
HAL Id: hal-01547074
https://hal.science/hal-01547074v1

Submitted on 26 Jun 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Strategic and interactive learning of a hierarchical set of
tasks by the Poppy humanoid robot

Nicolas Duminy, Sao Mai Nguyen, Dominique Duhaut

To cite this version:
Nicolas Duminy, Sao Mai Nguyen, Dominique Duhaut. Strategic and interactive learning of a hier-
archical set of tasks by the Poppy humanoid robot. ICDL-EpiRob 2016 : 6th Joint IEEE Interna-
tional Conference Developmental Learning and Epigenetic Robotics, Sep 2016, Cergy-Pontoise, France.
pp.204 - 209, �10.1109/DEVLRN.2016.7846820�. �hal-01547074�

https://hal.science/hal-01547074v1
https://hal.archives-ouvertes.fr


Strategic and interactive learning of a hierarchical set of tasks by the
Poppy humanoid robot

Nicolas Duminy1 Sao Mai Nguyen2 Dominique Duhaut1

Abstract— We present an active learning architecture that
allows a robot to actively learn which data collection strategy
is most efficient for acquiring motor skills to achieve multiple
outcomes, and generalise over its experience to achieve new
outcomes for cumulative learning. In the present work, we
consider the learning of tasks that are hierarchically organised,
interrelated and more and more difficult.

This paper proposes an algorithmic architecture, called
Socially Guided Intrinsic Motivation with Active Choice of
Task and Strategy for Cumulative Learning (SGIM-ACTSCL).
It relies on hierarchical active decisions of what and how
to learn, driven by empirical evaluation of learning progress
for each learning strategy. Our learning agent uses both
interactive learning and autonomous goal-babbling. It actively
decides at the same time, which tasks to focus on, when to
explore autonomously, and when and what to request for social
guidance. We present experimental results on the physical
humanoid robot Poppy that learns different types of motor
skills, encoded by Dynamic Movement Primitives, in order to
use a tablet (Fig. 1). We show that SGIM-ACTSCL learns
significantly more efficiently than other algorithms. Moreover,
it automatically organises its learning process focusing on easy
tasks first, and difficult tasks afterwards. It coherently selects
the best strategy with respect to the chosen outcome, manages
to learn to associate the teacher with his competence domain
in order to actively request social guidance for the appropriate
tasks.

I. STRATEGIC INTERACTIVE LEARNING FOR LIFE-LONG
LEARNING OF MULTIPLE TASKS

In open environments, service robots would carry out not
only one but multiple tasks, which is an ongoing challenge
for robotic learning. These tasks can be completely inde-
pendent. In other cases, they can be interrelated with simple
and complex tasks, the latter needing the skill of the former.
We wish to explore the possibilities for a robot to learn
cumulatively motor policies for numerous interrelated
tasks from a developmental robotics perspective [1].

Grounding our studies on behavioural psychology theories
of intrinsic motivation and interactive learning, we base our
work on active motor skill learning of multiple task, socially
guided learning and strategic learning in order to devise an
algorithm for actively learning to tackle the challenge of
learning multiple interrelated tasks.

A. Active motor skill learning of multiple tasks

Approaches to robot skill learning have been widely
studied for learning forward and inverse models, mapping
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Fig. 1: Experimental setup: the Poppy robot is in front of a tactile tablet it will learn
to interact with. The red arrows indicate the motors used. The green arrows represent
the axes of the surface of the tablet.

a space of parameterised motor policies with a space of
parameterised outcomes. Techniques based on optimisation
and reinforcement learning have been explored in [2], [3],
[4]. Nevertheless, these techniques require an engineer to
provide a specific reward function associated to each new
particular task to learn.

