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ABSTRACT 1 

Objectives: The goal of this study was to determine the impact of auditory deprivation 2 

and age-related speech decline on perceptuo-motor abilities during speech processing in 3 

post-lingually deaf cochlear-implanted participants and in normal-hearing elderly 4 

participants. 5 

Design: A close-shadowing experiment was carried out on ten cochlear-implanted 6 

patients and ten normal-hearing elderly participants, with two groups of normal-hearing 7 

young participants as controls. To this end, participants had to categorize auditory and 8 

audiovisual syllables as quickly as possible, either manually or orally. Reaction times and 9 

percentages of correct responses were compared depending on response modes, stimulus 10 

modalities and syllables.  11 

Results: Responses of cochlear-implanted subjects were globally slower and less accurate 12 

than those of both young and elderly normal-hearing people. Adding the visual modality was 13 

found to enhance performance for cochlear-implanted patients, whereas no significant 14 

effect was obtained for the normal-hearing elderly group. Critically, oral responses were 15 

faster than manual ones for all groups. In addition, for normal-hearing elderly participants, 16 

manual responses were more accurate than oral responses, as was the case for normal-17 

hearing young participants when presented with noisy speech stimuli.  18 

Conclusions: Faster reaction times were observed for oral than for manual responses in 19 

all groups, suggesting that perceptuo-motor relationships were somewhat successfully 20 

functional after cochlear implantation, and remain efficient in the normal-hearing elderly 21 

group. These results are in agreement with recent perceptuo-motor theories of speech 22 

perception. They are also supported by the theoretical assumption that implicit motor 23 
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knowledge and motor representations partly constrain auditory speech processing. In this 24 

framework, oral responses would have been generated at an earlier stage of a sensorimotor 25 

loop, whereas manual responses would appear late, leading to slower but more accurate 26 

responses. The difference between oral and manual responses suggests that the perceptuo-27 

motor loop is still effective for normal-hearing elderly subjects, and also for cochlear-28 

implanted participants despite degraded global performance. 29 

 30 

KEY-WORDS 31 

Speech perception, speech production, close-shadowing, cochlear implant, deafness, 32 

elderly, sensory-motor interactions. 33 

 34 

  35 
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INTRODUCTION 36 

Close-shadowing as a paradigm for the study of perceptuo-motor interactions 37 

Speech communication can be viewed as an interactive process involving a functional 38 

coupling not only between the listener’s sensory system and the speaker’s motor system, 39 

but also inside the brain of each interlocutor. The neuroanatomical architecture of sensory-40 

motor coupling in the human brain has been conceptualized in the so-called dual stream 41 

model of speech processing (Hickok & Poeppel, 2007). In this model, a bilateral ventral 42 

stream within the temporal lobe, associate auditory areas in the superior temporal regions 43 

to lexical and semantic information in the middle/inferior temporal gyrus. In parallel, a 44 

dorsal stream, connecting temporal, parietal and frontal areas mainly in the left hemisphere 45 

of the brain, is in charge of sensory-motor integration.  46 

The functional role of sensory-motor coupling has been explored both in speech 47 

production and in speech perception. Concerning speech production, it is now widely 48 

accepted that auditory areas provide information towards frontal areas in charge of defining 49 

and implementing motor control strategies. Auditory areas would be used both to provide 50 

targets to control learning, and to constantly send information online, ensuring robustness 51 

to perturbations through auditory feedback (Perkell et al., 2000; Guenther, 2006).   52 

Concerning speech perception, conceptions are more subject to debate, even though a 53 

consensus is progressively emerging. According to motor theories, such as the motor theory 54 

of speech perception (Liberman et al., 1985), or the direct realist theory (Fowler, 1986), 55 

sensory-motor linkage would set the basis for motor or direct perception. This would be 56 

through the recovery of the speaker’s motor intentions or articulatory gestures. 57 

Alternatively, auditory theories (e.g. Diehl et al., 2004; Stevens and Blumstein 1978, 1979; 58 
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Lindblom et al. 1988, 1990) claim that speech perceptual processing and categorization are 59 

based on acoustic features and auditory representations. Neurocognitive data acquired over 60 

the last ten years have clarified the debate somewhat, by showing that the dorsal route is 61 

active in speech perception and that the motor system is involved in speech perception, at 62 

least in adverse conditions (see a recent review in Skipper et al., 2017). This has led to the 63 

emergence of perceptuo-motor theories of speech perception. These theories propose that 64 

both motor and auditory representations and processes would be combined in the human 65 

brain to elaborate phonetic decisions (e.g. Skipper et al. 2007; Schwartz et al. 2012).  66 

Close-shadowing provides a behavioral paradigm well-suited to assess sensory-motor 67 

coupling. In this task, subjects have to repeat a speech stimulus immediately after hearing it. 68 

Porter and Castellanos (1980) and Fowler et al. (2003) observed very fast reaction times 69 

(RTs) when participants had to shadow a syllable as quickly as possible. Importantly, oral 70 

responses were faster than manual ones (Galantucci et al. 2006). This difference led to the 71 

theoretical assumption that speech perception involves articulatory gestures, and that 72 

gesture perception directly controls speech response and makes it faster. This hypothesis 73 

was supported by evidence for convergence effects in shadowing experiments (e.g. 74 

Goldinger, 1998; Nye & Fowler, 2003). Visual modality also plays a role, both in speeding 75 

responses, particularly for noisy acoustic stimuli (Scarbel et al., 2014), and in increasing 76 

convergence effects (Dias & Rosenblum, 2016). 77 

Close-shadowing therefore appears to provide “a continuous reflection of the outcome of 78 

the process of language comprehension, (and) provides us with uniquely privileged access to 79 

the properties of the system” (Marslen-Wilson, 1985, p. 55). However, the interpretation 80 

relating the high speed of close-shadowing responses to the articulatory nature of speech 81 

percepts e.g. Galantucci et al. (2006) remains controversial. Firstly, it can be suggested that 82 
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the rapidity of oral responses only reflects a sensory-motor coupling process in which 83 

auditory speech decoding would automatically evoke preparatory motor responses. Oral 84 

responses would be particularly fast if the task engaged the subjects to answer rapidly, but 85 

auditory processing would not necessarily use motor representation in its functioning. This is 86 

compatible with the way exemplary models are applied to speech (e.g. Pierrehumbert, 2001) 87 

and to how “echos” can be introduced as close-shadowing models in such frameworks 88 

