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Abstract Despite one and a half decade of research and an impressive body of
knowledge on how to represent and process musical audio signals, the discipline
of Music Information Retrieval still does not enjoy broad recognition outside of
computer science. In music cognition and neuroscience in particular, where MIR’s
contribution could be most needed, MIR technologies are scarcely ever utilized
- when they’re not simply brushed aside as irrelevant. This, we contend here, is
the result of a series of misunderstandings between the two fields, about deeply
different methodologies and assumptions that are not often made explicit. A col-
laboration between a MIR researcher and a music psychologist, this article at-
tempts to clarify some of these assumptions, and offers some suggestions on how
to adapt some of MIR’s most emblematic signal processing paradigms, evaluation
procedures and application scenarios to the new challenges brought forth by the
natural sciences of music.

PACS 43.75.Xz · 43.66.Ba

1 Introduction

The raison-d’être of audio Music Information Retrieval has never been the em-
pirical pursuit of music cognition. A discipline founded on the premises of audio
signal processing, pattern recognition and information retrieval, MIR1 has found
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1 This work primarily addresses the subset of MIR research concerned with the automatic
ranking and classification of audio signals, and not the equally-important work based on sym-
bolic musical formats. In the following, we will take the shortcut of referring to audio MIR as,
merely, MIR. This does not presume that symbolic MIR should take a secondary role in this
debate, of course - see e.g. [61].
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its academic base in Engineering, Computer Science and Information Science de-
partments. Yet, borrowings from such experimental and natural sciences as psy-
chophysics, cognitive psychology and cognitive neuroscience2 have been numerous.
For instance, findings from psychoacoustical studies of musical timbre, such as the
importance of spectral centroid and spectral roll-off [24], have made their way into
software toolboxes [28] and technology standards [42]; the criteria used to evalu-
ate melody transcription and retrieval systems are taken to correspond closely to
the perceptual and performance thresholds measured by experimental psychology
[8]; many machine learning models, e.g. most recently Deep Learning [25], take
inspiration from recent findings about neural architectures in the visual and au-
ditory cortices. More generally, there seems to be increasing awareness within the
MIR community that the scientific knowledge developed by a decade of research
in the field should find direct application in the “science of music”. In common-
sense terms, if MIR is able to classify genres and moods on tens of thousands of
mp3 files with 90-something percent accuracy, “surely music cognition researchers
would have a thing or two to learn from us”.

If they would only listen.

In practice, recognition of MIR research in the natural sciences of music has
been scarce. In many cases, musical stimuli used in cognitive psychology exper-
iments are still characterized “by ear”, either by the participants or the experi-
menters. For instance, a study like Balkwill & Thompson’s [4] asks participants
to rate music in terms of its pitch, intensity, complexity and emotions, and corre-
late the first three with the emotions. When computerized audio analysis is used
at all, it is mostly assimilated to some sophisticated psychoacoustics (adding, say,
the 6th-band spectral flux to the usual spectral centroid for timbre perception [1]),
or as a means to convince readers that the experimenters’ specific set of stimuli
was varied and unbiased (exhibiting whatever MIR feature distribution being a
convenient shortcut for the task of listening to the whole dataset [6]). The reader
is left with the impression that MIR technology is an incidental element in such
studies, paying lip service to an increasingly consensual requirement of “compu-
tational modeling”. When “hard knowledge” about music cognition is discussed,
MIR is not much invoked at all. Of the nearly 1,000 pages of the Handbook of
Music and Emotion [26], for instance, not a single one is devoted to computerized
signal analysis.

This is all the more so frustrating because music has become a central element
in the natural sciences, and has attracted ever increasing media attention, in the
same 10 years that saw the emergence and consolidation of the MIR discipline [34].
For the researcher, the mysterious “power of music” is said to hold the key to un-
derstand the evolution and development of some of our most advanced cognitive
capacities: language, empathy and social cohesion [37]. For the clinician, music
seems to hold promise for therapeutic applications ranging from linguistic rehabil-
itation, regulation of affective disorders and even stimulation of neural plasticity
[48]. If ever there were an opportunity for MIR to prove its scientific and societal
worth, it is now.

