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Introduction

In this paper we consider a model of gas flow through a pipe in presence of a pressure-regulator valve. We deal with a plug flow, which means that the velocity of the gas is constant on any cross-section of the pipe; all friction effects along the walls of the pipe are dropped. To model the flow away from the valve, we use the following equations for conservation of mass and momentum, as done for analogous problems in [START_REF] Banda | Coupling conditions for gas networks governed by the isothermal Euler equations[END_REF][START_REF] Banda | Gas flow in pipeline networks[END_REF][START_REF] Colombo | Comparison among different notions of solution for the p-system at a junction[END_REF][START_REF] Herty | Modeling, simulation and optimization of gas networks with compressors[END_REF]:

ρ t + (ρ v) x = 0, (ρ v) t + ρ v 2 + p(ρ) x = 0. (1.1)
Here t > 0 is the time and x ∈ R is the space position along the pipe. The state variables are ρ, the mass density of the gas and v, the velocity; we denote by q . = ρ v the linear momentum. Since variations of temperature are not significant in most real situations of gas flows in pipes, we focus on the isothermal case p(ρ) . = a 2 ρ, (

for a constant a > 0 that gives the sound speed. We emphasize that the flow can occur in either directions along the pipe; it can be either subsonic or supersonic. Usually, an hydraulic system is completed by compressors [START_REF] Banda | Towards a space mapping approach to dynamic compressor optimization of gas networks[END_REF][START_REF] Gugat | Existence of classical solutions and feedback stabilization for the flow in gas networks[END_REF][START_REF] Gugat | Flow control in gas networks: exact controllability to a given demand[END_REF][START_REF] Herty | Modeling, simulation and optimization of gas networks with compressors[END_REF][START_REF] Herty | Adjoint calculus for optimization of gas networks[END_REF] and valves [START_REF] Martin | Mixed integer models for the stationary case of gas network optimization[END_REF][START_REF] Möller | Mixed Integer Models for the Optimisation of Gas Networks in the Stationary Case[END_REF]. In this paper we focus on the case of a valve. Indeed, there are several different kinds of valves, but their common feature consists in regulating the flow. Opening and closing can be partial and may depend either on the flow, or on the pressure, or even on a combination of both. Moreover, a valve may let the gas flow in one direction only or in either. The simplest and most natural problem for system (1.1) in presence of a valve is clearly the Riemann problem, where the valve induces a substantial modification in the solutions with respect to the free-flow case. However, proposing a Riemann solver that includes the mechanical action of a valve is only the first step toward a good description of the flow for positive times: some natural properties, both from the physical and mathematical point of view, have to be investigated. Such properties are coherence, consistence and continuity with respect to the initial data; at the end, if possible, invariant domains should be properly established. This is the main issue of this paper.

In Section 2 we rigorously define the notions mentioned above; they are stated in the case of system (1.1) but can be readily extended to any "nonstandard" coupling Riemann solver. A very short account on the Lax curves of (1.1) is then given as well as the definition of the standard Riemann solver for this system. This material is very well known [START_REF] Leveque | Numerical methods for conservation laws[END_REF], but it is so heavily exploited in the following that any comprehension would be hindered without these details.

Section 3 introduces a "Riemann solver" when an interface condition, such as that given by a valve, is present. Some general results are then given and few simple models of valves (see [19, §2], [22, (6)] or [23, § 4.3.2, § 4.3.3, (1)-(4) page 51]) are provided. In this modeling, we do not take into consideration the flow inside the valve but simply its effects. The framework is that of conservation laws with point constraints, which has so far been developed only for vehicular and pedestrian flows, see [START_REF] Santo | General phase transition models for vehicular traffic with point constraints on the flow[END_REF][START_REF] Rosini | Macroscopic models for vehicular flows and crowd dynamics: theory and applications[END_REF] and the references therein.

Section 4 contains our main results, which are collected in Theorem 4.1. They concern the coherence, consistence, continuity with respect to the initial data and invariant domains in a very special case, namely that of a pressure-relief valve. They can be understood as a first step in the direction of proving a general existence theorem for initial data with bounded variation. Some technical proofs are collected in Section 5. The final Section 6 resumes our conclusions.

The gas flow through a pipe

In this introductory section we provide some information about system (1.1), in particular as far as the geometry of the Lax curves is concerned.

The system and basic definitions

Under (1.2), system (1.1) can be written in the conservative (ρ, q)-coordinates as    ρ t + q x = 0,

q t + q 2 ρ + a 2 ρ x = 0. (2.1) 
We usually refer to the expression (2.1) of the equations and denote u . = (ρ, q). We assume that the gas fills the whole pipe and then u takes values in Ω . = {(ρ, q) ∈ R 2 : ρ > 0}. A state (ρ, q) is called subsonic if |q/ρ| < a and supersonic if |q/ρ| > a; the half lines q = ±a ρ, ρ > 0, are sonic lines.

The Riemann problem for (2.1) is the Cauchy problem with initial condition

u(0, x) = u ℓ if x < 0, u r if x > 0, (2.2) 
u ℓ , u r ∈ Ω being given constants.

Definition 2.1. We say that u ∈ C 0 ((0, ∞); L ∞ (R; Ω)) is a weak solution of (2.1),(2.2) in [0, ∞) × R if ∞ 0 R [ρ ϕ t + q ϕ x ]dx dt + ρ ℓ 0 -∞ ϕ(0, x) dx + ρ r ∞ 0 ϕ(0, x) dx = 0, ∞ 0 R   q ψ t + q 2 ρ 2 + a 2 ρ ψ x   dx dt + q ℓ 0 -∞ ψ(0, x) dx + q r ∞ 0 ψ(0, x) dx = 0, for any test function ϕ, ψ ∈ C ∞ c ([0, ∞) × R; R).
We denote by BV(R; Ω) the space of Ω-valued functions with bounded variation. We can assume that any function in BV(R; Ω) is right continuous by possibly changing the values at countably many points.

Definition 2.2. Let D ⊆ Ω 2 and a map RS : D → BV(R; Ω).

• We say that RS is a Riemann solver for (2.1) if for any

(u ℓ , u r ) ∈ D the map (t, x) → RS[u ℓ , u r ](x/t) is a weak solution to (2.1),(2.2) in [0, ∞) × R. • A Riemann solver RS is coherent at (u ℓ , u r ) ∈ D if u . = RS[u ℓ , u r ] satisfies for any ξ o ∈ R: u(ξ - o ), u(ξ + o ) ∈ D; (ch.0) RS u(ξ - o ), u(ξ + o ) (ξ) = u(ξ - o ) if ξ < ξ o , u(ξ + o ) if ξ ≥ ξ o . (ch.1)
The coherence domain CH ⊆ D of RS is the set of all pairs (u ℓ , u r ) ∈ D where RS is coherent.

• A Riemann solver RS is consistent at (u ℓ , u r ) ∈ D if u . = RS[u ℓ , u r ] satisfies for any ξ o ∈ R: u ℓ , u(ξ o ) , u(ξ o ), u r ∈ D; (cn.0)              RS u ℓ , u(ξ o ) (ξ) = u(ξ) if ξ < ξ o , u(ξ o ) if ξ ≥ ξ o , RS u(ξ o ), u r (ξ) = u(ξ o ) if ξ < ξ o , u(ξ) if ξ ≥ ξ o ;
(cn.1)

u(ξ) =    RS u ℓ , u(ξ o ) (ξ) if ξ < ξ o , RS u(ξ o ), u r (ξ) if ξ ≥ ξ o .
(cn.

2)

The consistence domain CN ⊆ D of RS is the set of all pairs (u ℓ , u r ) ∈ D where RS is consistent.