(Goldinger, 1998). A second line of controversy is supplied by the observation that close-89 

shadowing involves a certain amount of linguistic processing [related to phonology, syntax 90 

and semantics (Marslen-Wilson, 1985; Mitterer & Müsseler, 2013)] leading Mitterer & 91 

Müsseler (2013) to conclude that there would be “evidence for a loose perception–action 92 

coupling in speech” (p. 557).   93 

In this context, a recent close-shadowing study carried out by our group sheds some 94 

interesting light on the question.  In this study on normal-hearing young participants (NHY), 95 

both oral and manual responses were evaluated (Scarbel et al. 2014). Conditions were such 96 

that the perception of auditory and audiovisual speech stimuli was assessed, embedded or 97 

not in white noise. Whatever the modality of presentation, and in agreement with previous 98 

studies, oral responses were much faster than manual ones. However, two new findings 99 

were discovered in the presence of acoustic noise. Firstly, as mentioned above, the 100 

audiovisual modality led to both faster and more accurate responses than the auditory 101 

modality. Secondly, and more surprisingly, it appeared that the oral responses were faster 102 

but also less accurate than manual responses.  103 

These results are important because they are not compatible either with the hypothesis 104 

of a pure gestural or motor encoding of speech perception, or with a simple automatic 105 

sensory-motor coupling process. Indeed, if sensory-motor coupling were automatic, for 106 
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translating sounds into gestures in the first case, or just to produce a rapid oral response in 107 

the second one, there would be no difference in response accuracy between oral and 108 

manual responses.  109 

A possible interpretation in the framework of perceptuo-motor theories of speech 110 

perception may be provided in the context of analysis-by-synthesis models. In the 111 

feedforward-feedback neurobiological model of speech perception of Skipper et al. (2007), 112 

articulatory motor representations would be internally generated to partly constrain 113 

phonetic interpretation of the sensory input through the internal generation of candidate 114 

articulatory categorizations. We suggested that oral replies might be generated at an early 115 

stage in the perceptuo-motor loop, therefore providing faster, but possibly less accurate, 116 

answers, particularly in the presence of noise. Another interpretation in the context of 117 

automatic generation of oral responses would be that such feedback would be generated 118 

early in the auditory perception process. It would thus provide an early window on 119 

perceptual processing, at a stage where a final decision would still be inaccurate. 120 

Whatever the interpretation, the data of Scarbel et al. (2014) show that close-shadowing 121 

gives access to valuable information as to the speed and efficiency of the internal sensory-122 

motor relationship in the human brain. The present study is specifically devoted to the use 123 

of this paradigm to study perceptuo-motor interactions in distinct populations, for some of 124 

which perceptuo-motor linkage should be altered due to sensory degradation. The first and 125 

principal group of interest of this study is constituted by post-lingually deaf or hearing-126 

impaired adults equipped with a cochlear implant (CI). For post-lingually deaf subjects, the 127 

perceptuo-motor linkage, acquired during speech acquisition before deafness, is still 128 

efficient during deafness as evidenced by the ability to maintain intelligible speech (Perkell 129 

et al. 2000). After CI, the sensory-motor coupling has to deal with a new auditory input 130 
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provided by the CI.  The major question addressed in this study consists of exploring through 131 

close-shadowing how sensory-motor relationships are reorganized after CI, comparing prior 132 

and present sensorial representation received by the patient.  133 

The second group of interest in this study is constituted by normal-hearing elderly adults 134 

(NHE). Here, the objective was principally to evaluate the consequences of the potential 135 

decline of cognitive and language functions together with a drop in sensory and motor 136 

accuracy on the efficiency of perceptuo-motor linkage. An additional objective was to 137 

compare the results obtained in this elderly population with those of CI patients. This was 138 

because a number of post-lingually deaf CI patients are rather old and there was a need to 139 

determine if CI patients’ results were influenced by the age of this population.  140 

Perceptuo-motor interactions in Cochlear-Implanted subjects 141 

In speech perception, several factors appear to influence performance in CI patients. In 142 

Blamey et al. (2012), 2251 CI patients participated in an auditory test, where they had to 143 

recognize phonemes, words and sentences. The experimenters reported that the implant 144 

age and duration, the age at the onset of severe to profound hearing loss and the duration 145 

of deafness influenced speech perception to a certain extent – although inter-subject 146 

variability was quite large in this kind of study. 147 

Concerning audiovisual speech perception, CI patients, as well as deaf people, generally 148 

show improved lip-reading abilities compared to normal-hearing people, and more 149 

importantly, the former seem to present better capacities to integrate visual and auditory 150 

speech signals (Goh et al. 2001; Kirk et al. 2002; Kaiser et al. 2003; Rouger et al. 2007).  151 

Speech production studies show that auditory feedback provided by the CI results in 152 

improved control of phonetic targets a few months after implantation (e.g. Langereis et al., 153 
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1998; Lane et al., 2005; Ménard et al., 2007). Furthermore, perturbation studies using either 154 

a bite-block task that impedes jaw movement (Lane et al. 2005) or a lip-tube task, that 155 

hampers lip rounding (Turgeon et al. 2015), assessed compensation abilities in CI subjects 156 

with or without auditory feedback. Results showed that post-lingually CI patients could 157 

adapt their articulatory trajectory when it was perturbed, to reach their auditory goals and 158 

make their pronunciation intelligible, even when the implant was turned off. Such 159 

compensatory strategies suggest that perceptuo-motor abilities acquired during speech 160 

acquisition in CI subjects are still at work after deafness. In addition, a PET (Positron Emission 161 

Tomography) scanning study on visual speech perception in post-lingually deaf CI patients 162 

