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Introduction

The area of a closed minimal surface Σ in a complete hyperbolic 3manifold is bounded above by -2πχ(Σ); this follows from the Gauss equation. Finding an optimal lower bound for the area is a more subtle question. Notice that in dimension 2, there is no lower bound for the length of a closed geodesic in a hyperbolic surface. However the Margulis lemma and the monotonicity formula does give a lower bound of 2π(cosh(ε) -1), for the area of a properly immersed minimal surface in a complete hyperbolic 3-manifold; ε is the Margulis constant. According to explicit estimates of ε, this number is at least 0.104 [START_REF] Meyerhoff | A lower bound for the volume of hyperbolic 3-manifolds[END_REF].

In a previous paper [START_REF] Mazet | Minimal hypersurfaces of least area[END_REF], the authors proved the area is at least 2π when Σ is a closed embedded minimal surface in a complete finite volume hyperbolic 3-manifold of Heegaard genus at least 6. If Σ is non-orientable the lower area bound is π. Perhaps the main goal of the present paper it to introduce techniques to resolve the remaining cases: 2 ≤ Heegaard genus ≤ 5.

In our paper [START_REF] Mazet | Minimal hypersurfaces of least area[END_REF], we introduce the quantity A 1 (M ), where M is a compact orientable 3-manifold. If O denotes the collection of all smooth orientable embedded closed minimal surfaces in M and U the collection of all smooth non-orientable ones, A 1 (M ) is defined by A 1 (M ) = inf({|Σ|, Σ ∈ O} ∪ {2|Σ|, Σ ∈ U}) so A 1 (M ) gives a lower bound for the area of any minimal surface in M .

The main result in [START_REF] Mazet | Minimal hypersurfaces of least area[END_REF] says that A 1 (M ) is the area (or twice the area) of some minimal surface in M . Moreover it gives some characterization of this minimal surface in terms of its index and its genus. Let (g i ) i be a sequence of smooth Riemannian metrics on M which smoothly converge to ḡ. Because of the characterization of the minimal surface that realizes A 1 (M, g i ) and thanks to a compactness result by Sharp [START_REF] Sharp | Compactness of minimal hypersurfaces with bounded index[END_REF], it can be proved that lim inf A 1 (M, g i ) ≥ A 1 (M, ḡ). Moreover, if A 1 (M, ḡ) is realized by a non degenerate minimal surface, lim A 1 (M, g i ) = A 1 (M, ḡ). However one can produce examples where A 1 is not upper semi-continuous (F. Morgan suggested examples of a 2-sphere looking like a pear).

Concerning hyperbolic manifolds, our study proves that, if M is hyperbolic and its Heegaard genus is at least 6, then A 1 (M ) ≥ 2π which gives a universal lower bound for the area of a minimal surface in M . This reasoning can be adapted to the case M is a finite volume hyperbolic manifold (not necessarily compact).

In order to remove the hypothesis about the Heegaard genus, we ask the question of the continuity of A 1 when the space of hyperbolic manifolds is endowed with the geometric convergence topology. Here the situation is not as above where we have a sequence of Riemannian metrics on a fixed manifold, here we have a sequence of manifolds M i with changing topologies. Moreover, if (M i ) i is a non trivial converging sequence of hyperbolic manifolds then M i contains a geodesic γ i whose length goes to 0. As a consequence, an important question for our study is to understand the behaviour of a minimal surface intersecting a neighborhood of a short geodesic.

This question has been already studied by several authors. For example, Hass [START_REF] Hass | Minimal fibrations of hyperbolic 3-manifold[END_REF] and Huang and Wang [START_REF] Huang | Complex length of short curves and minimal fibrations of hyperbolic three-manifolds fibering over the circle[END_REF] study the geometry of minimal surfaces near a short geodesic in order to construct hyperbolic manifolds that fiber over the circle but such that the fibers can not be made minimal.

Our study of minimal surfaces near short geodesics starts with a result of Meyerhoff [START_REF] Meyerhoff | A lower bound for the volume of hyperbolic 3-manifolds[END_REF]. Basically it says that a short geodesic in M of length has a embedded tubular neighborhood N R of radius R and lim →0 R = +∞.

We obtain two results concerning minimal surfaces in N R . The first one deals with stable minimal surfaces in tubular neighborhood of short geodesics ( Corollary 7). Basically it says that such a stable minimal surface either stays far from the short geodesic or it intersects transversely the short geodesic. Moreover in the second case, the surface must have a very large area in the R tubular neighborhood of the geodesic.

Our second result deals with general minimal surfaces (not assumed to be stable) (Proposition 9). It says that a minimal surface in the neighborhood of a short geodesic either stays very far from the core geodesic or comes very close to it (the estimate depending on the index of the minimal surface). As above in the second case, we obtain a lower bound for the area of a minimal surface coming close to the short geodesic.

Actually these two results are very similar to results we obtained with Collin and Hauswirth in [START_REF] Collin | Minimal surfaces in finite volume non compact hyperbolic 3-manifolds[END_REF] concerning the geometry of minimal surfaces in hyperbolic cusps. In both cases, the argument is based on the fact that the tubular neighborhoods are foliated by equidistant tori whose diameter are small. As a consequence, an embedded minimal surface with bounded curvature can not be tangent to these equidistant surfaces.

Once the behaviour of minimal surfaces close to short geodesics is understood, we study the continuity of A 1 . A version of our result can be stated as follows. It is similar to the result that can be obtained for a fixed manifold with a converging sequence of metrics.

Theorem. Let M i → M be a converging sequence of hyperbolic cusp manifolds. Then

A 1 (M ) ≤ lim inf A 1 (M i ).
If A 1 (M ) is not realized by the area of a stable-unstable separating minimal surface, then

A 1 (M ) = lim A 1 (M i ).
Let us recall that "stable-unstable" means that the first eigenvalue of the stability operator is 0. Of course one can expect that the surface that realizes A 1 (M ) is never stable-unstable but we do not know how to prove this. Actually it is possible to expect that no minimal surface in a hyperbolic manifold is stable-unstable. In fact the above result is a combination of two propositions: Propositions 22 and 25

The main difficulty in the proof of Proposition 25 is to be able to control where is located a minimal surface Σ i that realizes A 1 (M i ). Actually, our study of minimal surfaces near short geodesics implies that Σ i can not enter into a tubular neighborhood of a short geodesic. So it stays in a part of M i where the convergence M i → M is just the smooth convergence of the metric tensor. Thus a compactness result by Sharp [START_REF] Sharp | Compactness of minimal hypersurfaces with bounded index[END_REF] gives the lower semicontinuity of A 1 . Concerning Proposition 22, we first prove that lim sup A 1 (M i ) is bounded. Thus if A 1 (M ) is not realized by a stable-unstable separating minimal surface Σ then Σ can be deformed into a minimal surface in M i . This implies the second inequality.

Of course one can also think about hyperbolic manifolds with infinite volume and ask the following question. For which class of complete hyperbolic 3-manifolds of infinite volume can one hope for an area lower bound 2π? There may not exist a closed minimal surface in M , but if A 1 (M ) is realized, can one expect it to be at least 2π?

The paper is organized as follows. In Section 2.1, we recall some basic facts about the description of cusp and tubular ends of complete finite volume hyperbolic 3-manifolds. Section 3 studies the geometry of minimal surfaces with bounded curvature in tubular ends. In Section 4, we study the general behaviour of minimal surfaces in tubular ends. In Section 5 we recall some facts about the min-max theory for minimal surfaces that we will use in the next sections. Section 6 is devoted to recall the work we made in [START_REF] Mazet | Minimal hypersurfaces of least area[END_REF] and how it should be adapted to work with non compact hyperbolic manifolds. Sections 7 and 8 are devoted to the study of the lower and upper semicontinuity of the A 1 functional. Finally in Appendix A, we prove some technical results and formulas.

Preliminary remarks. Let S be a smooth Riemannian surface, we will denote by |S| its area.

Let (T, dσ 2 ) be a flat torus. Its universal cover is a flat R 2 so we have coordinates (x 1 , x 2 ) such that the flat metric can be written dx 2 1 + dx 2 2 . Then T is the quotient of R 2 by some lattice Γ. We say that (x 1 , x 2 ) is an orthonormal coordinate system on T .

Moreover, we can choose (x 1 , x 2 ) such that Γ is generated by v 1 , v 2 where v 1 = (a 1 , 0) and v 2 = (a 2 , b 2 ). We then say that (x 1 , x 2 ) is a well oriented orthonormal coordinate system.

We notice that if (T, dσ 2 ) has diameter δ then the lattice can be generated by vectors of length less than 2δ.

Hyperbolic manifolds

In this first section we recall some facts concerning the geometry of hyperbolic 3-manifolds with finite volume also called cusp manifolds. We refer to [START_REF] Benedetti | Lectures on hyperbolic geometry[END_REF] for part of this description.

2.1. The cusp and tubular ends. Let M be a complete hyperbolic 3manifold of finite volume. For any ε less than the Margulis constant, the manifold M can be split into two parts: the ε-thick part M [ε,∞) which is connected, not empty (recall that p ∈ M [ε,∞) if any non null homotopic closed loop at p has length at least ε) and the ε-thin part which may have a finite number of connected components. The connected components of the thin part are of two types: cusp ends and tubular neighborhoods of closed geodesics also called tubular ends.

Cusp ends are isometric to E 0 = T × R + endowed with a metric

g = e -2t dσ 2 + dt 2
where dσ 2 is a flat metric on the 2-torus T . We define E t = T × [t, +∞). We notice that if E 0 is a component of the ε-thin part then E t is a component of the the δε-thin part with e -2t ≤ δ ≤ e -t/2 . For tubular ends, let γ be a short geodesic in M and consider c a lift of

γ to H 3 . If R is small the R-tubular neighborhood N R of γ in M is the quotient of the R tubular neighborhood V R of c in H 3 by
some loxodromic transformation τ of axis c (see Figure 1).

In order to introduce some coordinate system, let z denote arclength along c and let ν(z), τ (z) be parallel orthogonal unit normal vectorfields along γ, we introduce cylindrical coordinates in V R by

F (z, θ, r) = exp c(z) (r(cos θ ν(z) + sin θ τ (z)))
In these coordinates, the hyperbolic metric is

(1) g = (cosh 2 r)dz 2 + (sinh 2 r)dθ 2 + dr 2 .
N R can be viewed as the quotient of M R = {(z, θ, r) ∈ R 2 × [0, R]} by the relations (z, θ, 0) ∼ (z, θ , 0), (z, θ, r) ∼ (z, θ +2π, r) and (z, θ, r) ∼ (z + , θ + α, r) for some parameters > 0 and α. is the length of the geodesic loop γ and α is called the twist parameter of γ (it is the angle of the loxodromic transformation). As above, if N R is a component of the ε-thin part, then N r is a component of the δε-thin part some some δ ∈ [e 2(r-R) , e (r-R)/2 ] if R and r are larger than some universal constant. In the following, we denote by S r = ∂N r the torus {r = r}. The above coordinates are called tubular coordinates. In order to be coherent with the coordinates we use on cusp ends, we will also use the coordinate system (x 1 , x 2 , t) = (θ, z, R -r) such that the metric can be written

g = sinh 2 (R -t)dx 2 1 + cosh 2 (R -t)dx 2 2 + dt 2 = dσ 2 t + dt 2 on T × [0, R]
where T is the quotient of R 2 by the translations by (2π, 0) and (α, ) (notice that g is singular on T × {R}).

The interest of these coordinates is that any part of a cusp or tubular end can be described as T × [a, b] with some metric dσ 2 t + dt 2 where dσ 2 t is a flat metric on the torus T . We denote by T t = T × {t}. So the family (T t ) t gives a foliation of the ends by tori.

If C is the torus in such an end that corresponds to T × { t}, the graph of a function u

: Ω ⊂ C → R is just the surface parametrized by {(p, t) ∈ T × R|t = t + u(p)} (notice that we will often identify C ⊂ M with Tt ∈ T × R).
One question is to know what is the maximal radius R that can be considered in the above discussion (N R being embedded). This has been estimated by Meyerhoff in [START_REF] Meyerhoff | A lower bound for the volume of hyperbolic 3-manifolds[END_REF] where the following result is proved.

Theorem 1. Let γ be a geodesic loop in a complete hyperbolic 3-manifold. If the length of γ is less than

√ 3 4π ln 2 ( √ 2 + 1)
, then there exists an embedded tubular neighborhood around γ whose radius R satisfies

sinh 2 R = 1 2 √ 1 -2k k -1
where k = cosh 4π √ 3 -1.

