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Corrigendum for "Second-order reflected backward stochastic

differential equations" and "Second-order BSDEs with general

reflection and game options under uncertainty"∗

Anis Matoussi
† Dylan Possamaï

‡ Chao Zhou
§

June 25, 2017

Abstract

The aim of this short note is to fill in a gap in our earlier paper [7] on 2BSDEs with reflections,
and to explain how to correct the subsequent results in the second paper [6]. We also provide more
insight on the properties of 2RBSDEs, in the light of the recent contributions [5, 13] in the so-called
G−framework.
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1 Introduction

In this short note, we fill in a gap in our earlier wellposedness result on so-called second-order reflected
2BSDEs (2RBSDEs for short). The issue stemmed from a wrongly defined minimality condition which
ensures uniqueness of the solution, which we correct here. We also use this occasion to prove that an
alternative minimality condition, taking the form of a Skorokhod-like condition, leads to the exact same
solution, provided that an additional assumption on the finiteness of the p−variation of the lower obstacle
is added (see Assumption 2.1 below). This new condition appeared recently in the two contributions [5, 13]
on reflected G−BSDEs, and our result proves that the two notions do coincide, and that our formulation
produces more general results.

Since some of the results of [7] were used in our subsequent paper [6] considering doubly reflected 2BSDEs,
we also explain how to change the minimality condition there, as well as which results are impacted by
this change. Roughly speaking, all our previous results still hold true, except for the a priori estimates,
where we no longer control the total variation of the bounded variation process appearing in the solution,
but only its D

2,κ
H −norm.
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2 The lower reflected case

The notations in this section are the ones in [7]. Our only change is that to remain coherent with the
notations in the next section, we will denote the lower obstacle in the 2RBSDE by L instead of S.

2.1 The gap

The mistake in the paper [7] can be found right after Equation (3.3), when we try to prove that the
process KP

′
− kP

′
is non-decreasing. Indeed, appealing to the minimality condition (2.6) in [7] does not

imply the sub-martingality of this process, since it only gives the required inequality for any t ∈ [0, T ] and
the fixed time T . The end of Step (ii) of the proof of Theorem 3.1 in [7] therefore does not go through.
The issue here is that the minimality condition (2.6) that we wrote is only adapted to the case where the
generator F is 0, described in Remark 3.1 in [7], and it has to be modified. One could argue there that
KP

′
− kP

′
might still be non-decreasing, and that an appropriate minimality condition should reflect this

fact. However, the following counter-example, communicated to us by Jianfeng Zhang, proves that this
cannot be the case in general.

Example 2.1 (Jianfeng Zhang). Fix T = 2 and take as a lower obstacle a process L satisfying the

required assumptions in [7] as well as

Lt := 2(1− t), 0 ≤ t ≤ 1, and Lt ≤ 2, 1 ≤ t ≤ 2.

Furthermore, take the generator F of the 2RBSDE to be 0, and the terminal condition to be L2. In

this case, the solution to the 2RBSDE being necessarily the supremum of the solutions to the associated

RBSDEs, we will have automatically the representations

Yt = essupP

P′∈Pκ
H
(t+,P)

essupP

τ∈Tt,T

E
P
′

[Lτ |FT ], y
P

t = essupP

τ∈Tt,T

E
P
′

[Lτ |FT ].

Furthermore, in this case since F = 0, KP
′
− kP

′
being a P

′-submartingale is equivalent to Y − yP
′
being

a P
′-supermartingale, which would imply in particular that

Y0 − yP
′

0 ≥ E
P
′[
Y1 − yP

′

1

]
. (2.1)

However, it is clear by definition of L that Y0 = yP
′

0 = 2. However, there is absolutely no reason why

in general one could not have, for some P
′, and for an appropriate choice of L, Y1 > yP

′

1 (recall that we

always have Y1 ≥ yP
′

1 ), at least with strictly positive P
′-probability, which then contradicts (2.1).

The issue here was actually partially pointed out in Remark 3.6 of [6]. It is explained there (and the proof
of this result is independent of the mistake in the minimality condition) that on the event {Yt− = Lt−},
one has KP = kP, P− a.s., for any P ∈ Pκ

H , meaning that KP− kP is constant (and thus non-decreasing)
as long as Yt− = Lt− . Similarly, the Skorokhod condition satisfied by kP implies that KP − kP is still
non-decreasing on the event {yPt− > Lt−}. However, there is nothing we can say, as pointed out by the
above counter-example, on the event {Yt > yPt− = Lt−}.

