µ, the one evaluated at x and the one evaluated at one
neighbor of x are 0. Hence,

∫ 1

0

∑

n≥0,|x|=n

∑

y∼x

e2α(
n
R
+ϕ)

2
∣∣∣∣µ
( |y|
R

+ ϕ

)
− µ

( |x|
R

+ ϕ

)∣∣∣∣
2

|u(y, t)|2 dt

≤ e2α(ǫ
−1+1+1/R)

2

A2.

Now we focus on the term with difference of θ functions. In this case,
the only possibilities where the difference is not zero are summarize as
— |x| = ⌊R⌋ − 1 and y a future neighbor, |y| = ⌊R⌋.
— |x| = ⌊R⌋ and y any neighbor of x.
— |x| = ⌊R⌋ + 1 and y the past neighbor, |y| = ⌊R⌋.

Thus,

∫ 1

0

∑

n≥0,|x|=n

∑

y∼x

e2α(
n
R
+ϕ)

2∣∣θR(|y|)− θR(|x|)
∣∣|u(y, t)|2 dt

≤ ce2α(3+ǫ−1+1/R)
2

λ2(R).

For the last term in the right-hand side, we just bound the function
ϕ to put all the functions out of the sum. Now, by the definition
of θR and µ, we see that if x = x0 and t ∈ [1/2 − 1/8, 1/2 + 1/8]

then
∣∣∣ |x0|

R
+ ϕe1

∣∣∣ = 2 + ǫ−1 + 2/R, so the cut-off functions are 1 and

g(x0, t) = u(x0, t). This allows us to bound the left-hand side of the
Carleman inequality of the lemma by

‖eα(
|x|
R

+ϕ)
2

g1|x|≥1‖2L2
x,t

≥ e(2+ǫ−1+2/R)22α,

since
∫ 1/2+1/8

1/2−1/8
|u(x0, t)|2 ≥ 1.
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Gathering all these results we have,

sinh

(
2α

R2

)
cosh

(
4α

ǫR

)
e2α(2+ǫ−1+2/R)2

≤ e2α(2+ǫ−1)A2L2 + e2α(1+ǫ−1+1/R))2A2

+ sinh
4α

R

(
1/2

R
+ 2 + ǫ−1

)
e2α(2+ǫ−1+1/R)2A2

+ e2α(3+ǫ−1+1/R)2λ2(R).

It is clear that the first two terms in the right-hand side are smaller
than the third term. Let us see that the third term can be hidden
in the left-hand side, for R large enough, depending on A (recall that
before we showed that R depends on L as well) and ǫ, which is a fixed
number. Indeed, taking into account that α = cR logR with c > ǫ

2
, we

have

sinh

(
2α

R2

)
cosh

(
4α

ǫR

)
e2α(2+ǫ−1+2/R)2

∼ 2c logRR2cR(2+ǫ−1)2+8c(2+ǫ−1)+4cǫ−1−1+8c/R

and

sinh
4α

R

(
1/2

R
+ 2 + ǫ−1

)
e2α(2+ǫ−1+1/R)2A2

∼ A2R2cR(2+ǫ−1)2+8c(2+ǫ−1)+4c/R,

which proves our claim.
Finally, we conclude that

1 ≤ 2c logRR
4c
ǫ
−1 ≤ cǫe

(5+2ǫ−1)2cR logR−(2+2ǫ−1)2c logRλ2(R),

so

λ(R) ≥ cǫe
−(5+2ǫ−1)cR logR+(2+2ǫ−1)c logR.

We just finish this result by taking c = ǫ/2 + ǫ2, to have

(5.32) λ(R) ≥ cǫe
−(1+9ǫ/2+5ǫ2)R logR+(1+3ǫ+2ǫ2) logR

which is of the desired form. �

Once we have the lower bound, since the previous log-convexity prop-
erties derive upper bounds for the term λ(R), we are in position to prove
Theorem B from the introduction, that is
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Theorem 5.5 (Uniqueness result).
Let u ∈ C1([0, 1] : ℓ2(T)) be a solution of (5.19) with V a bounded

potential. If for µ > 1
∑

x∈T
e2µ|x| log(|x|+1)

(
|u(x, 0)|2 + |u(x, 1)|2

)
< +∞,

then u ≡ 0.

Proof. Let η > 0 be such that µ > 1 + η > 1.
If u is not zero, by translation and dilation, we may assume that u

satisfies, for some x0 ∈ T with |x0| = 2,
∫ 1/2+1/8

1/2−1/8

|u(x0, t)|2 dt ≥ 1,

so that we can apply the previous theorem to find a lower bound for
λ(R). More precisely, we know that λ(R) satisfies (5.32). On the other
hand, by Theorem 5.2 we have

sup
t∈[0,1]

∑

x∈T
|u(x, t)|2e2µ|x| log |x| < +∞.

Hence λ(R) ≤ ce−µR logR. Combining both bounds,

ce−µR logR ≥ λ(R) ≥ ce−(1+η)R logR.

We get a contradiction letting R → ∞. �

Remark 5.6. If one wish to study the full general problem in the tree

∂tu = i(Lu+ Vu),
with Vu(x) =

∑

y∈T
V (x, y)u(y), a bounded potential seems not enough

to conclude uniqueness and some decay or support conditions should
be required for V , since, in order to use the same approach, one needs
to study the operator ψV(ψ−1f) for the previous weights.
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