In the sequel we denote by R the solution of sinh

2 R = 1 2 √ 1-2k k -1 .
When is small this implies that sinh 2 R ∼ cosh 2 R ∼ √ 3 4π . For example, the area of S R goes to √ 3 2 as → 0. Let us notice that the mean curvature of the torus S r 0 with respect to -∂ r is (tanh r 0 + coth r 0 )/2.

2.2.

The geometric convergence. The space of cusp manifolds with volume less than V 0 is compact for geometric convergence. This convergence is defined as follows (see Sections E.1 and E.2 in [START_REF] Benedetti | Lectures on hyperbolic geometry[END_REF]). Let Π i : H 3 → M i and Π : H 3 → M be the universal covers and o a point in H 3 . We say that the pointed manifolds (M i , Π i (o)) converge for the geometric convergence topology to (M , Π(o)) if, for any r, there are

f i : B(o, r) ⊂ H 3 → H 3 which are equivariant (Π(z) = Π(z ) ⇔ Π i (f i (z)) = Π i (f i (z )
)) such that (f i ) i converges to the identity in the C ∞ topology (here B(o, r) denotes the geodesic ball in H 3 ). Actually defining ϕ i by ϕ i (Π(z)) = Π i (f i (z)), we will often use the following consequence (see Lemma E.2.2 in [START_REF] Benedetti | Lectures on hyperbolic geometry[END_REF]).

Lemma 2. Let (M i ) i be a sequence of finite volume hyperbolic manifolds converging to M in the geometric topology. Let ε > 0 be fixed, after eliminating some initial terms, there exists:

• (σ i ) i with σ i > 0 and σ i → 0, • (k i ) i with k i > 1 and k i → 1, • for all i a k i -quasi-isometric embedding ϕ i from a neighborhood of M [ε,∞) into M i .
with the following properties

• ϕ i (M [ε,∞) ) is contained in the interior of M i[ε-σ i ,∞) and • ϕ i (∂M [ε,∞) ) does not meet an open neighborhood of M i[ε+σ i ,∞) .
Here k i -quasi isometry must be understood as smooth maps ϕ i such that

1 k i d(p, q) ≤ d(ϕ i (p), ϕ i (q)) ≤ k i d(p, q)
When we will use these properties, we will not forget that ϕ i come from maps f i that are C ∞ close to id. Actually, ε is always chosen small enough such that the ε-thin part of [START_REF] Benedetti | Lectures on hyperbolic geometry[END_REF]). The description of this component of ϕ i (∂M [ε,∞) ) is given by the following result. Lemma 3. Let (M i ) i , M , ε > 0 and ϕ i as above. Let C be a connected component of ∂M [ε,∞) . Then for i large, ϕ i (C) is a graph of a function u i over the corresponding component C i of ∂M i[ε,∞) . Moreover u i → 0 and C and C i are κ i -quasi-isometric with κ i → 1.

M contains only cusp ends. Moreover if ε is small enough each connected component of M i[ε-σ i ,ε+σ i ] contains exactly one component of ϕ i (∂M [ε,∞) ) (see Theorem E.2.4 in
Proof. C is a surface with principal curvatures 1. Thus ϕ i (C) has principal curvatures close to 1 and between 1/2 and 3/2.

Since

ϕ i (C) ⊂ A i where A i is a component of M i[ε-σ i ,ε+σ i ] , ϕ i (C
) is contained either in a cusp end of M i or a neighborhood of a short geodesic of γ i . In the second case, there is a smallest

δ i ≤ σ i such that ϕ i (C) ⊂ M i[ε-σ i ,ε+δ i ] so ϕ i (C) is tangent to a boundary torus of ∂M i[ε i +δ i ,∞)
. The comparison of the mean curvature at this tangency point gives the mean curvature of ∂M i[ε i +δ i ,∞) is close to 1. Thus the distance from γ i to ϕ i (C) is very large and goes to +∞.

In both cases, A i is described as

T i × [-α i , β i ] with a metric dσ 2 i,t + dt 2 with α i , β i → 0 and C i = T i × {0} is the boundary of M i[ε,∞) in A i .
Let γ be a geodesic in ϕ i (C). Since ϕ i (C) has curvature uniformly bounded, there is

k 0 such that |∂ s (γ (s), ∂ t )| ≤ k 0 so |(γ (s), ∂ t )| ≥ |(γ (0), ∂ t )|/2 for 0 < s < s 0 = |(γ (0), ∂ t )|/(2k 0
). Looking at the t coordinate along γ, we then have

β i + α i ≥ |t(γ(s 0 )) -t(γ(0))| ≥ |(γ (0),∂t)| 2 4k 0
. Since α i + β i → 0, this implies that the angle between ϕ i (C) and ∂ t goes to π/2 uniformly. Since

ϕ i (C) is embedded this implies that ϕ i (C) is a graph over C i : there is a function u i : C i → R such that ϕ i (C) = {(p, t) ∈ T × R|t = u i (p)}.
Since the angle between ϕ i (C) and ∂ t goes to π/2, the gradient of u i goes to 0.

Besides ϕ i (C) ⊂ A i so |u i | is close to 0. This implies that (p, u i (p)) ∈ ϕ i (C) → (p, 0) ∈ C i is a κ i -quasi-isometry (κ i → 1) which can be composed with ϕ i : C → ϕ i (C) to obtain a κ i k i - quasi-isometry.
As consequence, we have the following result.

Corollary 4. Let V 0 be positive then there are 0 , δ 0 , s 0 such the following is true. Let M be a cusp manifold with volume less than V 0 and γ be a geodesic loop of length ≤ 0 . Then S R = ∂N R has diameter less than δ 0 and systole larger than s 0 .

The set of flat tori with diameter less than δ 0 and systole larger than s 0 is a compact subset of the set of flat tori.

Proof. If it not true there is a sequence of cusp manifolds M i that converge to M and in M i there is a geodesic loop γ i of length i → 0 such that either the diameter of S R i goes to ∞ or its systole goes to 0.

After taking a subsequence, we can assume that the tubular ends around γ i converges to one cusp end in M . Let ε > 0 be small and consider C the component of ∂M [ε,∞) inside this cusp end. Let C i be the component of ∂M i[ε,∞) inside the tubular end around γ i . By the above lemma, C and C i are 2 quasi-isometric. So the area C i is close to that of C. Since the area of S R i in M i is close to √ 3/2 this implies that the distance between C i and S R i is uniformly bounded. Since the diameter and the systole of S R i differ from those of C i by at most a uniform factor. This contradicts that either the diameter goes to ∞ or the systole goes to 0. Remark 1. Let us consider a particular one sided neighborhood of ϕ i (C) in M i . Actually, let A be the part of the 2-tubular neighborhood of C inside M [ε,∞) . Thus ϕ i (A) is a one sided neighborhood of ϕ i (C).

A can be parametrized by T × [-2, 0] with the metric g = e -2t dσ 2 + dt 2 . Let X : T ×[-2, 0] → M be this parametrization and (x 1 , x 2 ) be orthonormal coordinates such that g = e -2x 3 (dx 2 1 + dx 2 2 ) + dx 2 3 . Let us now estimate the metric ϕ * i g i . We notice that X lifts to an equivariant map X :

R 2 ×[-2, 0] → H 3 i.e. X = Π X. If gi = gi,kl dx k dx l we have gi,kl = dϕ i X x k , dϕ i X x l M i = dϕ i dΠ X x k , dϕ i dΠ X x l M i = dΠ i df i X x k , dΠ i df i X x l M i = df i X x k , df i X x l H 3
since Π i is a local isometry. Since f i converges to the identity map in the C ∞ topology this implies that gi → g in the C ∞ topology.

Remark 2. By Mostow rigidity theorem, the topology of a complete finite volume hyperbolic 3-manifold determines its hyperbolic structure. Thus if a converging sequence M i → M is not constant, there is a subsequence whose topologies are distinct from that of M : there are short geodesics γ i in M i whose lengths converge to zero and whose maximal embedded tubular neighborhoods are converging to cusp ends of M (see Figure 2).

M i+k γ i+k M i M A cusp end of M M i[ε,∞) γ i Figure 2. A schematic converging sequence M i → M

Transversallity in tubular ends

The aim of this section is to understand the behaviour of a minimal surface in a tubular end when we know a priori an upper bound on its curvature. A similar study was made for cusp ends in [START_REF] Collin | Minimal surfaces in finite volume non compact hyperbolic 3-manifolds[END_REF].

In this section, we use the tubular coordinates (z, θ, r).

3.1. An intersection property. We recall that, if c is a geodesic in H 3 , V r denotes its tubular neighborhood of radius r. Moreover, for r > 0, we denote B r = ∂V r .

Lemma 5. Let k 0 and ε 0 be positive, then there are r 0 and η 0 such that the following is true. Let c be a geodesic in H 3 . Let r ∈ [0, r 0 ] and

p i = (z i , θ i , r) (i = 1, 2) be two points in V r 0 such that θ 2 ∈ [θ 1 + π 3 , θ 1 + 2π 3 ] and z 2 ∈ [z 1 -η 0 , z 1 + η 0 ]. Let Σ i (i = 1, 2) be surfaces in V r 0 whose curvatures are bounded by k 0 , p i ∈ Σ i and d Σ i (p i , ∂Σ i ) > ε 0 . If both Σ i are tangent to B r at p i (if r = 0 we assume moreover that a unit normal vector to Σ i at p i is ∂ r (z i , θ i , 0)) then Σ 1 and Σ 2 has non empty transversal intersection.
Proof. We look for r 0 ≤ 2. In V 2 the hyperbolic metric is cosh 2 rdz 2 + sinh 2 rdθ 2 + dr 2 . Let us change the metric in V 2 to the Euclidean metric g e = dz 2 + r 2 dθ 2 + dr 2 . So there are constants k0 and ε0 depending only on k 0 and ε 0 such that, with g e , Σ 1 and Σ 2 have curvature bounded by k0 and

d Σ i (p i , ∂Σ i ) > ε0 .
Thus there is η 1 > 0 such that Σ i can be described as a graph over the Euclidean disk of radius η 1 tangent to Σ i at p i (see Proposition 2.3 in [START_REF] Rosenberg | General curvature estimates for stable H-surfaces in 3-manifolds and applications[END_REF]). Moreover if η 1 is chosen small enough, the gradient of the function parametrizing Σ i is less than 1/10.

Let r 0 = η 0 = η 1 /10. With these choices, the tangent disks of radius η 1 tangent to Σ i at p i must intersect at an angle between π/3 and 2π/3 (see the schematic figure 3). Moreover since each Σ i is at a distance less than η 1 /10 from its tangent disk, Σ 1 and Σ 2 must intersect and, as the gradient is less than 1/10 and the angle between the disks is in [π/3, 2π/3], the intersection is transverse.

The transversality result.

The main result of the section is then the following. We recall that S r = ∂N r . Proposition 6. Let δ 0 , k 0 and ε 0 be positive, then there is 0 > 0 and R such that the following is true. Let ≤ 0 and N R be the hyperbolic tubular neighborhood of a geodesic loop γ of length and such that the diameter of S R is less than δ 0 . Let Σ be an embedded minimal surface in N R whose curvature is bounded by k 0 . Let r < R -R and p be a point in Σ ∩ S r such that d Σ (p, ∂Σ) > ε 0 . Then Σ is not tangent to S r at p.

We notice that for r = 0, S r is just the central geodesic γ so the proposition states that Σ can not be tangent to γ. Proof. We start with some 0 such that R > 10. Let r 0 ≤ 1 and η 0 be given by Lemma 5 for k 0 and ε 0 (we assume ε 0 ≤ 1). We first prove that the result is true if r ≤ r 0 .

Let Σ be a minimal surface as in the statement of the proposition and assume that Σ is tangent at p to S r for some r. We consider the lift Σ of Σ to H 3 . Σ is then contained in a solid cylinder V R .

The surface Σ is then an embedded minimal surface (may be non connected) which is invariant by the action of the loxodromic transformation τ : (z, θ, r) → (z + , θ + α, r). Let p 1 be a lift of p. We can assume that p 1 = (0, 0, r); if r = 0, we assume that ∂ r (0, 0, 0) is the unit normal vector to Σ.

S R has a diameter less than δ 0 . So, for any q in B R , the intrinsic disk of radius δ 0 in B R and center q must contain an image of (0, 0, R ) by some τ n .