2.2 The new minimality condition and the proof of uniqueness

This being clarified, let us now explain what should be the appropriate minimality condition replacing
(2.6) in [7]. Using the Lipschitz property of F (see Assumption 2.3(iii) in [7]), we can define bounded
functions λ : [0, T ]×Ω×R×R×R

d×R
d×DH −→ R and η : [0, T ]×Ω×R×R×R

d×R
d×DH −→ Rd

such that for any (t, ω, y, y′, z, z′, a)

Ft(ω, y, z, a) − Ft(ω, y
′, z′, a) = λt(ω, y, y

′, z, z′, a)(y − y′) + ηt(ω, y, y
′, z, z′, a) · a1/2(z − z′).
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Define then for any P ∈ Pκ
H , and for any t ∈ [0, T ] the process

M t,P
s := exp

(∫ s

t

(
λu −

1

2
|ηu|

2

)
(Yu, y

P

u, Zu, z
P

u , âu)du−

∫ s

t
ηu(Yu, y

P

u, Zu, z
P

u , âu) · â
−1/2
u dBu

)
.

Following the arguments in the beginning of the proof of Theorem 3.1 in [7], we have then for any
t ∈ [0, T ], any P ∈ Pκ

H and any P
′ ∈ Pκ

H(t+,P)

Yt − yP
′

t = E
P
′

t

[∫ T

t
M t,P′

s d
(
KP

′

s − kP
′

s

)]
, P− a.s. (2.2)

Therefore, the representation formula

Yt = essupP

P′∈Pκ
H
(t+,P)

yP
′

t , P− a.s.,

is equivalent to the new minimality condition

essinfP
P′∈Pκ

H
(t+,P)

E
P
′

t

[∫ T

t
M t,P′

s d
(
KP

′

s − kP
′

s

)]
= 0, P− a.s. (2.3)

If one replaces the minimality condition (2.6) in [7] by (2.3) above, as well as in the statement of Theorem
3.1 in [7] the representation (3.1) by simply

Yt = essupP

P′∈Pκ
H
(t+,P)

yP
′

t , P− a.s., (2.4)

then the proof of (2.4) is immediate as soon as one has proved (2.2). This allows us to recover uniqueness
of the solution.

Remark 2.1. The representation formula (3.1) in [7] does not only involve t and T , but any pair 0 ≤
t ≤ s ≤ T . If one only assumes the new minimality condition (2.3), then it cannot be proved immediately

that

Yt = essupP

P′∈Pκ
H
(t+,P)

yP
′

t (s, Ys), P− a.s.

However, once we have proved that the solution Y of the 2RBSDE satisfies the dynamic programming

principle, then the above is immediate. Furthermore, the case s = T is enough to obtain uniqueness,

which is the purpose of Theorem 3.1 in [7].

Remark 2.2. Since in general KP
′
− kP

′
is not non-decreasing, we cannot reduce (2.3) to a statement

involving only KP
′
and kP

′
, as is the case for non-reflected 2BSDEs, see for instance [12]. However, when

L = −∞ and there is no reflection, kP
′
becomes identically 0, and (2.3) is indeed equivalent to

essinfP
P′∈Pκ

H
(t+,P)

E
P
′

t

[
KP

′

T −KP
′

t

]
= 0, P− a.s.,

see the arguments in Steps (ii) of the proof of [12, Theorem 4.3, Theorem 4.6].

The need to depart from the "standard" minimality condition has also been pointed out by Popier and

Zhou in a paper in preparation [9], when dealing with 2BSDEs under a monotonicity condition, with

hypotheses relaxing the earlier work [10].

Remark 2.3. Let us check here that the new minimality condition (2.3) indeed allows to recover the

classical RBSDE theory when Pκ
H is reduced to a singleton {P}. In this case, (2.3) says exactly that

the bounded variation process
∫ ·
0M

0,P
s d

(
KP

s − kPs
)

is a Pmartingale. Since the filtration F
P

satisfies the

predictable martingale representation property, it means that this process is identically 0. Now since M0,P

is P− a.s. positive, this implies that KP = kP, which is the desired property.
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2.3 Recovering existence

The second instance of the use of the wrong conclusion that KP − kP was non-decreasing in [7] is in the
existence proof, during the discussion after Equation (4.6). At this point, the last thing to prove is that
K satisfies the new minimality condition (2.3). However, we already have the result of Proposition 4.2 in
[7] which shows that the process V + satisfies the representation formula (2.4). Therefore, the fact that
(2.3) is indeed satisfied is immediate, since both statements are equivalent.

To summarize, one should replace Definition 2.3 in [7] by the following, and use the corrections explained
above in the proofs.

Definition 2.1. For ξ ∈ L
2,κ
H , we say (Y,Z) ∈ D

2,κ
H ×H

2,κ
H is a solution to the 2RBSDE if

• YT = ξ, and Yt ≥ Lt, t ∈ [0, T ], Pκ
H − q.s.

• ∀P ∈ Pκ
H , the process KP defined below has non-decreasing paths P− a.s.

KP

t := Y0 − Yt −

∫ t

0
F̂s(Ys, Zs)ds+

∫ t

0
ZsdBs, 0 ≤ t ≤ T, P− a.s. (2.5)

• We have the following minimality condition

essinfP
P′∈Pκ

H
(t+,P)

E
P
′

t

[∫ T

t
M t,P′

s d
(
KP

′

s − kP
′

s

)]
= 0, 0 ≤ t ≤ T, P− a.s., ∀P ∈ Pκ

H .