(Rouger et al. 2012) showed that after a short adaptation period with the implant, there was 163 

a decrease of the initially abnormal activity in the superior temporal sulcus, a cross-modal 164 

brain area, accompanied by a progressive reactivation of frontal premotor speech areas. This 165 

suggests that sensorimotor neuroplasticity after CI provides a progressive reactivation of the 166 

audio-visuo-motor linkage in CI subjects. 167 

Perceptuo-motor interactions in normal-hearing elderly subjects 168 

Since post-lingually deaf CI patients are often senior adults, we considered it to be 169 

relevant to compare them with an NHE population. The auditory abilities of elderly people 170 

decline as aging progresses (Gordon-Salant, 1986; Strouse at al., 1998). Specifically, even 171 

with close-to-normal auditory thresholds, normal-hearing elderly people have difficulties in 172 

adverse listening conditions such as in a noisy environment (Gelfand et al. 1985; Ohde & 173 

Abou-Khalil 2001; Fullgrabe et al. 2013). However, it is still unclear how cognitive decline 174 

might influence speech perception. Some studies showed a rather small influence of age-175 

related decline on speech perception in noise (Cienkovski 2002; Cienkovski & Vasil 2010), 176 
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although a general trend seems to exist of correlation between working memory and speech 177 

intelligibility in noise for elderly people (see a review in Füllgrabe & Rosen, 2016) 178 

Concerning audiovisual speech perception, elderly people seem to use the benefit of 179 

audiovisual presentation during the perception of disturbed signals, like in a noisy 180 

environment, at least as well as young adults (Sommers et al. 2005; Sekiyama et al. 2014).  181 

Very few studies have investigated speech perceptuo-motor relationships in elderly 182 

populations. A behavioral study demonstrated that, similarly to younger adults, elderly 183 

people adapt their production in the case of degraded auditory feedback (Liu et al. 2010, 184 

2011). Sensorimotor neuroplasticity was also observed in elderly people, linked to age-185 

dependent intelligibility effects mainly found in auditory and motor cortical areas of the 186 

brain (Tremblay et al. 2013; Bilodeau-Mercure et al. 2015). Taken together, these behavioral 187 

and neuroimaging studies suggest that perceptuo-motor coupling in speech is still active and 188 

does not seem severely impaired during ageing.  189 

Objectives of the present study 190 

In the present study, we propose to investigate perceptuo-motor relationships in CI 191 

patients and in elderly people, using an auditory and audiovisual close-shadowing paradigm. 192 

Based on a previous study (Scarbel et al. 2014), we compared RTs and accuracy to auditory 193 

and audiovisual speech stimuli from manual and oral responses.  194 

From these results, we hypothesized that CI patients might present overall reduced 195 

perceptual performances in the close-shadowing task, particularly in the auditory mode. Our 196 

main question was whether a possible replication of faster oral answers compared to 197 

manual ones existed in these participants. Such a result would suggest persistence, or 198 

restoration, of perceptuo-motor links in these subjects. 199 
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We analyzed elderly participants with regard to previous studies showing a deficit of 200 

speech perception, despite correct auditory abilities. We anticipated obtaining lower 201 

performances for our group of elderly participants than for the NHY participants in terms of 202 

accuracy or response speed. Here again, as for CI subjects, our principal question concerned 203 

the maintenance of faster manual than oral responses.  204 

 205 

 206 

  207 
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MATERIALS AND METHODS 208 

Participants 209 

Four groups of participants performed the experiment. The first group consisted of ten CI 210 

participants (3 females and 7 males, mean age: 59 years, range: 27-76). As indicated in Table 211 

1, members of the CI group differed in several respects: the age at the onset of deafness 212 

varied from 7 to 65 years, the duration of deafness varied from 1 month to 58 years and the 213 

duration of CI experience varied from 1 month to 9 years. In addition, seven of the ten 214 

participants wore a hearing aid in the non-implanted ear and one participant was bilaterally 215 

implanted. The second group consisted of ten NHE participants (4 females and 6 males, 216 

mean age: 69 years, range: 63-78). The third group consisted of fifteen NHY participants (10 217 

females and 5 males, mean age: 30 years, range: 20-40). In addition, a fourth group of 14 218 

NHY participants (11 females and 3 males; mean age: 24 years, range: 19-34) were tested 219 

using the same experimental protocol except that auditory stimuli were presented in the 220 

existence of background noise (NHY-noise). All normal-hearing participants had normal or 221 

corrected-to-normal vision and reported no history of speaking, hearing or motor disorders. 222 

The experiment was performed in agreement with the ethical standards laid down in the 223 

1964 Declaration of Helsinki and was validated by the CERNI (Local Ethical Comity for Non-224 

Interventional Research). 225 

Insert Table 1 about here 226 

Results from the two groups of NHY participants were already described in a previous 227 

paper (Scarbel et al. 2014). They are presented here because the aim of the present study 228 

was to compare results from normal-hearing young adults to post-lingually deaf CI patients 229 

and to normal-hearing elderly participants. 230 
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Stimuli 231 

Multiple utterances of /apa/, /ata/ and /aka/ VCV syllables were individually produced in 232 

a sound-attenuated room by a male French native speaker with no known hearing loss (who 233 

did not participate in the perceptive experiment). The three syllables were selected 234 

according to the distinct place of articulation of the consonant (stop bilabial /p/, alveolar /t/ 235 

and velar /k/) and to ensure a gradient of visual recognition between these syllables, notably 236 

with the bilabial /p/ consonant known to be more visually salient than alveolar /t/ and velar 237 

/k/ consonants). The syllables were audiovisually recorded using an AKG 1000S microphone 238 

and a high-quality digital video camera zooming the speaker's face.  239 

The corpus was recorded to obtain 4 different occurrences of /apa/, /ata/ and /aka/ with 240 

various durations of the initial /a/ vowel (0.5s, 1s, 1.5s and 2s). This was done to present 241 

participants with syllables in which the onset of the consonant to be categorized would 242 

occur at an unpredictable temporal position. For this, the speaker was asked to maintain the 243 

production of the initial vowel while expecting a visual “go” signal. The “go” signal was timed 244 

to ensure the four different durations of the initial vowel. The speaker produced 48 stimuli 245 