2 In the following, we will collectively refer to these disciplines as the “natural sciences of
music”, by which we mean the study by experimental methods of the principles of perception
and cognition of music; we do not address in this article other areas that either study music as
a cultural artefact (e.g. musicology) or as social capital (e.g. anthropology, sociology, economy)
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Scholarly interactions between MIR and the natural sciences of music are laden
with mutual misunderstandings3. This can be illustrated by a personal story, that
of the first author’s failed attempt to submit what he deemed was a cognitive
science argument, based on MIR experiments, to a well-known Psychology journal
(an argument we later recycled, in typical academic cynicism, as a book chapter
[2]). The argument was based on a large-scale study of more than 800 musical
categories, each documented for a dataset of 10,000 songs, which we subjected to
MIR classification with hundreds of signal processing features and machine learn-
ing optimizations (a problem that later came to be called “auto-tagging” [5]).
We analysed the distribution of classification accuracy over all categories, to find
that more than three-quarters of them did not reach better-than-random scores:
this was true for cognitive evaluations as varied as “old-fashioned”, “danceable”,
“makes me want to drive a fast car”, but also surprisingly for categories such as
genres, moods, and even instruments (“this piece includes piano”). We argued
that, given that we had used a sophisticated and exhaustive optimization result-
ing from the collective effort of more than 10 years of MIR research, this result
had probably cognitive significance: it was establishing that there was a lot less
than previously thought “in the sound” of music that explained our everyday cog-
nitive judgements. How much of it was auditory perception, and how much was
extrinsically constructed without a strong auditory base? Our write-up went into
review, but was rejected unequivocally: how can you prove, comments said, that
the failure to categorize music is not simply a failure of the algorithm? Because
you do not base your argument on human judgements, but an algorithmic simula-
tion of human judgement, your results are telling something about the properties
of music recognition algorithms, but not about the properties of human cognition.
You should submit this work to an Engineering journal. These last words struck us
most: it wasn’t that our work was evaluated as poor cognitive psychology (which,
to be fair, it probably was); it wasn’t being evaluated at all. What we had naively
thought was a large conceptual leap outside of our discipline into the realm of
psychology was still deemed far outside of the field by its own practioners. There
was no bug with our submission. It simply did not “compile” in the language of
natural sciences.

This article is an attempt to identify and correct some of the “syntax errors”
that MIR research makes when it attempts to address the natural sciences. These
errors are not necessarily incompetencies or flaws; for the most part, they are
the consequence of deeply different methodologies and assumptions that are often
implicit in both fields. Questioning these assumptions is both useful extrinsically,
if MIR research is to reach broader recognition outside its field, and intrinsically:
it will lead to to better features (Section 2), more fruitful tasks (Section 3), and
a more reflexive sense-of-purpose (Section 4), which will benefit the field directly.
The reflexions in this article are based on a public conversation between the first
author (a MIR researcher) and the second author (a psychologist) which occurred
at the 2012 International Conference on Music Information Retrieval [3].

3 We do need to acknowledge a few, recent positive examples [33,53] which all the more so
encouraged us to write this piece
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2 Features