2.4 An alternative: Skorokhod minimality condition

Readers familiar with the theory of standard reflected BSDEs should be wondering whether there is an
equivalent, in the second-order setting, of the so-called Skorokhod condition. The latter states that the
non-decreasing process appearing in the definition of a RBSDE acts in a minimal way, only when the
solution actually reaches the obstacle, and implies uniqueness of the solution (see the seminal paper [4]
for more details). There are actually two recent papers which treat the very related problem of reflected
G−BSDEs, namely [5, 13], and which use a generalization of this condition. The aim of this section is
to show that this condition also implies wellposedness in our framework, under an additional assumption
on the obstacle L, and that the two definitions are actually equivalent. We also provide a more detailed
comparison between [5, 13] and our work at the end of the section.

2.4.1 Wellposedness under Skorokhod condition

Using the same notations as before, the Skorokhod condition for 2RBSDEs reads

essinfP
P′∈Pκ

H
(t+,P)

E
P
′

t

[ ∫ T

t

(
Ys− − Ls−

)
dKP

′

s

]
= 0, t ∈ [0, T ], P− a.s., ∀P ∈ Pκ

H . (2.6)

For ease of reference, we provide the corresponding alternative definition of a solution to the 2RBSDE.

Definition 2.2. For ξ ∈ L
2,κ
H , we say (Y,Z) ∈ D

2,κ
H ×H

2,κ
H is a Skorokhod-solution to the 2RBSDE if

• YT = ξ, and Yt ≥ Lt, t ∈ [0, T ], Pκ
H − q.s.

• ∀P ∈ Pκ
H , the process KP defined below has non-decreasing paths P− a.s.

KP

t := Y0 − Yt −

∫ t

0
F̂s(Ys, Zs)ds+

∫ t

0
ZsdBs, 0 ≤ t ≤ T, P− a.s. (2.7)
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• We have the following minimality condition

essinfP
P′∈Pκ

H
(t+,P)

E
P
′

t

[ ∫ T

t

(
Ys− − Ls−

)
dKP

′

s

]
= 0, t ∈ [0, T ], P− a.s., ∀P ∈ Pκ

H .

In more mundane terms, this condition is saying that if there is a probability measure P such that
the supremum in the representation formula (2.4) is attained, then on the support of P, the classical
Skorokhod condition is satisfied by the solution of the 2RBSDE.

Let us now argue how (2.6) can be used in stead of (2.3) to recover wellposedness, and that both
conditions actually lead to the exact same solution. Notice however that the method of proof here
requires the following condition on L, which basically asks that is has a finite p−variation, for some
p ≥ 1.

Assumption 2.1. Let Π[0,T ] be the set of all partitions of [0, T ] (which allow for stopping times). We

have for some p ≥ 1

ℓ := sup
(ρi)i∈Π[0,T ]

sup
P∈Pκ

H

E
P

[ n−1∑

i=0

∣∣∣Lρ−i+1
− Lρ−i

∣∣∣
p
]
< +∞.

The result is as follows, and its proof borrows a lot from the seminal paper of Ekren, Touzi and Zhang
[3].

Theorem 2.1. Let Assumption 2.1 hold, as well as the necessary assumptions for wellposedness in [7].
Then there is a unique Skorokhod-solution to the 2RBSDE which coincides with the unique solution to

the 2RBSDE.

Proof. We now argue in two steps.

Step 1: uniqueness

This is the easiest part. Assume that there exists a Skorokhod-solution (Ỹ , Z̃). We will argue that
Ỹ = Y , which implies immediately that Z̃ = Z, since Z is uniquely defined by the quadratic co-variation
between Y and B.

Fix first some P ∈ Pκ
H . By definition, Ỹ is a super-solution under P to the standard BSDE with terminal

condition ξ, generator F̂ . Since it is also always above L, and since solutions to reflected BSDEs are also
the minimal super-solutions of the associated BSDEs, we deduce that necessarily we have Ỹ ≥ yP, P−a.s.,
which implies by arbitrariness of P and by (2.4) that

Ỹ ≥ Y.

For the converse inequality, fix some ε > 0 and some P ∈ Pκ
H , and define the following stopping time

τ̃Pε := inf{t ≥ 0, Ỹt− − Lt− ≤ ε} ∧ T.

The Skorokhod condition implies that

0 = essinfP
P′∈Pκ

H
(t+,P)

E
P
′

[ ∫ T

t

(
Ỹs− − Ls−

)
dKP

′

s

]
≥ ε essinfP

P′∈Pκ
H
(t+,P)

E
P
′[
KP

′

τ̃ε −KP
′

t

]
.

Next, let (YP
′
(τ̃ε, Lτ̃ε),Z

P
′
(τ̃ε, Lτ̃ε)) be the solution, under P and on [0, τ̃ε], of the BSDE with generator

F̂ and terminal condition Lτ̃ ε. We have P− a.s.