• A Riemann solver RS is L 1 loc -continuous at (u ℓ , u r ) ∈ D if for any ξ 1 , ξ 2 ∈ R we have lim (u ε ℓ ,u ε r )→(u ℓ ,ur ) (u ε ℓ ,u ε r )∈D ξ 2 ξ 1 RS[u ε ℓ , u ε r ](ξ) -RS[u ℓ , u r ](ξ) dξ = 0.
The L 1 loc -continuity domain L ⊆ D of RS is the set of all (u ℓ , u r ) ∈ D where RS is L 1 loc -continuous. • A Riemann solver RS admits I ⊆ Ω as invariant domain if I 2 ⊆ D and RS[I, I](R) ⊆ I. Some comments on these definitions are in order. Roughly speaking, for any coherent initial datum, the ordered pair of the traces of the solution belongs to D by (ch.0) and it is a fixed point of RS by (ch.1). The coherence of a Riemann solver RS is a minimal requirement to develop a numerical scheme with a time discretization based on RS; otherwise, it may happen that the numerical solution of a Riemann problem greatly differs from the analytic one. An analogous condition has been introduced in [START_REF] Garavello | Traffic flow on networks[END_REF] at the junctions of a network. While coherence is easily seen to be satisfied in the case of a Lax Riemann solver, see Proposition 2.5, it plays a fundamental role in presence of a valve, as we comment later on. Coherence is, in a sense, a local condition (w.r.t. ξ). On the contrary, the consistence of a Riemann solver is rather a global property: "cutting" or "pasting" Riemann solutions (see (cn.1) and (cn.2), respectively), does not change the structure of the partial or total Riemann solutions. We recall that the consistence of a Riemann solver is a necessary condition for the well-posedness in L 1 of the Cauchy problem for (2.1). Differently from the classical theory for invariant domains [START_REF] Hoff | Invariant regions for systems of conservation laws[END_REF]Corollary 3.7], here an invariant domain does not necessarily have a smooth boundary and may be disconnected or not closed.

Proposition 2.3. If a Riemann solver RS is either coherent or consistent at (u 0 , u 0 ) ∈ D, then RS[u 0 , u 0 ] ≡ u 0 . Proof. Fix (u 0 , u 0 ) ∈ D and let u . = RS[u 0 , u 0 ]
. By the finite speed of propagation, there exists

ξ o ∈ R such that u ≡ u 0 in (-∞, ξ o ], whence u(ξ ± o ) = u 0 .
If RS is either coherent or consistent at (u 0 , u 0 ), then we have RS[u 0 , u 0 ] ≡ u 0 by (ch.1) or by the first condition in (cn.1), respectively.

The Lax curves

The eigenvalues of (2.1) are λ 1 (u) . = q ρa, and λ 2 (u) . = q ρ + a. System (2.1) is strictly hyperbolic in Ω and both characteristic fields are genuinely nonlinear. Hence, weak solutions can contain both rarefaction and shock waves (called below waves), but not contact discontinuities. Any discontinuity curve x = γ(t) of a weak solution u of (2.1) satisfies the Rankine-Hugoniot conditions

(ρ + -ρ -) γ = q + -q -, (2.3) 
(q + -q -) γ = q 2 + ρ + + a 2 ρ + - q 2 - ρ - + a 2 ρ -, (2.4) 
where u ± (t) . = u(t, γ(t) ± ) are the traces of u, see [START_REF] Bressan | Hyperbolic systems of conservation laws[END_REF][START_REF] Dafermos | Hyperbolic conservation laws in continuum physics[END_REF]. Riemann invariants of (2.1) are w(u) . = q a ρ +log(ρ) and z(u) . = q a ρlog(ρ). We introduce new coordinates (µ, ν) that make simpler the study of the Lax curves:

   µ = log(ρ), ν = q/(a ρ), ⇔    ρ = exp(µ), q = a ν exp(µ), or µ = (w -z)/2, ν = (w + z)/2, ⇔ w = ν + µ, z = ν -µ.
We prefer the (µ, ν)-coordinates with respect to those induced by the Riemann invariants because we often deal with the locus q = q m , for some q m ∈ R; moreover, comparing densities (ρ Section 3], the wave-front tracking algorithm for (2.1) relies on the bound of the total variation of the solutions in the µ-coordinate. We point out that in the (µ, ν)-coordinates the set Ω becomes R 2 and the sonic lines are ν = ±1. In the sequel it is important to compare the flow corresponding to distinct states; we notice that q = 0 if and only if ν = 0 and q 1 < q 2 if and only if ν 1 exp(µ 1 ) < ν 2 exp(µ 2 ), see Figure 1.

1 < ρ 2 ⇔ µ 1 < µ 2 ⇔ w 1 -z 1 < w 2 -z 2 ) is easier. At last, in [1,
u 1 u 2 u 3 ρ q FL u * 1 u 1 u 2 u 3 FL u * 1 µ ν Figure 1:
The curves q = q m (dashed lines) for two values of q m . We define

S i , R i : (0, ∞) × Ω → R, i ∈ {1, 2}, by S 1 (ρ, u * ) . = ρ   q * ρ * -a ρ ρ * - ρ * ρ   , R 1 (ρ, u * ) . = ρ q * ρ * -a log ρ ρ * , S 2 (ρ, u * ) . = ρ   q * ρ * + a ρ ρ * - ρ * ρ   , R 2 (ρ, u * ) . = ρ q * ρ * + a log ρ ρ * .
Then we define FL i , BL i : (0, ∞) × Ω → R, i ∈ {1, 2}, by

FL 1 (ρ, u * ) . = R 1 (ρ, u * ) if ρ ∈ (0, ρ * ], S 1 (ρ, u * ) if ρ ∈ (ρ * , ∞), FL 2 (ρ, u * ) . = S 2 (ρ, u * ) if ρ ∈ (0, ρ * ), R 2 (ρ, u * ) if ρ ∈ [ρ * , ∞), BL 1 (ρ, u * ) . = S 1 (ρ, u * ) if ρ ∈ (0, ρ * ), R 1 (ρ, u * ) if ρ ∈ [ρ * , ∞), BL 2 (ρ, u * ) . = R 2 (ρ, u * ) if ρ ∈ (0, ρ * ], S 2 (ρ, u * ) if ρ ∈ (ρ * , ∞).
For any fixed u * ∈ Ω, the forward FL u * i and backward BL u * i Lax curves of the i-th family through u * in the (ρ, q)-coordinates are the graphs of the functions FL i ( • , u * ) and BL i ( • , u * ), respectively, see Figure 2. Analogously, the shock S u * i and rarefaction R u * i curves through u * in the (ρ, q)-coordinates are the graphs of the functions S i ( • , u * ) and R i ( • , u * ), see Figure 2. In the (µ, ν)-coordinates the curves

S u * i F L u * 1 ∪ F L u * 2 ρ q u * R u * 1 R u * 2 S u * 1 S u * 2 u * R u * 1 R u * 2 S u * 1 S u * 2 µ ν BL u * 1 ∪ BL u * 2 ρ q u * R u * 1 R u * 2 S u * 1 S u * 2 u * R u * 1 R u * 2 S u * 1 S u * 2 µ ν
Figure 2: Forward Lax curves FL u * i , first column, and backward Lax curves BL u * i , second column, in (ρ, q)-coordinates, first row, and in (µ, ν)-coordinates, second row. and R u * i are, with a slight abuse of notations, the graphs of the functions

S 1 (µ, u * ) . = ν * + Ξ(µ -µ * ), R 1 (µ, u * ) . = ν * + µ * -µ, S 2 (µ, u * ) . = ν * + Ξ(µ * -µ), R 2 (µ, u * ) . = ν * -µ * + µ,
while FL u * i and BL u * i are the graphs of the functions

FL 1 (µ, u * ) . = R 1 (µ, u * ) if µ ≤ µ * , S 1 (µ, u * ) if µ > µ * , FL 2 (µ, u * ) . = S 2 (µ, u * ) if µ < µ * , R 2 (µ, u * ) if µ ≥ µ * , BL 1 (µ, u * ) . = S 1 (µ, u * ) if µ < µ * , R 1 (µ, u * ) if µ ≥ µ * , BL 2 (µ, u * ) . = R 2 (µ, u * ) if µ ≤ µ * , S 2 (µ, u * ) if µ > µ * . Above we denoted Ξ(ζ) . = exp -ζ/2 -exp ζ/2 = -2 sinh(ζ/2),
see Figure 3. We observe that Ξ -1 (ξ) = 2 ln 2

ξ 2 + 4 + ξ .
Obviously both Ξ and Ξ -1 are odd functions; for any

ζ ∈ R \ {0} we have Ξ ′ (ζ) < 0, Ξ ′ (0) = -1, ζ Ξ ′′ (ζ) < 0, Ξ ′′ (0) = 0, Ξ ′′′ (ζ) < 0.
Now we collect the basic properties of the sets S u * i , R u * i ; the proof is deferred to Subsection 5.1.