(4 initial durations x 3 types of syllable x 4 repetitions). One distinct utterance was selected 246 

for each syllable and for each initial vowel duration so as to obtain 12 distinct stimuli (4 247 

initial durations x 3 types of syllables). To remove potential irrelevant acoustic differences 248 

between the stimuli, the occurrences of /apa/, /ata/ and /aka/ for an expected given initial 249 

duration were then cut at their onset to equalize duration of the first vowel. Similarly, 250 

duration of the final vowel was equalized at 240ms for all 12 stimuli. 251 

The audio tracks of the stimuli were sampled at 44.1 kHz and presented without noise for 252 

CI, NHE and NHY participants. For NHY-noise participants, the 12 stimuli were mixed with 253 
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white noise, low pass filtered at -6dB /oct, with a signal to noise ratio at -3dB (the signal 254 

energy being defined from burst onset to the end of the vowel). In the audiovisual modality 255 

of the experiment, the video stream consisted of 572-by-520 pixel/images presented at a 50 256 

Hz rate with the speaker’s full face presented with blue lips to exaggerate movements of the 257 

labial dynamics (Lallouache 1990). 258 

Experimental Procedure 259 

The experiment consisted of two categorization tasks (see Figure 1): a close-shadowing 260 

task, where the responses were provided orally, and a manual decision task, where the 261 

replies were projected manually. Participants were told that they would be presented with 262 

/apa/, /ata/ or /aka/ syllables, displayed either in an auditory or an audiovisual fashion. In 263 

the close-shadowing task they were instructed to repeat each syllable as quickly as possible. 264 

To do so, they were asked to shadow the initial /a/ vowel and, when the stimulus changed to 265 

a consonant, to immediately categorize and repeat the perceived CV syllable (/pa/, /ta/ or 266 

/ka/). In the manual decision task, participants were instructed to categorize each syllable by 267 

pressing as quickly as possible with their dominant hand one of three keys respectively 268 

corresponding to /apa/, /ata/ or /aka/. For each task (oral vs. manual response) and each 269 

mode (auditory vs. audiovisual), 16 distinct occurrences of /apa/, /ata/ and /aka/ syllables 270 

were presented in a fully randomized sequence of 48 trials. The order of the task, the 271 

modality of presentation and the key were fully counterbalanced alongside all the 272 

participants.  273 

Please insert Figure 1 here 274 

All groups performed the experiment in a soundproofed room. Participants sat in front of 275 

a computer monitor at a distance of approximately 50 cm. The acoustic stimuli were 276 
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presented at a comfortable sound level, the same one for all participants (around 60 dB 277 

Sound Pressure Level). For CI, NHE and NHY participants, the presentation of acoustic stimuli 278 

was using a loudspeaker, whereas the presentation of acoustic stimuli was with earphones 279 

for NHY-noise participants. This procedure was required because noisy stimuli made acoustic 280 

analyses complex and possibly inaccurate if the stimulus and oral feedback were mixed. The 281 

presentation software (Neurobehavioral Systems, Albany, CA) was used to control stimulus 282 

presentation and to record key answers in the manual task. All participants’ productions 283 

were recorded using an AKG 1000S microphone for off-line analyses, with a system that 284 

ensured synchrony between the stimulus presented to the participant and the participant’s 285 

response. A brief training session preceded each task. The total duration of the experiment 286 

was around 30 min.  287 

Acoustic Analyses 288 

To calculate RTs and the percentage of correct responses in the speech-shadowing task, 289 

acoustic analyses of participants' productions were performed using Praat software 290 

(Boersma & Weenink 2013). A semi-automatic procedure was first performed to segment 291 

these productions. Based on minimal duration and low intensity energy parameters, the 292 

procedure involved the automatic segmentation of each utterance depending on the 293 

detection of an intensity and duration algorithm. Then, for each presented stimulus, 294 

whatever the modality of presentation and response, an experimenter coded the 295 

participant’s answer and assessed whether it was correct or not.  296 

RTs were determined from the burst onset of the stop consonant to categorize the onset 297 

of the response (see Figure 1). In the manual decision task, the onset of the response 298 

corresponded to the key press. In the close-shadowing task, the burst onset of the stop 299 
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consonant uttered by the participant in response to the stimulus was determined by 300 

inspecting the acoustic waveform and spectrogram information. RTs (reaction times) were 301 

only computed for correct answers: omissions or any type of errors (replacing one 302 

consonant by another or producing two consonants or two syllables in the close-shadowing 303 

task) were removed from the analyses. 304 

Further response analyses 305 

For each group, the percentage of correct responses and median RT were individually 306 

determined for each participant, each task, each modality and each syllable. Further 307 

statistical analyses were carried out independently on a percentage of correct answers and 308 

on median RTs. Firstly, repeated-measure ANOVAs were performed separately for the NHE 309 

and CI groups, with the task (close-shadowing against manual decision), the modality 310 

(auditory vs. audiovisual) and the syllable (/apa/, /ata/ or /aka/) as within-subjects variables. 311 

Secondly, comparisons between the four groups were obtained by performing two other 312 

repeated-measure ANOVAs on RTs and the percentages of correct responses with the CI, 313 

NHE, NHY, NHY-noise groups as between-subject variables and the tasks (close-shadowing or 314 

manual decision), modality (auditory or audiovisual) and the syllable (/apa/, /ata/, /aka/) as 315 

within-subject variables. For all the following analyses, the significance level was set at p = 316 

0.05 and Greenhouse–Geisser corrected (in the case of violation of the sphericity 317 

assumption) when appropriate. All comparisons reported refer to posthoc analyses 318 

conducted with Bonferroni tests. 319 

Then, to assess the relationship between accuracy and reaction time, an analysis of 320 

correlation between reaction time and percentage of correct answers was carried out for 321 
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each group and each condition separately (oral and manual responses for audio and 322 

audiovisual stimuli).  323 

Finally, since the CI group appears to be highly variable in terms of subject age, age of 324 

deafness onset, duration of deafness and duration of CI experience (see Table 1), individual 325 