Problem 1: features that don’t have a clear neural/cognitive modular-
ity4

On first look, it is tempting to say that most, if not all, of the signal processing fea-
tures used by MIR are inspired by properties of the human auditory system. For in-
stance, Mel-Frequency Cepstrum Coefficients (MFCCs), a mathematical construct
derived from the signal’s Fourier transform, are often said to be designed to re-
produce the non-linear tonotopic scale of the cochlea (using a Mel-scale frequency
warping) and the dynamical response of the hair cells of the basilar membrane
(using a logarithm as a simple compression algorithm) [47]. However, this is only
partly correct. From this model-based point of departure, parts of the algorithm
were added to improve the feature’s computational value for machine learning, and
not at all to improve their cognitive relevance. For instance, the MFCC’s final dis-
crete cosine transform (DCT) is used to reduce correlations between coefficients,
which would make their statistical modeling more complex [32]. It could be ar-
gued, to some extent, that the brain uses a similar computational trick (authors
like Lewicki [29] have demonstrated similar properties in physiological neural net-
works), but it remains to be tested whether a DCT is an appropriate model for
such mechanisms. If anything, such efficient coding of information is likely to be
implemented in early auditory nuclei, i.e. after the signal is encoded as spikes on
the auditory nerve; but why then are the temporal integration properties of the
auditory nerve not implemented before the DCT? Clearly the logics of design-
ing features like MFCCs have more to do with maths than empirical data. The
same could be said of many of the classical MIR features, e.g. the feature of spec-
tral skewness, the 3rd spectral moment, in relation to the spectral centroid, the
first moment: the latter comes from psychoacoustics, the former is only justified
because it is an obvious mathematical derivation thereof.

In these conditions, constructs like the MFCCs are not easily amenable to
psychological investigation, even when efforts are made to validate them with
psychophysics: for instance, a study by Terasawa and colleagues [58] resynthe-
sized sounds from MFCCs and showed that human timbre dissimilarity ratings
between sounds correlated exactly with the MFCCs. This proves that an algorith-
mic construction, the MFCC, closely predicts a cognitive judgement. But should
one conclude that the brain implements a discrete cosine transform? Probably not.
It would be like concluding that jet planes demonstrate how birds fly just because
they both move in air.

The traditional MIR position regarding such remarks is to argue that more
is known in the psychophysiology of e.g. the visual cortex than of the auditory
cortex, and it is therefore only logical that it should try to compensate the lack
of physiological data by mathematic intuition. While this position may have held
when the field of MIR emerged in the early 2000s, it seems less and less tenable. We
now have a good understanding of the response patterns of neurons throughout
the auditory pathway (the so-called spectro-temporal receptive fields [20]), and
computational models even exist to model them [13,41]. When such physiologically
and psychologically validated alternatives exist, it is therefore increasingly difficult

4 we use the term modularity in its “modularity of mind” definition, following Fodor [19]
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Table 1 Acoustic characteristics that best correlate with the valence and arousal of a set of
musical stimuli, as computed by the MIRToolbox. Despite near-perfect predictive power, these
characteristics are too mathematical to yield any cognitive or physiological interpretation.
Data reproduced from Aucouturier & Bigand, 2012 [3].

Regression for valence
Feature β
tonal_chromagram_peak_PeakMagPeriodEntropy -0.75
tonal_mode_Mean 0.13
spectral_mfcc_PeriodAmp_8 (600 Hz +/- 66) 0.12
spectral_ddmfcc_PeriodEntropy_1 (133.3) -0.11

Regression for arousal
Feature β
spectral_mfcc_Std_6 (466.6) -0.34
spectral_mfcc_Mean_3 (266.6) 0.28
tonal_keyclarity_Std -0.28
spectral_mfcc_Std_7 (533.3) 0.24

to justify the use of features like MFCCs in MIR studies pretending to have any
relevance for cognition.

Problem 2: algorithms that look like cognitive mechanisms, but are not

Progress in both feature extraction as well as feature selection algorithms [17]
means that techniques now exist to automatically combine and test very many
features (predictors) to match any type of target. A software library such as the
MIRToolbox [28] now offers more than 300 of such algorithms; the EDS system
claims to be able to generate and explore millions of features [40]. This trend
(more features, more complex, more combined) accounts for a general and constant
improvement in the accuracy of MIR’s classification or regression problems [60].
However, it remains very difficult to derive useful psychological intuitions from
what MIR claims to be good “predictors”. This is best illustrated with an example,
taken from our own collaboration with the team of Bigand et al. [7]. Valence and
arousal ratings were collected for a dataset of short musical extracts, and a multiple
regression was conducted using the full predictive power of the MIRToolbox in
an attempt to find what acoustical characteristics of sound create the emotions
reported by the subjects. As shown in Table 1, we “found” that the valence of the
music is very well “explained” by the entropy of the period of the magnitude of
the maximum peak detected every 50ms in the signal’s chromagram5. Arousal, on
the other hand, was found to result from the variance of the 6th Mel-Frequency
Cepstrum Coefficient and the average of the 3rd - but, apparently, not reciprocally.