Let us consider the domain

A r = {(z, θ, r) ∈ B r |z ∈ [-δ 0 cosh R , δ 0 cosh R ], θ ∈ [ π 2 -δ 0 sinh R , π 2 + δ 0 sinh R ]}, A R is a square in B R
whose edges have length 2δ 0 . So A R contains an image of (0, R , 0) by some τ n . This implies that τ n is the composition of a vertical translation by some z ∈ [-δ 0 cosh R , δ 0 cosh R ] and a rotation by some θ ∈

[ π 2 -δ 0 sinh R , π 2 + δ 0 sinh R ]. The point p 2 = τ n (p 1 ) = (z 2 , θ 2 , r) is another lift of p in A r.
Σ is then also tangent to B r at p 2 . We have |θ 2 -π/2| ≤ δ 0 / sinh R and |z 2 | ≤ δ 0 / cosh R . So we can choose 0 such that, for ≤ 0 , δ 0 / sinh R ≤ π/6 and δ 0 / cosh R ≤ η 0 . Then we can apply Lemma 5 to the geodesic disks Σ i of radius ε 0 in Σ around p i . Lemma 5 applies since, when r = 0, the unit normal vector to

Σ 2 at p 2 is ∂ r (z 2 , θ 2 , 0) with |θ 2 -π/2| ≤ δ 0 / sinh R (Σ 2
is the image of Σ 1 by τ n ). This gives that Σ has transverse self-intersection which is impossible. So the result is proved for r ≤ r 0 .

Let us now prove that we can extend this result to the region

r 0 ≤ r ≤ R L -R for some R > 0.
If the result is not true, for any n > 0, we can find a neighborhood N R n of a closed geodesic γ n of length n ≤ 1 n and a minimal surface Σ n in N R n which is tangent to S rn at p n for some

r n ≤ R n -1 4 ln n (notice that R n -1 4 ln n > 0)
. Actually because of the first part we can assume r n > r 0 . In the following we denote R n by R n .

Let η 1 = min(r 0 /10, η 0 ) and replace the sequence Σ n by the sequence of η 1 -geodesic disks in Σ n centered at p n . So we can be sure that Σ n never touches the central geodesic γ n and stays outside of N r 0 -η 1 .

We lift Σ n to M Rn endowed with the metric (1). This gives us a minimal surface Σ n which is doubly periodic and may be non connected. Σ n is doubly periodic by translation in the (z, θ) parameters by two vectors v n 1 , v n 2 . Since T Rn has diameter less than δ 0 we can choose v n 1 , v n 2 of Euclidean length less than δ 0 sinh Rn . The point p n lifts to some point pn whose coordinates can be assumed to be (0, 0, r n ) where r n ∈ (r 0 , R n -1 2 ln n). We can assume that either r n converges to some r or to ∞. In the first case the ambient space around (0, 0, r) is M ∞ = R 2 × (0, +∞) with the metric (1). If r n → ∞, we make the following change of coordinates a = e rn z, b = e rn θ and ρ = r -r n . So the ambient space is now

R 2 × (r 0 -η 1 -r n , R n -r n ) with the metric cosh 2 (ρ + r n )e -2rn da 2 + sinh 2 (ρ + r n )e -2rn db 2 + dρ 2
As n goes to +∞, these metrics converge smoothly to e 2ρ 4 (da 2 +db 2 )+dρ 2 on R 3 . In this model, the vectors v n 1 , v n 2 become e rn v n 1 and e rn v n 2 whose lengths are less that δ 0 e rn sinh Rn = O(e rn-Rn ) = O(e -1 2 ln n ) → 0. Actually, the cases r n → r and r n → +∞ are very similar. Let us look first at the case r n → r. We notice that the metric satisfies the hypotheses of Lemma 26 (Appendix A.1) for some parameter A and for r ∈ [r -η 1 , R n ]: we have x 1 = z, x 2 = θ, x 3 = r and h = sinh. So there is a C and a function

u n defined on the Euclidean disk {(z, θ) ∈ R 2 |z 2 + θ 2 ≤ 2C 2 / sinh 2 r n } such that (z, θ) → (z, u n (z, θ), θ
) is a parametrization of a neighborhood of pn in Σ n . Moreover we have u n (0, 0) = r n , ∇u n (0, 0) = 0 and the estimates

u n -r n ≤ Aε 0 ∇u n ≤ sinh r n Hess u n ≤ 1 C sinh 2 r n .
Here ∇ denote the Euclidean gradient operator. So the sequence u n is uniformly controlled in the C 2 topology and moreover u n solves the minimal surface equation [START_REF] Benedetti | Lectures on hyperbolic geometry[END_REF]. Thus, after considering a subsequence, u n converges to some u defined on 

D r = {(t, θ) ∈ R 2 |t 2 + θ 2 ≤ 2C 2
-r n defined on {(a, b) ∈ R 2 |a 2 + b 2 ≤ 2C 2 e 2rn
sinh 2 rn }. As above w n satisfies the estimates

w n ≤ Aε 0 ∇w n ≤ e -rn sinh r n Hess w n ≤ 1 C e -2rn sinh 2 r n
and solves a minimal surface equation ( 2). So we can assume it converges to some function

w defined on ∆ = {(a, b) ∈ R 2 |a 2 + b 2 ≤ 4C 2 }.
Let us denote the surface {r = R} by P R . The surface Σ n is doubly periodic so it is tangent to P rn at any point of the form (0, 0,

r n ) + kv n 1 + lv n 2 for (k, l) ∈ Z 2 .
Moreover, around these points, it is parametrized locally on

D rn + kv n 1 + lv n 2 by (z, θ) → (z, u n,k,l (t, θ), θ) where u n,k,l (z, θ) = u n ((z, θ) - kv n 1 -lv n 2 ). The surface Σ n is embedded, this implies that u n ≤ u n,k,l or u n ≥ u n,k,l on D n ∩ (D n + kv n 1 + lv n 2 ) if it is non empty (notice that we can have u n ≡ u n,k,l on the intersection). If r n → r, let v 0 be a vector in D r. Since v n i → 0, there are sequences (k n ) n and (l n ) n such that k n v n 1 + l n v n 2 → v 0 .
As n → ∞, the sequence of functions u n,kn,ln then converges to u v 0 on D r + v 0 where

u v 0 (•) = u(• -v 0 ). Because of u n ≤ u n,k,l or u n ≥ u n,k,l , we get u ≤ u v 0 or u ≥ u v 0 on D r ∩ (D r + v 0 ).
If r n → ∞, we can do the same with the change of coordinates since e rn v n i → 0. So for any v 0 ∈ ∆, we have w ≤ w v 0 or w ≥ w v 0 on ∆ ∩ (∆ + v 0 ) where

w v 0 (•) = w(• + v 0 ).
We now consider the case r n → r (the second one is similar). Let G be the totally geodesic surface in M ∞ tangent to P r at (0, r, 0). As Σ, G can be described as the graph of a function h over D r. We have h(0) = r and there is some α > 0 such that, over D r, h(z, θ) ≥ r + α(z 2 + θ 2 ). This second property comes from the fact that the principal curvatures of P r with respect to ∂ r are -tanh r < 0 and -coth r < 0. The functions u and h are two solutions of the minimal surface equation ( 2) with the same value and the same gradient at the origin. So by Bers theorem, the function u -h looks like a harmonic polynomial of degree at least 2.

If the degree of the polynomial is 2, on can find

v 0 ∈ D r \ {(0, 0)} such that (u -h)(v 0 ) > 0 and (u -h)(-v 0 ) > 0. Then we have u(v 0 ) > h(v 0 ) > h(0, 0) = u(0, 0) = u v 0 (v 0 ) u v 0 (0, 0)) = u(-v 0 ) > h(-v 0 ) > h(0, 0) = u(0, 0) So this contradicts u ≤ u v 0 or u ≥ u v 0 on the whole D r ∩ (D r + v 0 )
If the degree is at least 3, the growth at the origin of h implies that u ≥ r on a smaller disk D ⊂ D r and u > r on

D \ {(0, 0)}. So if v 0 ∈ D \ {(0, 0)} we have u(v 0 ) > r = u v 0 (v 0 ) and u v 0 (0, 0) = u(-v 0 ) > r = f (0, 0) Once again, this contradicts u ≤ u v 0 or u ≥ u v 0 on the whole D r ∩ (D r + v 0 )
If r n → ∞, the same argument can be done with a totally geodesic surface tangent to the horosphere.

3.3.

A first area estimate. The preceding result allows us to estimate the area of a minimal surface with bounded curvature in a tubular end.

Corollary 7. Let δ 0 and k 0 be positive, then there is 0 and R such that the following is true. Let ≤ 0 and N R be the hyperbolic tubular neighborhood of a geodesic loop γ of length and such that the diameter of S R is less than δ 0 . Let 0 < R ≤ R -R and Σ be a compact embedded minimal surface in N R+1 whose curvature is bounded by k 0 and ∂Σ ⊂ S R+1 . Then one of the following possibilities occurs

(1) Σ ∩ N R = ∅ (2) Σ ∩ N R is a finite union of minimal disks. Each of these disks has boundary curve homotopic to a parallel of S R = ∂N R and |Σ∩N R | ≥ 2π(cosh R -1).
A parallel of S R is a curve {z = const.} in the tubular coordinates.

Proof. Let 0 and R be given by Proposition 6 for δ 0 , k 0 and ε 0 = 1. Let Σ be as in the statement of the corollary and assume Σ ∩ N R = ∅. By Proposition 6, Σ is transverse to the foliation (S r ) r of N R . So any connected component of Σ ∩ N R intersects the geodesic loop γ transversely. This implies that in N ε for ε small each connected component of Σ ∩ N ε is a disk whose boundary is homotopic to a parallel. Thus this description extends by transversality to Σ ∩ N R . Let Π be the geodesic projection from N R to a geodesic parallel disk ∆ (i.e. the map (z, θ, r) → (z 0 , θ, r) for some z 0 ). This map is a contraction mapping and it is surjective on any disk component of Σ ∩ N R since the boundary of such a disk is homotopic to a parallel. As a consequence the area of such a disk component is at least that of ∆, i.e. 2π(cosh(R) -1).

A maximum principle

One aim of this section is to study some aspect of the behavior of minimal surfaces in a tubular end. Actually we need to study this in a more general setting. So we consider the ambient space C = T × [a, b] endowed with some reference metric g = h 2 (x 3 )dσ 2 + dx 2 3 where dσ 2 is a flat metric on the torus T . We consider orthonormal coordinates (x 1 , x 2 ) on T associated to dσ 2 ; so ḡ = h 2 (x 3 )(dx 2 1 + dx 2 2 ) + dx 2 3 . On C, we also consider a second metric g = a kl (x 1 , x 2 , x 3 )dx k dx l . For s ∈ [a, b], we denote C s = T × [s, b] and T s = T × {s}. We are going to make several hypotheses on the metrics ḡ and g. In order to formulate them, we need the following notation: for k 1 , k 2 , k 3 , k 4 , k 5 ∈ {1, 2, 3} and p ≤ 5, we define n p (k 1 , . . . , k p ) = #{i ∈ {1, . . . , p}|k i ∈ {1, 2}}. The hypotheses on ḡ and g are: there is

A ≥ 1 such that H1 1 A 2 ḡ ≤ g ≤ A 2 ḡ H2 |h | h ≤ A, |h | h ≤ A and |h | h ≤ A. H3 |a kl | ≤ Ah n 2 (k,l) (x 3 ), |∂ i a kl | ≤ Ah n 3 (k,l,i) (x 3 ), |∂ i ∂ j a kl | ≤ Ah n 4 (k,l,i,j) (x 3 )
and

|∂ i ∂ j ∂ m a kl | ≤ Ah n 5 (k,l,i,j,m) (x 3
). H4 h ≤ 0 and the mean curvature vector of T s with respect to g points in the ∂ x 3 direction (this is also true for the metric ḡ since h ≤ 0) One consequence of H1 and H2 is that the sectional curvatures of ḡ are uniformly bounded. Actually by H1 and H3 the sectional curvatures of g are also uniformly bounded. We also notice that these hypotheses does not depend on the choice of the orthonormal coordinates on (T, dσ 2 ). 4.1. The maximum principle. We have the following maximum principle for embedded minimal surfaces in C endowed with the metric g. Proposition 8. Let i 0 ∈ N, then there is h 0 such the following is true. Assume that h(a) ≤ h 0 and let Σ be an embedded minimal surface in (C, g) whose non empty boundary is inside T a and its index is less than i 0 . Then Σ ∩ C a+1/2 = ∅.

We notice that h 0 will depend on i 0 , A and the metric dσ 2 . We also notice that this control on h is actually a control on the size of the torus T a .