In order to allow high-dimensional robots to learn more
autonomously a wider diversity of tasks, methods of active
exploration got inspired by intrinsic motivation in psychol-
ogy [5] which triggers spontaneous exploration and curiosity
in humans. A first family of such active learning methods
is called knowledge-based approaches [6]. To tackle their
limitation as sensorimotor learning increases, [7], [8] pro-
posed competence-based approaches where parameterised
outcomes were actively sampled through active goal bab-
bling, which generates lower-level goal directed exploration.

However, such active exploration methods are only effi-
cient in low-dimensional outcome spaces[9]. Their efficiency
decreases when using real high-dimensional bodies with
continuous sensorimotor channels and a large set of tasks,
because of curse of dimensionality[10]. Complementary
developmental mechanisms need to constrain the learning
process, by driving it rapidly toward learnable subspaces.
We wish to address the cumulative learning of large sets of
tasks, thus examine the mechanism of social guidance for
bootstrapping active exploration methods.

B. Interactive learning

To overcome these limitations of autonomous exploration,
[11] has shown that human demonstration of skills can help



the learner to identify which the efficient subspaces in the
policy and the task spaces, for more efficient exploration.

Besides, an interactive learner who not only listens to
the teacher, but actively requests for the information it
needs and when it needs help, has been shown to be a
fundamental aspect of social learning. Under the interactive
learning approach, the robot can combine programming by
demonstration and learning by exploration. Several works in
interactive learning have considered extra reinforcement sig-
nals [12], action requests [13], [14] or disambiguation among
actions [15]. In [16], [15] the comparisons of robots that
have the option to ask the user for guidance, to the passive
robot, show a better accuracy and fewer demonstrations. This
approach is the most beneficial both to the learner, for the
information arrives as it needs it, and to the teacher, who no
longer needs to monitor the learning process.

C. Strategic learning

Both active autonomous exploration and interactive learn-
ing can be formalised under the notion of self-organising the
learning process. Named ”strategic learning” [17], they target
the autonomous discovery of the best learning strategy.

One perspective of strategic learning is learning multiple
tasks. It aims at selecting which task to spend time on. In
sequential problems as in robotics, producing an outcome
has been modelled as a local predictive forward model
[18], an option [19], or a task [7]. The learning agent
decides which outcome to explore/observe next. However
most studies using this perspective do not consider several
strategies. Another perspective is learning how to learn, by
making explicit the choice and dependence of the learning
performance on the method, as in [20]. Interactive learning
belongs to this perspective. However most studies using this
perspective consider a single outcome.

Few works have addressed the learning of both how to
learn and what to learn, to choose at the same time which
outcome to spend time on, and which learning method to
use. These questions were studied in [17], though they only
examined a toy example with discrete and finite number of
states, outcomes and strategies. To address strategic learning
for different outcomes with multiple strategies, we proposed
in [21] the Socially Guided Intrinsic Motivation with Active
Choice of Teacher and Strategy (SGIM-ACTS) algorithm.
It relies on hierarchical active decisions of what and how
to learn driven by empirical evaluation of learning progress
for each learning strategy. SGIM-ACTS can learn multiple
tasks from several teachers by basing its decision on intrinsic
motivation, to decide at each learning episode whether to
explore autonomously or request for social guidance, and
in the case of social guidance, to whom to request for
guidance among a set of teachers. However, SGIM-ACTS
has only been tested for tasks in 1D or 2D spaces, that are
independent. SGIM-ACTS has only been tested in simulation
and in deterministic environments.

Developing methods for strategic learning based on active
goal-oriented exploration and interactive learning, we pro-
pose Socially Guided Intrinsic Motivation with Active

Choice of Task and Strategy for Cumulative Learn-
ing (SGIM-ACTSCL) to learn hierarchically organised
tasks in larger number and higher-dimension spaces.
We present experimental results with a physical humanoid
robot to tackle stochasticity and analyse its behaviour to learn
hierarchically complex tasks.

