
HAL Id: hal-01547047
https://hal.science/hal-01547047

Submitted on 26 Jun 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Estimating Reliability Bounds on Industrial Plants
Andreas M Hein, Romain Farel

To cite this version:
Andreas M Hein, Romain Farel. Estimating Reliability Bounds on Industrial Plants. ASME
DETC/CIE International Design Engineering Technical Conferences & Computers & Information
in Engineering Conference, Aug 2016, Charlotte, United States. �hal-01547047�

https://hal.science/hal-01547047
https://hal.archives-ouvertes.fr


 

1 

 

Estimating Reliability Bounds on Industrial Plants 
 

 

Andreas M. Hein 
Laboratoire Genie Industriel, CentraleSupélec, 

Université Paris-Saclay1 
Châtenay-Malabry, Paris region, France /  
Paris-Saclay Energy Efficiency (PS2E)  
Loges en Josas, Paris region, France 

Romain Farel 
Paris-Saclay Energy Efficiency (PS2E)  
Loges en Josas, Paris region, France 

 

 
 

ABSTRACT 
Reliability analysis is particularly relevant for industrial 

plants where plant failures can lead to large financial losses. 

Existing reliability analysis approaches mostly rely on heavy-

weight simulations that are computationally expensive and 

require extensive modeling effort. On the other hand, there is an 

industrial need for quickly evaluating plant reliability for 

developing new services and business models. In this paper, we 

extend and apply the reliability bound approach using linear 

programming to address this need. The reliability bound 

approach is based on a system model in the form of a graph, an 

event vector, and estimates for component reliabilities. Based on 

this model, lower and upper reliability bounds are calculated by 

solving a linear programming problem. The advantage of this 

approach is the ubiquity of solvers for linear programming. 

Furthermore, the approach is guaranteed to produce the 

narrowest bound with respect to the reliability data. We 

demonstrate the applicability of the approach to a subsystem of 

an industrial plant as a test case. Future work consists applying 

the method to whole plants and comparing the results with 

simulation-based approaches. Moreover, the approach is planned 

to be extended to system attributes such as buffers and multiple 

failure states.  

 

INTRODUCTION 
 The reliability of industrial plants is a crucial for 

businesses to offer services and products. It is particularly 

important in the utilities business where the reliability of 

supplying a product has a significant impact on the business 

model. The same product supplied with different degrees of 

reliability can be treated as different products. Furthermore, 

being able to offer gas or electricity with a guaranteed reliability 

can be a decisive competitive advantage. Despite the importance 

of reliability in the utilities business, reliability analysis in the 

early stages of development has been mostly limited to 

qualitative methods such as the failure mode and effects analysis 

[1]. Few publications have considered quantitative reliability 

assessment for the early stages of product or service 

development such as [2], [3] for the automotive industry. [4] 

proposed a quantitative reliability analysis method for the early 

stage development of cyber-physical systems.  

An overview of reliability analysis approaches for 

industrial plants is presented in [5], [6]. The presented 
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approaches are not well-suited for addressing the goal of 

assisting reliability analysis for business model development. 

More specifically, there are two challenges: First, at an early 

stage of business model development, often detailed reliability 

data is not available or the reliability data is heterogeneous, i.e. 

for some components detailed data is available but for other, less 

mature components, only estimates are available. Second, most 

simulation-based methods require customized tools and 

expertise for using the tools but also for interpreting the results.  

 

In this paper, we address these challenges by applying the 

reliability bound approach introduced by [7] to the plant 

reliability problem. Existing publications using the approach 

apply it to rather academic examples. To the authors’ knowledge, 

there are no publications that demonstrate the applicability of the 

approach to industrial problems. In this paper, we demonstrate 

that the approach can be applied to high-level reliability analysis 

of industrial plants. We extend the method by automatizing parts 

of the otherwise tedious formulation of the reliability problem. 

Finally, we propose avenues for future research for solving more 

advanced reliability analysis problems with this approach.  

