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Abstract. Emotion recognition is attracting great interest for its po-
tential application in a multitude of real-life situations. Much of the
Computer Vision research in this field has focused on relating emotions
to facial expressions, with investigations rarely including more than up-
per body. In this work, we propose a new scenario, for which emotional
states are related to 3D dynamics of the whole body motion. To address
the complexity of human body movement, we used covariance descrip-
tors of the sequence of the 3D skeleton joints, and represented them in
the non-linear Riemannian manifold of Symmetric Positive Definite ma-
trices. In doing so, we exploited geodesic distances and geometric means
on the manifold to perform emotion classification. Using sequences of
spontaneous walking under the five primary emotional states, we report
a method that succeeded in classifying the different emotions, with com-
parable performance to those observed in a human-based force-choice
classification task.

Keywords: Emotion recognition · Symmetric Positive Definite Matrices

1 Introduction

Automatic analysis of human motion has been an active research topic for several
years, with outcomes that have been beneficial to a number of different applica-
tions, including security surveillance, health-care at home, athletes training and
natural interfaces, to say a few. The variety in human body (size, height, corpu-
lence), in the way different people perform an action, and even in the way a same
person performs one action at different times, makes the task of human motion
analysis very challenging. In the last decades, a consolidated line of research
has analyzed the human motion from RGB and depth data enabling tasks such
as action and gesture recognition [8]. However, body movements carry a multi-
tude of information, also indicative of our intentions, inter-personal attitudes,
expectations and emotions. Of particular interest are basic emotions (i.e., anger,
disgust, fear, happiness, sadness, and surprise) that are innate in all humans and
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are cross-culturally recognizable. These basic emotions can be further clustered
in active (anger, happiness, surprise) and passive (fear, sadness, disgust). Re-
cently, the study of computational models for human emotion recognition has
gained increasing attention not only for commercial applications (to get feedback
on the effect of advertising material), but also for gaming and monitoring of the
emotional state of operators that act in risky contexts such as aviation. Most of
these studies have focused on the analysis of facial expressions, but important
clues can be derived by the analysis of the dynamics of body parts as well.

The first rigorous investigation on the expression of emotions through the
body dates back to Darwin’s seminal work on “The expression of the emotions in
man and animals”. Since then, research in the field of Emotional Body Language
(EBL) has addressed this subject from both a bio-mechanical and a psychological
perspective. The recognition of emotions from the analysis of body movements
entails a higher level of complexity; indeed, since the body is primarily used
to perform manipulative actions and enable motion, emotional clues can only
be detected as secondary signatures on top of those ongoing actions. Hence,
most EBL studies have addressed only the question of what aspects of 3D body
kinematics are impacted by emotional states. Such studies have reported that
body rhythmicity is slower for low energy emotions (sadness and fright) and
faster for high-energy emotions (anger); these patterns have been confirmed
across a variety of natural actions, e.g., door knocking, walking, and dancing.
Nevertheless, such behavioral findings are not sufficient to tackle the difficult
question of emotion classification through body motion observation.

Finding a compact and effective representation of body movement is a dif-
ficult task when considering the complexity of temporal dynamics. In addition,
measuring the similarity between two temporal sequences for the purpose of
classification is complicated in itself. In fact, the Euclidean distance is unsuit-
able for comparing temporal sequences, and Dynamic Time Warping is often
used as an alternative [15]. To address these issues, there is a recent trend that
investigates matrix based solutions. The idea of these methods is to embed the
non-linearity of the sequence into a matrix representation, then exploit the geo-
metric properties of the space (manifold) the matrices lay in to perform distance
measurement and classification. Examples are the block Hankel matrix [3], and
the Gram matrix [19]. Along this line of research, covariance matrices have found
success in several computer vision applications, including activity recognition,
visual surveillance and diffusion tensor imaging. Recently, several properties of
the covariance matrices have been popularized by investigating the related Rie-
mannian manifold of Symmetric Positive Definite matrices (SPD) [10].