Proof. If the proposition is not true there is a sequence of functions h n with h n (a) → 0 and minimal surfaces S n ⊂ (C, g n ) (g n = a n,kl (x 1 , x 2 , x 3 )dx k dx l ) such that ∂S n ⊂ T a , its index is less than i 0 and Σ ∩ C a+1/2 = ∅.

Let s n be the maximum of the x 3 coordinate on S n , x 3 ≥ a + 1/2. Let us define λ n = (h n (s n )) -1 . Then we change the coordinates by y 1 = x 1 , y 2 = x 2 and y 3 = λ n (x 3 -s n ) and blow up the metric by a factor λ n . This gives us a minimal surface Σ n in T × [λ n (a -s n ), 0] that touches T 0 and with boundary in T λn(a-sn) (we notice that λ n (a -s n ) → -∞). The ambient metric is then gn = b n,kl (y 1 , y 2 , y 3 )dy k dy l where

b n,kl (y 1 , y 2 , y 3 ) = a n,kl (y 1 , y 2 , y 3 /λ n + s n )λ n 2 (k,l) n The reference metric becomes h 2 n (y 3 /λ n + s n ) h 2 n (s n ) (dy 2 1 + dy 2 2 ) + dy 2 3
Because of the hypothesis H2, considering a subsequence, this metric converges to the flat metric dσ 2 + dy 2 3 in C 2,α topology. Because of H3, considering a new subsequence, the metrics gn converges to a flat metric h = bkl dy k dy l in C 2,α topology. For example we have

∂ i b n,kl = ∂ i a n,kl (y 1 , y 2 , y 3 /λ n + s n )λ n k,l,i -1 n So |∂ i b n,kl | ≤ A h n 3 (k,l,i) n (y 3 /λ n + s n ) h n 3 (k,l,i) n (s n ) h n (s n ) → 0
Once this is known, the arguments in order to conclude use the fact that Σ n converges to a minimal lamination in T 2 × R -endowed with the flat metric h : the precise argument can be found in the proof of Proposition 1 in [START_REF] Collin | Corrigendum to "minimal surfaces in finite volume non compact hyperbolic 3-manifolds[END_REF].

Remark 3. We notice that h 0 can be chosen uniformly if dσ 2 lies in a compact subset of flat metrics on T . 4.2. Some applications. In this section, we will see some consequences of the above result.

The case of cusp ends E = T × R + endowed with ḡ = e -2x 3 dσ 2 + dx 2 3 is the simplest one. Indeed in this case the metric g is the reference metric ḡ and h(x 3 ) = e -x 3 . Then hypotheses H1 to H4 are satisfied. So Proposition 8 yields: if ∂E has small diameter, then no compact embedded minimal surface with boundary inside ∂E and index less than 1 can enter in E 1/2 . As a consequence, in a cusp manifold M , there is ε > 0 such that any compact embedded minimal surface in M with index less than 1 is contained in

M [ε,∞) .
The second case of interest concerns the tubular ends.

Proposition 9. Let K be a compact set of flat tori T . Then there are 0 and R such the following is true. Let ≤ 0 and N R be a hyperbolic tubular neighborhood of a geodesic loop of length such that S R belongs in K. Let 0 < R ≤ R -R and Σ be a compact embedded minimal surface in N R+1 with ∂Σ ⊂ S R+1 with index less than 1. Then one of the following possibilities occurs (1) Σ ∩ N R = ∅ (2) Σ ∩ N 1 = ∅ Moreover there is a universal constant κ such that, in the second case and for any

3 ≤ R ≤ R -R, |Σ ∩ N R | ≥ κs 0 e R-R where s 0 ≤ 1 is a lower bound on the systole of T R . Proof. We first prove that Σ ∩ N R = ∅ or Σ ∩ N 1 = ∅. We have seen in Section 2.1 that we can consider, on N R , a coordinate system C = T ×[0, R ) endowed with the metric g = sinh 2 (R -x 3 )dx 2 1 + cosh 2 (R -x 3 )dx 2 2 + dx 2 3 ((x 1 , x 2 ) are orthonormal coordinates on T ).
In order to fit with the notations of the preceding section we should introduce the coordinates y i = sinh(R )x i i = 1, 2 and y 3 = x 3 . The first two are orthonormal coordinates on (T, dσ 2 ) = sinh(R ) 2 (dx 2 1 + dx 2 2 ). So we define ḡ = h 2 (x 3 )(dy 2 1 + dy 2 2 ) + dy 2 3 with h(x) = sinh(R -x)/ sinh(R ) and in these coordinates the metric g can be written

1 sinh 2 (R ) (sinh 2 (R -y 3 )dy 2 1 + cosh 2 (R -y 3 )dy 2 2 ) + dy 2 3
There is A > 0 (that does not depend on ) such that g and ḡ satisfy hypotheses H1, H2, H3 and H4 on T × [0, R -1

2 ). Moreover we notice that, since S R belongs to K, (T, dσ 2 ) belongs to a compact set of flat tori.

Let h 0 be given by Proposition 8 and let R be such that sinh(R -R) ≤ h 0 sinh(R ). Consider 0 < R ≤ R -R and let Σ be an embedded minimal surface in N R+1 \ N 1 2 with ∂Σ ⊂ S R+1 and index less than 1. If Σ ∩ N 1 = ∅, Σ can be seen as a minimal surface in (C, g) with boundary in T s where

s = R -(R + 1). Since h(s) ≤ h 0 , Proposition 8 gives Σ ∩ C s+1/2 = ∅. So in the tubular coordinates, we have Σ ∩ N R = ∅.
In the second case we now prove the area estimate. For this we use the tubular coordinates. We notice that Σ must meet all the tori S r for 1 ≤ r ≤ R + 1.

Since g ≤ cosh 2 r(dz 2 + dθ 2 ) + dr 2 and the systole of T R is at least s 0 ,

the disk {(z + z 0 , θ + θ 0 , R )| z 2 + θ 2 ≤ s 2 0 4 cosh 2 R } is embedded in S R for any t 0 , θ 0 . For any ρ ∈ [3/2, R ], let us define a = sinh ρ cosh R s 0 4 ≤ 1 4 . The cylinder Y ρ = {(z + z 0 , θ + θ 0 , r)|r ∈ [ρ -2a, ρ] and z 2 + θ 2 ≤ s 2 0 4 cosh 2 R } is embedded in N ρ . Y ρ
contains the geodesic ball of center (z 0 , θ 0 , ρ -a) and radius a which is then embedded in N ρ . Indeed, in the cylinder, we have

g ≥ sinh 2 (ρ -2a)(dz 2 + dθ 2 ) + dr 2 ≥ 1 4 sinh 2 ρ(dz 2 + dθ 2 ) + dr 2
So the geodesic ball is contained in {(z

+ z 0 , θ + θ 0 , r + ρ -a)| 1 4 sinh 2 ρ(z 2 + θ 2 ) + r 2 ≤ a 2 } which is a subset of Y ρ .
Since Σ meets any S r for r ≥ 1, for any ρ we can select z 0 , θ 0 such that (z 0 , θ 0 , ρ -a) ⊂ Σ. So by the monotonicity formula in

H 3 , |Σ ∩ Y ρ | ≥ πa 2 .
We are going to sum over all these contributions to estimate the area of Σ.

Let c(s) = (z(s), θ(s), R ) be a parametrization of a systole of S R and consider the surface S in N R parametrized by X : (s, r)

∈ S 1 × [1, R ] → (z(s), θ(s), r). So, for ρ 1 < ρ 2 , we can estimate |S ∩ (N ρ 2 \ N ρ 1 )| ≤ ρ 2 ρ 1 S 1 (cosh 2 (r)z 2 (s) + sinh 2 (r)θ 2 (s)) 1/2 drds ≤ ρ 2 ρ 1 S 1 cosh r sinh R (cosh 2 (R )z 2 (s) + sinh 2 (R )θ (s)) 1/2 drds ≤ s 0 sinh R (sinh ρ 2 -sinh ρ 1 ) ≤ 2s 0 sinh R cosh ρ 1 + ρ 2 2 sinh ρ 2 -ρ 1 2 So in N ρ \ N ρ-2a |S ∩ (N ρ \ N ρ-2a )| ≤ 2s 0 sinh R cosh(ρ -a) sinh a ≤ 2κs 0 sinh R cosh(ρ)a ≤ 2κ s 0 cosh R sinh(ρ)a ≤ 8κ a 2 ≤ 8κ π |Σ ∩ Y ρ | ≤ 8κ π |Σ ∩ (N ρ \ N ρ-2a )|
for some universal constant κ and κ . So considering a disjoint union of

N ρ \ N ρ-2a in N R \ N 1 that covers N R \ N 3/2 , we obtain |Σ ∩ N R | ≥ π 8κ |S ∩ (N R \ N 3/2 )| ≥ π 8κ R 3/2 S 1 (cosh 2 (r)y 2 (s) + sinh 2 (r)θ 2 (s)) 1/2 drds ≥ π 8κ s 0 cosh R (cosh R -cosh 3/2) ≥ κ s 0 e R-R
for any R ≥ 3 and some universal constant κ .

The min-max theory

In this section we recall some definitions and results of the min-max theory for minimal surfaces. There are basically two settings for this theory: the discrete and the continuous one. We recall the main points that we will use in the sequel. 5.1. The discrete setting. The discrete setting for the min-max theory was developed by Almgren and Pitts (see [START_REF] Justin Almgren | The homotopy groups of the integral cycle groups[END_REF][START_REF] Pitts | Existence and regularity of minimal surfaces on Riemannian manifolds[END_REF]).

Let M be a compact orientable 3-manifold with no boundary. The Almgren-Pitts min-max theory deals with discrete families of elements in Z 2 (M ) i.e. integral rectifiable 2-currents in M with no boundary.

If I = [0, 1], we define some cell complex structure on I and I 2 .

Definition 10. Let j be an integer. I(1, j) is the cell complex on I whose 0-cells are points [ i 3 j ] and 1-cells are intervals

[ i 3 j , i+1 3 j ]. The cell complex I(2, j) on I 2 is I(2, j) = I(1, j) ⊗ I(1, j).
For these cell complexes we can associate some notations • I(m, j) 0 denotes the set of 0-cells of I(m, j).

• I 0 (1, j) denotes the set of 0-cells [0], [START_REF] Justin Almgren | The homotopy groups of the integral cycle groups[END_REF].

• The distance between two elements of I(m, j) 0 is

d : I(m, j) 0 × I(m, j) 0 → N ; (x, y) → 3 j m i=1 |x i -y i |
• The projection map n(i, j) : I(m, i) 0 → I(m, j) 0 is defined by n(i, j)(x)

is the unique element in I(m, j) 0 such that d(x, n(i, j)(x)) = inf{d(x, y), y ∈ I(1, j) 0 }.

Let ϕ : I(m, j) 0 → Z 2 (M ) be a map. The fineness of ϕ is defined by

f (ϕ) = sup M(ϕ(x) -ϕ(y)) d(x, y) , x, y ∈ I(m, j) 0 and x = y
where M is the mass of a current. We write ϕ : I(1, j) 0 → (Z 2 (M ), {0}) to mean ϕ(I(1, j) 0 ) ⊂ Z 2 (M ) and ϕ(I 0 (1, j)) = {0}. Definition 11. Let δ be positive and ϕ i :

I(1, k i ) 0 → (Z 2 (M ), {0}) for i = 1, 2. ϕ 1 and ϕ 2 are 1-homotopic in (Z 2 (M ), {0}) with fineness δ if there is k 3 ∈ N, max(k 1 , k 2 ) ≤ k 3 and a map ψ : I(2, k 3 ) 0 → Z 2 (M ) such that • f (ψ) ≤ δ; • ψ([i -1], x) = ϕ i (n(k 3 , k i )(x)) for x ∈ I(1, k 3 ) 0 ; • ψ(I(1, k 3 ) 0 × {[0], [1]}) = 0.
The main objects in the discrete min-max theory are the (1, M)-homotopy sequences.