Such explanations are obviously superficial. But what if cognitive psychologists
were to take them literally? They would be confronted with a formidable mix-bag
of a proposal: we have here an evaluation mechanism of emotional valence, of
which neuroscience tells us it is at least partly pre-attentive and subcortical
[10], and which MIR research seemingly suggests to explain with a series of
steps involving constructs as diverse as statistical learning (“entropy”), rhythmic

5 the chromagram, yet-another MIR construct, gives, at every time step, the energy found in
the signal’s Fourier spectrum in the frequency bands corresponding to each note of the octave
- c, c#, d, etc.
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entrainment (“period”), temporal integration (“maximum peak”), harmonic
analysis (“chromagram”) and even requiring the agent’s musical training in a
western culture (because the chromagram relies on the 12-tone western pitch
system).

Problem 3: lack of low-level psychological validation

MIR research practices are notoriously goal-oriented. As algorithm designers, we
select (manually, or automatically) a given feature because putting it in the mix
helps the global task: if adding, say, spectral flux to MFCCs improves the precision
of an emotion classication algorithm on a test dataset, compared to not adding
it, then we add it. This design process is deeply at odds with scientific practice
in the natural sciences, where dependent variables or regressors are not added to
a model because they improve its explanatory power (a posteriori), but because
they correspond to a theory or hypothesis (a priori) that is being tested. Such
hypotheses are possible because theories are built from the bottom up, with in-
termediate validations of lower-level variables first [44]. Transcribed to MIR, this
means a feature should not be incorporated into an algorithm before its individ-
ual predicting power for the problem being modelled is tested and validated. If we
can’t validate that spectral flux has any sensory or perceptual relevance to at least
a part of emotion classification (if such a psychological process can be defined, see
Section 3), then there is no scientific reason to consider it (although there may be
considerable statistical and pragmatic reasons to do so).

There are considerable difficulties in this endeavour, however. First, it is unclear
what subpart of the problem each feature is really addressing. Clearly, a low-level
(and debatable) model of the peripheral auditory system such as the MFCCs is
unlikely to do justice to such a highly cognitive process as genre recognition or
emotion evaluation. There are very many intermediate steps/features that the hu-
man brain computes and integrates in its information processing workflow before
reaching the auditory representation upon which such judgements are made, and
one has to identify the right level of cognitive digestion of the stimuli against which
to test a specific feature. The classical argument brought forth by MIR, again, is
that we know very little about such “intermediate representations”, and therefore
it is more efficient to start with the end result in a data-driven manner [25]. This
statement was accurate in the early years of the field; nowadays however, it is delu-
sive: in the past ten years, the cognitive neurosciences have made much progress
in clarifying this workflow for a large class of problems relevant to MIR, both in
terms of the neural pathways that are involved and the specific properties of the
audio signal which they seem to process. For instance, in the special case of the
emotional evaluation of speech prosody, it is now fairly well-documented that a
pathway exists (Figure 1) that can be traced back to the superior temporal gyrus
(STG) in the temporal lobe, where generic auditory features are formed, with
short analysis timescales in the left hemisphere and long timescales in the right
[63], then projects to the right superior temporal sulcus (STS), where specific audi-
tory representations for expressive voice are formed, and then to the right Inferior
Frontal Gyrus (IFG), where these features are evaluated and confronted to linguis-
tic/pragmatic information [51]. We contend that it is at this level of granularity
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that the importance of MIR features should be evaluated: MFCCs could be tested
on whether they are a good model of, say, the auditory representation assembled
in the right STG, rather than a model of the final conscious evaluations formed
at the end of the chain in the right IFG. A second problem then, would be how to
build a groundtruth for human evaluations “made” at the level of the STG - which
are not available to consciousness. Impossible, shrugs the MIR researcher, turning
back to his/her usual groundtruth of last.fm emotion tags. Again, delusive: cog-
nitive psychology has assembled an impressive armada of experimental paradigms
that allow to quantify a large variety of auditory subprocesses. For instance, the
paradigm of mismatch negativity (MMN) elicits pre-attentive auditory responses
from the primary auditory cortex, in reaction to oddball sounds presented in a
sequence of otherwise similar sounds [36]. The amplitude of the MMN response
(measured by EEG) has been related to the strength of the sensory differences
between the stimuli, which means it can be correlated with a computerized rep-
resentation of the sound [59]. MMNs have been demonstrated for differences in
instrument timbre [23] or emotional speech [10]. Such responses are an appropri-
ately low level of representation to build groundtruths to evaluate and improve
MIR features.