Based on the above considerations, in this paper we propose a new solution to
perform human emotion recognition from the analysis of the temporal dynamics
of the joints of the body skeleton in the 3D space. Human motion is captured
by the evolution across time of the 3D position of the joints in an appropriate
reference system. Then, a covariance matrix descriptor is extracted from the
features across the sequence frames. Exploiting the properties of the covariance
matrix, this descriptor is mapped to the non-linear Riemannian manifold of
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SPD matrices. Finally, emotion classification is performed on the manifold by
computing geodesic distances between test sequences and template emotions
obtained as the average on the manifold of training examples. Experiments show
the potential of the proposed solution, which obtains comparable results to those
scored by human evaluators. In summary, the contributions of this work are:
(i) Analysis of the dynamics of the full-body movement to understand human
emotions over long sequences, while most of existing works use body-parts and
short time; (ii) A representation of the body movement that uses the covariance
descriptor to capture the dynamics of the skeleton joints, and analyzes these
descriptors in the related Riemannian manifold of SPD matrices. This is obtained
by the adoption of a suitable distance measure and mean computation to perform
classification on the manifold.

The rest of the paper is organized as follows: Previous work related to the
proposed method is summarized in Sect. 2; In Sect. 3, we present the mathe-
matical background for the non-linear Riemannian manifold of SPD matrices;
In Sect. 4, the adopted representation of the joints of the skeleton and its move-
ment is presented; The classification approach on the manifold is discussed in
Sect. 5; Results and a comparative evaluation are reported in Sect. 6; Finally,
conclusions and future work directions are drawn in Sect. 7.

2 Related Work

The decreasing cost of whole-body sensing technology and its increasing relia-
bility, make it possible to investigate the role played by body expressions as a
powerful affective communication channel. Kapur et al. [11] were among the first
to address these aspects in 3D. Using a Vicon Motion Capture system, they col-
lected gestural sequence data depicting sadness, joy, anger, and fear emotions of
five subjects. The 3D position of 14 markers, plus their velocity and acceleration
were calculated, and the mean values of velocity and acceleration and the stan-
dard deviation values of position, velocity and acceleration across the sequence
were considered as descriptors. Finally, classification was performed compar-
ing five different classifiers. Gong et al. [6], addressed the problem of recognizing
affect from non-stylized human body motion using 3D joints of the skeleton. Mo-
tion capture data were represented by a descriptor based on the shape of signal
probability density function, and SVM were used for classification. Experiments
were performed on a dataset of 30 individuals performing knocking, throwing,
lifting and walking motions in four affective states (i.e., neutral, happy, angry
and sad). Karg et al. [13] analyzed the human gait to reveal persons affective
state, comparing inter-individual versus person dependent recognition. The dy-
namics of the body was captured by measuring features such as the stride length,
cadence, velocity, minimum mean and maximum values of angles between body
parts. Then, these features were reduced using PCA, kernel PCA, LDA and GDA
techniques, while classification was performed with NN, Naive-Bayes and SVM.
Results showed that recognition is highly affected by individual walking styles
and individual expressions of affect (accuracy of 69% and 95% were reported
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for the inter-individual and person dependent case, respectively, based on the
observation of a single stride). They also observed that automatic recognition
based on gait patterns tends to better recognize active than passive emotional
states. For a comprehensive coverage of the topic, we refer to the survey by
Kleinsmith and Bianchi-Berthouze [14] that reviewed the literature on affective
body expression perception and recognition, and the survey by Karg et al. [12]
that summarized methods to recognize affective expressions from body move-
ments, and the converse problem of generating movements for virtual agents or
robots, which convey affective expressions.

Several works used the special Riemannian manifold of SPD matrices. One
typical case for which such matrices arise in practice is when covariance de-
scriptors are used to model image sets or temporal frame sequences in videos.
Covariance features were first introduced by Tuzel et al. [18] for texture matching
and classification. Several studies have extended the use of covariance descriptors
to the temporal dimension, with application to human action and gesture recog-
nition. Sanin et al. [16], proposed an action and gesture recognition method from
videos based on spatio-temporal covariance descriptors. Prior to classification,
points on the manifold were mapped to an Euclidean space, through Riemannian
Locality Preserving Projection [7]. Bhattacharya et al. [4] constructed covariance
matrices, which capture joint statistics of both low-level motion and appearance
features extracted from a video. To facilitate the classification task, matrices
were mapped to an equivalent vector space obtained by the matrix logarithm
operation, which approximates the tangent space of the original SPSD space
of covariance matrices. Then, human action recognition was formulated as a
sparse linear approximation problem, in which these mapped features are used
to construct an overcomplete dictionary of the covariance based descriptors built
from labeled training samples. In [5], Faraki et al. noted that when covariance
descriptors are used to represent image sets, the result is often rank-deficient.
Most of the existing methods solve this problem by accepting small perturba-
tions to avoid null eigenvalues and thus, employ standard inference tools. What
they proposed, instead, were novel similarity measures specifically designed for
the particular case where symmetric matrices are not full-rank (i.e., Symmetric
Positive Semi-Definite matrices, SPSD).