Definition 12. A (1, M)-homotopy sequence of maps into (Z 2 (M ), {0}) is a sequence of maps {ϕ i } i∈N ,

ϕ i : I(1, k i ) 0 → (Z 2 (M ), {0}), such that ϕ i is 1-homotopic to ϕ i+1 in (Z 2 (M ), {0}) with fineness δ i and • lim i→∞ δ i = 0; • sup i {M(ϕ i (x)), x ∈ I(1, k i ) 0 } < +∞.
Moreover we have a notion of discrete homotopy between (1, M)-homotopy sequences Definition 13. Let S j = {ϕ j i } i∈N (j = 1, 2) be two (1, M)-homotopy sequences of maps into (Z 2 (M ), {0}). S 1 is homotopic to S 2 if there is a sequence {δ i } i∈N such that

• lim δ i = 0; • ϕ 1 i is 1-homotopic to ϕ 2 i in (Z 2 (M ), 0) with fineness δ i .
This notion defines an equivalence relation between (1, M)-homotopy sequences. The set of equivalence classes is denoted by π # 1 (Z 2 (M ), M, {0}). The Almgren-Pitts theory says that π # 1 (Z 2 (M ), M, {0}) is naturally isomorphic to the homology group H 3 (M, Z) (see Theorem 4.6 in [START_REF] Pitts | Existence and regularity of minimal surfaces on Riemannian manifolds[END_REF] and [START_REF] Justin Almgren | The homotopy groups of the integral cycle groups[END_REF]). We denote by Π M the element of π # 1 (Z 2 (M ), M, {0}) that corresponds to the fundamental class in H 3 (M ). If S ∈ Π M we say that S is a discrete sweep-out of M .

For S = {ϕ i } i a (1, M)-homotopy sequence we define

L(S) = lim sup i→∞ max{M(ϕ i (x)), x ∈ I(1, k i ) 0 } If Π ∈ π # 1 (Z 2 (M ), M, {0}
) is an equivalence class, we define the width associated to Π by W (Π) = inf{L(S), S ∈ Π} For Π = Π M , the number W M = W (Π M ) is call the width of the manifold M . The Almgren-Pitts theory says that this number is positive and is L(S) for some particular S ∈ Π M . If S = {ϕ i } i we say that ϕ

i j (x j ) j (x j ∈ I(1, k i j )) is a min-max sequence if M(ϕ i j (x j )) → W M .
Theorem 14 (Pitts [START_REF] Pitts | Existence and regularity of minimal surfaces on Riemannian manifolds[END_REF]). Let M be a closed 3-manifold, then there is S = {ϕ i } i ∈ Π M with L(S) = W M and a min-max sequence {ϕ i j (x j )} j that converges (in the varifold sense) to an integral varifold whose support is a finite collection of embedded connected disjoint minimal surfaces {S i } i of M . So there are positive numbers {n i } i such that

W M = p i=1 n i |S i |
A consequence of this result is that there is always a minimal surface S in M such that |S| ≤ W M . Actually, Zhou [START_REF] Zhou | Min-max minimal surface in (M n+1 , g) with Ricg > 0 and 2 ≤ n ≤ 6[END_REF] proved that, if S i is a non orientable minimal surface produced by the above theorem, then n i is even.

The continuous setting. The continuous setting was developed by

Colding and De Lellis [START_REF] Colding | The min-max construction of minimal surfaces[END_REF]. Here we present it with the modifications made by Song in [START_REF] Song | Embeddedness of least area minimal hypersurfaces[END_REF].

Let M be Riemannian 

(sw3') Ω a = ∅, Ω b = N , Σ a = ∂N and Σ t ⊂ N for t > a.
For a continous sweep-out as above {Γ t } t∈[a,b] , we define the quantity

L({Γ t }) = max t∈[a,b] H 2 (Γ t ).
When ∂N is a smooth surface, constructing a continuous sweep-out can be done in the following way. Let f : N → [0, 1] be a Morse function such that {f -1 (0

)} = ∂N . Then if Γ t = f -1 (t) for t ∈ [0, 1], {Γ t } t∈[0,1] is a sweep-out of N .
Two continuous sweep-outs {Γ 1 t } t∈[a,b] and {Γ 2 t } t∈[a,b] are said to be homotopic if, informally, they can be continuously deformed one to the other (the precise definition is Definition 8 in [START_REF] Song | Embeddedness of least area minimal hypersurfaces[END_REF]). Then a family Λ of sweep-outs is called homotopically closed if it contains the homotopy class of each of its elements. For such a family Λ, we can define the width associated to Λ as

W (N, ∂N, Λ) = inf {Γt}∈Λ L({Γ t })
As in the discrete setting this number can be realized as the mass of some varifold supported by smooth disjoint minimal surfaces (see Theorem 12 in [START_REF] Song | Embeddedness of least area minimal hypersurfaces[END_REF]).

5.3.

From continous to discrete. In order to construct discrete sweepouts of a closed orientable 3-manifold M , we will use a result obtained by Zhou (see Theorem 5.1 in [START_REF] Zhou | Min-max minimal hypersurface in manifold with positive Ricci curvature[END_REF]). We denote by C(M ) the space of subsets in M with finite perimeter. Let F denote the flat metric on Z 2 (M ).

Theorem 17. Let Φ : [0, 1] → (Z 2 (M ), F) be a continuous map such that • Φ(0) = 0 = Φ(1); • Φ(x) = ∂[[Ω x ]], Ω x ∈ C(M ) for all x ∈ [0, 1]; • Ω 0 = ∅ and Ω 1 = M • sup x M(Φ(x)) < +∞.
Then there exists a discrete sweep-out S such that

L(S) ≤ sup x∈[0,1] M(Φ(x))
Here [[Ω]] denotes the element of Z 3 (M ) corresponding to Ω. Let us notice that if {Γ t } t∈[0,1] is a continuous sweep-out of a compact orientable Riemannian 3-manifold then Φ : t → [[Γ t ]] ∈ Z 2 (M ) satisfies the hypotheses of the above theorem (as above [[Γ t ]] denotes the element of Z 2 (M ) corresponding to Γ t ).

The quantity A 1 (M )

In this section we recall some results the authors obtained in [START_REF] Mazet | Minimal hypersurfaces of least area[END_REF] (see also [START_REF] Collin | Corrigendum to "minimal surfaces in finite volume non compact hyperbolic 3-manifolds[END_REF]).

6.1. The quantity A 1 (M ) for compact M . If M is a closed orientable Riemannian 3-manifold, we denote by O the collection of all smooth orientable embedded closed minimal surfaces in M and U the collection of all smooth non-orientable ones. We then define

A 1 (M ) = inf({|Σ|, Σ ∈ O} ∪ {2|Σ|, Σ ∈ U})
One result of [START_REF] Mazet | Minimal hypersurfaces of least area[END_REF] is the following theorem (Theorem B in [START_REF] Mazet | Minimal hypersurfaces of least area[END_REF]) Theorem 18. Let M be an oriented closed Riemannian 3-manifold. Then A 1 (M ) is equal to one of the following possibilities.

(1) |Σ| where Σ ∈ O is a min-max surface of M associated to the fundamental class of H 3 (M ), Σ has index 1, is separating and

A 1 (M ) = W M . (2) |Σ| where Σ ∈ O is stable.
(3) 2|Σ| where Σ ∈ U is stable and its orientable 2-sheeted cover has index 0.

Moreover, if Σ ∈ O satisfies |Σ| = A 1 (M ), then Σ is of type 1 or 2 and if Σ ∈ U satisfies 2|Σ| = A 1 (M ), then Σ is of type 3.
Actually in [START_REF] Mazet | Minimal hypersurfaces of least area[END_REF], the case (3) mentions the possibility for the orientable 2-sheeted cover to have index 0 or 1. In fact, the index 1 case can be ruled out thanks to the work of Ketover, Marques and Neves [START_REF] Ketover | The catenoid estimate and its geometric applications[END_REF].

If S denotes the collection of all smooth embedded stable minimal surfaces, we define A S (M ) = inf({|Σ|, Σ ∈ O∩S}∪{2|Σ|, Σ ∈ U ∩S}). Actually we proved in [START_REF] Mazet | Minimal hypersurfaces of least area[END_REF] that A 1 (M ) = min(W M , A S (M )). In order to simplify some notations, we will denote a

(Σ) = |Σ| if Σ ∈ O and a(Σ) = 2|Σ| is Σ ∈ U.
When M is not compact, one can still define O and U for M by considering only compact embedded minimal surfaces in M . Of course these collections could be empty but if it is not A 1 (M ) is well defined. If M is a cusp manifold this can be done as we show in section 6.3. 6.2. The filler. We want to study A 1 (M ) when M is a cusp manifold. In order to do that the idea is to change M into a compact manifold D(M ) that contains all the compact minimal surfaces of M . To do this the main tool are the fillers. Definition 19. Let (T, dσ 2 ) be a flat torus and L > 10 be a real number. A filler F associated to T and L is a solid torus endowed with a Riemannian metric g with the following properties.

(i) Let T t be the set of points at distance t from ∂F . For t ∈ [0, L + 1), T t is a smooth flat torus and T L+1 is a closed geodesic. (ii) The diameter of T t is a decreasing function and the mean curvature vector points in the ∂ t direction. (iii) For t ∈ [0, 1], T t has the metric e -2t dσ 2 . (iv) Any minimal surface Σ that meets all the T t for 0 ≤ t ≤ L -1 has area at least κL where κ is a constant depending on the systole of (T, dσ 2 ).

Proposition 20. Let (T, dσ 2 ) be a flat torus and L > 10. There exists a filler associated to T and L. Moreover, let δ and s be the diameter and the systole of (T, dσ 2 ) and K ≤ s/δ. Then there is δ 0 > 0 that depends only on K such that (v) if δ is less than δ 0 , then any minimal surface Σ with ∂Σ ⊂ ∂F and index at most

1 satisfies either Σ ∩ T 1 = ∅ or Σ ∩ T t = ∅ for any t ≤ L -1.
Proof. We construct F as T × [L + 1] with a Riemannian metric which is singular on T L+1 = T × {L + 1} in order for T L+1 to be a geodesic. We use the notation

F t = T × [t, L + 1]. Let f : [0, L + 1] → R be a function satisfying the following properties • f (t) = t on [0, 1], • f > 0 on [0, L + 2/3) and f = 0 on [L + 2/3, L + 1]. • f ≤ 3.
• f and f are bounded independently of L. On F \ F L , we define the metric g = e -2f (t) dσ 2 + dt 2 . Since f (t) = t on [0, 1], (iii) is satisfied.

In order to define the metric on F L , we consider a well oriented orthonormal coordinate system on (T, dσ 2 ) such that T is the quotient of R 2 by the translations by (α, 0) and (β, ).

Let η : [0, 1] → [0, 1] be a non increasing function such that η is decreasing on [1/2, 1], η = 1 near 0, and η(x) = (1 -x) 2π α e f (L+1) near 1. On F L we extend the definition of the metric g by

g = e -2f (t) (η 2 (t -L)dx 2 1 + dx 2 
2 ) + dt 2 Since η(1) = 0, the metric is singular at t = L + 1. Let D be the unit disk and consider the solid torus T constructed as the quotient of D × [0, ] by the relation (p, 0) ∼ (R β (p), ) where R β is the rotation of angle β. If (ρ, θ) are the polar coordinates on D and h : T → F L is the map (ρ, θ, z) → ( α 2π θ, v, L + 1 -ρ) the metric h * g is given by

h * g = e -2f (L+1-ρ) (η 2 (1 -ρ) α 2 4π 2 θ 2 + dz 2 ) + dρ 2 so, near ρ = 0 (i.e. t = L+1), it is equal to h * g = ρ 2 dθ 2 +e -2f (L+1) dz 2 +dρ 2
which is a smooth metric on T near the core circle {ρ = 0}. So F is a smooth solid torus with a smooth metric and (i) is satisfied.

Because of the monotonicity of f and η, (ii) is satisfied. Moreover the curvature of g is uniformly controlled on F \ F L . If ρ 0 is the minimum of 1 and half the systole of (T, dσ 2 ), then for any p ∈ F 1 \ F L-1 the geodesic ball of center ρ and radius e -3 ρ 0 is embedded in F \ F L .

Let Σ be a minimal surface that meets all the T t for t ∈ [0, L]. Consider t n = 1 + 2e -3 ρ 0 n and, for any n ∈ {0, . . . , n 0 } where t n 0 ≤ L + 2 ≤ t n 0 +1 , let p n be in T tn with p n ∈ T tn ∩ Σ. Then by the monotonicity formula, the area of Σ in the ball of radius e -3 ρ 0 and center p n is at least ce -6 ρ 2 0 for some universal constant c. Since these balls are disjoint, the area of Σ in F \ F L is at least

(n 0 + 1)ce -6 ρ 2 0 ≥ L -3 2 ce -3 ρ 0 ≥ κL if L ≥ 10
and where κ only depends on the systole of (T, dσ 2 ). For item (v), we notice that (T, 1 δ 2 dΣ 2 ) belongs to a compact subset of flat tori fixed by K. So Proposition 8 applies to (F \ F L , δ 2 e -2f (t) dσ 2 δ 2 + dt 2 ) to prove that if Σ has index at most 1 and Σ ⊂ T × [0, , L -1] then Σ ⊂ T × [0, 1].