Proposition 2.4. Let u * , u * * ∈ Ω be distinct and i ∈ {1, 2}. Then we have:

(L1) R u * i ∩ R u * * i = ∅ if and only if R u * i = R u * * i ; (L2) S u * i ∩ S u * * i has at most two elements; (L3) if u * * ∈ S u * i \ {u * }, then S u * * i ∩ S u * i = {u * * , u * }; (L4) (S i ) ρ (0 + , u * ) = (-1) i+1 ∞ and (R i ) ρ (0 + , u * ) = (-1) i+1 ∞; (L5) R u *
1 and S u * 1 are strictly concave, while R u * 2 and S u * 2 are strictly convex; 

(L6) (S i ) ρ (ρ * , u * ) = (R i ) ρ (ρ * , u * ) = λ i (u * ) and (S i ) ρρ (ρ * , u * ) = (R i ) ρρ (ρ * , u * ) = (-1) i a/ρ * ; ζ Ξ ξ Ξ -1
(L7) S 2 (ρ, u * ) < R 2 (ρ, u * ) < R 1 (ρ, u * ) < S 1 (ρ, u * ) if ρ < ρ * and S 1 (ρ, u * ) < R 1 (ρ, u * ) < R 2 (ρ, u * ) < S 2 (ρ, u * ) if ρ > ρ * .
For later use we introduce the following notation, see Figure 4:

• ū(u * ) is the element of FL u * 1 with the maximum q-coordinate; • u(u * ) is the element of BL u *
2 with the minimum q-coordinate;

• ũ(u ℓ , u r ) is the (unique) element of FL u ℓ
1 ∩ BL ur 2 ; • û(q m , u * ), for any q m ≤ q(u * ), is the intersection of FL u * 1 and q = q m with the largest ρ-coordinate; • ǔ(q m , u * ), for any q m ≥ q(u * ), is the intersection of BL u * 2 and q = q m with the largest ρ-coordinate.

We introduce analogously p . = p • ρ and so on. Notice that for any u ℓ , u r ∈ Ω q(u ℓ ) > 0 and q(u r ) < 0;

(2.5)

moreover, for v ℓ . = q ℓ /ρ ℓ and v r . = q r /ρ r , v ℓ < a ⇒ v(u ℓ ) = a and v r > -a ⇒ v(u r ) = a. (2.6) 
In general q(u ℓ , u r ) can be negative even if both q ℓ and q r are strictly positive. 

ρ q u ℓ u r ũ(u ℓ , u r ) û(0, u ℓ ) ǔ(0, u r ) û(q * , u ℓ ) ǔ(q * , u r ) q * u(u r ) ū(u ℓ ) FL u ℓ 1 BL ur 2

The Riemann solver RS p

We denote by RS p : Ω 2 → BV(R; Ω) the Lax Riemann solver [START_REF] Leveque | Numerical methods for conservation laws[END_REF]. We recall that ξ → RS p [u ℓ , u r ](ξ) is the juxtaposition of a wave of the first family ξ → RS p [u ℓ , ũ(u ℓ , u r )](ξ), taking values in FL u ℓ 1 , and a wave of the second family ξ → RS p [ũ(u ℓ , u r ), u r ](ξ), taking values in FL ũ(u ℓ ,ur) 2

. Notice that RS p is well defined because for any u ℓ , u r ∈ Ω the curves FL u ℓ 1 and BL ur 2 always meet and precisely at ũ(u ℓ , u r ).

The right states u ∈ Ω that can be connected to a left state u ℓ by a wave of the first (second) family belong to FL u ℓ 1 (resp., FL u ℓ 2 ), see Figure 2. More precisely, the states u that can be connected to u ℓ by a shock wave of the first, resp. second, family belong to {u ∈ S u ℓ 1 : ρ > ρ ℓ }, resp. {u ∈ S u ℓ 2 : ρ < ρ ℓ }, and the corresponding speeds of propagation are

s 1 (ρ, u ℓ ) . = v ℓ -a ρ ρ ℓ , s 2 (ρ, u ℓ ) . = v ℓ + a ρ ρ ℓ ,
while the states u that can be connected to u ℓ by a rarefaction wave of the first, resp. second, family belong to

{u ∈ R u ℓ 1 : ρ ≤ ρ ℓ }, resp. {u ∈ R u ℓ 2 : ρ ≥ ρ ℓ }.
The left states u that can be connected to a right u r by a wave of the first (second) family belong to BL ur 1 (resp., BL ur 2 ), see Figure 2. The states u that can be connected to u r by a shock wave of the first, resp. second, family belong to {u ∈ S ur 1 : ρ < ρ r }, resp. {u ∈ S ur 2 : ρ > ρ r }, and the corresponding speeds of propagation are respectively s 1 (ρ, u r ) and s 2 (ρ, u r ), while the states u that can be connected to u r by a rarefaction wave of the first, resp. second, family belong to {u ∈ R ur

1 : ρ ≥ ρ r }, resp. {u ∈ R ur 2 : ρ ≤ ρ r }.
In the following, we write "i-shock (u -, u + )" in place of "shock of the i-th family from u -to u + ", and so on.

By the jump conditions (2.3),(2.4), the speed of propagation of a shock between two distinct states u * and u * * is the slope in the (ρ, q)-plane of the line connecting u * with u * * , namely σ(u * , u * * ) . = (q * -q * * )/(ρ * -ρ * * ); in the (x, t)-plane an i-rarefaction between two distinct states u * and u * * is contained in the cone

λ i (u * ) ≤ x/t ≤ λ i (u * * ).
We now collect the main properties of RS p ; the proofs are deferred to Subsection 5.1.

Proposition 2.5. The Riemann solver RS p is coherent, consistent and L 1 loc -continuous in Ω 2 . It is well known [START_REF] Hoff | Invariant regions for systems of conservation laws[END_REF] that for any u 0 ∈ Ω, both the singleton {u 0 } and the convex set

I u 0 . = u ∈ Ω : z(u) ≥ z(u 0 ), w(u) ≤ w(u 0 ) , (2.7) 
see Figure 5, are invariant domains of RS p . We observe that I u 0 can be written as

I u 0 = u ∈ Ω : R 2 (µ, u 0 ) ≤ ν ≤ R 1 (µ, u 0 ) = u ∈ Ω : R 2 (ρ, u 0 ) ≤ q ≤ R 1 (ρ, u 0 ) . u 0 µ ν u 0 ρ q Figure 5: The invariant domain I u 0 .
Whenever it is clear from the context, we denote

u p . = RS p [u ℓ , u r ] and u ± p . = u p (0 ± ).
Recall that (t, x) → u p (x/t) is indeed an entropy solution to (2.1),(2.2).

3 The gas flow through valves

The model and basic definitions

In this section we consider the case of two pipes connected by a valve at x = 0. System (2.1) models the flow away from the valve, while at x = 0 we impose conditions depending on the valve and involving the traces of the solution. More precisely, we impose no conditions at x = 0 if the valve is open; in this case, the valve has no influence on the flow and system (2.1) describes the flow in the whole of R. If the valve is active, then some conditions at x = 0 have to be taken into account: the mass is conserved through the valve but in general the linear momentum is not, as a result of the force exerted by the valve. For this reason we extend the notion of weak solution given in Definition 2.1 to take into account the possible presence of stationary under-compressive discontinuities [START_REF] Lefloch | Hyperbolic systems of conservation laws[END_REF] at x = 0, which satisfy the first Rankine-Hugoniot condition (2.3) but not necessarily the second one (2.4).

Definition 3.1. We say that u ∈ C 0 ((0, ∞); L ∞ (R; Ω)) is a coupling solution of the Riemann problem (2.1),(2.2) if (i) the first Rankine-Hugoniot condition (2.3) is satisfied;

(ii) for any t > 0, the functions

(t, x) → u(t, x) if x < 0, u(t, 0 -) if x ≥ 0, (t, x) → u(t, 0 + ) if x < 0, u(t, x) if x ≥ 0,
are respectively weak solutions to the Riemann problems for (2.1) with initial data

u(0, x) = u ℓ if x < 0, u(t, 0 -) if x ≥ 0, u(0, x) = u(t, 0 + ) if x < 0, u r if x ≥ 0.
A coupling solution u is a weak solution of (2.1) for x = 0 and satisfies q(t, 0 -) = q(t, 0 + ) by (i). In particular, the second Rankine-Hugoniot condition (2.4) is never verified if u has an under-compressive discontinuity; in this case u is not a weak solution of (2.1).