II. OUR APPROACH

Our approach belongs to developmental robotics. We aim
at adaptive robots for life-long learning that automatically
structures its learning process by autonomously choosing
its learning strategy for learning motor skills. Inspired by
developmental psychology, we consider both autonomous
goal-directed learning and imitation learning. We also base
our active learning criteria on intrinsic motivation.

In this section, we formalise our learning problem and
outline the principles of SGIM-ACTSCL.

A. Problem formalization

The problem is for an agent to learn motor skills. It learns
to map policies πθ, specific motor actions described using
parameters θ ∈ Π, and the outcomes ω ∈ Ω which are
their effect on the environment. Those outcomes could have
different types and dimensionalities and be split in different
task spaces Ωi ⊂ Ω. It thus learns a forward model M to
predict which outcome ω is produced by a particular policy
πθ in the task space Ωi. A same policy can reach different
outcomes in different task spaces. It builds more importantly
an inverse model L to choose which action to execute
in order to reach a given outcome (ideally M(L) equals
identity). The performance of a policy πθ at completing an
outcome ω is computed on a generic fashion by taking the
normalized euclidean distance between ω and the outcome
of πθ for all task spaces. The learner focuses on building an
estimate of the inverse model L to improve its performance
at reaching any points in the outcome space Ω.

B. Description of SGIM-ACTSCL

SGIM-ACTSCL is a hierarchical algorithmic architecture
that merges intrinsically motivated active exploration and
interactive learning. The agent learns to achieve different
types of outcomes by actively choosing which outcomes to
focus on and set as goals, which data collection strategy
to adopt and to which teacher to ask for help. It learns
local inverse and forward models in complex, redundant and
continuous spaces.

SGIM-ACTSCL learns by episodes during which it ac-
tively chooses simultaneously an outcome ωg ∈ Ω to reach
and a learning strategy. Its choice of strategy σ is selected
between intrinsically motivated exploration and imitation.

In an episode under the imitation strategy, our SGIM-
ACTSCL learner actively self-generates a goal ωg where its
competence improvement is maximal. The SGIM-ACTSCL
learner explores preferentially goal outcomes easy to reach
and where it makes progress the fastest. The selected teacher
answers its request with a demonstration [ζd, ωd] to produce
an outcome ωd that is closest to ωg . In the case of the



present study, ωd and ωg can belong to different subspaces of
the outcome space, and can be of different dimensionality.
The robot mimics the teacher to reproduce ζd, for a fixed
duration, by performing policies πθ which are small varia-
tions of an approximation of ζd. Indeed, the demonstration
trajectory might be impossible for the learner to re-execute,
because of correspondance problems and of the encoding of
motor primitives. At the end of the episode, SGIM-ACTSCL
computes its competence at reaching the goal ωd.

In an episode under the intrinsic motivation strategy, it
explores autonomously following the SAGG-RIAC algorithm
[7]. It actively self-generates a goal ωg where its competence
improvement is maximal, as in the imitation strategy. Then,
it explores which policy πθ can achieve ωg best. It tries
different policies to approach the self-determined outcome
ωg . At the end of the episode, SGIM-ACTSCL computes its
competence at reaching the goal ωg .

An extensive study of the role of these different learning
strategies can be found in [24]. Thus the imitation exploration
increases the learner’s policy repertoire on which to build up
self-exploration, while biasing the policy space exploration
to interesting subspaces, that allow the robot to overcome
high-dimensionality and redundancy issues and interpolate
to generalise in continuous outcome spaces. Self-exploration
is essential to build up on these demonstrations to overcome
correspondence problems and collect more data to acquire
better precision according to the embodiment of the robot.

In SGIM-ACTSCL, we adapted SGIM-ACTS [21] for
cumulative learning by sharing the observables produced
during an episode between all task spaces to enhance the
learning process. This enables other task spaces which have
been reached too to take the most of the attempt (which
is particularly useful when task spaces have dimension
overlaps). The teachers were modified to enable them to
give a demonstration close to the requested goal for each
task space. Details about each module can be read in [21].