3 Manifold of Symmetric Positive Definite Matrices

Let f (f ∈ Rd) be a d-dimensional feature vector of landmarks, and Dd×n =
[f1, · · · , fn] denote a set containing the d-dimensional feature descriptors of n
images of an image set. The covariance matrix C of the set is defined by:

C =
1

(n− 1)

n∑
i=1

(fi − µ)(fi − µ)T , (1)

where µ is the sample mean. A non-singular covariance matrix of size d × d
belongs to the set of symmetric positive-definite (SPD) matrices. These do not
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form a vector space (the space is not closed under matrix subtraction), rather
they form a connected Riemannian manifold Sym+

d [2]. As such, the distance
between SPD matrices is not accurately captured by the Euclidean distance.
Covariance matrix has recently received increasing attention in Computer Vision
by leveraging Riemannian geometry of SPD matrices.

Indeed, several distance measures on Sym+
d have been proposed. The most

widely used is the Log-Euclidean Riemannian Metric (LERM) [1]. Given two
covariance matrices C1 and C2, their LERM is computed as:

d(C1,C2) = ‖ log(C1)− log(C2)‖F , (2)

where ‖ · ‖F is the Frobenius norm, and log(C) is the matrix logarithm of C.

4 Representation of Body Movement

The dynamics of body movements is expressed by a sequence of observation
vectors capturing the position of body joints across time. More specifically, the
human body is approximated by a skeleton composed of NJ joints. Accordingly,
the posture of the body at a generic observation time t is expressed by a vector
p ∈ R3NJ composed of the (X,Y, Z) coordinates of body joints at time t:

p(t) = [x1, y1, z1, . . . , xNJ
, yNJ

, zNJ
] . (3)

In order to also keep track of the body dynamics at each observation time,
the posture vector is augmented with the velocity vector that is composed of the
(X,Y, Z) components of the velocity of body joints at time t:

v(t) =
[
vx1 , vy1 , vz1 , . . . , vxNJ

, vyNJ
, vzNJ

]
. (4)

The velocity of a generic joint at time t is computed by finite difference of
joint positions at time t and t− 1, assuming zero velocity at t = 0.

In order to make the position and velocity vectors invariant to the orientation
of the body with respect to the camera, coordinate values (X,Y, Z) are normal-
ized by expressing them in a skeleton centered coordinate system (XS , YS , ZS).
This is computed as the orthonormal basis resulting from the PCA of the posi-
tions of the torso joints at t = 0. A compact yet representative description of the
dynamics of body movements across a temporal observation window [0, T ] is ex-
tracted by computing the covariance matrix of the concatenated posture/velocity
vectors. This results into a symmetric 6NJ × 6NJ square matrix.

Figure 1 shows the idea of capturing the body movement in a sequence
through a covariance matrix which, in turn, is a point on the SPD manifold.

5 Emotion Classification

The covariance matrix computed from skeleton data observed across a temporal
window [0, T ] retains a signature of the emotional state of the observed person.
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Fig. 1. Each body motion sequence is represented through a covariance matrix, which
is a point on the Riemannian manifold of SPD matrices. Distance between sequences
is then evaluated as the geodesic between points on the manifold

To perform emotion recognition, in the proposed approach, the covariance ma-
trix computed from an unknown observation is compared with the Prototype
Emotional Matrices (PEMs) representative of the target emotions (in the exper-
iments reported in Sect. 6, five basic emotions are considered, namely, anger,
fear, joy, neutral, sadness). The unknown sequence is classified according to the
emotion associated with the closest PEM. Computation of PEMs relies on ex-
traction of representative examples from training data. It should be noted that,
according to what is described in Sect. 3, the computation of the distance to
PEMs as well as the identification of PEMs from training data should both
take into account the fact that covariance matrices lie on the Riemannian man-
ifold of SPD matrices Sym+

d . This prevents the use of common tools adopted in
Euclidean spaces to compute distances between points and cluster them.