We are now ready to extend the definition of Riemann solver to coupling solutions. The definitions of consistence, L 1 loc -continuity and invariant domains given in Definition 2.2 naturally apply to coupling Riemann solvers. On the other hand, the extension of coherence needs some comments. In fact, a coupling Riemann solver RS is applied only at the valve position, i.e. at ξ = 0, while in ξ = 0 one applies RS p . Since RS p is coherent in Ω 2 , see Proposition 2.5, the coherence of RS reduces to require (ch.0),(ch.1) at ξ o = 0. As a consequence, the coherence of RS reduces to the following definition.

Definition 3.3. Let D ⊆ Ω 2 . A coupling Riemann solver RS : D → BV(R; Ω) is coherent at (u ℓ , u r ) ∈ D if u . = RS[u ℓ , u r ] satisfies u(0 -), u(0 + ) ∈ D, (ch v .0) RS u(0 -), u(0 + ) (ξ) = u(0 -) if ξ < 0, u(0 + ) if ξ ≥ 0. (ch v .1)
It is worth to notice that, from the physical point of view, the coherence of a coupling Riemann solver avoids loop behaviors, such as intermittently and rapidly switching on and off (commuting) of the valve. Moreover, Proposition 2.3 does not hold for coupling Riemann solvers: it may happen that a coupling Riemann solver RS is coherent at

(u 0 , u 0 ) ∈ D but RS[u 0 , u 0 ] ≡ u 0 . A coupling Riemann solver RS v : D v → BV(R; Ω), D v ⊆ Ω 2
, can be constructed by exploiting RS p as follows. We define

RS v [u ℓ , u r ] . = RS p [u ℓ , u r ] if the valve is open, (3.1) RS v [u ℓ , u r ](ξ) . = RS p [u ℓ , u - m ](ξ) if ξ < 0, RS p [u + m , u r ](ξ) if ξ ≥ 0, if the valve is active. (3.2)
Above, u ± m ∈ Ω satisfy the conditions imposed at x = 0 by the valve, namely,

u - m = u - m (u ℓ , u r ) . = û(q m , u ℓ ), u + m = u + m (u ℓ , u r ) . = ǔ(q m , u r ), q m = q m (u ℓ , u r ) ∈ Q - u ℓ ∩ Q + ur , (3.3) 
where

Q - u ℓ . = (-∞, q(u ℓ )] if v ℓ ≤ a, (-∞, q ℓ ] if v ℓ > a, Q + ur . = [q(u r ), ∞) if v r ≥ -a, [q r , ∞) if v r < -a. By (2.5) we have 0 ∈ Q - u ℓ ∩ Q + ur = ∅; by (3.3) it follows ρ - m ≥ ρ(u ℓ ), ρ + m ≥ ρ(u r ), q - m = q + m = q m .
The main rationale of condition (3.3) lies in the fact that according to this choice

ξ → RS p [u ℓ , u - m ](ξ) ∈ FL u ℓ 1 and ξ → RS p [u + m , u r ](ξ) ∈ FL u + m 2
are single waves, with negative and positive speed, respectively. As a consequence,

RS v [u ℓ , u r ](0 ± ) = u ± m . Moreover, if RS v [u ℓ , u r ]
contains a stationary under-compressive discontinuity at x = 0, then u ± m satisfy the first Rankine-Hugoniot condition (2.3).

In conclusion, a valve is characterized by prescribing both when it is either open or active and the choice of the flow q m through the valve when it is active. Once we specify these conditions, then the gas flow through the valve can be modeled by RS v . For notational simplicity, whenever it is clear from the context, we let

u v . = RS v [u ℓ , u r ] and u ± v . = u v (0 ± ).
For a fixed RS v , we denote by O and A the sets of Riemann data such that RS v leaves the valve open or active, respectively. The domain of definition D v .

= O ∪ A of RS v does not necessarily coincide with the whole Ω 2 ; in this case, we understand Riemann data in Ω 2 \ D v as not being in the operating range of the valve. Moreover, it may happen that there exists (u ℓ , u r ) ∈ A such that u p ≡ u v . This happens, for instance, if (u ℓ , u r ) ∈ A is such that ũ(u ℓ , u r ) = û(0, u ℓ ) = ǔ(0, u r ) and q m = 0 in (3.3): the valve is closed but has no influence on the flow through x = 0. This motivates the introduction of the sets

A N . = (u ℓ , u r ) ∈ A : u v ≡ u p = (u ℓ , u r ) ∈ A : û(q m , u ℓ ) = ũ(u ℓ , u r ) = ǔ(q m , u r ) , A I = A \ A N ,
of Riemann data for which the valve is active and either influences or not the gas flow, respectively. We also introduce

A ∁ I . = D v \ A I = O ∪ A N = (u ℓ , u r ) ∈ D v : u v ≡ u p . Proposition 3.4. Assume that RS v is coherent at (u ℓ , u r ). (i) If (u ℓ , u r ) ∈ A ∁ I , then (u - v , u + v ) ∈ A ∁ I . (ii) If (u ℓ , u r ) ∈ A I and û(q m , û(q m , u ℓ )) = û(q m , u ℓ ), then (u - v , u + v ) ∈ A I . Proof. (i) Let (u ℓ , u r ) ∈ A ∁ I and assume (u - v , u + v ) ∈ A I by contradiction. Since u v ≡ u p , we have u ± v = u ± p ; hence from (ch v .1) and (3.2),(3.3) it follows u - p if ξ < 0 u + p if ξ ≥ 0 = RS v u - v , u + v (ξ) =      RS p [u - p , û q m , u - p ](ξ) if ξ < 0, RS p [ǔ q m , u + p , u + p ](ξ) if ξ ≥ 0,
with û(q m , u - p ) = ǔ(q m , u + p ). The above equation implies that û(q m , u - p ) = u - p and ǔ(q m , u + p ) = u + p , whence u - p = u + p . Thus, u p has a stationary shock (u - p , u + p ), which can be either a 1-shock with u - p = u ℓ , u + p = û(q m , u ℓ ) = ǔ(q m , u r ) and q m > 0, or a 2-shock with u + p = u r , u - p = ǔ(q m , u r ) = û(q m , u ℓ ) and q m < 0. In the former case we have ǔ(q m , u + p ) = ǔ(q m , ǔ(q m , u r )) = ǔ(q m , u r ) because q m > 0, whence ǔ(q m , u + p ) = ǔ(q m , u r ) = û(q m , u ℓ ) = û(q m , u - p ), a contradiction. The latter case is dealt analogously.

(ii) Let (u ℓ , u r ) ∈ A I be such that û(q m , û(q m , u ℓ )) = û(q m , u ℓ ); assume (u

- v , u + v ) ∈ A ∁ I by contradiction. Since (u ℓ , u r ) ∈ A I , we have u - v = û(q m , u ℓ ) = ǔ(q m , u r ) = u + v and q - v = q m = q + v . By (ch v .1) we have RS p u - v , u + v (ξ) = RS v u - v , u + v (ξ) = u - v if ξ < 0, u + v if ξ ≥ 0. Hence, either RS p [u - v , u + v ] is a stationary 1-shock with u + v = û(q m , u - v )
and q m > 0, or is stationary 2-shock with u - v = ǔ(q m , u + v ) and q m < 0. In the former case ǔ(q m , u r ) = u + v = û(q m , u - v ) = û(q m , û(q m , u ℓ )) = û(q m , u ℓ ), a contradiction. The latter case is dealt analogously.