Ỹt = Ỹτ̃ε +

∫ τ̃ε

t
F̂s

(
Ỹs, Z̃s

)
ds−

∫ τ̃ε

t
ZsdBs +

∫ τ̃ ε

t
dKP

′

s , 0 ≤ t ≤ τ̃ε,

Yt(τ̃ε, Lτ̃ε) = Lτ̃ε +

∫ τ̃ε

t
F̂s

(
Ys(τ̃ε, Lτ̃ε),Zs(τ̃ε, Lτ̃ε)

)
ds−

∫ τ̃ε

t
Zs(τ̃ε, Lτ̃ε)dBs, 0 ≤ t ≤ τ̃ε.
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Classical estimates using the same linearization arguments as above show that there is some constant
C > 0 such that

Ỹt − Yt(τ̃ε, Lτ̃ε) ≤ CE
P
′

t

[
Ỹτ̃ε − Lτ̃ε +KP

′

τ̃ε −KP
′

t

]
≤ Cε+CE

P
′

t

[
KP

′

τ̃ε −KP
′

t

]
.

Using the Skorokhod condition, this implies immediately that

Ỹt ≤ essupP

P′∈Pκ
H
(t+,P)

Yt(τ̃ε, Lτ̃ε) + Cε.

By the classical comparison theorem, we have that Yt(τ̃ε, Lτ̃ε) ≤ yt, so that we deduce

Ỹt ≤ essupP

P′∈Pκ
H
(t+,P)

yt +Cε ≤ Yt + Cε,

which implies the required result by arbitrariness of ε.

Step 2: existence

The only thing that needs to be done here is to prove that the solution we constructed in the sense of
Definition 2.1 is also a Skorokhod-solution. In other words, we simply have to prove that Y satisfies the
Skorokhod minimality condition

essinfP
P′∈Pκ

H
(t+,P)

E
P
′

t

[ ∫ T

t

(
Ys− − Ls−

)
dKP

′

s

]
= 0, t ∈ [0, T ], P− a.s., ∀P ∈ Pκ

H .

Without loss of generality, we prove that this holds for t = 0, which is equivalent to proving that

inf
P∈Pκ

H

E
P

[ ∫ T

0

(
Ys− − Ls−

)
dKP

s

]
= 0.

Let us start by fixing some ε > 0, and define the following sequence of stopping times (τn)n≥1 by

τ0 := 0, τ1 := inf{t ≥ 0, Yt− − Lt− ≤ ε} ∧ T,

τ2n := inf{t > τ2n−1, Yt− − Lt− ≥ 2ε} ∧ T, τ2n+1 := inf{t > τ2n, Yt− − Lt− ≤ ε} ∧ T, n ≥ 1.

We start by proving that for any n ≥ 1 and any P ∈ Pκ
H

inf
P∈Pκ

H

E
P
[
KP

τ1

]
= essinfP

P′∈Pκ
H
(τ+2n,P)

E
P

τ2n

[
KP

′

τ2n+1
−KP

′

τ2n

]
= 0. (2.8)

By the dynamic programming principle (see [7, Proposition 4.1]), we know that for any n ≥ 0, and using
the link between reflected BSDEs and optimal stopping problems, where for any 0 ≤ s ≤ t ≤ T , Ts,t
denotes the set of stopping times taking values in [s, t]

Yτ2n = essupP

P′∈Pκ
H
(τ+2n,P)

essupP

τ∈Tτ2n,τ2n+1

YP
′

τ2n

(
τ, Lτ1{τ<τ2n+1} + Yτ2n+11{τ=τ2n+1}

)
.

Now for any δ > 0, there exists some some P
′
δ ∈ Pκ

H(τ+2n,P) and some τ δ ∈ Tτ2n,τ2n+1 such that

Yτ2n ≤ Y
P
′
δ

τ2n

(
τ δ, Lτδ1{τδ<τ2n+1} + Yτ2n+11{τδ=τ2n+1}

)
+ δ.

Define then

M
t,P′

δ
s := exp

(∫ s

t
(λu −

1

2
|ηu|

2)
(
Yu,Y

P
′
δ

u , Zu,Z
P
′
δ

u , âu)du−

∫ s

t
ηu(Yu,Y

P
′
δ

u , Zu,Z
P
′
δ

u , âu) · â
−1/2
u dBu

)
,
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where we denoted for simplicity

YP
′
δ := YP

′
δ

(
τ δ, Lτδ1{τδ<τ2n+1} + Yτ2n+11{τδ=τ2n+1}

)
, ZP

′
δ := ZP

′
δ

(
τ δ, Lτδ1{τδ<τ2n+1} + Yτ2n+11{τδ=τ2n+1}

)
.

Notice that for any p ∈ R, the boundedness of λ and ν imply that for some constant Cp > 0

sup
P∈Pκ

H

E
P

[(
sup

t≤s≤T
Mt,P

s

)p
+

(
inf

t≤s≤T
Mt,P

s

)p
]
≤ Cp.