III. EXPERIMENT

We designed an experiment for a robot to learn to use
the tablet, namely to learn an infinite number of tasks,
organised as 3 interrelated types of tasks. We carried out our
experiment on a real robot with a high number of dimensions
for policy and observable spaces. Testing the algorithm on a
real platform adds the problem of stochasticity as the control
of a real robot and the use of a real sensor (the tablet) add
uncertainty. Fig. 2 shows that when repeating several times
the same movement, the teacher’s demonstration, the points
sensed by the tablet are stochastic. We also decided to use
the bio-inspired Dynamic Movement Primitives as our robot
motion encoders.

A. Experimental setup

The learning agent of this experiment is a Poppy torso
robot designed by the flowers team of INRIA Bordeaux [25].
It is equipped with a tactile stylus on its right hand. Before
him lays a 10” tactile tablet, which it will learn to interact
with, through the learning of 3 interrelated types of tasks

described in subsection III-C.3. Each of its actions produces
observables of 5 dimensions (section III-C.2).

The robot always starts an episode from the same position,
as shown in Fig. 1. The learning algorithm gives a policy to
the robot controller to execute. Then the tablet senses the list
of points touched and returns to the robot the observables.

B. Dynamic Movement Primitives

We encode our actions as discrete joint space motions
using the dynamic movement primitives (DMP) framework
[22]. This framework offers many advantages (robustness,
temporal and spatial invariance, and guaranteed convergence
to the goal) and is thus widely used in robotics.We here
use the formulation developed in [23]. Each one dimensional
DMP is defined by the system:

τ v̇ = K(g − x)−Dv −K(g − x0)s+Kf (1)
τ ẋ = v (2)

where x and v are the position and velocity of the system;
x0 and g are the starting and end position; τ is a factor used
to temporally scale the system; K is like a spring constant;
D is the damping term and f is a non-linear term used to
shape the trajectory of the motion called the forcing term. It
can be learned to fit a given trajectory using learning from
demonstrations techniques [?] and is defined as:

f(s) =

∑
i ωiψi(s)s∑
i ψi(s)

(3)

where ψi(s) = exp(−hi(s−ci)2) , with centres ci; widths
hi, and weights wi. The function f does not depend directly
on time but uses a phase variable s, which will start at 1
and decrease monotonically to 0 through the motion duration
following the canonical system:

τ ṡ = −αs (4)

The realization of multi-dimensional DMPs is feasible
by using one transformation system per degree of freedom
(DOF) which share a common canonical system, ensuring
henceforth the synchronization of the different DOF through-
out the motion. The learning of their forcing term can be
done successively.

C. Experiment variables

1) Policy space: We selected 6 joints on the whole robot:
the right arm, one joint to rotate the spine and one to bend
forward (Fig. 1).

A 6-dimensional DMP is used to encode a policy. The
K, D and α parameters of eq. 1 are fixed for the whole
experiment. The temporal scaling term τ of the DMP is
shared for all the dimensions. The forcing term fi of each
transformation system is coded with 5 basis functions, which
locations and widths are fixed for the whole experiment, leav-
ing only their corresponding weights wi to be parametrized.
The end angle gi of each joint is also a parameter but the
starting pose is fixed, the robot always starting from the same
pose. Therefore a policy πθ is parametrized by:

θ = (ω, a0, a1, a2, a3, a4, a5) ∈ [0, 1]37 (5)



where ai = (gi, wi,0, wi,1, wi,2, wi,3, wi,4) represents the
parameters of joint i. The policy space is thus [0, 1]37.

2) Observable spaces: The effects of the robot’s actions
are observed by the tablet which acts here as a sensor. The
tablet sends the list of all points (x, y) touched by the robot
at the end of the mouvement. Using this list, we considered
the following observables:

• Mstart = (xstart, ystart) : the first position touched on
the tablet by the learner during its attempt.

• Mend = (xend, yend) : the last position touched on the
tablet during its attempt.