Proposition 3.5. The coupling Riemann solver RS v is consistent at (u ℓ , u r ) ∈ D v if and only if:

u ℓ , u v (ξ o ) , u v (ξ o ), u r ∈ D v for any ξ o ∈ R; (cn v .0)              u ℓ , u v (ξ o ) ∈ A ∁ I and û q m , u v (ξ o ) = û(q m , u ℓ ), for any ξ o < 0, u v (ξ o ), u r ∈ A ∁ I and ǔ q m , u v (ξ o ) = ǔ(q m , u r ), for any ξ o ≥ 0, if (u ℓ , u r ) ∈ A I , u ℓ , u v (ξ o ) ∈ A ∁ I , for any ξ o ∈ R, u v (ξ o ), u r ∈ A ∁ I , for any ξ o ∈ R, if (u ℓ , u r ) ∈ A ∁ I .
(cn v .1)

Proof. Clearly (cn.0) is equivalent to (cn v .0). Assume that (u ℓ , u r ) ∈ A I . If ξ o < 0 (the case ξ o ≥ 0 is dealt analogously), then u v (ξ o ) = RS p [u ℓ , u - m ](ξ o )
and by the consistence of RS p we have

u v (ξ) if ξ < ξ o u v (ξ o ) if ξ ≥ ξ o = RS p [u ℓ , u - m ](ξ) if ξ < ξ o RS p [u ℓ , u - m ](ξ o ) if ξ ≥ ξ o = RS p [u ℓ , u v (ξ o )](ξ), u v (ξ o ) if ξ < ξ o u v (ξ) if ξ ≥ ξ o =        RS p [u ℓ , u - m ](ξ o ) if ξ < ξ o RS p [u ℓ , u - m ](ξ) if ξ ∈ [ξ o , 0) RS p [u + m , u r ](ξ) if ξ ≥ 0 = RS p [RS p [u ℓ , u - m ](ξ o ), u - m ](ξ) if ξ < 0, RS p [u + m , u r ](ξ) if ξ ≥ 0.
Therefore (cn.1) reduces to

u ℓ , u v (ξ o ) ∈ A ∁ I , RS v [u v (ξ o ), u r ](ξ) = RS p [u v (ξ o ), u - m ](ξ) if ξ < 0, RS p [u + m , u r ](ξ) if ξ ≥ 0. (3.4)
We observe that the above condition also implies (cn.2); indeed, by the consistence of RS p we have

RS v u ℓ , u v (ξ o ) (ξ) if ξ < ξ o RS v u v (ξ o ), u r (ξ) if ξ ≥ ξ o =        RS p u ℓ , u v (ξ o ) (ξ) if ξ < ξ o RS p [u v (ξ o ), u - m ](ξ) if ξ ∈ [ξ o , 0) RS p [u + m , u r ](ξ) if ξ ≥ 0 = RS p [u ℓ , u - m ](ξ) if ξ < 0 RS p [u + m , u r ](ξ) if ξ ≥ 0 = RS v [u ℓ , u r ](ξ).
To prove that (3.4) is in fact equivalent to (cn v .1) it is sufficient to observe that it writes

u ℓ , u v (ξ o ) ∈ A ∁ I , û q m , u v (ξ o ) = u - m = û(q m , u ℓ ), u v (ξ o ), u r ∈ A I ,
and that the second condition above implies the last one because by assumption (u ℓ , u r ) ∈ A I . Assume now that (u ℓ , u r ) ∈ A ∁ I . In this case u v ≡ u p and (cn.1) reduces to require (cn v .1) by the consistence of RS p . At last, (cn v .1) also implies (cn.2) by the consistence of RS p . Corollary 3.6. If (u 0 , u 0 ) ∈ A I , then RS v is not consistent at any point of ({u 0 } × Ω) ∪ (Ω × {u 0 }).

Proof. Let (u 0 , u 0 ) ∈ A I and fix u ℓ , u r ∈ Ω. By the finite speed of propagation of the waves there exists ξ o > 0 sufficiently big such that

u 0 , RS v [u 0 , u r ](-ξ o ) = RS v [u ℓ , u 0 ](ξ o ), u 0 = (u 0 , u 0 ) ∈ A I .
By Proposition 3.5 it is easy then to conclude that RS v is consistent neither at (u 0 , u r ) nor at (u ℓ , u 0 ).

If two pipes are connected by a one-way valve, the flow at x = 0 occurs in a single direction only, say positive; in this case we consider coupling Riemann solvers of the form (3.2),(3.3) with q m ≥ 0. Such a valve is also called clack valve, non-return valve or check valve.

Examples of valves

We conclude this section by considering some examples of pressure-relief valves. This valve is studied in details in Section 4.

Example 3.8. Consider a two-way spring-loaded valve, which can be either open or closed, see Figure 7, and let M > 0 be the "resistance" of the spring. Then the valve is closed (active) if the jump of the 

p(t, 0 + ) = p(t, 0 -) -a 2 k q(t, 0) 2 p(t, 0 -) , (3.5) 
where k is a positive constant. The above condition substitutes the second Rankine-Hugoniot condition (2.4) at x = 0. Then RS v has the form given in (3.2),(3.3) with u ± m satisfying (3.5), namely u - m = û(q m , u ℓ ), u + m = ǔ(q m , u r ) and q m satisfying p(q m , u r ) = p(q m , u ℓ ) -

a 2 k q 2 m p(q m , u ℓ ) , q m ∈ Q - u ℓ ∩ Q + ur .
4 A case study: two-way electronic pressure valve

In this section we apply the theory developed in the previous sections to model the two-way electronic pressure valve, see Example 3.7. Such a valve is either open or closed (active); this corresponds to consider a Riemann solver RS v of the form (3.1)-(3.3) with q m = 0. We recall that 0 ∈ Q - u ℓ ∩ Q + ur for any u ℓ , u r ∈ Ω. We denote for brevity

û(•) . = û(0, •), ǔ(•) . = ǔ(0, •), ũ . = ũ(u ℓ , u r ), ûℓ . = û(u ℓ ), ǔℓ . = ǔ(u ℓ ), ūℓ . = ū(u ℓ ),
and so on, whenever it is clear from the context that û, ǔ, ũ and so on are not functions. We have

ρℓ =      ρ ℓ 4a 2 v 2 ℓ + 4a 2 + v ℓ 2 if v ℓ > 0, ρ ℓ exp v ℓ /a if v ℓ ≤ 0, μℓ = µ ℓ -Ξ -1 (ν ℓ ) if ν ℓ > 0, µ ℓ + ν ℓ if ν ℓ ≤ 0, (4.1) ρr 
=    ρ r exp -v r /a if v r > 0, ρ r 4a 2 v 2 r + 4a 2 -v r 2 if v r ≤ 0, μr = µ r -ν r if ν r > 0, µ r + Ξ -1 (ν r ) if ν r ≤ 0. (4.2)
We finally observe that û and ǔ are idempotent because q m = 0, that is

û • û ≡ û and ǔ • ǔ ≡ ǔ. (4.3)
By (pr.1),(pr.2) we have We collect in the following theorem our main results; we defer the proof to Subsection 5.2.

D v = Ω 2 and A = (u ℓ , u r ) ∈ Ω 2 : |p r -pℓ | ≤ M , O = (u ℓ , u r ) ∈ Ω 2 : |p r -pℓ | > M A N = (u ℓ , u r ) ∈ A : ûℓ = ũ = ǔr = (u ℓ , u r ) ∈ Ω 2 : q = 0 , A I = Ω 2 \ A N . A O A N A I O A O O
Theorem 4.1. We have the following results:

(I) The coherence domain of RS v is CH = A ∪ O O
, where, see Figure 8,

O O . = (u ℓ , u r ) ∈ O : (u - p , u + p ) ∈ O . (II) The consistence domain of RS v is CN = CN 1 ∪ CN 2 = CN O ∪ CN A , where CN 1 . = (u ℓ , u r ) ∈ A I : u ℓ , u v (ξ - o ) , u v (ξ + o ), u r ∈ A ∁ I , for any ξ - o < 0 ≤ ξ + o , CN 2 . = (u ℓ , u r ) ∈ A ∁ I : u ℓ , u v (ξ o ) , u v (ξ o ), u r ∈ A ∁ I , for any ξ o ∈ R , CN O . = (u ℓ , u r ) ∈ O : (u ℓ , u ℓ ), (u r , u r ), (u ℓ , ũ), (ũ, u r ) ∈ A ∁ I
and q p = 0 along any rarefaction ,

CN A . = (u ℓ , u r ) ∈ A : q ℓ ≥ 0 ≥ q r , (u ℓ , u ℓ ) ∈ A ∁ I , (u r , u r ) ∈ A ∁ I . (III) The L 1 loc -continuity domain of RS v is L = {(u ℓ , u r ) ∈ Ω 2 : |p r -pℓ | = M }. (IV) If u 0 ∈ Ω is such that q 0 = 0, then I u 0 defined by (2.7) is an invariant domain of RS v .