 

BACKGROUND: RELIABILITY BOUND APPROACH 
The reliability bound approach has been introduced by Song 

et al. in [7]. The main advantage of the reliability bound 

approach is that it is guaranteed to find the upper and lower 

bounds of system reliability, if a solution exists, as it is based on 

linear programming. In addition, solvers for linear programming 

problems are ubiquitous for even very large problems. Hence, 

the problem can be solved with most of the commercially and 

freely available linear programming solvers. This is in contrast 

to simulation-based approaches (Monte Carlo simulation [8], 

Bayesian networks, Markov Chains [9]) that usually cannot 

guarantee to find the solution. Furthermore, the component and 

subsystem data used as the input can be of various degrees of 

accuracy. Rough reliability estimates can be combined with 

probability distributions from extensive statistical data. A 

significant drawback is that the number of variables for 

describing the problem increases exponentially with the number 

of components in the system.  

In [7] the reliability boundary approach was applied to 

several academic case studies such as a truss structure, a beam 

suspended by perfectly fragile wires, and a rigid plastic structure. 
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These case studies are intended to showcase the applicability of 

the method to various reliability engineering problems in 

structural mechanics. [10] extends the approach to more complex 

systems that can be represented a multiple levels by 

decomposing a system into subsystems and then aggregating 

individual subsystem reliabilities into a system-level reliability 

value. [11] use the approach for analyzing the effect of an 

earthquake to a lifeline network.  

In reliability analysis, we are interested in the reliability of 

a system with 𝑛 components. We denote the state of the system 

as 𝐸𝑠𝑦𝑠. The system state can be the failure state or the state of 

nominal operation. We introduce a vector 𝑬𝑖 = (𝐸𝑖1, 𝐸𝑖2, … ) 

with vectors 𝐸𝑖𝑚  where i denotes a component and m the mth 

state of the component. We assert that a system state depends on 

the states of the components: 

 

𝐸𝑠𝑦𝑠𝑡𝑒𝑚 = 𝐿(𝑬𝟏, 𝑬𝟐, … 𝑬𝒏)    

 

𝐿  is a logical function which consists of “unions and 

intersections of component events or their complements.” [7] We 

are interested in the probability of the system state 𝐸𝑠𝑦𝑠, denoted 

as 𝑃(𝐸𝑠𝑦𝑠𝑡𝑒𝑚). For a system with parallel and serial elements, 

𝑃(𝐸𝑠𝑦𝑠𝑡𝑒𝑚) can be calculated via the union and intersections of 
the component states: 

𝑃(𝐸𝑠𝑦𝑠𝑡𝑒𝑚) = 𝑃(⋃ ⋂ 𝐸𝑖

𝑖𝜖𝐶𝑘𝑘

) 

𝐶𝑘 denotes the component state indices that constitute the 

kth cut set. Evaluating this formula for systems with a large 

number of components and states is computationally very 

expensive. Hence, there has been a persistent interest in 

developing formulas for upper and lower reliability bounds. A 

reliability bound can be formally defined as: 

 

𝑃𝑚𝑖𝑛 ≤ 𝑃(𝐸𝑠𝑦𝑠𝑡𝑒𝑚) ≤ 𝑃𝑚𝑎𝑥  

 

𝑃𝑚𝑖𝑛  is the minimum probability bound and 𝑃𝑚𝑎𝑥  the 

maximum probability bound. [7] shows that linear programming 

can be used for not only finding the reliability bounds for a 

general system but also to guarantee finding the narrowest 

possible probability bounds. The linear programming problem 

can be formulated as: 

 

Minimize / maximize 𝒄𝑇𝒑 

Subject to the equality constraints 𝒂1𝒑 = 𝒃1 

And the inequality constraints 𝒂2𝒑 ≥ 𝒃2 

 

𝒑  is a vector of variables and 𝒄𝑇  the transpose of a vector of 

coefficients. The coefficients correspond to the Boolean function 

of the system. For example, for a serial system with two 

components, this would result in: 