• l : the length of the drawing on its whole attempt.
3) Task spaces: The tasks the agent will learn to mas-

ter are normalised combinations of the previously de-
fined observables: Ω1 = {Mstart} = [0, 1]2, Ω2 =
{Mstart,Mend} = [0, 1]4 and Ω3 = {Mstart,Mend, l} =
[0.1]5. We defined the task space as Ω = Ω1 ∪ Ω2 ∪ Ω3.

These tasks have various degrees of difficulty and some
will depend on each other. The idea beyond this choice
of interdependent task spaces is to use tasks representing
different levels of complexity (different combinations of
observables) that the robot could explore progressively. The
observables produced by a policy are shared to improve the
skill of the robot in all the tasks at once, without restricting
them to the task space initially targeted by the policy.

D. The teacher

We use a teacher who has a demonstration dataset,
recorded by kinaesthetic on the robot. The dataset consists
of 24 demonstrations to touch points regularly distributed on
the surface of the tablet. Each demonstration corresponds to
outcomes where Mstart = Mend. So he is an expert in tasks
Ω1 only. The teacher gives a demonstration when requested
for an outcome ωg ∈ Ω by the robot. For any ωg in any
subspace Ω1, he chooses the demonstration (πd, ωd) which
outcome ωd is the closest to ωg .

Moreover, due to problems during the experiment, the
dataset was built using a Poppy robot different from the
one used in the learning phase. The differences in the
joints offsets and robot’s position introduce a correspondence
problem. Fig. 2 shows a shift between demonstrations and
repetitions by the robot of the demonstrated policy.

During the experiment, the learner has the choice between
2 strategies: autonomous exploration using SAGG-RIAC
algorithm [7] and imitation of the teacher.

E. Evaluation

1) Evaluation method: In order to evaluate our algorithm,
we define beforehand a benchmark dataset of outcomes: one
set per outcome space or a total of 1691 points (Fig. 3). The
task space Ω3 uses the same lines than Ω2, except the line
length l is added. This evaluation dataset is different from
the teacher demonstrations, sharing no common outcomes.

To assess how well the robot can reach each of the
outcomes of the evaluation dataset, we compute the closest
reached outcomes. We plot the mean distance for predefined

Fig. 2: 34 demonstrations in the teacher dataset (blue circles). For each demonstration,
the robot repeats 20 times exactly the same demonstrated movement. the outcomes
reached (red crosses) are stochastic. Overall the stylus did not touch the tablet 126
times.

Fig. 3: Evaluation datasets: 441 points for Ω1, 625 points for Ω2 and Ω3

and regularly distributed timestamps. The evaluation is car-
ried out while freezing the learning system. Its results have
no impact on the learning process.

2) Compared algorithms : To check the efficiency of our
SGIM-ACTSCL algorithm in this experimental setup, we
compared with 3 other learning algorithms:

• Random exploration: the robot learns by executing
random policies π from the policy space.

• SAGG-RIAC: the learner autonomously explores its
environment using goal-babbling without any teacher
demonstrations and is driven by intrinsic motivation.

• Imitation: the learner requests a demonstration at a
regular frequency, the demonstration given is among the
less chosen ones. It is executed and repeated with small
variations.

• SGIM-ACTSCL: interactive learning where the learner
driven by intrinsic motivation chooses between au-
tonomous exploration or imitation the teacher.

The code for those algorithms is available here.

IV. RESULTS

Fig. 5 plots for the 4 exploration algorithms, the mean
distance to outcomes of the evaluation set, through time
obtained on those four experiments. It shows that SGIM-
ACTSCL outperforms the three others. SAGIM-ACTSCL

Random Actions

Autonomous Exploration

Demo Imitate Demo Imitate Demo Imitate Demo Imitate Demo Imitate

Demo Imitate Demo Imitate Autonomous Exploration Demo Imitate

Random

Imitate

SGIM-ACTSCL

SAGG-RIAC

Fig. 4: Strategies of the compared algorithms

https://smartan117@bitbucket.org/smartan117/sgim_example.git


Fig. 5: Mean and variance error for reaching goal averaged on all task subspaces

outperforms Random and SAGG-RIAC from the beginning.
From t > 1000, it outperforms imitation, owing to goal-
oriented self-exploration.