ANOVAS on RT values were performed for each CI participant, with the task (oral vs. manual 326 

response) and the modality (auditory vs. audiovisual presentation) as independent variables. 327 

This was done to assess the effects of these variables on RTs for each CI subject. 328 

  329 
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RESULTS 330 

The results of the four groups are shown in Figure 2 (for reaction times) and Figure 3 (for 331 

percentages of correct responses).  332 

Insert Figures 2 & 3 here 333 

 334 

Normal-hearing elderly participants  335 

Concerning reaction times, the main effect of task was found to be significant 336 

(F(1,9)=255.31 ; p<.001), with faster RTs for oral responses than for manual ones (on 337 

average, oral responses: 238 ms; manual responses: 568 ms). In addition, the main effect of 338 

syllable was found to be significant (F(1,9)=12.67 ; p<.001) with faster responses for /apa/  339 

(374 ms) than for /aka/ (429 ms) and faster responses for /aka/ than for /ata/ (451 ms). 340 

There was no effect of modality, either alone or in interaction. 341 

Concerning the percentages of correct responses, the main effect of task was significant 342 

(F(1,9)=25.5 ; p<.001) with a lower value for oral than for manual responses (on average, 343 

oral responses: 81%; manual responses 98%). In addition, the main effect of syllable was 344 

found to be significant (F(2,18)=7.9 ; p<.005), with a lower percentage of correct answers for 345 

/apa/ (98%) than for /ata/ (81%).  Modality did not provide any significant effect, alone or in 346 

interaction. Finally, the interaction between task and syllable was found to be significant 347 

(F(2,18)=10.08 ; p<.005). However, significant differences between syllables were only found 348 

for the oral task (higher percentage for /apa/ than for /aka/ or /ata/, and higher for /aka/ 349 

than for /ata/).  350 

Cochlear implanted participants  351 

Concerning reaction times, the main effect of task was significant (F(1,9)=36.27; p<.001) 352 

with much faster RTs for oral responses than for manual ones (on average, oral responses: 353 
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469 ms; manual responses: 826 ms). The main effect of modality was also significant 354 

(F(1,9)=7.10; p=.02) with faster responses for audiovisual stimuli than for audio stimuli (on 355 

average, audiovisual stimuli: 626 ms; audio stimuli: 669ms). Additionally, the main effect of 356 

syllable was found to be significant (F(2,18)=17.39; p<.001), with faster responses for /apa/ 357 

and /aka/ than for /ata/ (/apa/: 586 ms; /aka/: 621 ms; /ata/: 736 ms). Finally, a significant 358 

interaction between modality and syllable was found (F(2,18)=6.05; p<.01) showing that the 359 

advantage of audiovisual presentation was present solely for /ata/ (audio: 782 ms; 360 

audiovisual: 690 ms).  361 

Concerning the percentages of correct responses, no significant difference was found 362 

either between audio (69%) and audiovisual (79%) stimuli, or between oral (67%) and 363 

manual (78%) answers. However, the main effect of syllable was significant (F(2,18)= 14.45; 364 

p<.001), with a higher percentage of correct responses for /apa/ and /aka/ than with /ata/ ( 365 

/apa/: 86%; /aka/: 88%; /ata/: 44%). No interactions were significant, neither between 366 

modality and task, nor between syllable and modality or task.  367 

Comparison between the four groups 368 

Reaction times (see Figure 2) 369 

The main effect of group was significant (F(3,45)=24.43; p<.001), with slower reaction 370 

times for CI participants than for the three normal-hearing groups. No significant difference 371 

was observed between elderly participants and the two groups of young participants. 372 

However, NHY participants were faster than NHY-noise participants (overall, on average, CI: 373 

648 ms; NHY-noise: 484 ms; NHE: 418 ms; NHY: 351 ms). The main effect of task 374 

(F(1,45)=263.95; p<.001) and of modality (F(1,45)=21.09; p<.001) were also found to be 375 

significant. For the task, oral responses were faster than manual ones (on average, 313 ms 376 
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vs. 600 ms). For the modality, RTs were faster in the audiovisual modality than in the 377 

auditory modality (on average, 446 ms vs. 467 ms). 378 

A significant interaction between group and modality (F(3,45)=6.93; p<.001) further 379 

indicated that faster RTs were observed in the audiovisual modality than in the auditory 380 

modality, only for CI participants (on average, 626 ms vs. 669 ms) and for NHY-noise 381 

participants (on average, 461 ms vs. 507 ms). No difference was found for NHE participants 382 

(on average, 414 ms vs. 422 ms), or for NHY participants (on average, 354 ms vs. 349 ms).  383 

The interaction between modality and syllable was also significant (F(2,90)=8.94; p<.001), 384 

showing that irrespective of the group, faster RTs in the audiovisual modality compared to 385 

the auditory modality only occurred for the /apa/ syllable. 386 

 In addition, there was a significant interaction between group and syllable (F(6,90)=3.77; 387 

p<.005). For NHY-noise participants, RTs for /apa/ were faster than for /ata/ and /aka/, for 388 

NHE participants, RTs for /apa/ were faster than for /ata/, whereas for CI patients, RTs for 389 

/apa/ and /aka/ were faster than for /ata/. 390 

Finally, a significant interaction between group, modality and syllable (F(6,90)=4.04; 391 

p<.005) was found, showing that the modality effect was only present for the /apa/ syllable 392 

for the NHY-noise group.  393 

Percentage of correct responses (see Figure 3) 394 

The main effect of group was significant (F(3,45)=57.66; p<.001), with a higher percentage 395 

of correct responses for NHY participants (95%) and NHE participants (89%) than for CI 396 

participants (72%) and a higher percentage of correct answers for CI participants than for 397 

NHY-noise participants (60%). There was no significant difference between NHY and NHE 398 

participants.  399 
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The main effect of task was also significant (F(1,45)=71.36; p<.001), with a lower 400 

percentage of correct responses for oral responses than for manual responses (73% vs. 401 