6.3.

The quantity A 1 (M ) for cusp manifolds. In this section we recall the study of compact minimal surfaces inside orientable cusp manifolds we made in [START_REF] Collin | Minimal surfaces in finite volume non compact hyperbolic 3-manifolds[END_REF][START_REF] Mazet | Minimal hypersurfaces of least area[END_REF].

Let M be a cusp manifold. First we prove that M contains a compact embedded minimal surface. Let ε be such that the ε-thin part is only made of cusp ends. Since ∂M [ε,∞) is smooth there is a homotopically closed family Λ of sweep-outs associated to a Morse function on

M [ε,∞) (we recall that the tori components of ∂M [ε,∞) are leaves of the sweep-outs). If ε < ε, M [ε ,ε] is foliated by tori that can be used to extend any continuous sweep-out in Λ into a sweep-out of M [ε ,∞) that belongs to a homotopically closed family Λ . Since W (M [ε,∞) , ∂M [ε,∞) , Λ) ≥ |∂M [ε,∞) | we obtain W (M [ε,∞) , ∂M [ε,∞) , Λ) ≥ W (M [ε ,∞) , ∂M [ε ,∞) , Λ ) So there is W 0 > 0 such that W 0 ≥ W (M [ε,∞) , ∂M [ε,∞) , Λ) for any ε. Besides a continuous sweep-out of M [ε,∞) must sweep out also a fixed geodesic ball in M . So there is w 0 such that W (M [ε,∞) , ∂M [ε,∞) , Λ) ≥ w 0 for any ε.
Thus we can choose ε small such that any flat tori C in ∂M [ε,∞) has small diameter and w 0 > |∂M [ε,∞) |. For each C, we consider a filler F C associated to the flat torus C and L that will be chosen later. ε is chosen small enough such that item (v) of Proposition 20 is satisfied. Since there are a finite number of C, item (iv) of Definition 19 gives some constant κ > 0 independent of C. Then L is chosen such that κL ≥ W 0 + 1.

We can glue each filler F C along C to obtain a compact manifold without boundary denoted D(M ) with some metric. The construction of D(M ) depends on two parameters ε and L, so sometimes we will write D ε,L (M ) (actually it also depends on the choice of some coordinates on F ). We will use this construction in the following sections.

D(M ) contains isometrically a 1-tubular neighborhood of M [ε,∞) . Let {Γ t } t∈[0,1] be a continuous sweep- out of M [ε,∞) with L(Γ t ) ≤ W (M [ε,∞) , ∂M [ε,∞) , Λ) + 1/2. We can extend {Γ} t∈[0,1] to a continuous sweep-out { Γ t } t∈[-L-1,1] of D(M ) by considering Γ t = ∪ C ∂F C -t for t ∈ [-L -1, 0]. Since, for t < 0, | Γ t | ≤ |∂M [ε,∞) | we have L( Γ t ) ≤ L(Γ t )
. By Theorem 17, the width W D(M ) is then less than W 0 + 1/2. Thus by Theorem 18, there is a minimal surface Σ in D(M ) with index at most 1 such that a(Σ)

≤ W 0 + 1/2.
Because of our choice of ε and items (iv) and (v), if Σ enters in some

F C 1 then a(Σ) ≥ |Σ ∩ F C | ≥ κL ≥ W 0 + 1; this is impossible. So Σ stays outside of F C 1 for any C so Σ is embedded in the part isometric to the 1-tubular neighborhood of M [ε,∞) ⊂ M : Σ is a compact minimal surface in M .
Now we know that M contains compact embedded minimal surfaces and we can define the number A 1 (M ). In order to prove that A 1 (M ) is realized as in Theorem 18, we have the following argument. Let S be a compact minimal surface in M . We construct D(M ) as above with an extra hypothesis on ε which is M [ε,∞) contains S and all compact embedded minimal surfaces in M with index at most 1. The above construction gives

A 1 (M ) ≤ W 0 + 1/2.
Let Σ is a minimal surface that realizes A 1 (D(M )) (it has index at most 1), we have a(Σ) ≤ a(S). If Σ enters in into F C 1 for some C, we have

a(Σ) ≥ |Σ ∩ F C | ≥ κL ≥ W 0 + 1 ≥ A 1 (M ) + 1/2
So Σ does not enter into such a filler: Σ belongs to M . Thus A 1 (D(M )) = A 1 (M ) and A 1 (D(M )) is realized by a minimal surface as in Theorem 18. The remainder of this paper is devoted to the study of the continuity of the A 1 functional over the collection of orientable cusp manifolds. We are going to study the lower and the upper semi-continuity of A 1 .

The upper semi-continuity study

In this section, we consider (M i ) i a sequence of cusp manifolds that converges to M for the geometric convergence. The first step and the main step of the upper semi-continuity study is to prove that the sequence (A 1 (M i )) i is bounded. The following proposition answers this question. Proposition 21. Let M i → M be a converging sequence of cusp manifolds. Then for small ε and large L,

lim sup A 1 (M i ) ≤ W D(M ) .
Proof. The idea of the proof consist in constructing a Riemannian manifold (N i , gi ) which is κ i -quasi isometric to D(M ) with κ i → 1 and such that a large part N 1 i of N i is isometric to a large part of M i . Moreover N i is such that any minimal surface with index at most 1 that gets out of N 1 i has area at least W D(M ) +1/2. As a consequence, a minimal surface

S i in N i realizing A 1 (N i ) satisfies a(S i ) ≤ κ 2 i W D(M ) < W D(M ) +1/2 for large i and is contained in N 1 i . Thus lim sup A 1 (M i ) ≤ lim sup a(S i ) ≤ lim sup κ 2 i W D(M ) = W D(M )
. We choose ε small such that the ε-thin part of M is made only of cusp ends. The convergence M i → M gives us ϕ i : M [ε,∞) → M i as in Subsection 2.2. From Section 6.3, we know that there is W 0 > 0 independent of ε and L such that

W D ε,L (M ) ≤ W 0 + 1/2.
Let C be one boundary component of M [ε,∞) and A the part of the 2tubular neighborhood of C inside M [ε,∞) (the rest of the proof is written as if there is only one C in ∂M [ε,∞) , actually we need to repeat the argument for each C). A can be parametrized by T × [-2, 0] with the metric g = e -2x 3 (dx ) . We notice that N 1 i contains the part of ϕ i (A) parametrized by T × [-2, -1]. We are going to modify the metric g i on T × [-1, 0] in order to define a new metric gi on ϕ i (M [ε,∞) ) which will be the Riemannian manifold N 2 i . Let χ : [-1, 0] → R be C ∞ such that 0 ≤ χ ≤ 1, χ = 1 near -1 and χ = 0 near 0. We then define gi = χ(x 3 )g i + (1 -χ(x 3 ))ḡ. Since g i and ḡ are C ∞ close. gi is also C ∞ close to ḡ. As explained above, gi turns

2 1 + dx 2 2 ) + dx 2 3 where (x 1 , x 2 ) ∈ T are orthonormal coordinates on C. By Subsection 2.2, ϕ i (A) is a one sided neighborhood of ϕ i (C) in ϕ i (M ) ⊂ M i . On ϕ i (A) we have the coordinates T × [-2, 0] with the metric g i = a i,kl dx k dx l that C ∞ converges to ḡ. Let N 1 i be ϕ i (M 1 [ε,∞) ) with the metric g i where M 1 [ε,∞) is the set of points in M [ε,∞) at distance at least 1 from ∂M [ε,∞
ϕ i (M [ε,∞) ) into a new Riemannian manifold (N 2 i , gi ). The map ϕ i : M [ε,∞) → N 2
i is still well defined and since the metrics gi converge in the C ∞ topology to ḡ. ϕ i is a κ i quasi-isometry where κ i → 1. Moreover ϕ i is an isometry close to ∂M [ε,∞) .

Let L be large and consider a filler F associated to T and L. Since N 2 i and M [ε,∞) are isometric close to their boundary we can glue to all of them the filler F to produce (D ε,L (M ), g) and (N i , gi ) and extend the definition of ϕ i to a map D(M ) → N i which is the identity on the filler. As a consequence ϕ i : D(M ) → N i is a κ i quasi-isometry.

Let us estimate the area of a minimal surface S ⊂ N i with index at most 1 that is not contained in N 1 i . Thus S must enter in some part of N i which is isometric to T × [-2, L] endowed with the metric gi = ãi,kl dx k dx l which is C ∞ close to g = ḡ on T ×[-2, 0] and is equal to g = e -2f (x 3 ) (dx 2 1 +dx 2 2 )+dx 2 3 on T × [0, L] (f is introduced in Section 6.2). Because of our choice of f function, the metrics gi and g satisfy the hypotheses H1 to H4 of Section 4 for a uniform constant A.

If S does not meet all the tori T s for s ∈ [-2, L] then, by Proposition 8, S must stay outside of T × [-3/2, L + 1], so S ⊂ N 1 i . Since we assume S i ⊂ N 1 i , it must meet all the tori T s for s ∈ [0, L]. Then by Proposition 20, |S| ≥ κL for some κ that only depends on the injectivity radius of T 0 . Now, we choose L large enough such that κL > W 0 + 1. We obtain |S| ≥ κL > W 0 + 1 ≥ W D(M ) + 1/2. This finishes the construction of N i and then lim sup

A 1 (M i ) ≤ W D(M ) .
We know that for ε small and L large we have A 1 (M ) = A 1 (D(M )) = min(A S (M ), W D(M ) ). So the above result gives us a first upper semicontinuity property. Proposition 22. Let M i → M be a converging sequence of cusp manifolds. If one of the following hypotheses is satisfied then Proof. The first case comes directly from the above proposition.

lim sup A 1 (M i ) ≤ A 1 (M ). • A 1 (M ) = W D(M ) • A 1 (M )
Let Σ be a non separating minimal surface that realizes A 1 (M ). Let ε be small such that Σ is contained in the ε-thick part of M . Let ϕ i : M [ε,∞) → M i be the κ i quasi-isometry associated to the convergence M i → M . Then ϕ i (Σ) is a surface in M i with a(ϕ i (Σ)) ≤ κ 2 i a(Σ). Because of the topology of the ε-thin part (cusps or solid tori), ϕ i (Σ) is non separating in M i . So taking a small ε i and a large L i we can see ϕ i (Σ) as a non separating surface in D ε i ,L i (M i ). So minimizing the area in the non vanishing homology class of Σ (see [START_REF] Federer | Normal and integral currents[END_REF][START_REF] Simon | Lectures on geometric measure theory[END_REF]) there is a minimal surface

S i in D(M i ) with a(S i ) ≤ a(ϕ i (Σ)) ≤ κ 2 i a(Σ) = κ 2 i A 1 (M ). Thus A 1 (M i ) = A 1 (D(M i )) ≤ a(S i ) ≤ κ 2 i A 1 ( 
M ) and this gives the result.

Concerning the last case, as above, let ε be small such that Σ is contained in the ε-thick part of M and ϕ i :

M [ε,∞) → M i . Let h i = ϕ * i g i . Since M i → M ,
the metrics h i converge in the C ∞ topology to g. Since Σ is a non degenerate surface, for large i, Σ can be deformed to a minimal surface

S i in (M [ε,∞) , h i ). So ϕ i (S i ) is a minimal surface in M i and lim sup A 1 (M i ) ≤ lim sup a(S i ) = a(Σ) = A 1 (M ) Remark 4. We notice that the hypothesis A 1 (M ) = W D(M ) is satisfied if A 1 (M ) is realized by an index 1 minimal surface.
The second case is realized if A 1 (M ) is realized by a non orientable minimal surface.

The lower semi-continuity study

In this section we are going to prove that the A 1 functional is lower semicontinuous.

8.1. An exclusion property. Let S be a two-sided embedded surface. Let ν be a choice of a unit normal vectorfield along S and f : S → R be a smooth function. Then we can define exp S,f : S → M ; p → exp p (f (p)ν(p))

If f is sufficiently small, exp S,f (S) is an embedded surface which inherits from S a natural unit normal vector still denoted by ν. The lemma below is inspired by Lemma 16 in [START_REF] Song | Embeddedness of least area minimal hypersurfaces[END_REF] Lemma 23. Let S be a two-sided embedded surface and U be a subset of S such that the mean curvature of S vanishes on U . If S \ U has non empty interior, there is a positive function f and τ > 0 such that exp S,sf (S) has positive mean curvature on exp S,sf (U ) with respect to the naturally induced unit normal vector for 0 < s < τ .