Then, linearization arguments similar to the ones used before in this note imply that

Yt − Y
P
′
δ

t = E
P
′
δ

t

[
M

t,P′
δ

τδ
(Yτδ − Lτδ)1{τδ<τ2n+1} +

∫ τδ

t
M

t,P′
δ

s dK
P
′
δ

s

]
, τ2n ≤ t ≤ τ2n+1, P− a.s.

By definition of the (τn)n≥0, we deduce that

δ ≥ Yτ2n − Y
P
′
δ

τ2n ≥ εE
P
′
δ

τ2n

[
M

τ2n,P′
δ

τδ
1{τδ<τ2n+1}

]
+ E

P
′
δ

τ2n

[
inf

τ2n≤s≤τδ
M

τ2n,P′
δ

s

(
K

P
′
δ

τδ
−K

P
′
δ

τ2n

)]
.

We then estimate that

P
′
δ[τ

δ ≤ τ2n+1] = E
P
′
δ

[(
M

τ2n,P′
δ

τδ

)− 1
2
(
M

τ2n,P′
δ

τδ

) 1
21{τδ≤τ2n+1}

]

≤

(
E
P
′
δ

[(
M

τ2n,P′
δ

τδ

)−1
]
E
P
′
δ

[(
M

τ2n,P′
δ

τδ

) 1
21{τδ≤τ2n+1}

]) 1
2

≤ C
1
2
−1

√
δ

ε
.

Recall as well that by Step (iii) of the proof of [7, Theorem 3.1] that for some C̄ > 0

essupP

P′∈Pκ
H
(τ+2n,P)

E
P

τ2n

[(
KP

′

τ2n+1
−KP

′

τ2n

)2]
≤ C̄.

Therefore, we have

E
P
′
δ

τ2n

[
K

P
′
δ

τ2n+1 −K
P
′
δ

τ2n

]

≤ E
P
′
δ

τ2n

[
K

P
′
δ

τδ
−K

P
′
δ

τ2n

]
+ E

P
′
δ

τ2n

[(
K

P
′
δ

τ2n+1 −K
P
′
δ

τ2n

)
1{τδ<τ2n+1}

]

= E
P
′
δ

τ2n

[(
inf

τ2n≤s≤τδ
Mt,P

s

(
K

P
′
δ

τδ
−K

P
′
δ

τ2n

)) 1
3
(
K

P
′
δ

τδ
−K

P
′
δ

τ2n

) 2
3
(

inf
τ2n≤s≤τδ

Mt,P
s

)− 1
3

]

+ E
P
′
δ

τ2n

[(
K

P
′
δ

τ2n+1 −K
P
′
δ

τ2n

)
1{τδ<τ2n+1}

]

≤

(
E
P
′
δ

τ2n

[
inf

τ2n≤s≤τδ
Mt,P

s

(
K

P
′
δ

τδ
−K

P
′
δ

τ2n

)]
E
P
′
δ

τ2n

[(
K

P
′
δ

τδ
−K

P
′
δ

τ2n

)2
]
E
P
′
δ

τ2n

[(
inf

τ2n≤s≤τδ
Mt,P

s

)−1
])1

3

+

(
E
P
′
δ

τ2n

[(
K

P
′
δ

τδ
−K

P
′
δ

τ2n

)2
]
P
′
δ

[
τ δ < τ2n+1

]) 1
2

≤
(
C̄C−1

) 1
3 δ

1
3 + C̄

1
2C

1
4
−1

(
δ

ε

) 1
4

.
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This implies immediately that

essinfP

P′∈Pκ
H
(τ+2n,P)

E
P

τ2n

[
KP

′

τ2n+1
−KP

′

τ2n

]
≤

(
C̄C−1

) 1
3 δ

1
3 + C̄

1
2C

1
4
−1

(
δ

ε

)1
4

,

which proves (2.8) by letting δ go to 0.

Therefore, for any n ≥ 0, we can find some P1 ∈ Pκ
H , and some Pn+1 ∈ Pκ

H(τ+2n,Pn) such that for some
C̃ > 0

E
Pn+1
τ2n

[
KPn+1

τ2n+1
−KPn+1

τ2n

]
≤

ε

2n
.

By definition, we have Yt − Lt ≤ 2ε for t ∈ [τ2n−1, τ2n], so that

E
Pn

[ ∫ τ2n

0

(
Ys− − Ls−

)
dKPn

s

]
=

n−1∑

i=0

E
Pn

[ ∫ τ2(i+1)

τ2i+1

(
Ys− − Ls−

)
dKPn

s +

∫ τ2i+1

τ2i

(
Ys− − Ls−

)
dKPn

s

]

=

n−1∑

i=0

E
Pi+1

[ ∫ τ2(i+1)

τ2i+1

(
Ys− − Ls−

)
dK

Pi+1
s +

∫ τ2i+1

τ2i

(
Ys− − Ls−

)
dK

Pi+1
s

]

≤

n−1∑

i=0

2εEPn

[
K

Pi+1
τ2(i+1)

−K
Pi+1
τ2i+1

]
+
ε

2i
E
Pn

[
sup

τ2i≤s≤τ2i+1

(
Ys − Ls

)]

≤ C̃ε,

where we used the a priori estimates satisfied by the solution of the 2RBSDE, see [7, Theorem 3.3] and
the definition of the Pn.