86%). The main effect of modality was also significant (F(1,45)=28.76; p<.001), with more 402 

accurate answers for audiovisual than for auditory stimuli (82% vs. 77%). 403 

A significant interaction between group and task was observed (F(3,45)=6.26; p<.005), 404 

indicating that the difference between oral and manual responses was only present for NHE 405 

participants (81% vs. 98%) and NHY-noise participants (50% vs. 71%). Moreover, a significant 406 

interaction between group and modality (F(3,45)=12.97; p<.001) showed that the modality 407 

benefit was only present for NHY-noise participants (audiovisual: 68%; audio: 53%).  408 

As for RTs, the interaction between modality and syllable was significant (F(2,90)=11.05); 409 

p<.001), showing that the effect of the audiovisual modality was present only for the /apa/ 410 

syllable.  411 

The interaction between group and syllable was also significant (F(6,90)=8.41; p<.001), 412 

with no difference observed between the three syllables for NHE and NHY participants 413 

whereas for NHY-noise participants, /apa/ was more clearly recognized than /ata/ and, for CI 414 

participants, /apa/ and /aka/ were recognized better than /ata/.  415 

In addition, an interaction between task and syllable was observed (F(2,90)=19.96; 416 

p<.001), showing that for oral responses, /apa/ was recognized better than /aka/, which was 417 

of improved recognition compared to /ata/. In contrast, for manual responses, no difference 418 

was observed between /apa/ and /aka/ syllables but these were better recognized than 419 

/ata/.  420 
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The interaction between group, modality and syllable was found to be significant 421 

(F(6,90)=4.72 ; p<.001), showing that for NHY-noise participants, the effect of modality was 422 

present only for /apa/ (on average, 92%; audio: 61%).  423 

Finally, the interaction between group, task and syllable was significant (F(6,90)=5.07 ; 424 

p<.001). Focusing on significant effects, for NHE participants, /apa/ was recognized better 425 

than /ata/ and /aka/ with oral responses; for CI participants, /apa/ and /aka/ were 426 

recognized better than /ata/ for both oral and manual responses; and for NHY-noise, /apa/ 427 

was recognized better than /ata/ and /aka/ for oral responses, whereas /apa/ and /aka/ 428 

were recognized better than /ata/ for manual responses. 429 

Correlation between reaction times and percentages of correct responses (see Figure 4) 430 

For the NHE and CI groups, the correlation between RTs and the percentage of correct 431 

answers was analyzed for each group and each condition separately (oral and manual 432 

responses for audio and audiovisual stimuli).  For NHE participants (Figure 4a, b), all 433 

correlations show the same tendency to be positive, although significance is only observed 434 

for oral responses to audiovisual stimuli (r²=0.6, p<.01).  This shows that faster participants 435 

tend to obtain less accurate responses, in agreement with classical observations on the 436 

speed-accuracy tradeoff. Importantly, Figure 4 shows clearly that the difference between 437 

oral and manual responses appears to be independent of this tradeoff. Indeed, even in 438 

regions where accuracy is similar, oral responses are much faster than manual ones. 439 

In the same figure, we superimposed data for the NHY group without noise onto that of 440 

the NHE group. It seems likely that the two groups behave differently, younger people being 441 

globally more accurate and faster than their elders (mean values for NHE: 89% and 418 ms; 442 

mean values for NHY: 95% and 351 ms). However, this was not displayed in the ANOVA, 443 
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where no significant differences appeared between the two groups for either measurement, 444 

probably because of too small a number of subjects.  445 

For CI patients, the portrait is more complex. Indeed, the only significant correlation is 446 

negative, for manual responses to audio stimuli (r²=.45, p<.05). Such a negative correlation is 447 

at odds with the speed-accuracy tradeoff, which is quite a general process (Fitts, 1966; 448 

Wickelgren, 1977), well described in computational decision models (Rattcliff & McKoon, 449 

2008). This confirms the high degree of inter-individual differences between CI subjects. 450 

Indeed, the negative correlation shows that some subjects are both more accurate and rapid 451 

than others, hence that they have recovered a higher level of speech decoding.  452 

Insert Figure 4 here 453 

Individual analysis in the CI group (see Table 2) 454 

Because of this high degree of inter-individual variability in the CI group, the last analysis we 455 

did aimed to assess whether the oral-manual difference in response times could be found in 456 

each individual subject. To this end, for each CI participant, a two-factors ANOVA was 457 

performed on reaction time values with the tasks (oral, manual) and modality (audio, 458 

audiovisual) as independent variables – with 48 estimations per condition, grouping the 459 

three syllables.  460 

Individual mean values and significance levels for task and modality are shown in Table 2. 461 

Importantly, for all participants the main effect of task was highly significant (with p values 462 

inferior to .001), with faster oral than manual responses. Additionally, four participants 463 

obtained a significant modality effect with faster responses to audiovisual than to audio 464 

stimuli.  Interaction between task and modality was significant for two participants (with p 465 
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values inferior to .001), with significantly larger reaction times for audio than for audiovisual 466 

stimuli in oral responses. 467 

Insert Table 2 here 468 

  469 
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DISCUSSION 470 

The goal of this study was to assess the perceptuo-motor link in post-lingually deaf CI 471 

patients and in NHE participants, through an auditory and audiovisual close-shadowing 472 

experiment. Results of these two groups of patients were compared with results from a 473 

previous study (Scarbel et al., 2014) of two groups of normal-hearing young participants, 474 

with or without the addition of acoustic noise. In the previous study, we obtained faster RTs 475 

in the oral than in the manual task; and more surprisingly, less accurate oral than manual 476 

responses in noise. Additionally, concerning the modality of presentation, responses to 477 

audiovisual stimuli were found to be faster and more accurate than audio stimuli in noise, 478 

though not in silence.   479 

Basically, we repeated this global pattern for the two groups under study here, although 480 

with some differences that will be discussed in detail below. These differences include a 481 

global trend for a slight degradation in performance for older NH subjects, with a tendency 482 