Let {Ci, li}i=1...N be a training set of labeled samples composed of covari-
ance matrices Ci and corresponding emotion labels li ∈ {l1, . . . , lE}. The emo-
tion classification task acts like a function that associates with a generic element
of Sym+

d its classification label l ∈ {l1, . . . , lE}. A possible solution would be
to adopt a nearest-neighbor (k-NN) approach by comparing the covariance ma-
trix to be classified to all the labeled covariance matrices in the training, and
assigning to it the same label of the closest matrix (for instance, the LERM dis-
tance in (2) can be used for the comparison). A better solution, both in terms of
computation and of generalization of training examples is to extract some repre-
sentative prototypes from the training examples. Then, it would be possible to
compare the covariance matrix to classify to these prototypes, instead of using
all training examples. Following this idea, we extract a PEM from each emotion
class. This is achieved by computing, for each emotion class li the Riemannian
Center of Mass of all the training examples with label li. Given a set of covari-
ance matrices {Ci}i=1...N on the Riemannian manifold Sym+

d , the Riemannian
Center of Mass, also referred to as Karcher mean in the literature, is the point
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on Sym+
d that minimizes the sum of squared Riemannian distances:

µ = arg min
C∈Sym+

d

N∑
i=1

d2 (C,Ci) , (5)

being d(·) a suitable distance measure on the manifold.

It should be noted that, in case the LERM distance in (2) is used, the Rie-
manninan Center of Mass can be computed in closed form through the following
expression [19]:

µ = exp

(
1

N

N∑
i=1

log (Ci)

)
, (6)

being exp(·) and log(·) the matrix exponential and logarithm operators, respec-
tively. In this way, for the emotion corresponding to label li, the Prototype
Emotional Matrix Pemli is computed as the Riemanninan center of mass of all
training samples {Ck, lk}, such that lk = li. A generic covariance matrix to be
classified is assigned the label corresponding to the closest Pemli . In doing so,
the identification of Prototype Emotional Matrices as well as the classification
of the emotion to be associated to a new covariance matrix rely on a measure
of distance that preserves the inherent structure of the manifold, in particular,
avoiding any approximating projection on tangent spaces.

6 Experiments

Experiments have been performed on the Body Motion-Emotion dataset (P-
BME), that has been acquired at the Cognitive Neuroscience Laboratory (IN-
SERM U960 - Ecole Normale Supérieure) in Paris [9]. It includes Motion Capture
(MoCap) 3D data sequences recorded at a high frame rate (120 frames per sec-
ond) by an Opto-electronic Vicon V8 MoCap system wired to 24 cameras. The
body movement is captured by using 43 landmarks that are positioned at joints
and other parts of the body as illustrated in Fig. 2. To create the dataset, 8
subjects (professional actors) were instructed to walk following a predefined “U”
shaped path that includes forward-walking, turn, and coming back (Fig. 2). For
each acquisition, actors move along the path performing one emotion out of a set
of five different emotions, namely, anger, fear, joy, neutral, and sadness. So, each
sequence is associated with one emotion label. In doing so, the emotional gait
patterns show to be characterized by different walking velocity, wrist velocity
and acceleration, body and head postures. Each actor performed at maximum
five repetitions of a same emotional sequence for a total of 156 instances. Though
there is some variation from subject to subject, the number of examples is well
distributed across the different emotions: 29 anger, 31 fear, 33 joy, 28 neutral,
35 sadness.
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Fig. 2. Frames from a MoCap skeleton sequence of the P-BME dataset. In this example,
an actor moves following a “U” shaped trajectory showing an anger emotion. In the
top row, the subject advances towards the turning point (plots from left-to-right); in
the bottom row, the subject moves away from the turning point (plots from right-
to-left). The changes in the moving direction at the turning point can be observed
in the rightmost frame of both top and bottom rows. In each frame, the skeleton is
represented by 43 joints. Connections between joints are shown (except for the four
joints of the head) to evidence the silhouette of the body and the limbs

6.1 Results and Comparative Evaluation

Experiments on the P-BME dataset were performed by using a leave-one-subject-
out cross validation protocol. With this solution, iteratively, all the emotion
sequences of a subject are used for test, while all the sequences of the remaining
subjects are used for training. As discussed in Sect. 5, the training sequences
are used to perform supervised clustering in the five emotional classes. This is
obtained by first computing the Riemannian center of mass of each emotion class
and retaining it as representative element of the class. Then, nearest-neighbor
classification of the test sequence is performed by computing the LERM distance
to these representative elements. A confusion matrix is thus computed for each
fold. Averaging such matrices across the eight folds (also weighting each matrix
according to the relative number of test examples, which is different from subject
to subject) we obtain the overall results reported in Table 1. It can be observed
the diagonal dominance of the matrix (average positive classification of about
71%), with the best results scored by neutral and anger (about 80%), followed
by sadness and fear (about 68%), with the lowest accuracy for joy (about 58%).