 

𝒑 = [𝑃(𝐸1𝐸2), 𝑃(𝐸1
̅̅ ̅𝐸2), 𝑃(𝐸1𝐸2

̅̅ ̅) 𝑃((𝐸1𝐸2
̅̅ ̅̅ ̅̅ ))] 

𝒄𝑇 = [0, 1,1,1] 

Where 0 in the vector 𝒄𝑇  indicates that the system is 

operating nominally and 1 indicates that the system has 

failed. The event 𝐸𝑖  for component i indicates a nominally 

operating component. The complement �̅�𝑖  indicates a 

component failure event. For a serial system this means that only 

when both components work, then the system works. 

 

a and b are coefficient vectors and matrices. The solution of the 

linear programming problem is a feasible vector p that minimizes 

(maximizes) the objective function 𝒄𝑇𝒑.  

 

Fig. 1 depicts the steps in the reliability analysis method. First, 

the equality constraint coefficient matrix is constructed, using 

the power set of component states. In the second step, the linear 

programming problem is solved.  

 

 
Fig. 1: Visualization of the reliability analysis steps 

 

AUTOMATED SYSTEM MODEL GENERATION 
The existing reliability bound approach is practically difficult to 

use, as it provides the mathematical basis for solving the 

formulating the linear programming problem. However, as the 

size of the event space increases exponentially, manually 

constructing the coefficient matrices becomes increasingly 

difficult. In order to solve this problem, we extend the original 

linear programming problem by automatizing the generation of 

the problem formulation.  

The main challenge is the exponential growth of the 

cardinality of the event set (the number of events in the set) by 

2𝑛. For a small system with 10 components, this leads to 1024 

events. Hence, the size of the equality constraints matrix is 1024 

x 1024. We develop an algorithm for automatically creating the 

equality constraints matrix, which increases proportionally with 

the cardinality of the events set.  

We illustrate the algorithm for a 2-component, serial 

system. The event space in the form of a Venn diagram is shown 

in Fig. 2. 𝐸1 is the event that component 1 fails. 𝐸2 is the event 

that component 2 fails. 𝐸1 ∪ 𝐸2
̅̅ ̅̅ ̅̅ ̅̅ ̅̅   is the event that both 
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components function. We subdivide the areas in the Venn 

diagram into four partitions 𝑝1 to 𝑝4. The event that the system 

fails is the union of the partitions 𝑝1, 𝑝2, 𝑝3 or alternatively the 

union 𝐸1 ∪ 𝐸2 . Why is this relevant  It is relevant as in most 

cases we only have reliability data for the components 𝐸1, 𝐸2 , 

and we need to calculate the probability ( 𝐸1 ∩ 𝐸2 ) of both 

components failing and each of the components failing 

separately (𝐸1 ∩ 𝐸2
̅̅ ̅ and 𝐸1

̅̅ ̅ ∩ 𝐸2). We therefore need to form the 

union of all these sets that gives us the failure event set for the 

system.  

 

 
Fig. 2: Venn diagram for a 2-element serial system 

Table 1 shows the equality constraints matrix for the 2-

element serial system.  

 

Table 1: Equality constraint matrix 𝒂1 

 𝑝1 𝑝2 𝑝3 𝑝4 

 𝐸1 ∩ 𝐸2
̅̅ ̅ 𝐸1 ∩ 𝐸2 𝐸1

̅̅ ̅ ∩ 𝐸2 𝐸1 ∪ 𝐸2
̅̅ ̅̅ ̅̅ ̅̅ ̅̅  

𝐸1 1 1 0 0 

𝐸2 0 1 1 0 

 

As a third row in the constraint matrix, the following equality 

constraint is added which is one of the Kolmogorov axioms of 

probability theory: 

∑ 𝑝𝑖

4

𝑖=1

= 1 

We can map the set-theoretic expressions for 𝑝𝑖   in Table 1 by 

mapping each of the expressions to a set of its non-conjunctive 

elements.  