3 Tasks

Problem 4: The misguided metaphor of psychoacoustics

In first approximation, the research methodology of MIR resembles psychophysics.
On the one hand, typical psychoacoustical studies, e.g. of musical timbre, proceed
by collecting average similarity ratings over many users, then selecting features
that explain the best percentage of the data’s variance - finding, for instance,
that the spectral centroid of an extract correlates at 93% with the first principal
component of the human-constructed timbre space [24]. MIR, on the other hand,
has shown that features such as Liu & Zhang’s average autocorrelation peak [31]
(or Alluri & Toiviainen’s 6th band spectral flux [1]) allows to predict or classify
emotions at 95% precision - a similar process, it seems, and arguably even more
refined than classical psychoacoustics because of more sophisticated mapping algo-
rithms (e.g. computing optimal embedding with SVMs instead of PCA), features
and even more data (psychophysics rarely use more than a hundred stimuli, while
MIR studies routinely use tens of thousands). It therefore seems incomprehensible,
or even prejudiced, that the natural sciences of music should accept the outcome
from the former process (e.g. the spectral centroid for timbre) as “psychologically
validated” while ignoring or even rejecting results from the latter process.

In truth, for most of the behaviours investigated by MIR, there are valid rea-
sons for doing so: the methodology of psychoacoustics is designed to investigate
percepts, i.e. the immediate psychological gestalts corresponding to those few phys-
ical characteristics that define an auditory object, regardless of the listener and
its culture. A musical sound has pitch, loudness and timbre, and these can be sub-
jected to psychoacoustics (see [45], [64] and [24] respectively). The same sound,
however, does not have genre or emotion - these are constructed cognitively; their
value could change (e.g. a song may be described as “pop” instead of “rock”)
without changing the physical definition of a sound. Even if recent results on
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Fig. 1 Processing of emotional speech is known to activate a network of right frontal and
temporal areas, including (1) the Superior Temporal Gyrus, (2) the right Superior Temporal
Sulcus where auditory representations for emotions are formed and (3) the right Inferior Front
Gyrus, where emotions are evaluated and (possibly) made available to consciousness. It seems
more likely that the features used by MIR should correspond to earlier stages of the neural
workflow, against which they should be validated, rather than to the final conscious evaluations
formed at the end of the chain, and which are nevertheless routinely used as groundtruth in
MIR systems. Figure adapted from Schirmer & Kotz, 2006 [51]

action-perception have begun challenging the frontier between what’s a percept
and what’s a cognitive construction (see e.g. [39] on the question of emotion per-
ception), most in cognition would still agree that a fundamental difference re-
mains between the two. For them, MIR research is applying the psychoacoustics
metaphor, i.e. searching for acoustic correlates, to behaviours (genres, emotions,
etc.) to which it does not apply.

A better principled way for MIR to describe the insights of its typical genre
or mood classification algorithms would be to recognize that these are not cap-
turing “rock” or “sad” music, but rather things that sound like “rock”, or things
that sound like a “sad song”. Good performance for such systems, then, may be
less revealing of human cognitive processes than of a sociological reality: because
music is a structured human activity with a bias for regularity [53], most “sad”
music indeed sounds the same (dark timbre, low pitch, etc.). These features do
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not necessarily make the music sad: one can find music that is experienced as
sad without exhibiting any of these features (for a particularly extreme example,
see [9]). But because such songs are rare (or at least they’re rare in typical test
datasets), e.g. there are maybe 10% of them, MIR systems can still reach 90%
performance without actually modeling anything specific about how, e.g. genre
is cognitively constructed. Unlike true psychoacoustics, the high precision values
found in MIR do not presume anything has been learned about music cognition.