We also performed experiments by using nearest-neighbor (NN) classifica-
tion with respect to all the training sequences, without reducing them with any
clustering operation. In addition to be much more computational demanding,
this classification scores substantially lower results as reported in Table 2 (the
average of the diagonal values decreases to about 51%). This confirms us the in-



Emotion Recognition by Body Movement Representation 9

Table 1. P-BME dataset: Emotion recognition accuracy obtained using the Rieman-
nian center of mass (results in percentage). Average accuracy is 71.12%

Anger Fear Joy Neutral Sadness

Anger 79.31 3.45 13.79 0.00 3.45

Fear 3.57 67.86 10.71 0.00 17.86

Joy 3.23 6.45 58.06 9.68 22.58

Neutral 6.06 0.00 0.00 81.82 12.12

Sadness 2.86 20.00 2.86 5.71 68.57

tuition that performing the Riemannian center of mass on the training sequences
can reduce the effects induced by outliers included in the training examples that
were provided for each emotion.

To also validate the importance of measuring distances between covariance
matrices using geodesic distances on the manifold, compared to standard matrix
norm computation, we performed NN-classification using the Frobenius norm
of the difference between covariance matrices. This resulted in an average clas-
sification of 43.4% which is more than 7% less than the result obtained using
LERM in Table 2.

Table 2. P-BME dataset: Emotion recognition accuracy obtained using a nearest-
neighbor approach (results in percentage). Average accuracy is 50.74%

Anger Fear Joy Neutral Sadness

Anger 41.38 0.00 3.45 31.03 24.14

Fear 0.00 67.86 7.14 3.57 21.43

Joy 0.00 3.23 16.13 32.26 48.39

Neutral 0.00 0.00 0.00 45.45 54.55

Sadness 2.86 11.43 0.00 2.86 82.86

Finally, we performed a user based test in order to evaluate the performance
of the proposed classification method in comparison with a human-based judg-
ment. In this test, thirty-two naive individuals (with heterogeneous age and
no experience in human emotion classification) were asked to perform a force-
choice task. Participants were seated in front of a computer screen, and videos
were presented following a semi-randomized block design, with nature of emo-
tion randomly presented for each actor. The order of the presentations of the
video clips for each actor was also counter-balanced. Participants were required
to categorize the observed motion sequences in one of the five emotional cat-
egories within 5secs after the end of the video presentation, using the Geneva
Emotional Wheel (GEW) [17]. The task was a force choice situation in which
the participants had to choose between one of five emotions: anger, fear, joy,
sadness or neutral. Table 3 reports the scores obtained for emotion classification
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based on RGB videos by the human evaluators. The results reveal an average
value of about 74%, which is just 3% over the average result found in Table 1.
It is relevant to note that the user based test being based on RGB videos pro-
vides to the users much more information for evaluation, including the actor’s
face. Notably, our method is capable to score comparable results based on the
skeleton joints only.

Table 3. P-BME dataset: Emotion recognition of body motion by human evaluator

Anger Fear Joy Neutral Sadness Average

84.0 81.5 73.5 65.0 67.0 74.2

7 Conclusions

In this work, we focus on 3D dynamic sequences of the body skeleton and propose
a new method to relate automatically human body movements to inner sensorial
emotion. This is obtained by first representing the 3D evolution of the skeleton
joints across time by using a covariance matrix. Then, we account for the fact
that these matrices lay in the non-linear Riemannian manifold of SPD matrices.
Exploiting geodesic distances and geometric average computation on the man-
ifold, emotion classification is performed. Results obtained in the experiments
show an average recognition of about 71% for the proposed method, which is
comparable with the average score produced by human evaluation. Notably, our
results have been obtained using only joints information, while humans evalu-
ators exploited the richer RGB video channel. The covariance matrix captures
the dependence of locations of different joints on one another during the perfor-
mance of an human action. The covariance matrix does not capture the order of
motion in time. Future work will address more advanced approaches for model-
ing the temporal evolution and machine learning and classification methods on
a non-linear manifold. We will also investigate the generalization of the method
by applying it to other types of voluntary motor actions besides walking (e.g.,
cycling, running, or cooking a meal).
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