Fig. 6: Points Mstart reached and histogram of the line length l drawn by Imitation,
SGIM-ACTSCL and SAGG-RIAC

Fig. 6 analyses this difference, by plotting the outcomes
reached by imitation, SGIM-ACTSCL and SAGG-RIAC.
The first column shows that the outcomes in Ω1 reached by
imitation are close to the demonstrations, whereas SGIM-
ACTSCL extended its exploration to cover a wider range of
outcomes. SAGG-RIAC explored intensively a smaller part
of the tablet. Likewise, while demonstrations correspond to
outcomes in Ω3 with only length l = 0, the histograms
in the second column shows that imitation could increase
the length of its drawings a bit, while SGIM-ACTSCL and
SAGG-RIAC could draw longer lines.

Fig. 7: Evolution of the choice of learning strategy of SGIM-ACTSCL: percentage of
times each strategy is chosen across time

While SGIM-ACTSCL outperforms each of its strategy
taken alone, we analyse how the SAGG-RIAC and imitation
strategies were used by SGIM-ACTSCL through time. Fig 7
shows that in the beginning the robot takes advantage of the
imitation strategy which overcomes the difficulty to reach the

tablet at first. This difficulty is well shown by the Random al-
gorithm results which only touched the tablet 14 times on the
3000 attempts. Imitation strategy enables it to outperform the
self-exploration algorithms, but not the imitation algorithm as
the latter was repeating each demonstration equally while the
former was not (the demonstrations were chosen according
to the robot curiosity). After more than 700 attempts using
the imitation strategy, the robot had reproduced most of
the teacher demonstrations and changed its strategy to keep
progressing. As the teacher was only able to produce points,
the learner chose the autonomous exploration strategy which
enabled him to reach points farther and farther from the
initial points it reached through demonstrations.

Fig. 8: Evolution of the choice of tasks of SGIM-ACTSCL: percentage of times each
task is chosen across time

Detailing the different types of outcomes, Fig. 8 shows
4 phases in time. The learner focuses on type of outcomes
Ω1 in the beginning. The combined choice of the imitation
strategy with the task space Ω1 enabled the robot to progress
quickly and starts choosing the task space Ω2 in the second
phase for 250 < t < 800. After accumulating skills, from t =
800, it became able to tackle the most complex task space
Ω3. Finally for t > 1500, the SGIM-ACTSCL learner kept
using autonomous exploration with the three task spaces,
focusing more on the difficult tasks Ω3 and Ω2. This finally
enabled him to overtake the imitation algorithm by keeping
progressing when the latter stagnates.

Fig. 9: Synergy between the choice of task space and the choice of learning strategy
of SGIM-ACTSCL: percentage of times each strategy and task is chosen over all the
learning process

Fig. 9 shows that the task space Ω3 was mostly combined
with autonomous exploration on the overall learning process
when the imitation was more associated with Ω1 and Ω2.
The learner could coherently choose the adequate exploration
method for each task.

The learner showed it was capable to make wise strategic



decisions regarding the outcome spaces to tackle and the
best strategy to use for it. It started with the simplest task
space Ω1 and also tried quickly Ω2 and chose to imitate
the teacher for enabling it to make the quickest progress. It
was then capable to tackle the most difficult task space Ω3

and noticed the teacher was less adapted for it. The learner
successfully used its first acquired dataset of task spaces Ω1

and Ω2 to autonomously explore the more complex task
space Ω3.