Problem 5: Wrong6 incentives: tasks that are too far away from per-
ception

It follows that, for MIR research to bridge the gap between its audio signal pro-
cessing expertise and the concerns of e.g. cognitive psychology, tasks like genre and
mood classification, or even broadly defined music similarity, which form a large
share of the annual MIREX evaluation campaign [43], may be counter-productive.
Most psychologists would consider that e.g. musical genre, as an object of study,
is too complex, i.e. it is known in advance that studying it won’t help isolate ex-
perimentally any particular process that could constitute it. For instance, if one
wants to understand the sensory process by which a rock song is recognized as
rock, it is simpler and more elementary to study the same process for environ-
mental sounds. This latter case is less plagued by cultural learning, ambiguity
and subjectivity than musical genre. For the MIR researcher too, any optimiza-
tion of features or machine learning over such problems is unlikely to translate
into novel sensory/cognitive insights, but rather result in ever finer adaptation, in
the best case, to the existing socio-statistical patterns in music production and
consumption7 and, in the worst case, to the fallacious specificities of the field’s
evaluation metrics [60]. Yet, we have seen a trend in recent years to both neglect
the development of new features and to favour the emergence of new tasks and
new evaluation corpuses. The 2012 MIREX competition now includes 19 tasks, in
which all competing implementations are typically using the same features, with
minute parameter changes [43]. Tasks as defined by the MIREX initiative are
powerful incentives that shape where the discipline is going, year after year, and
therefore should not be taken lightly.

From this perspective, it may be appropriate for the field to declare a temporary
“moratorium”8 on such emblematic tasks as genre or mood classification or music
similarity, and refocus on a core set of better-defined tasks, of a lower-level nature,

6 By “wrong”, we do not mean that the typical attitude of MIR research is mistaken or
flawed. If anything, the tasks and methodologies discussed here are largely to credit for the
many and important technological successes achieved in the MIR community. By calling these
“wrong”, we propose however that these attitudes, while arguably beneficial for the engineering
purposes of MIR, are also harmful to the interdisciplinary dialog between MIR and the natural
sciences of music. These are “the wrong things” for a MIR practionner to do when addressing
a psychologist. See also Problem 6 below.

7 a valuable topic of investigation in its own right, see e.g. [49]
8 a strong initiative not without precedent, e.g. when in 2009 the Python community stopped

all changes to the language’s syntax for a period of two years from the release of Python 3.1.,
in order to let non-CPython implementations “catch up” to the core implementation of the
language [11]
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more likely to generate insights about human perception of music, and for which
well-defined measure paradigms already exist, e.g.

– musical instrument recognition (for which neuroscience has already started
producing valid computational models [41])

– detection of dissonance in series of chords [46]
– pre-attentive responses to deviants in e.g. timbre or prosodic sequences [23].
– any of the individual mechanisms for emotion induction reviewed by Juslin

& Västfjäll (2008) [27], to be measured by implicit paradigms [22] or indirect
cognitive effects [35].

While some of these may temporarily lead us away from the immediately utili-
tarian goals of MIR (genre recognition for carps, anyone? [12]), features and sys-
tems developed with such goals will not only benefit the field extrinsically (better
interaction with the natural sciences, and broader recognition), but also intrinsi-
cally. A comparison with the neighboring discipline of computer vision may help
here: in the same time MIR has been increasing its scope and the number of
its evaluation tasks, computer vision has refocused its effort on a small set of
extremely narrowly-defined problems: object segmentation, object detection and
object recognition, each with its own standardized testbed and a wealth of neuro-
scientific data to build on [56]. This has led to the development of computer models
that follow biological constraints radically and which overperform their previous,
non-biologically-plausible alternatives [54]. Furthermore, such models are now rou-
tinely used in the vision cognition community to explain experimental results [14].