Proof. Let S and U be as in the statement. Let q be a function on S such that q = Ric(ν, ν) + A 2 on U and L = -∆ -q has negative first eigenvalue on S. It is enough to assume q is large enough somewhere in Σ \ U to ensure that the first eigenvalue λ 1 is negative. Let f > 0 be the first eigenfunction of L. Consider S t = exp S,tf (S) and H t (p) be the mean curvature of S t at exp S,tf (p). It is known that 2∂ t H t|t=0 = ∆f + (Ric(ν, ν) + A 2 )f = -λ 1 f + (Ric(ν, ν) + A 2 -q)f > 0 on U . Thus, there is τ > 0 such that H t (p) > 0 for any t ∈ (0, τ ] and p ∈ U .

Using the above lemma we can prove the following result.

Proposition 24. Let A 0 , δ 0 and s 0 ≤ 1 be positive. Then there is 0 and R such the following is true. Let ≤ 0 and M be a cusp manifold such that A 1 (M ) ≤ A 0 and M contains a tubular end N R of a geodesic loop of length and such that S R has diameter less than δ 0 and systole larger than s 0 . Let Σ be an embedded minimal surface that realizes A 1 (M ) then Σ ∩ N R -R is empty.

Proof. We first assume that Σ is stable. By Schoen curvature estimate [START_REF] Schoen | Estimates for stable minimal surfaces in three-dimensional manifolds[END_REF], this implies that there is k 0 such that Σ has curvature bounded by k 0 . So by Corollary 7, there is 0 and R such that, if ≤ 0 , either Σ ∩ N R -R is empty or Σ ∩ N R -R has area at least 2π(cosh(R -R) -1). Actually, if 0 is chosen such that 2π(cosh(R 0 -R) -1) ≥ A 0 , the second case can not occur and Σ ∩ N R -R is empty.

So we can assume that Σ is separating and has index 1. By Proposition 9, there is R, 0 and κ such that Σ∩N R -R = ∅ or |Σ∩N R | ≥ κs 0 e R-R for any R ∈ [3, R -R]. Moreover 0 and R can be chosen such that the preceding paragraph is still true.

Let us assume that Σ

∩ N R -R is not empty. Let us notice that |S R | = π sinh(2R) ≤ √ 3 sinh(2R) sinh(2R ) ≤ √ 3e 2(R-R ) . So choosing R * ≥ R such that e -R * ≤ κs 0 4 √ 3 we obtain |Σ ∩ N R | ≥ 4|S R |. for any 3 ≤ R ≤ R -R * .
Let ε be small such that the ε-thin part of M contains only cusp ends. For L large we consider

D ε,L (M ) = D(M ) such that A 1 (M ) = A 1 (D(M )). So Σ is a separating index 1 minimal surface in D(M ) that realizes A 1 (D(M )). The idea is now to construct a discrete sweep-out S of D(M ) such that L(S) < |Σ| which contradicts Σ realizes A 1 (M ). We notice that N R is still isometrically included in D(M ). Σ separates M into two connected components Ω 1 and Ω 2 . Let R ∈ [R -R * -1, R -R * ] such that S R is transverse to Σ. We define Γ = Σ∩S R .
The subset Ω i N R has mean convex boundary made of pieces of S R and Σ. We can find a least area minimal surface Σ

i ⊂ Ω i ∩ N R with ∂Σ i = Γ and homologous to S R ∩ Ω i [6, 17]. Since S R ∩ Ω i is a surface with boundary Γ, |Σ i | ≤ |S R ∩ Ω i | ≤ |S R |. Besides Σ i ∪ (S R ∩ Ω i ) bounds a subset D i of N R ∩ Ω i .
By boundary regularity of solutions to the Plateau problem [START_REF] Hardt | Boundary regularity and embedded solutions for the oriented Plateau problem[END_REF], Σ i is a smooth surface up to its boundary Γ and, by the maximum principle, Σ i is transverse to Σ along Γ. We notice that since Σ i is smooth up to its boundary we can slightly extend Σ i across Γ to Σ i . Σ i is not assumed to be minimal outside of Σ i and ∂Σ i is assumed to be outside Ω i .

Let us fix i ∈ {1, 2} and consider ν the unit normal along Σ pointing into Ω i . Since Σ has index 1, there is τ > 0 and f i > 0 on Σ such that exp Σ,sf i (Σ) is an embedded surface with positive mean curvature for any s ∈ (0, τ ]. Moreover, we assume f i > 1. If ν i denote the unit normal along Σ i pointing into D i along Σ i , by Lemma 23, there is g i > 0 on Σ i such that exp Σ i ,sg i (Σ i ) is an embedded surface with positive mean curvature on exp Σ i ,sg i (Σ i ) for any s ∈ (0, τ ]. Moreover, we assume g i < 1 and exp

Σ i ,sg i (∂Σ i ) ⊂ Ω i for any s ∈ [0, τ ]. Let us define U i,0 = D i ∪ (Ω i \ N R ). For s ≤ τ we define V i,s = 0≤s ≤s exp Σ,s f i (Σ)) ∪ 0≤s ≤s exp Σ i ,s g i (Σ i ) ∩ U i,0 , U i,s = U i,0 \ V i,s
We postpone the precise description of ∂U i,s to the end of the proof. Actually we are going to prove that there is a smaller τ such that, for s ∈ [0, τ ], ∂U i,s is exp Σ,sf i (A i,s ) ∪ exp Σ i ,sg i (B i,s ) where A i,s is a smooth subdomain in Σ and B i,s is a smooth subdomain of Σ i . Moreover both components of ∂U i,s are transverse. We also have B i,s ⊂ Σ i and A i,s ⊂ Σ \ N R-1 . s → ∂U i,s is then a continuous map with values in Z 2 (M ). Moreover M(∂U i,s ) ≤ M(∂U i,0 ). We then have We define

M(∂U i,s ) ≤ M(∂U i,0 ) = |Σ i | + |Σ \ N R | ≤ |S R | + |Σ| -|Σ ∩ N R | ≤ |Σ| -3|S R | Ω 1 Ω 2 Σ Σ Σ 1 Σ 2 T R G s 0 ≤ s ≤ 1 1 ≤ s ≤ R + 1 1 ≤ s ≤ R + 1 R + 1 ≤ s ≤ 2R + 1 2R + 1 ≤ s ≤ 2R + 2
F i : (p, s) ∈ Σ × (-τ, τ ) → exp Σ,sf i (p) ∈ M and G i : (p, s) ∈ Σ i × (-τ, τ ) → exp Σ i ,sg i (p) ∈ M for small τ . The map F i defines a smooth coordinate system in a neighborhood N of Σ. Let us write F -1 i = (P, T ) : N → Σ × (-τ, τ ). Let us remark that at a point p ∈ Σ, DF -1 i |p : X ∈ T p M → (π p (X), (X, ν)/f i (p)) ∈ T p Σ × R where π p is the normal projection T p M → T p Σ. Let V be a neighborhood of Γ inside Σ i contained in N . There is τ such that G i (V × (-τ , τ )) ⊂ N . Let η i be the conormal to Γ in Σ i pointing to Σ i . So neighboring points to Γ in Σ i can be parametrized by (p, t) ∈ Γ × (-ε, ε) → exp i p (tη i (p)) where exp i is the exponential map in Σ i . Thus such a point has image by G i (•, s) in the intersection F i (Σ, s) ∩ G i (Σ i , s) (s small) if L i (p, s, t) := T (G i (exp i p (tη i (p)), s)) -s = 0
Solving t as a function of (p, s) ∈ Γ × R can be done near Γ × {0} using the implicit function theorem since L i (p, 0, 0) = 0. Indeed we have ∂ t L i (p, 0, 0) = (ν(p), η i (p))/f i (p) > 0 since both ν and η i point to Ω i . So t i (p, s) can be defined near Γ × {0}. At (p, 0) we also have

0 = ∂ s (L(p, s, t i (p, s)) = (ν, η i ) f i ∂ s t i + g i (ν, ν i ) f i -1 Thus ∂ s t i = f i (ν,η i ) (1 -g i (ν,ν i ) f i ) > 0 since g i /f i < 1. The curve γ i,s (p) = exp i p (t i (p, s)η(p)) is sent by G i (•, s) on the intersection F i (Σ, s) ∩ G i (Σ i , s): β i (•, s) = G i (γ i,s (•), s) is a parametrization of the intersection. Moreover γ i,s bounds a subdomain B i,s in Σ i whose image by G i (•, s) is the piece of ∂U i,s contained in G i (Σ i , s). Since ∂ s t i > 0, we have B i,s ⊂ Σ i . At (p, 0), we also have ∂ s β i = g i ν i + f i (ν, η) (1 - g i (ν, ν i ) f i )η i The curve γ s (•) = P (β i (•, s)) on Σ is such that F i (γ s (•), s) is also a parametrization of the intersection. γ s bounds a subdomain A i,s in Σ such that ∂U i,s is F i (A i,s , s) ∪ G i (B i,s , s). We notice that, at s = 0, ∂ s γ s (p) = π p (∂ s β i ) = π p (g i ν i + f i (ν, η) (1 - g i (ν, ν i ) f i )η i )
We notice that since B i,s ⊂ Σ i , the mean curvature of G i (B i,s , s) is positive (s > 0). The same is true for the mean curvature of F i (A i,s , s). Moreover both surfaces intersect at an angle less than π. Finally using the first variation formula and Σ and Σ i are minimal, we have at s = 0

∂ s (|F i (A i,s , s)| + |G i (B i,s , s)| = - Γ (∂ s γ s (p), η) + (∂ s γ i,s (p), η i ) = - Γ (g i ν i + f i (ν, η i ) (1 - g i (ν, ν i ) f i )η i , η) + f i (ν, η i ) (1 - g i (ν, ν i ) f i ) = - Γ (g i ν i + f i (ν, η i ) (1 - g i (ν, ν i ) f i )η i , η + η i ) = - Γ (∂ s β i , η + η i )
where η is the unit conormal to Γ in Σ that points outside N (R). We notice that for s > 0, β s is inside U i,0 so ∂ s β s points to U i,0 and is orthogonal to the tangent space to Γ. η + η i is a vector that bisects the wedge corresponding to U i,0 and contained in the orthogonal to the tangent space to Γ. So

(∂ s β i , η + η i ) > 0 along Γ and ∂ s (|F i (A i,s , s)| + |G i (B i,s , s)| < 0. This implies that |∂U i,s | < |∂U i,0
| for s > 0 small. So all the stated properties are satisfied.

8.2. The lower semi-continuity. We have the following result.

Proposition 25. Let M i → M be a converging sequence of cusp manifolds. Then lim inf A 1 (M i ) ≥ A 1 (M ).

Proof. Let us consider a minimal surface Σ i in M i such that a(Σ i ) = A(M i ).

By Proposition 21, we know that there is A 0 such that |Σ i | < A 0 . Moreover, by Corollary 4, there is 0 , δ 0 and s 0 such that if M i contains a geodesic loop of length ≤ 0 then its tubular neighborhood N R satisfies S R = ∂N R has diameter less than δ 0 and systole larger than s 0 . Thus there is R such that Σ i ∩ N R -R is empty by Proposition 24. This implies that there is ε > 0 such that Σ i ⊂ M i[ε,∞) for any i. Since M i → M there is ϕ i : M [ε/2,∞) → M i which is a κ i quasi-isometry where κ i → 1. Moreover we have M i[ε,∞) ⊂ ϕ i (M [ε/2,∞) ). Let gi = ϕ * i g i and

Σ i = ϕ -1 i (Σ i ) ⊂ M [ε/2,∞)
which is a minimal surface for the metric gi . Since M i → M we have gi → ḡ in the C ∞ topology. Moreover a gi ( Σ i ) ≤ A 0 and the index of Σ i is 0 or 1.

Thus we can apply the compactness result of Sharp (Theorem A.6 in [START_REF] Sharp | Compactness of minimal hypersurfaces with bounded index[END_REF]). It implies that there is a closed connected embedded minimal surface Σ in (M , ḡ) such that ( Σ i ) converges in the varifold sense to Σ with some multiplicity. Moreover, the convergence is smooth outside a finite number of points. If Σ is orientable, then

A 1 (M ) ≤ a ḡ(Σ) = |Σ| ḡ ≤ lim | Σ i | gi ≤ lim inf A 1 (M i )
If Σ is non-orientable, then either Σ i is non orientable or Σ i is orientable and the convergence must be with multiplicity at least 2. In both cases, we have A 1 (M ) ≤ a ḡ(Σ) = 2|Σ| ḡ ≤ lim a gi ( Σ i ) = lim inf A 1 (M i ) So the proposition is proved.