Since the sets O O and O

A . = O \ O O = {(u ℓ , u r ) ∈ O : (u - p , u + p )
∈ A} play an important role in the coherence of RS v , we provide their characterization in the following proposition; we defer the proof to Subsection 5.3. We introduce, see Figure 9, Proposition 4.2. We have

Φ(ν) . = a 2 e ν e Ξ -1 (ν) -e ν , ν ∈ R. ν Φ ν c max Φ -1
O O = 4 i=1 O i O and O A = 2 j=1 O j A ,
where

O 1 O . = (u ℓ , u r ) ∈ O : ν > max{0, ν ℓ }, e µ ℓ +ν ℓ Φ -max{1, ν ℓ } • min{1, ν} > M , O 2 O . = (u ℓ , u r ) ∈ O : ν < min{0, ν r }, e µr-νr Φ -min{-1, ν r } • max{-1, ν} > M , O 3 O . = (u ℓ , u r ) ∈ O : 0 < ν ≤ ν ℓ , O 4 O . = (u ℓ , u r ) ∈ O : ν r ≤ ν < 0 , and 
O 1 A . = (u ℓ , u r ) ∈ O : ν > max{0, ν ℓ }, e µ ℓ +ν ℓ Φ -max{1, ν ℓ } • min{1, ν} ≤ M , O 2 A . = (u ℓ , u r ) ∈ O : ν < min{0, ν r }, e µr-νr Φ -min{-1, ν r } • max{-1, ν} ≤ M .
The subsets O i O , i ∈ {1, 2, 3, 4}, and O j A , j ∈ {1, 2}, are mutually disjoint. In general it is difficult to characterize CH in a simple way because an explicit expression for ũ is not available. We introduce in the next corollary a subset of CH that partially answers to this issue. Proof.

Clearly CH ′ = CH ′ 1 ∩ CH ′ 2 ,
where

CH ′ 1 . = (u ℓ , u r ) ∈ Ω 2 : ν ℓ > 0, e µ ℓ +ν ℓ Φ(-ν ℓ ) > M , CH ′ 2 . = (u ℓ , u r ) ∈ Ω 2 : ν r < 0, e µr-νr Φ(ν r ) > M .
We claim that CH ′ j ∩ O j A = ∅, j ∈ {1, 2}. To prove the case j = 1 (the other case is analogous), let

(u ℓ , u r ) ∈ CH ′ 1 ∩ O 1 A ; then ν > ν ℓ = max{0, ν ℓ } and so e -µ ℓ -ν ℓ M ≥ Φ -max{1, ν ℓ } • min{1, ν} =        Φ(-ν ℓ ) if ν > ν ℓ ≥ 1 Φ(-1) if ν ≥ 1 > ν ℓ Φ(-ν) if 1 > ν > ν ℓ ≥ Φ(-ν ℓ ) > e -µ ℓ -ν ℓ M,
see Figure 9, a contradiction. As a consequence

CH ′ ∩ O A = ∅ because O A = O 1 A ∪ O 2
A by Proposition 4.2, whence CH ′ ⊆ CH by Theorem 4.1, (I).

In the following corollary we prove that any consistent point is also coherent. 

CN ∩ A = CN A ⊂ CH ∩ A = A, CH ∩ O = O O , CN ∩ O = CN O .
Let (u ℓ , u r ) ∈ CN O . Clearly u v ≡ u p and q = 0. We have to prove that (u

- p , u + p ) ∈ O, namely |p(u - p ) -p(u + p )| > M . • Assume that u ± p = u ℓ ; the case u ± p = u r is analogous. It is sufficient to prove that q ℓ = 0 because we know that (u ℓ , u ℓ ) ∈ A ∁ I = O ∪ A N .
If by contradiction q ℓ = 0, then ũ = u ℓ because u ± p = u ℓ . As a consequence q = 0, namely (u ℓ , u r ) ∈ A N , a contradiction.

• Assume that u ± p = ũ. Consider the case q > 0; the case q < 0 is analogous. Since q p = 0 along any rarefaction, we have q ℓ > 0.

-

If q ℓ ≥ q, then (u ℓ , ũ) ∈ O because q(u ℓ , ũ) = q = 0; hence p(u - p ) -p(u + p ) = p(ũ) -p(ũ) > pℓ -p(ũ) > M .
-If q ℓ < q, then (u ℓ , u ℓ ) ∈ O because q ℓ > 0; hence by (4.1),(4.2)

p(u - p ) -p(u + p ) = p(ũ) -p(ũ) = a 2 e μ(ũ) -e μ(ũ) = e µ ℓ +ν ℓ Φ(-ν) > e µ ℓ +ν ℓ Φ(-ν ℓ ) = pℓ -pℓ > M, because ν ℓ < ν ≤ 1 and μ + ν = µ ℓ + ν ℓ .
• Assume that u ± p = ūℓ ; the case u ± p = u r is analogous. Since q p = 0 along any rarefaction, we have q ℓ > 0. Therefore (u ℓ , u ℓ ) ∈ O and by (4.1),(4.2)

p(u - p ) -p(u + p ) = p(ū ℓ ) -p(ū ℓ ) = a 2 e μ(ū ℓ ) -e μ(ū ℓ ) = e µ ℓ +ν ℓ Φ(-1) > e µ ℓ +ν ℓ Φ(-ν ℓ ) = pℓ -pℓ > M,
because ν ℓ < νℓ = 1 and μℓ + 1 = µ ℓ + ν ℓ .

• Assume that u - p = u ℓ and u + p = ũ; the case u - p = ũ and u + p = u r is analogous. Since u p cannot perform a stationary shock between states with zero flow by (2.4), we have that q ℓ = q > 0. Therefore (u - p , u + p ) = (u ℓ , ũ) ∈ O because q(u ℓ , ũ) = q = 0. We now deal with invariant domains. We first state a preliminary result. 

∆ ∩ O O = ∆ ∩ O, ∆ ∩ CN O = ∆ ∩ O, ∆ ∩ CN A = ∆ ∩ A N = {(u, u) ∈ Ω 2 : q = 0}. If (u, u) ∈ O, then RS v [u, u] ≡ RS p [u, u] ≡ u and clearly (u, u) ∈ O O ∩CN O ; hence ∆∩O ⊆ ∆∩O O ∩CN O . Clearly O O ∪CN O ⊂ O, which implies ∆∩O ⊇ ∆∩(O O ∪CN O ). As a consequence ∆∩O O = ∆∩O = ∆∩CN O and the first two claims hold true. If (u, u) ∈ CN A , then (u, u) ∈ A ∩ A ∁ I = A N ; hence ∆ ∩ CN A ⊆ ∆ ∩ A N . Conversely, if (u, u) ∈ A N , then RS v [u, u] ≡ RS p [u, u] ≡ u, q = 0 and clearly (u, u) ∈ CN A ; hence ∆ ∩ A N ⊆ ∆ ∩ CN A .
Corollary 4.6. Let I be an invariant domain of RS v . If there exist u ℓ , u r ∈ I such that u v has a rarefaction taking value q = 0, then I 2 ⊆ CN.

Proof. By Proposition 4.5 we have that RS v is consistent at no (u 0 , u 0 ) ∈ A I . Hence, it is sufficient to prove that there exists u 0 ∈ I such that (u 0 , u 0 ) ∈ A I . By assumption there exist ξ -< ξ + and ξ o ∈ [ξ -, ξ + ], such that u v performs a rarefaction in the cone ξ -≤ x/t ≤ ξ + and q v (ξ o ) = 0. By a continuity argument there exists a sufficiently small ε = 0 such that

ξ ε o . = ξ o + ε ∈ [ξ -, ξ + ] and 0 < |p(u v (ξ ε o )) -p(u v (ξ ε o ))| < M , namely (u v (ξ ε o ), u v (ξ ε o )) ∈ A I ∩ I 2 .
Corollary 4.7. Let u ∈ Ω. There exists an invariant domain 

I of RS v such that {(u, u)} ⊆ I 2 ⊆ CN if and only if (u, u) ∈ A ∁ I . Proof. If (u, u) ∈ A ∁ I , then RS v [u, u](R) = RS p [u, u](R) = {u}
I 2 ⊂ CN ⊂ CH. • If (u, u) ∈ A I , then I = R 2 ([ρ(u), ρ], u) ∪ ([ρ(u), ρ(u)] × {0}), I 2 ⊂ CH and I 2 ⊆ CN. Proof. • If (u, u) ∈ A ∁ I , then RS v [u, u] = RS p [u, u] ≡ u,
I 2 ⊂ CN ⊂ CH. • Let (u, u) ∈ A I and D . = R 2 ([ρ(u), ρ], u) ∪ ([ρ(u), ρ(u)] × {0}
). We first prove that I = D. Since (u, u) ∈ A N , we have q = 0. Assume q > 0; the case q < 0 is similar. We have