4 Purpose

Problem 6: Wrong attitude to limit cases

While both communities are trying to model and simulate processes of music
perception, MIR and the natural sciences of music have fundamentally different
purposes. MIR is interested in the result of its simulation, and how much it matches
the outcome of human behaviour. A science like music cognition is less interested
in outcomes than in processes9. If its interest lies in designing computer algorithms
to e.g. do maths, it would be less interested in building machines that can multiply
numbers as well and as fast as humans, but rather in building them in such a way
that multiplying 8x7 is more difficult than 3x4, as it is for humans [16]. This
bias is evident in the way MIR treats the limit cases of the evaluation of its
algorithms. Training data is assigned to classes, which are decided once and for
all (the “groundtruth”), and then serve as evaluation criteria regardless of their
largely varying degrees of stereotypicality. MIR algorithm designers are happy e.g.

9 One reviewer of this article went even further to say that MIR is merely a category of
vocational training, and therefore does not belong to the scientific community and should
not be expected to be capable to generate scientific questions. While this view is historically
accurate, we believe recent years have seen increasing academic migration between these both
extremes, with MIR researchers turning to traditional scientific disciplines such as psychology
or neuroscience, and conversely, graduates from such fields coming to MIR in their postgraduate
or postdoctoral days. In any case, one is forced to consider that much of the obstacles identified
in this article could be addressed by more systematic training for MIR students in the methods
of empirical sciences, incl. experimental design and hypothesis testing.
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when they see their algorithms duly classify as “rock” certain songs that are clearly
on the border of that definition (e.g. a song like Queen’s Bohemian Rapsody), and
they would be just as well if the groundtruth had arbitrarily labelled them “pop”
instead. Algorithm optimization then purposes to “fix” as many false negatives as
possible, at all cost, even when there are good sensory reasons for a given “rock”
song to be classified as something else. Psychologists, on the other hand, would
rather understand what makes a song more prototypically “rock” than another,
or to how much “rock” one has to listen to form a stable representation of that
genre.

Flattening out limit cases, as MIR routinely does, has multiple bad conse-
quences. First, typical MIR algorithms tend to err very little, but when they do,
they do in very ungraceful ways: they are not optimized to be solid on stereo-
typical cases and flexible elsewhere. More often than not, genre recognition algo-
rithms accept “Bohemian Rhapsody’ where they reject “We will rock you” [55];
nearest neighbors that occur most frequently in music similarity systems are also
those that have least perceptual similarity with the target [18]. Second, averaged
groundtruths tend to produce average algorithms, in terms of how they apply to
specific populations. While most human subjects tend to agree on most stereo-
typical instances, there are important inter-individual differences in the margins
of the class distributions - for instance, in the case of emotion recognition, based
on culture [4], musical expertise [7], age [30] or even individual personality [62],
all specificities that MIR algorithms and groundtruths are in effect neglecting [50]
while they are some of the most central objects of study for the natural sciences
of music.

Problem 7: Trying too hard: MIR as a physical model

We already discussed the confusion that ensues when publicizing MIR as sophisti-
cated, generalized psychoacoustics (Section 3). Working on problems that are non
purely perceptual, MIR is sentenced to only produce incidental explanations, of
things that sound like a rock or sad song, but no definite model of what could
make them so. There is solace in this situation, however, because music cognition
research has precisely been missing this capacity to measure “how things sound”,
in order to control its experimental stimuli and separate what’s in the physical sig-
nal from what’s constructed out of it by cognition. It is ironical that MIR may be
most useful to cognition when it provides tools which do not have the pretense of
infringing into cognitive thinking, but instead just pure, state-of-the-art physical
modeling [52].