V. CONCLUSION AND FUTURE WORK

With this experiment, we proved the relevance of SGIM-
ACTSCL to learn hierarchically organized tasks on a real
robotic platform. The algorithm could learn a wider range
of tasks and perform with more precision. It was capable
to use successfully imitation to bootstrap its learning process
despite the correspondence problem with the teacher. Though
SAGG-RIAC had a lot of issues learning in this experimental
setup, its use within SGIM-ACTSCL enabled the learner to
widen its range of reached outcomes. It was able to choose
the strategy that allows it to make the most progress:
imitation in the beginning to initialise a repertoire of policies
to touch the tablet, then goal-oriented self-exploration to
overcome the limits of the demonstrations. It was able to
learn all types of tasks by organising its learning process
from the easiest to the most difficult. It was also able to
relate the most efficient strategy with corresponding task,
thus could recognise the domain of expertise of teachers.

A more complete statistical analysis with more experi-
ments should confirm these results. Furthermore, while we
increased the dimensions and number of tasks with this
experiment, we still need to check SGIM-ACTSCL learning
capability with a higher number of tasks. The number
of teachers could also be increased. Moreover, the tasks
the robot had to learn were defined by hand before the
experiment. The automatic discovery of task spaces by the
learner through the analysis of the observables could be
really helpful for using our algorithm on a robot in an
unknown environment.

Most of all, this experiment tackles the cumulative learn-
ing of skills through the use of primitive actions. Introducing
the possibility for the algorithm to combine action primitives
in complex actions could also improve its potency as it
could focus on the interesting part of the motion. In our
application, it could combine a first primitive to reach the
tablet and a second one to draw a line. In the long term,
combination of primitive actions can lead to an infinite
increase in complexity of actions.

Acknowledgment: The work presented in this paper is
partially supported by the the European Regional Fund
(FEDER) via the VITAAL Contrat Plan Etat Region.

REFERENCES

[1] M. Lopes and P.-Y. Oudeyer, “Active learning and intrinsically moti-
vated exploration in robots: Advances and challenges (guest editorial),”
IEEE Trans. Aut. Mental Development, vol. 2, no. 2, pp. 65–69, 2010.

[2] J. Peters and S. Schaal, “Reinforcement learning of motor skills with
policy gradients,” Neural Networks, vol. 21, no. 4, pp. 682–697, 2008.

[3] E. Theodorou, J. Buchli, and S. Schaal, “reinforcement learning of
motor skills in high dimensions: a path integral approach,” in robotics
and automation (icra), 2010 ieee international conference on, 2010,
pp. 2397–2403.

[4] F. Stulp and P.-Y. Oudeyer, “Emergent proximo-distal maturation
through adaptive exploration,” in Development and Learning and
Epigenetic Robotics (ICDL), 2012 IEEE International Conference on.
IEEE, 2012, pp. 1–6.

[5] E. Deci and R. M. Ryan, Intrinsic Motivation and self-determination
in human behavior. New York: Plenum Press, 1985.

[6] P.-Y. Oudeyer and F. Kaplan, “What is intrinsic motivation? a typology
of computational approaches,” Frontiers in Neurorobotics, 2007.

[7] A. Baranes and P.-Y. Oudeyer, “Active learning of inverse models
with intrinsically motivated goal exploration in robots,” Robotics and
Autonomous Systems, vol. 61, no. 1, pp. 49–73, 2013.

[8] M. Rolf, J. Steil, and M. Gienger, “Gobal babbling permits direct
learning of inverse kinematics,” IEEE Transactions on Autonomous
Mental Development, vol. 2, no. 3, pp. 216–229, 09/2010 2010.

[9] P.-Y. Oudeyer, A. Baranes, and F. Kaplan, Intrinsically Motivated
Cumulative Learning in Natural and Artificial Systems. Springer,
2013, ch. Developmental constraints on intrinsically motivated skill
learning: towards addressing high-dimensions and unboundedness in
the real world.