Appendix A.

A.1. A uniform graph lemma. Let us consider R 3 endowed with the metric ḡ = h 2 (x 3 )(dx 2 1 + dx 2 2 ) + dx 2 3 . For k 1 , k 2 , k 3 , k 4 ∈ {1, 2, 3} and p ≤ 4, we recall that n p (k 1 , . . . , k p ) = #{i ∈ {1, . . . , p}|k i ∈ {1, 2}}.

We consider a second metric g = a kl (x 1 , x 2 , x 3 )dx k dx l . We assume that there is some A such that the following hypotheses occurs

H1 1 A 2 ḡ ≤ g ≤ A 2 ḡ H2 |h |
h ≤ A and |h | h ≤ A. H3 |a kl | ≤ Ah n 2 (k,l) (x 3 ), |∂ i a kl | ≤ Ah n 3 (k,l,i) (x 3 ) and |∂ i ∂ j a kl | ≤ Ah n 4 (k,l,i,j) (x 3 ).

We notice that the metric ḡ satisfies also the hypotheses of the last item.

Lemma 26. Let ḡ and g as above and consider ε 0 , k 0 , then there is C > 0 such that the following is true. Let Σ be a surface in R 2 × [a, b] endowed with the metric g which is tangent to R 2 × { t} at p = (0, 0, t) such that d Σ (p, ∂Σ) ≥ ε 0 and |A Σ | ≤ k 0 .

Then there is a function u defined on the disk {(x 1 , x 2 ) ∈ R 2 |x 2 1 + x 2 2 ≤ 2C 2 /h 2 ( t)} such that (x 1 , x 2 ) → (x 1 , x 2 , t + u(x 1 , x 2 )) is a parametrization of a neighborhood of p in Σ. Moreover u satisfies |u| ≤ Aε 0 , ∇u ≤ h( t) and Hess u ≤ 1 C h 2 ( t)

Proof. First we replace Σ by the geodesic disk of center p and ε 0 . Since a 33 ≥ 1 A 2 , the distance between {x 3 = t} and {x 3 = t ± t} is at least t/A. So Σ is contained in R 2 × [ t -Aε 0 , t + Aε 0 ]. Let us also remark that since |h | h ≤ A we have e -A|x 3 -t| h( t) ≤ h(x 3 ) ≤ e A|x 3 -t| h( t). Then e -A 2 ε 0 h( t) ≤ h(x 3 ) ≤ e A 2 ε 0 h( t) on [ t -Aε 0 , t + Aε 0 ].

Let us consider Ψ : R 2 × [ t -Aε 0 , t + Aε 0 ] → R 2 × [ t -Aε 0 , t + Aε 0 ] : (y 1 , y 2 , y 3 ) → ( 1 h( t) y 1 , 1 h( t) y 2 , y 3 ). Then the metric g * = Ψ * g can be written b kl (y 1 , y 2 , y 3 )dy k dy l where b kl = h( t) -n 2 (k,l) a kl • Ψ. Thus 1 + dy 2 2 + dy 2 3 the Euclidean metric. Because of the the control we have on g * , there is ε 1 that depends only on ε 0 , A and B and k 1 that depends only on k 0 , A and B such that (Σ * , g e ) has curvature bounded by k 1 and d Σ * ,ge (p, ∂Σ * ) ≥ ε 1 (the proof of this result can be found in the Appendix of [START_REF] Rosenberg | General curvature estimates for stable H-surfaces in 3-manifolds and applications[END_REF] more precisely see the proof of Propositions 4.1 and 4.3).

|b kl | = h( t) -n 2 (k,l) |a kl | • Ψ ≤ A h n 2 (k,l) (y 3 ) h n 2 (k,l) ( t) ≤ Ae n 2 (k,l)A 2 ε 0 ≤ Ae 2A 2 ε 0
So we have a surface in the Euclidean space R 3 with curvature bounded by k 1 , d Σ * ,ge (p, ∂Σ * ) ≥ ε 1 and that is tangent to R 2 × { t} at p. Then a classical uniform graph lemma (see Proposition 2.3 in [START_REF] Rosenberg | General curvature estimates for stable H-surfaces in 3-manifolds and applications[END_REF]) implies that there is C that depends only on k 1 and ε 1 such the following is true. There is a function u defined on the Euclidean disk of radius √ 2C centered at the origin such that (y 1 , y 2 ) → (y 1 , y 2 , t + u(y 1 , y 2 )) is a parametrization of a neighborhood of p in Σ * . Moreover |u| ≤ 2C, |∇u| ≤ 1 and Hess u ≤ 1 C In order to come back to the original coordinate system we define the function v(x 1 , x 2 ) = u(h( t)x 1 , h( t)x 2 ) which is defined on {(x 1 , x 2 ) ∈ R On R 3 we consider the metric g = a 2 1 (x 3 )dx 2 1 + a 2 2 (x 3 )dx 2 2 + dx 2 3 which is a model for the metric in cusp or tubular ends. Let u be a function in a domain of R 2 and consider the graph parametrized by X(x 1 , x 2 ) = (x 1 , x 2 , u(x 1 , x 2 )). The induced metric is (a 2 1 (u) + u 2 x 1 )dx 
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 1 Figure 1. The r-tubular neighborhood V r of a lift c of the geodesic γ of length
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 2 } which solves the minimal surface equation. If r n → +∞, we apply the change of variables a = e rn t, b = e rn θ and ρ = r-r n . So we get a new function w n (a, b) = u n (e -rn a, e -rn b)

Figure 4 .

 4 Figure 4. A schematic view of G s (the bottom and top line are identified)
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 12 So there is a constant B such that |b kl | ≤ B. A similar computation proves that |∇b kl | ≤ B and | Hess b kl | ≤ B. Using Hypothesis H1, we also have* ḡ ≤ g * ≤ A 2 Ψ * ḡ where Ψ * ḡ = h 2 (y 3 ) h 2 ( t) (dy 2 1 + dy 2 2 ) + dy2 3 . This implies that det g * is far from 0 and ∞. So the coefficients b kl of the inverse of g * satisfy |b kl | ≤ B and, for any k ∈ {1, 2, 3}, 1 B ≤ b kk ≤ B and 1 B ≤ b kk ≤ B. Let us define Σ * = Ψ -1 (Σ), Σ * ⊂ (R 3 , g * ) is a geodesic disk of radius ε 0 and curvature bounded by k 0 . Let us consider g e = dy 2

  3-manifold and consider N ⊂ M a bounded open subset whose boundary ∂N , when non empty, is a rectifiable surface of finite H 2 -measure. Moreover when ∂N = ∅, we assume that each connected component C of ∂N separates M . If a < b ∈ R, we then have the following definitions. Definition 15. A family of H 2 -measurable closed subsets {Γ t } t∈[a,b] in N ∪ ∂N with finite H 2 -measure is called a generalized smooth family if • for each t there is a finite set P t ∈ N such that Γ We notice the smoothness hypothesis is only made on Γ t ∩N so this allows ∂N to be non smooth. We now define the notion of continuous sweep-out in this setting. Definition 16. If ∂N = ∅, a generalized smooth family {Γ t } t∈[a,b] is called a continuous sweep-out of N if there exists a family of open subsets {Ω t } t∈[a,b] of N such that (sw1) (Γ t \ ∂Ω t ) ⊂ P t for any t; (sw2) H 3 (Ω t Ω s ) → 0 as t → s (where denotes the symmetric difference of subsets). (sw3) Ω a = ∅ and Ω b = N ; If ∂N = ∅, for a open subset Ω ⊂ N we denote ∂ * Ω = ∂Ω ∩ N . A continuous sweep-out of N is then required to satisfy (sw1) and (sw2) above except that ∂ is replaced by ∂ * and t > a in (sw1). Moreover (sw3) is replaced by

t ∩ N is a smooth surface in N \ P t or the empty set; • H 2 (Γ t ) depends continuously in t and t → Γ t is continuous in the Hausdorff sense;

• on any U ⊂⊂ N \ P t 0 , Γ t t→t 0 ---→ Γ t 0 smoothly in U .

  is realized by a stable non separating minimal surface Σ • A 1 (M ) is realized by a stable non degenerate minimal surface Σ

  We notice that, since Σ ⊂ R 2 × [ t -Aε 0 , t + Aε 0 ], we have |v| ≤ Aε 0 .A.2. The minimal surface equation. Several times we consider graphs that are minimal surfaces; let us write the equation solved by these graphs.

	x 2 2 ≤ 2δ 2 /h 2 ( t)} and satisfies			2 |x 2 1 +
	|v| ≤ 2C, |∇v| ≤ h( t) and	Hess v ≤	1 C	h 2 ( t)

  2 1 + 2u x 1 u x 2 dx 1 dx 2 + (a 2 2 (u) + u 2 x 2 )dx 2 2So the area element is W dx1 dx 2 = (a 2 1 (u)a 2 2 (u)+a 2 2 (u)u 2 x 1 +a 2 1 (u)u 2 x 2 )dx 1 dx 2 .So if v is an other function with zero boundary values and A(t) is the area of the graph of u + tv, the derivative ofA at t = 0 is (u)a 1 (u)a 2 2 (u)v + a 2 1 (u)a 2 (u)a 2 (u)v + a 2 (u)a 2 (u)u 2 x 1 v + a 2 2 (u)u x 1 v x 1 + a 1 (u)a 1 (u)u 2 x 2 v + a 2 1 (u)u x 2 v x 2

	A (0) =	1 W	a 1 a 2 (u) a 1 (u)	u 2 x 1 +	a 1 (u) a 2 (u)	u 2 x 2 v
				-v div	(a 2 2 (u)u x 1 , a 2 1 (u)u x 2 ) W		
	Thus the graph is minimal if u satisfies		
	(2) 0 = div	(a 2 2 (u)u x 1 , a 2 1 (u)u x 2 ) W		
	-		a 1 (u)a 2 (u) W	a 1 (u)a 2 (u) + a 1 (u)a 2 (u) +	a 2 (u) a 1 (u)	u 2 x 1 +	a 1 (u) a 2 (u)	u 2 x 2

= a 1 (u)a 2 (u) W a 1 (u)a 2 (u) + a 1 (u)a 2 (u) +

Besides we notice that, since A i,s ⊂ Σ\N R-1 and B i,s ⊂ Σ i , ∂U i,s is piecewise smooth mean convex in the sense of Definition 10 in [START_REF] Song | Embeddedness of least area minimal hypersurfaces[END_REF].

Using the work of Song in [START_REF] Song | Embeddedness of least area minimal hypersurfaces[END_REF], we can adapt the work of the authors in [START_REF] Mazet | Minimal hypersurfaces of least area[END_REF] to the case ∂U i,τ is not smooth and prove the following statement.

Proof. Because of the Appendix in [START_REF] Song | Embeddedness of least area minimal hypersurfaces[END_REF], we know that there exists a homotopically closed family Λ of sweepouts in U i,τ . Let us assume that

Thus by Theorem 12 in [START_REF] Song | Embeddedness of least area minimal hypersurfaces[END_REF], there is a closed minimal surface S in U i,τ . As in the proof of Lemma 20 in [START_REF] Song | Embeddedness of least area minimal hypersurfaces[END_REF], N = U i,τ \ S is then a mean convex subset such that ∂U i,τ has non vanishing homology class in N . Thus we can minimize the area in this homology class [START_REF] Federer | Normal and integral currents[END_REF][START_REF] Simon | Lectures on geometric measure theory[END_REF] in order to get S a stable minimal surface such that

Using these two sweep-outs, we can define a family G s (see Figure 4) of open subsets of M by

The family G s satisfies H 3 (G s G t ) → 0 as s → t. Moreover, ∂G s is rectifiable so Φ : s → ∂G s is a continuous path in Z 2 (M ) for the flat topology. Moreover G 0 = ∅ and G 2R+2 = M . Let us now study M(Φ(s)).

After a reparametrization, we have then constructed a continuous map Φ : [0, 1] → Z 2 ((D(M )), F) satisfying all the hypotheses of Theorem 17 with sup

. This gives a contradiction with Σ ∩ N R L -R = ∅ and finishes the proof.

Let us come back to the study of ∂U i,s for small s and check the properties we announced. Clearly this boundary is contained in Σ i,s = exp Σ i ,sg i (Σ i ) and Σ s = exp Σ,sf i (Σ). We need to understand the intersection of these two surfaces when s is small.