I ⊇ D because RS v [u, u](R) = {û(u)} ∪ R 2 [ρ(u), ρ], u , RS v [R 2 [ρ(u), ρ], u , ǔ(u)](R) = D.
It remains to prove that D is an invariant domain. This follows by observing that D 2 ⊂ A and that for any u ℓ , u r ∈ D where u 7 ∈ FL u 0 1 ∩ BL u 6 2 and u 8 ∈ FL u 6 1 ∩ BL u 0 2 . Observe that µ 7 = µ 8 , ν 7 = -ν 8 > 0 and û(u 8 ) = ǔ(u 7 ) . = u 9 . By iterating this procedure, we obtain that

u v (R) =            {u ℓ , ûℓ } ∪ R 2 [ρ(u), ρ r ], u if u ℓ , u r ∈ R 2 [ρ(u), ρ], u , {u ℓ , u r } if u ℓ , u r ∈ [ρ(u), ρ(u)] × {0}, {u ℓ , ûℓ , u r } if (u ℓ , u r ) ∈ R 2 [ρ(u), ρ], u × [ρ(u), ρ(u)] × {0} , {u ℓ } ∪ R 2 [ρ(u), ρ r ], u if (u ℓ , u r ) ∈ [ρ(u), ρ(u)] × {0} × R 2 [ρ(u), ρ], u , whence RS v [D 2 ](R
R 1 (0, ρ 0 ], u 0 ∪ R 2 (0, ρ 0 ], u 0 ⊂ I.
Finally, by letting u ℓ ∈ R 2 ((0, ρ 0 ), u 0 ) and u r ∈ R 1 ((0, ρ 0 ), u 0 ) be such that µ ℓ = µ r and ν ℓ = -ν r < 0, we have that (u ℓ , u r ) ∈ A N because ûℓ = ǔr , hence

u v (R) = R 1 [ρ ℓ , ρ ℓ ], u ℓ ∪ R 2 [ρ ℓ , ρ r ], ρℓ .
It is therefore clear that I u 0 ⊆ I. By Theorem 4.1, (IV), we have that I u 0 is an invariant domain, hence

I u 0 = I. We claim that I 2 u 0 ⊂ CH, namely I 2 u 0 ∩ O A = ∅.
Since Φ(-1) < a 2 and by assumption p 0 > 2M , there exist u ℓ , u r ∈ I u 0 such that p ℓp r > M , 

ν ℓ = 0 = ν r and M < p ℓ ≤ a 2 M/Φ(-1) < 2M . Then (u ℓ , u r ) ∈ O, ν > 0 = ν ℓ and (u ℓ , u r ) ∈ I 2 u 0 ∩ O 1 A because e µ ℓ +ν ℓ Φ -max{1, ν ℓ } • min{1, ν} = ρ ℓ Φ -min{1, ν} ≤ ρ ℓ Φ(-1) ≤ M.
(S i ) ρ (ρ, u * ) = q * ρ * + (-1) i a 2 3 ρ ρ * - ρ * ρ , (S i ) ρρ (ρ, u * ) = (-1) i a 4ρ 3 ρ ρ * + ρ * ρ , (R i ) ρ (ρ, u * ) = q * ρ * + (-1) i a 1 + ln ρ ρ * , (R i ) ρρ (ρ, u * ) = (-1) i a ρ .
At last, (L7) is clear in the (µ, ν)-coordinates, see Figure 13.

Proof of Proposition 2. 

(ξ - o ) = u ℓ = u p (ξ + o ) = ũ or u p (ξ - o ) = ũ = u p (ξ + o ) = u r .
In the former case ρ ℓ < ρ, in the latter ρ r < ρ. It is then easy to conclude by observing that ũ(u ℓ , ũ) = ũ = ũ(ũ, u r ). By Proposition 3.5 we have

CN ′ 1 . =    (u ℓ , u r ) ∈ A I : u ℓ , u v (ξ o ) ∈ A ∁ I and û u v (ξ o ) = ûℓ , for any ξ o < 0 u v (ξ o ), u r ∈ A ∁ I and ǔ u v (ξ o ) = ǔr , for any ξ o ≥ 0    , CN ′ 2 = (u ℓ , u r ) ∈ A ∁ I : u ℓ , u v (ξ o ) , u v (ξ o ), u r ∈ A ∁ I , for any ξ o ∈ R .
Clearly CN ′ 2 = CN 2 and CN ′ 1 ⊆ CN 1 . Hence, we are left to prove that

CN ′ 1 ⊇ CN 1 . Let (u ℓ , u r ) ∈ CN 1 . If ξ o < 0 (the case ξ o ≥ 0 is analogous), then q ℓ ≥ 0 ⇒ ûℓ ∈ S u ℓ 1 ⇒ u v (ξ o ) ∈ {u ℓ , ûℓ }, q ℓ < 0 ⇒ ûℓ ∈ R u ℓ 1 ⇒ q v (ξ o ) ∈ [q ℓ , 0], R uv(ξo) 1 = R u ℓ 1 .
As a consequence û(u v (ξ o )) = ûℓ , therefore (u ℓ , u r ) ∈ CN ′ 1 .

Proposition 5.3. The consistence domain of

RS v is CN = CN O ∪ CN A .
Proof. It is sufficient to prove that CN ∩ A = CN A and CN ∩ O = CN O . In the following we use Proposition 3.5 several times without any explicit mention. We first prove that

CN ∩ A = CN A . Clearly CN A = 4 i=1 CN i A ,
where

CN 1 A . = (u ℓ , u r ) ∈ A : q ℓ > 0 > q r , (u ℓ , u ℓ ) ∈ O, (u r , u r ) ∈ O = (u ℓ , u r ) ∈ A : min{p ℓ -pℓ , pr -pr } > M , CN 2 A . = (u ℓ , u r ) ∈ A : q ℓ = 0 > q r , (u r , u r ) ∈ O = (u ℓ , u r ) ∈ A : q ℓ = 0, pr -pr > M , CN 3 A . = (u ℓ , u r ) ∈ A : q ℓ > 0 = q r , (u ℓ , u ℓ ) ∈ O = (u ℓ , u r ) ∈ A : pℓ -pℓ > M, q r = 0 , CN 4 A . = (u ℓ , u r ) ∈ A : q ℓ = 0 = q r .
CN 1 A : We prove that (u ℓ , u r ) ∈ A with q ℓ > 0 > q r belongs to CN if and only if (u ℓ , u ℓ ), (u r , u r ) ∈ O. • If (u ℓ , u r ) ∈ A I , then u v performs two shocks and an under-compressive shock, hence (u ℓ , u v (ξ - o )), (u v (ξ + o ), u r ) ∈ {(u ℓ , u ℓ ), (u ℓ , ûℓ ), (ǔ r , u r ), (u r , u r )} for any ξ - o < 0 ≤ ξ + o . Obviously (u ℓ , ûℓ ), (ǔ r , u r ) ∈ A N and (u ℓ , u ℓ ), (u r , u r ) ∈ A N . Therefore (u ℓ , u r ) ∈ CN 1 if and only if (u ℓ , u ℓ ), (u r , u r ) ∈ O.

• If (u ℓ , u r ) ∈ A N , then u v coincides with u p and performs two shocks, hence (u ℓ , u v (ξ o )), (u v (ξ o ), u r ) ∈ {(u ℓ , u ℓ ), (u ℓ , ũ), (u ℓ , u r ), (ũ, u r ), (u r , u r )} for any ξ o ∈ R. Since ûℓ = ũ = ǔr , we have (u ℓ , ũ), (ũ, u r ) ∈ A N ; moreover by assumption (u ℓ , u ℓ ), (u r , u r ) ∈ A N and (u ℓ , u r ) ∈ A N . Therefore (u ℓ , u r ) ∈ CN 2 if and only if (u ℓ , u ℓ ), (u r , u r ) ∈ O.