Next, notice that Y −L is right-continuous, and therefore uniformly continuous from the right. Besides,
by definition, we have for any n ≥ 0, that on {τn+1 < T}

∣∣∣(Yτ−n+1
− Lτ−n+1

)− (Yτ−n − Lτ−n
)
∣∣∣ ≥ ε.

Therefore the τn cannot accumulate and for n large enough we necessarily have τn = T . We now assume
that the n we have chosen satisfies this property.

Finally, fix some m ≤ n. We have the following estimate for any P ∈ Pκ
H

P[τ2n < T ] ≤ P

[ n−1⋂

i=0

{∣∣Yτ−
2(i+1)

− Yτ−2i+1

∣∣+
∣∣Lτ−

2(i+1)
− Lτ−2i+1

∣∣ ≥ ε
}]

≤ P

[ n−1⋂

i=0

({∣∣Yτ−
2(i+1)

− Yτ−2i+1

∣∣ ≥ ε

2

}⋃{∣∣Lτ−
2(i+1)

− Lτ−2i+1

∣∣ ≥ ε

2

})]

≤ P

[{ n−1∑

i=0

∣∣Yτ−
2(i+1)

− Yτ−2i+1

∣∣2 ≥ mε2

4

}⋃{ n−1∑

i=0

∣∣Lτ−
2(i+1)

− Lτ−2i+1

∣∣p ≥ (n−m)εp

2p

}]

≤
4

mε2
E
P

[ n−1∑

i=0

∣∣Yτ−
2(i+1)

− Yτ−2i+1

∣∣2
]
+

2p

(n−m)εp
E
P

[ n−1∑

i=0

∣∣Lτ−
2(i+1)

− Lτ−2i+1

∣∣p
]
.

Now notice that we have for some constant C which may change value from line to line, by definition
and using Doob’s inequality as well as the elementary inequality

∑
i a

2
i ≤ (

∑
i |ai|)

2 and the estimates of
[7, Theorem 3.3]

E
P

[ n−1∑

i=0

∣∣Yτ−i+1
− Yτ−i

∣∣2
]
≤ CE

P

[ ∫ T

0

∣∣F̂s(Ys, Zs)
∣∣2ds+

∫ T

0

∣∣â1/2s Zs

∣∣2ds+
(
KP

T

)2
]
≤ C.

8



Consequently, using Assumption 2.1

inf
P∈Pκ

H

E
P

[ ∫ T

0

(
Ys− − Ls−

)
dKP

s

]
≤ E

Pn

[ ∫ T

0

(
Ys− − Ls−

)
dKPn

s

]

≤ C̃ε+

(
E
Pn

[
sup

0≤s≤T

(
Ys − Ls

)2
]
E
Pn

[(
KPn

T

)2]
) 1

2

P
n[τ2n < T ]

≤ C̃ε+
4C

mε2
+

2pℓ

(n−m)εp
.

It thus suffices to let n go to +∞ first, then m to +∞ and finally ε to 0.

2.4.2 Comparison with the literature

In the recent months, two independent studies of the so-called reflected G−BSDEs have appeared, the
first by Li and Peng [5], and the second in the PhD thesis of Soumana Hima [13]. Both these papers
obtain wellposedness, in the G−framework of Peng of solutions to reflected G−BSDEs with a lower
obstacle. Unlike our first paper [7], they ensure uniqueness by using the Skorokhod minimality condition
(2.6). However, as shown by the result of the previous section, under Assumption 2.1, both minimality
conditions actually lead to the exact same solution. Let us now detail a bit more the other differences
between the two different approaches.

(i) First of all, concerning the assumptions made, the main difference is on the obstacle. In [5, Theorems
5.1 and 5.2], in addition to our own assumptions, it is assumed to either be bounded from above
or that it is a semimartingale under every measure considered (see their Assumptions (H4) and
(H4′)). Similarly, [13] requires the obstacle to be a semimartingale (see the equation just after
(5.4) in [13]). In our framework, if one is satisfied with Definition 2.1, then we only require classical
square integrability on L. If one also wants to recover the Skorokhod condition, then we need more
in the form of Assumption 2.1. In any case, this does not imply that L has to be a semimartingale
nor bounded from above, and merely asks for L to have finite p−variation for some p ≥ 1. Notice
also that our condition is strictly weaker than being a semimartingale, since the latter have finite
quadratic variation.

(ii) Concerning the method of proof, both [5] and [13] use the classical penalisation method introduced
by [4] to prove existence, while uniqueness is obtained through a priori estimates. Our proof is more
constructive and in the spirit of the original paper [12]. We expect that the penalisation approach
should be applicable in our setting as well, but we leave this interesting question to future research.