 

{𝐸1, 𝐸2
̅̅ ̅ } → {𝐸1} 

{𝐸1, 𝐸2 } → {𝐸1, 𝐸2} 

{𝐸1
̅̅ ̅, 𝐸2} → {𝐸2} 

{𝐸1
̅̅ ̅, 𝐸2

̅̅ ̅ } → {} 

 

This results in the set of all subsets, i.e. the power-set of the 

elements ℘(S) with 𝑆 = {𝐸1, 𝐸2}. The power set is hence: 

 

℘(S) = {{}, {𝐸1}, {𝐸2}, {𝐸1, 𝐸2}} 

 

The power set can be easily generated algorithmically via the 

binomial distribution. Using the power set, we can then 

formulate an algorithm for creating the constraint matrix for all 

single and multiple events by simply writing a “1” entry into the 

matrix when the event is present in a subset of the power set and 

a “0” when it is not. We can therefore, in principle, create the 

coefficient matrix for the equality constraints automatically, 

which is very useful for large coefficient matrices.  

 

The coefficient vector 𝒄𝑇  is created by using the Boolean 

function for the system For the 2-element serial system the 

corresponding Boolean function is: 

 

 𝐸1
̅̅ ̅ 𝐴𝑁𝐷 𝐸2

̅̅ ̅  → 𝐸𝑠𝑦𝑠 

 

The Boolean function for combined serial and parallel systems 

can be easily generated by a combination of logical AND and 

OR expressions from Boolean algebra.  

 

APPLICATION TO INDUSTRIAL PLANT CASE STUDY 
We apply the reliability analysis method presented in the 

previous section to an existing air separation unit (ASU) in an 

industrial plant. The ASU consists of 5 serial components and 

two separate parallel components of 2 identical components as 

shown in Fig. 3. Annual failure probabilities are included. As the 

original values are confidential, random order of magnitude 

values are used.  

 
 
Fig. 3: Air Separation Unit component diagram with annual failure 
probabilities 
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First, we enumerate the complete power set of the event space of 

512 entries and create the coefficient matrix (512 x 512 entries) 

for the equality constraints. Component reliability data for all 

eight components is entered into the probability vector 𝒃1:  

 

𝒃1
𝑇

= [0.15, 0.05,0.06,0.60,0.25,0.03,0.03,0.12,0.12 … ,0, … ,1] 
 

The final entry “1” in the vector represents the equality 

constraint for the sum of all probabilities, including all 

complements, which is by definition 1. Most of the entries 

in the vector are 0, as only the component probabilities and 

the sum of probabilities are known. A solution can still be 

found if the basic conditions for finding a solution in linear 

programming are satisfied. This means that the solution 

space is a convex hypercube and certain pathological 

constraints do not occur. 

 
RESULTS 

Running the simulation yields the following lower and 

upper bounds for the system: 

 
𝐸𝑠𝑦𝑠_𝑚𝑖𝑛 ≤ 𝐸𝑠𝑦𝑠 ≤ 𝐸𝑠𝑦𝑠_𝑚𝑎𝑥 

 

With  

 

𝐸𝑠𝑦𝑠_𝑚𝑖𝑛 = 0.0282   

𝐸𝑠𝑦𝑠_𝑚𝑎𝑥= 0.0649 

 

𝐸𝑠𝑦𝑠_𝑚𝑖𝑛 ≤ 𝐸𝑠𝑦𝑠 ≤ 𝐸𝑠𝑦𝑠_𝑚𝑎𝑥 

 

CONCLUSIONS 
We have demonstrated that the reliability bound approach can be 

applied to a practical industrial reliability case for a quick 

reliability estimate of an industrial plant. Future work will focus 

on extending the approach to model typical industrial plant 

attributes such as systems with buffers such as tanks and treating 

different failure modes such as short and long duration failures.  
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