[10] C. Bishop, “Pattern recognition and machine learning,” in Information
Science and Statistics. Springer, 2007.

[11] S. M. Nguyen, A. Baranes, and P.-Y. Oudeyer, “Bootstrapping in-
trinsically motivated learning with human demonstrations,” in IEEE
International Conference on Development and Learning, Frankfurt,
Germany, 2011.

[12] A. L. Thomaz and C. Breazeal, “Experiments in socially guided
exploration: Lessons learned in building robots that learn with and
without human teachers,” Connection Science, vol. 20 Special Issue
on Social Learning in Embodied Agents, no. 2,3, pp. 91–110, 2008.

[13] D. H. Grollman and O. C. Jenkins, “Incremental learning of subtasks
from unsegmented demonstration,” 2010.

[14] M. Lopes, F. Melo, and L. Montesano, “Active learning for reward
estimation in inverse reinforcement learning,” in European Conference
on Machine Learning, 2009.

[15] S. Chernova and M. Veloso, “Interactive policy learning through
confidence-based autonomy,” Journal of Artificial Intelligence Re-
search, vol. 34, 2009.

[16] M. Cakmak, C. Chao, and A. L. Thomaz, “Designing interactions
for robot active learners,” Autonomous Mental Development, IEEE
Transactions on, vol. 2, no. 2, pp. 108–118, 2010.

[17] M. Lopes and P.-Y. Oudeyer, “The Strategic Student Approach
for Life-Long Exploration and Learning,” in IEEE Conference on
Development and Learning / EpiRob, San Diego, États-Unis, Nov.
2012.

[18] P.-Y. Oudeyer, F. Kaplan, and V. Hafner, “Intrinsic motivation systems
for autonomous mental development,” IEEE Transactions on Evolu-
tionary Computation, vol. 11, no. 2, pp. 265–286, 2007.

[19] A. G. Barto, S. Singh, and N. Chentanez, “Intrinsically motivated
learning of hierarchical collections of skills,” in IEEE International
Conference on Development and Learning, 2004.

[20] Y. Baram, R. El-Yaniv, and K. Luz, “Online choice of active learning
algorithms,” The Journal of Machine Learning Research,, vol. 5, pp.
255–291, 2004.

[21] S. M. Nguyen and P.-Y. Oudeyer, “Active choice of teachers, learning
strategies and goals for a socially guided intrinsic motivation learner,”
Paladyn Journal of Behavioural Robotics, vol. 3, no. 3, pp. 136–146,
2012.

[22] A. J. Ijspeert, J. Nakanishi, and S. Schaal, “Learning attractor
landscapes for learning motor primitives,” Tech. Rep., 2002.

[23] P. Pastor, H. Hoffmann, T. Asfour, and S. Schaal, “Learning and
generalization of motor skills by learning from demonstration,”
in Robotics and Automation, 2009. ICRA’09. IEEE International
Conference on. IEEE, 2009, pp. 763–768.

[24] S. M. Nguyen and P.-Y. Oudeyer, “Properties for efficient demon-
strations to a socially guided intrinsically motivated learner,” in 21st
IEEE International Symposium on Robot and Human Interactive
Communication, 2012.

[25] M. Lapeyre, P. Rouanet, and P.-Y. Oudeyer, “Poppy Humanoid
Platform: Experimental Evaluation of the Role of a Bio-inspired
Thigh Shape,” in Humanoids, Atlanta, United States, Oct. 2013.


	Strategic Interactive Learning for Life-long Learning of Multiple Tasks
	Active motor skill learning of multiple tasks
	Interactive learning
	Strategic learning

	Our approach
	Problem formalization
	Description of SGIM-ACTSCL

	Experiment
	Experimental setup
	Dynamic Movement Primitives
	Experiment variables
	Policy space
	Observable spaces
	Task spaces

	The teacher
	Evaluation
	Evaluation method
	Compared algorithms 


	Results
	CONCLUSION AND FUTURE WORK
	References