(ii) Maybe more important than the above point, one has to keep in mind that the very essence of
the G−BSDE theory requires that the data of the equation, meaning here the generator F̂ , the
terminal condition ξ and the obstacle L, have to have some degree of regularity with respect to the
ω variable. More precisely, they have to be quasi-continuous in ω, which loosely speaking means
that they must be uniformly continuous (for the uniform convergence topology) outside a "small"
set (see the references for more details). This is inherent to the construction itself, as soon as the
set Pκ

H is non-dominated, and cannot be avoided with this approach. Granted, it is also the case in
our paper [7]. However, since then, many progresses have been achieved in the 2BSDE theory, and
the recent paper [11] has proved that the (non-reflected) 2BSDE theory worked perfectly without
any regularity assumption. Furthermore, a general modus operandi is given in [11, Proposition 2.1
and Remark 4.2] to extend those result to many type of 2BSDEs, including the reflected ones. This
program has actually been carried out in the recent PhD thesis Noubiagain [8] (see also [1] and
[2]). Combined with the results and discussions of the present note, the 2RBSDEs can therefore be
defined in a much more general framework than the reflected G−BSDEs.
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3 General reflections

3.1 Uniqueness

Let us now consider our second paper [6]. First of all, the definition of a solution should be replaced by
the following.

Definition 3.1. We say (Y,Z) ∈ D
2,κ
H ×H

2,κ
H is a solution to a 2DRBSDE if

• YT = ξ, Pκ
H − q.s.

• ∀P ∈ Pκ
H , the process V P defined below has paths of bounded variation P− a.s.

V P

t := Y0 − Yt −

∫ t

0
F̂s(Ys, Zs)ds+

∫ t

0
ZsdBs, 0 ≤ t ≤ T, P− a.s., (3.1)

and admits the following decomposition

V P

t = KP

t −KP,+
t , t ∈ [0, T ], P− a.s., (3.2)

where the two processes KP and KP,+ are non-decreasing, and where KP,+ satisfies the following

Skorokhod condition ∫ T

0

(
Ss− − Ys−

)
dKP,+

s = 0, P− a.s. (3.3)

• We have the following minimality condition for 0 ≤ t ≤ T

essinfP
P′∈Pκ

H
(t+,P)

E
P
′

t

[∫ T

t
M t,P′

s d
(
V P

′

s + kP
′,+

s − kP
′,−

s

)]
= 0, 0 ≤ t ≤ T, P− a.s., ∀P ∈ Pκ

H . (3.4)

• Lt ≤ Yt ≤ St, P
κ
H − q.s.

There are two main differences with the earlier definition in our paper [6]. The first one is obviously the
new minimality condition (3.4), which is simply the version with two obstacles of (2.3). The second main
difference is the decomposition (3.2) of the bounded variation process V P. It is not really new, per se, as
it was already implicit in the existence proof we provided in [6], see in particular the lignes between the
statements of Lemma 4.3 and Proposition 4.4. In particular, it does not require any additional argument
in the existence proof.

Under this new definition, the proof of uniqueness of a solution follows exactly the same lignes as in
the lower obstacle case described above, it suffices to use the new minimality condition (3.4), which is
equivalent to the representation formula of the solution to the 2DRBSDE as an essential supremum of
solutions of the associated DRBSDEs.

3.2 A priori estimates

The main change in [6] with the introduction of the new minimality condition (3.4) above concerns the
a priori estimates for 2DRBSDEs. Let us start with Proposition 3.5 in [6], which has to be corrected as
follows.

Proposition 3.1. Let Assumption 2.3 hold. Assume ξ ∈ L
2,κ
H and (Y,Z) ∈ D

2,κ
H × H

2,κ
H is a solution

to the 2DRBSDE (2.5). Let {(yP, zP, kP,+, kP,−)}P∈Pκ
H

be the solutions of the corresponding DRBSDEs

(2.6). Then we have the following results for all t ∈ [0, T ] and for all P ∈ Pκ
H
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(i) V P,+
t :=

∫ t

0
1Y

s−
=L

s−
dV P

s =

∫ t

0
1Y

s−
=L

s−
dkP,−s , P− a.s., and is therefore a non-decreasing process.

(ii) V P,−
t :=

∫ t

0
1yP

s−
=S

s−
dV P

s = −

∫ t

0
1yP

s−
=S

s−
dkP,+s , P− a.s., and is therefore a non-increasing process.

The proof of (ii) above is given in [6] and does not use the minimality condition and is thus correct. (i)
can be proved similarly. The issue now is that we no longer have a nice Jordan decomposition of V P,
which changes a lot how we can prove and obtain a priori estimates for the solution.

Actually, the main point here is to rely on the decomposition (3.2), which is almost a Jordan decompo-
sition. In the proof of Theorem 3.7 in [6], the proof of the estimates for Y , yP, zP, kP,+ and kP,− does
not change and is still correct. In the estimate for Z, corresponding to the calculations in (3.15) in [6],
one has to use the decomposition (3.2) for V P, and the fact that we know that for some constant C
independent of P

E
P
[
|KP

T |
2 + |KP

T |
2
]
≤ C.