More precisely, MIR can be understood to provide a physical measure of the
information available for human cognition in the musical signal for a given task.
This measure can then be used to construct scientific proofs in a variety of sit-
uations. For instance, in the speech domain, de Boer & Kuhl [15] have shown
that speech recognition algorithms (hidden Markov models - HMM) have better
word recognition performance when they are trained and tested on infant-directed
speech (IDS, or “motherese”) than on adult speech. This can be taken to validate
the argument that the developmental value of IDS is to bootstrap language learn-
ing. It is particularly notable in this example that the algorithm is not presented
as a cognitive model: the authors are not pretending that the human brain im-
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plements a HMM. Their result only gives a proof of feasibility, i.e. that, from a
purely physical point of view, the information exists in the IDS signal to allow for
an easier treatment than adult speech; it does not show that the information is
actually used. Still, it would be very difficult to replace the machine by a human
measure in this argument. A similar argument is developed in the work of Kaplan
and colleagues [38], who show that machine learning can classify dog barks into
contexts like being afraid, playful, etc. This was taken to indicate, for the first
time, that dog vocalizations contain communicative features.

The difference between such type of proofs and the rejected claim of [2] is
subtle but important. The latter attempted to prove a negative hypothesis: if MIR
models based on specific audio features cannot easily classify this or that, then
it is taken to indicate that, contrary to intuition, human classification cannot be
based on these features. The fallacy there resides in the impossibility to prove that
human cognition had absolutely no means to exploit such features in ways that
algorithms could not. An equally valid (and quite possibly more likely) conclusion
to the same “experiment” is therefore that the tested MIR models simply failed to
process music in the same way as humans. The claims brought forth in works like
[15] and [38] start from the opposite premise: they set to prove that, contrary to
intuition, a set of features or processes are enough (instead of not enough) to allow
correct classification. It is indeed an open experimental question whether, say,
dog barks or infant cries, contain enough acoustical information to communicate
context; after all, context may be decoded from other co-varying cues such as body
posture, situation, etc. It is experimentally very difficult to control for such other
cues, and restrict human subjects to use only acoustic information: even if they
fail to detect context in, e.g., audio-only recordings, it can be taken to indicate
that the task is not ecological, and that with proper training, maybe they could.
The only “clean” way to test for this hypothesis is arguably to construct a naive
machine able to exploit auditory-only information, which is precisely what MIR
allows to do. While such studies cannot prove that humans actually exploit this
information, it does prove that exploiting it would be enough.

Modern psychology is particularly found of such parsimonious explanations
[21,57]. This type of proof could be applied to a variety of important cognitive
problems in music, including, e.g., how listeners from one culture identify emotions
in music from other cultures; how non-musicians detect deviations in sequences
of chords despite no formal knowledge of harmony; how one forms a workable
representation of a musical genre after listening to only a couple of examples, etc.

5 Conclusion

In summary, while the opening example of our rejected submission was attempting
to cast a pattern recognition result into a cognitive result, and failed under the
fallacy of negative hypothesis testing, we propose that there are ways to construct
scientific proofs with MIR that address central problems in the natural sciences of
music. By using MIR as a tool for physical, rather than cognitive, modeling, proofs
of feasibility can be made for parsimonious mechanisms of information processing
that would otherwise be difficult to demonstrate; by examining musical behaviours
at a lower level than e.g. genre, similarity or mood judgements, for instance in pre-
attentive or unconscious contexts, MIR features can be used to test hypotheses
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on what type of signal characteristics are important for early auditory processing;
by insisting on using features with clear, uncompromised neural modularity (e.g.
spectro-temporal receptive fields), MIR has an opportunity to bring unprecedented
signal-processing sophistication to cognitive neuroscience and psychology. Adapt-
ing MIR’s body of expertise to the needs and purposes of the natural sciences such
as experimental psychology or cognitive neuroscience may require a leap of faith,
and a willingness to challenge some of the field’s favorite tools (MFCCs...), some of
its most emblematic tasks (genres...), and some of its most foundational applica-
tion scenarios (massive, one-size-fit-all classification). But such may be the cost to
pay for reaching broader recognition outside of the computer science/engineering
community, for overcoming the recent stalling in feature and model development,
and for transitioning into the field’s second decade of activity with a renewed sense
of purpose.

Acknowledgements We wish to credit Gert Lanckriet (UCSD), Juan Bello (NYU) and Ge-
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