to display slower RTs and a lower percentage of correct answers than younger participants 483 

without noise. More importantly, there is a significant degradation of performances in CI 484 

patients who presented slower replies and a lower percentage of correct answers than those 485 

of the three normal-hearing groups. That is, young participants with or without noise, and 486 

normal-hearing elderly participants. However, of these three the young participants in noise 487 

produced the most errors.  488 

We will now discuss in more detail the pattern of results related to the role of task, and 489 

modality of presentation. 490 

Effect of task: manual vs. oral responses 491 

Normal-hearing elderly participants 492 
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Elderly participants present response patterns that are quite similar to those of young 493 

participants with noise, concerning the effect of the task. Indeed, we obtain for elderly 494 

participants both faster reaction times and a lower percentage of correct answers for oral 495 

than for manual responses. The difference in speed between oral and manual responses was 496 

already seen in young adults with clear acoustic stimuli. The fact that there is also a 497 

significant difference in accuracy in more elderly subjects, even with clear acoustic stimuli, is 498 

likely due to the slight degradation in accuracy – as in reaction times – with age. These data 499 

allow us to confirm the results obtained in our previous study (Scarbel et al., 2014). 500 

Cochlear-implanted participants  501 

Crucially, as for normal-hearing groups, oral responses in CI participants were found to be 502 

faster than manual responses – actually much faster, more than 350 ms in average. 503 

Importantly, the difference between reaction times in the two tasks appears to be significant 504 

for all CI patients, even subjects recorded just after implantation (1 to 3 months).   505 

However, in contrast to normal-hearing young participants with noise and elderly 506 

participants, no significant difference between oral and manual answers in terms of 507 

response accuracy was observed for CI patients. This lack of significant difference (in spite of 508 

a 10% trend) is probably due to the variability of performances for the CI group, together 509 

with the small size of the group.  510 

Effect of the modality  511 

Normal-hearing elderly participants 512 

Regarding modality, it is important to notice that elderly participants presented response 513 

patterns that were quite similar to those of young participants without noise. Elderly 514 

participants did not present a benefit of the visual modality, since no difference in reaction 515 
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times and in the percentage of correct answers were observed between responses for 516 

auditory and audiovisual stimuli. This lack of visual modality benefit might appear surprising, 517 

considering the relatively low accuracy scores in the auditory condition (around 80% globally 518 

in the oral response mode) since most studies on audiovisual perception in elderly people 519 

conclude that audiovisual integration abilities are quite similar in elderly participants as in 520 

younger ones (Cienkowski et al. 2002; Sommers et al. 2005, Stevenson et al. 2015), if not 521 

better (Sekiyama et al. 2014). This might suggest that audiovisual integration is less efficient 522 

in elder subjects under time pressure. 523 

Cochlear-implanted participants 524 

Concerning stimuli modality presentation, CI patients, like normal-hearing young 525 

participants with noise, obtained faster responses for audiovisual stimuli than for audio 526 

stimuli. However, whereas normal-hearing young participants with noise obtained higher 527 

percentages of correct answers for audiovisual stimuli, no difference between the two 528 

modalities was observed for CI patients at the group level – although an effect was displayed 529 

individually for 4 subjects. These results appear only partly in agreement with those of 530 

previous studies exploring lip-reading abilities in cochlear-implanted patients (Goh et al. 531 

2001; Kirk et al. 2002; Bergeson et al. 2003; Kaiser et al. 2003; Rouger et al. 2012), which 532 

showed a major role of vision and suggested a good, if not better than normal, capacity to 533 

integrate visual and auditory abilities for these participants. Indeed, it is somewhat puzzling 534 

that CI subjects did not benefit much from the visual modality in terms of accuracy, 535 

considering the relatively low accuracy scores in the auditory modality. This is perhaps due 536 

to the specificity of the task with respect to time pressure, which could have perturbed the 537 

audiovisual fusion process. 538 
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Interpretation in the framework of an analysis-by-synthesis process 539 

Extending the discussion in our previous study (Scarbel et al., 2014), here we propose a 540 

tentative explanation of the difference between oral and manual responses, based on the 541 

neurobiological model of speech perception from Skipper et al. (2007), inspired from the 542 

analysis-by-synthesis approach (Stevens and Halle 1967) involving a perceptuo-motor 543 

processing loop between visual, auditory and motor areas in the human brain (Figure 5A). In 544 

this model, after a preliminary stage of unisensory processing respectively in visual and 545 

auditory areas, the auditory and visual information would converge in a multisensory area 546 

located in the posterior superior temporal cortex (STp), leading to a first multisensory 547 

phonemic hypothesis (stage 1 in Figure 5A). Articulatory goals and then associated motor 548 

commands corresponding to this initial prediction would be generated in frontal motor areas 549 

(stages 2-3), leading to the production of motor-to-sensory predictions (i.e. efference copy) 550 

and sent back to the temporal auditory cortex to be compared with the sensory auditory 551 

input (stage 4). 552 

We hypothesized that oral and manual responses were generated at two different stages 553 

in this sensory-motor processing loop. Oral responses would be generated at an early stage, 554 

when motor commands are stimulated. This would make the oral answer faster, but also less 555 

accurate. Manual responses would be generated at the final stage of the perceptuo-motor 556 

loop. As a consequence, reaction times for manual responses would be slower than for the 557 

oral response, but the responses would be more accurate because of refined sensory-motor 558 

predictions.  559 

Insert Figure 5 here 560 
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Normal-hearing elderly participants display similar trends, with a difference both in speed 561 

and accuracy between oral and manual responses, which is in agreement with the analysis-562 

by-synthesis model shown in Figure 5. The similarity between younger and elder participants 563 

and the significantly quicker oral responses would indicate in this framework that the 564 

perceptuo-motor loop is still effective in the speech perception process in elderly 565 

participants, as suggested by Liu et al. (2010, 2011). 566 

Concerning CI patients, the existence of significant differences in response times between 567 

oral and manual responses, together with the global increase in response time in both 568 

response modalities, can once again be interpreted in the framework of the model proposed 569 