Indeed, this is a consequence of [6, Lemma A.11] and the fact that the unique solution to the 2DRBSDE
is constructed through the Doob-Meyer decomposition of a doubly reflected g-supermartingale. The rest
of the proof is then the same, still using the decomposition (3.2). Thus Theorem 3.7 in [6] should be
replaced by

Theorem 3.1. Let Assumptions 2.3, 2.5 and 2.8 hold. Assume ξ ∈ L
2,κ
H and (Y,Z) ∈ D

2,κ
H × H

2,κ
H is

a solution to the 2DRBSDE (2.5). Let
{
(yP, zP, kP,+, kP,−)

}
P∈Pκ

H

be the solutions of the corresponding

DRBSDEs (2.6). Then, there exists a constant Cκ depending only on κ, T and the Lipschitz constant of

F̂ such that

‖Y ‖2
D
2,κ
H

+ ‖Z‖2
H

2,κ
H

+ sup
P∈Pκ

H

{∥∥yP
∥∥2
D2(P)

+
∥∥zP

∥∥2
H2(P)

}

+ sup
P∈Pκ

H

E
P

[
Var0,T

(
V P

)2
+

(
KP

T

)2
+

(
KP,+

T

)2
+

(
k
P,+
T

)2
+

(
k
P,−
T

)2]

≤ Cκ

(
‖ξ‖2

L
2,κ
H

+ φ
2,κ
H + ψ

2,κ
H + ϕ

2,κ
H + ζ

2,κ
H

)
.

Next, concerning the estimates for the difference between two solutions, the proof of Theorem 3.8 in [6]
also has to be modified. More precisely, the three lignes after (3.19) should be erased. Then the proof
of the estimate for δZ is still correct. However, we only have control over the difference between V P,1

and V P,2, not individually for KP,1 and KP,2 on the one hand, and KP,1 and KP,2 on the other hand.
Theorem 3.8 of [6] should therefore be replaced by

Theorem 3.2. Let Assumptions 2.3, 2.5 and 2.8 hold. For i = 1, 2, let (Y i, Zi) be the solutions to the

2DRBSDE (2.5) with terminal condition ξi, upper obstacle S and lower obstacle L. Then, there exists a

constant Cκ depending only on κ, T and the Lipschitz constant of F such that
∥∥Y 1 − Y 2

∥∥
D
2,κ
H

≤ C
∥∥ξ1 − ξ2

∥∥
L
2,κ
H

∥∥Z1 − Z2
∥∥2
H

2,κ
H

+ sup
P∈Pκ

H

E
P

[
sup

0≤t≤T

∣∣∣V P,1
t − V

P,2
t

∣∣∣
2
]

≤ C
∥∥ξ1 − ξ2

∥∥
L
2,κ
H

(∥∥ξ1
∥∥
L
2,κ
H

+
∥∥ξ1

∥∥
L
2,κ
H

+ (φ2,κH )1/2 + (ψ2,κ
H )1/2 + (ϕ2,κ

H )1/2 + (ζ2,κH )1/2
)
.

Notice also that Remark 3.9 in [6] no longer holds. Similarly, Remark 3.12 should be deleted. As a
consequence, in Proposition 3.10 in [6], the constant γ should always be taken as equal to 0. Finally,
direct computations using the decomposition (3.2) prove that Proposition 3.14 in [6] should be replaced
by
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Proposition 3.2. Let Assumptions 2.3, 2.5, 2.8 and 3.13 hold. Let (Y,Z) be the solution to the

2DRBSDE, then for all P ∈ Pκ
H

Zt = Pt, dt× P− a.s. on the set {Yt− = St−} , (3.5)

and there exists a progressively measurable process (αP
t )0≤t≤T such that 0 ≤ α ≤ 1 and

dKP,+
t = αP

t 1Yt−
=S

t−

([
F̂t(St, Pt) + Ut

]+
dt+ dC+

t + dKP

t

)
.

3.3 Existence

Because we no longer control the total variation of V P in Theorem 3.2, the proof of existence we gave
in [6] only holds for ξ ∈ UCb(Ω). However, this is not an issue at all, since the only reason we had to
restrict to uniformly continuous terminal condition was to obtain the measurability result in [6, Lemma
4.1] and the dynamic programming principle of [6, Proposition]. Using the results of [11], in particular
Proposition 2.1, these two results were obtained in [8] (see also [2]) for doubly reflected BSDEs, and allow
to extend the construction carried out in [6] to any ξ ∈ L

2,κ
H .

Finally, notice that similar arguments as in the lower reflected case allow to prove that wellposedness can
be recovered for 2DRBSDEs when the minimality condition (3.4) is replaced by asking that the process
KP in the decomposition (3.2) satisfies the Skorokhod condition (2.6), provided that Assumption 2.1
holds. In such a situation, both processes KP and KP,+ thus satisfy Skorokhod type conditions.
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