by Skipper et al. (2007) (Figure 5). In this case, we might assume that multisensory 570 

processing is degraded and delayed because of auditory difficulties (Stage 1’). Then the 571 

whole process would basically be preserved – though probably degraded – as in normal-572 

hearing subjects. Therefore, globally, all responses would be slower and less accurate, but 573 

the difference between oral and manual responses would remain the same as in normal-574 

hearing participants.  575 

Close-shadowing, an interesting tool for assessing the recovery of the perceptuo-motor 576 

connection after cochlear implantation 577 

These results allow us to shed light on the perceptuo-motor linkage restoration in 578 

cochlear-implanted participants with a close-shadowing paradigm, resulting in faster but 579 

possibly less accurate responses in the speech task than in the manual task. Indeed, 580 

whatever the interpretation for the speed advantage in the oral task, it shows that cochlear-581 

implanted subjects have recovered an efficient auditory-to-articulatory or motor connection. 582 

This connection enables them to efficiently convert the auditory input provided by the 583 
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implant into the appropriate motor command. Strikingly, this ability is displayed soon after 584 

implantation, even after less than 3 months. Crucially, this restoration seems to be efficient 585 

in spite of the incomplete recovery of auditory perception abilities, since CI patients 586 

presented lower scores than normal-hearing participants.  587 

Apart from this result about the (at least partial) recovery of the perceptuo-motor link in 588 

CI subjects, the present study provides a major methodological output. Indeed, it appears 589 

that close-shadowing might constitute an interesting and useful paradigm to evaluate 590 

sensory-motor interaction in CI patients after implantation. We propose that this paradigm 591 

could constitute a new audiological test for the rehabilitation toolkit for CI patients or 592 

hearing-impaired patients, and eventually for patients with other types of speech 593 

impediment.  594 

Conclusion 595 

The results of the present study suggest that oral responses to auditory or audiovisual 596 

syllables are faster than manual responses in normal-hearing adults, both young and elderly, 597 

and in CI patients. Results for elder normal-hearing participants show that the perceptuo-598 

motor coupling is still efficient and rather stable in these subjects. Importantly, the gain in 599 

speed of oral responses, maintained for CI patients in spite of a global degradation in 600 

performance, suggests that the perceptuo-motor coupling has been recovered, at least in 601 

part, even following short periods of implantation. We suggest an interpretation of these 602 

results as a new illustration of the perceptuo-motor coupling in the framework of speech 603 

perception theories, suggesting that oral responses would be generated at an early stage of 604 

a sensorimotor loop, whereas manual responses would be formulated at the end of this 605 

loop, leading to slower but more accurate responses.  606 
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FIGURE LEGENDS 

Figure 1: Experimental design. Reaction times were measured between stimulus and 

response bursts (plosion release) for oral responses and between stimulus burst and key 

press for manual responses. 
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Figure 2: Mean RTs (in ms) in each group (normal-hearing young participants with noise 

(NHY-noise), normal-hearing young participants without noise (NHY), normal-hearing elderly 

participants (NHE), cochlear-implanted-participants (CI)), task (oral, manual response) and 

modality of presentation (auditory, audiovisual). Error bars represent standard errors of the 

mean. 
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Figure 3: Mean percentage of correct identification in each group (normal-hearing young 

participants with noise (NHY-noise), normal-hearing young participants without noise (NHY), 

normal-hearing elderly participants (NHE), cochlear-implanted participants (CI)), task (oral, 

manual response) and modality of presentation (auditory, audiovisual). Error bars represent 

standard errors of the mean. 
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Figure 4: Correlation between RT (in ms) and percentage of correct answers (in %) in the 

NHE and NHY (A & B) and CI (C & D) groups, in response to audio (A & C) and audiovisual (B 

& D) stimuli. Correlation was significant for NHE subjects in the oral AV condition, with a 

positive slope. It was significant for CI subjects in the manual A condition, with a negative 

slope. To attempt to avoid ceiling effects with response probabilities close to 100%, another 

analysis was realized using an arcsine transformation, but it provided exactly the same 

pattern of significant correlations.  
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Figure 5: Possible auditory-motor relationships according to manual and oral response 

modes for normal-hearing participants (A) and cochlear-implanted participants (B) (adapted 

from Skipper et al.’s model, 2007). Multisensory processing would be degraded in CI patients 

(hatched on the figure).  
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TABLES 

Table 1: Characteristics of the ten participants with cochlear implants 

Sex Age (in 

years) 

Age at the onset of 

deafness (in years) 

Hearing 

aid 

Duration of 

deafness 

Duration of CI      

experience 

M 65 7 No 58 years 1 month 

M 56 20 Yes 35 years 3 months 

F 66 32 Yes 25 years 9 years 

M 60 59 Yes 1 month 1 years, 4 months 

F 43 20 Yes 13 years 2 months 

M 27 25 Bilateral 

CI 

2 months 2 years, 6 months 

F 67 65 Yes 2 years 7 months 

M 72 40 Yes 30 years 5 months 

M 76 48 No 27 years 3 years, 4 months 

M 57 48 Yes 8 years. 10 months 
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Table 2: Individual mean RT values and significance levels for modality and task in CI 

patients 

Task Modality 

Task x 

Modality 

Oral (ms) Manual (ms) Significance Audio (ms) Audiovisual (ms) Significance Significance 

CI1 193 953 p<.001 797 664 p<.001 n.s. 

CI2 306 480 p<.001 440 384 p<.001 p<.001 

CI3 415 674 p<.001 541 523 n.s. n.s.  

CI4 435 996 p<.001 742 717 n.s. n.s. 

CI5 308 692 p<.001 522 486 p<.005 p<.001 

CI6 653 779 p<.001 705 726 n.s. n.s. 

CI7 794 939 p<.001 897 844 n.s. n.s. 

CI8 330 1052 p<.001 830 726 n.s. n.s. 

CI9 653 841 p<.001 840 684 p<.001 n.s. 

CI10 420 858 p<.001 680 609 n.s. n.s. 

  

 