CN 2

A : We prove that (u ℓ , u r ) ∈ A with q ℓ = 0 > q r belongs to CN if and only if

(u r , u r ) ∈ O. • If (u ℓ , u r ) ∈ A I , then u v performs an under-compressive shock and a 2-shock, hence (u ℓ , u v (ξ - o )), (u v (ξ + o ), u r ) ∈ {(u ℓ , u ℓ ), (ǔ r , u r ), (u r , u r )} for any ξ - o < 0 ≤ ξ + o . Obviously (u ℓ , u ℓ ), (ǔ r , u r ) ∈ A N and (u r , u r ) ∈ A N . Therefore (u ℓ , u r ) ∈ CN 1 if and only if (u r , u r ) ∈ O. • If (u ℓ , u r ) ∈ A N , then u v coincides with u p and performs a 2-shocks, hence (u ℓ , u v (ξ o )), (u v (ξ o ), u r ) ∈ {(u ℓ , u ℓ ), (u ℓ , u r ), (u r , u r )} for any ξ o ∈ R. By assumption (u ℓ , u ℓ ), (u ℓ , u r ) ∈ A N and (u r , u r ) ∈ A N . Therefore (u ℓ , u r ) ∈ CN 2 if and only if (u r , u r ) ∈ O. CN 3 
A : Analogously to the previous item, it is possible to prove that (u ℓ , u r ) ∈ A with q ℓ > 0 = q r belongs to CN if and only if (u ℓ , u ℓ ) ∈ O.

CN 4

A : We prove that any (u ℓ , u r ) ∈ A with q ℓ = 0 = q r belongs to CN.

• If (u ℓ , u r ) ∈ A I , then u v performs an under-compressive shock, hence (u ℓ , u v (ξ - o )), (u v (ξ + o ), u r ) ∈ {(u ℓ , u ℓ ), (u r , u r )} for any ξ - o < 0 ≤ ξ + o . Obviously (u ℓ , u ℓ ), (u r , u r ) ∈ A N and therefore (u ℓ , u r ) ∈ CN 1 . • If (u ℓ , u r ) ∈ A N , then u ℓ = u r and u v ≡ u p ≡ u ℓ , hence (u ℓ , u v (ξ o )), (u v (ξ o ), u r ) ∈ {(u ℓ , u r )} for any ξ o ∈ R. By assumption (u ℓ , u r ) ∈ A N and therefore (u ℓ , u r ) ∈ CN 2 .
To complete the proof that CN ∩ A = CN A it remains to prove that CN ∩ {(u ℓ , u r ) ∈ A : q ℓ < 0 or q r > 0} = ∅. Assume by contradiction that there exists (u ℓ , u r ) ∈ A ∩ CN with q ℓ < 0. Then u v performs a 1-rarefaction (u ℓ , ûℓ ). Clearly u v (ξ o ) = ûℓ with ξ o . = λ 1 (û ℓ ) < 0 and pℓ = p(u v (ξ o )). Hence there exists ε > 0 sufficiently small such that 0

< p(u v (ξ o -ε)) -pℓ < M , namely (u ℓ , u v (ξ o -ε)) ∈ A I . On the other hand (u ℓ , u r ) ∈ A ∩ CN ⊂ CN 1 ∪ CN 2 implies that (u ℓ , u v (ξ)) ∈ A ∁
I for any ξ < 0, a contradiction. The case q r > 0 is dealt analogously.

We now prove that

CN 2 ∩ O = CN O . = (u ℓ , u r ) ∈ O : (u ℓ , u ℓ ), (u r , u r ), (u ℓ , ũ), (ũ, u r ) ∈ A ∁ I
and q p = 0 along any rarefaction .

"⊆" Let (u ℓ , u r ) ∈ CN 2 ∩ O. By definition of CN 2 we have (u ℓ , u p (ξ o )), (u p (ξ o ), u r ) ∈ A ∁ I , for any ξ o ∈ R, because u v ≡ u p . As a consequence (u ℓ , u ℓ ), (u r , u r ), (u ℓ , ũ), (ũ, u r ) ∈ A ∁ I . Assume by contradiction that u p has a 1-rarefaction (the case of a 2-rarefaction is analogous) along which q p vanishes; then q ≥ 0 ≥ q ℓ , q = q ℓ and there exists ξ o such that q p (ξ o ) = 0. Clearly pℓ = p(u p (ξ o )), hence there exists ε = 0 sufficiently small such that 0

< |p ℓ -p(u p (ξ o + ε))| < M , namely (u ℓ , u p (ξ o + ε)) ∈ A I , a contradiction. "⊇" Let (u ℓ , u r ) ∈ CN O . Clearly u v ≡ u p . If u p does not have rarefactions, then (u ℓ , u r ) ∈ CN 2 because (u ℓ , u p (ξ o )), (u p (ξ o ), u r ) ∈ {(u ℓ , u ℓ ), (u r , u r ), (u ℓ , ũ), (ũ, u r ), (u ℓ , u r )} ⊆ A ∁ I for any ξ o ∈ R. If u p has a 1-rarefaction with ṽ > v ℓ > 0 and a (possibly null) 2-shock, then (u ℓ , u r ) ∈ CN 2 because (u ℓ , u p (ξ o )), (u p (ξ o ), u r ) ∈ ({u ℓ } × R 1 ([ρ, ρ ℓ ], u ℓ )) ∪ (R 1 ([ρ, ρ ℓ ], u ℓ ) × {u r }) ∪ {(u r , u r )} ⊆ A ∁ I for any ξ o ∈ R. Indeed, (u ℓ , u ℓ ), (ũ, u r ) ∈ O (because q ℓ = 0 = q) and for any u o ∈ R 1 ([ρ, ρ ℓ ], u ℓ ) we have pℓ -p(u o ) ≥ pℓ -pℓ > M ⇒ (u ℓ , u o ) ∈ O, p(u o ) -pr ≥ p(ũ) -pr > M ⇒ (u o , u r ) ∈ O.
The remaining cases can be treated analogously. Proposition 5.5. If u 0 ∈ Ω is such that q 0 = 0, then I u 0 defined by (2.7) is an invariant domain of RS v .

Proposition 5.4. The L 1 loc -continuity domain of RS v is L = {(u ℓ , u r ) ∈ Ω 2 : |p r -pℓ | = M }. Proof. By Proposition 2.5 we have that RS v is L 1 loc -continuous in O; in A ∩ L it is sufficient
Proof. It is sufficient to recall that I u 0 is an invariant domain of RS p and to observe that û(u), ǔ(u) ∈ I u 0 for any u ∈ I u 0 .

Proof of Proposition 4.2

In this subsection we completely characterize the states (u ℓ , u r ) ∈ O O by proving Proposition 4.2. Clearly, (u ℓ , u r ) ∈ A N , namely q = 0. Therefore, we have ρ ∈ {ρ ℓ , ρr }. We recall that μℓ , μr are given by (4.1),(4.2).

Lemma 5.6. We have, see Figure 14, O is analogous; then q ℓ , q > 0 and so ρ ℓ ≤ ρ < ρℓ . (A) Assume that ρ ℓ < ρ < ρℓ and q ℓ > q, see Figure 15. In this case u ± p = ũ and (5.1) holds true because μ(u + p ) = μ(ũ) ≤ μr < μℓ < μ(ũ) = μ(u - p ).

We prove (5.2)-(5.4); the proof of (5.5)-(5.7) is analogous. If (u ℓ , u r ) ∈ O satisfies 1 ≤ ν ℓ < ν, then u ± p = u ℓ and (5.8) is equivalent to a 2 e μℓe μℓ = a 2 e µ ℓ e -Ξ -1 (ν ℓ )e -ν ℓ = e µ ℓ +ν ℓ Φ(-ν ℓ ) > M, because of (4.1),(4.2). Therefore (5.2) holds true. If (u ℓ , u r ) ∈ O satisfies ν ℓ < 1 < ν, then u ± p = ūℓ and (5.8) is equivalent to a 2 e μ(ū ℓ )e μ(ū ℓ ) = a 2 e μℓ e -Ξ -1 (ν ℓ )e -ν ℓ = e µ ℓ +ν ℓ Φ(-1) > M, because of (4.1),(4.2), μℓ = µ ℓ + ν ℓ -1 and because νℓ = 1 by (2.6). Therefore (5.3) holds true. If (u ℓ , u r ) ∈ O satisfies max{0, ν ℓ } < ν ≤ 1, then u ± p = ũ and (5.8) is equivalent to a 2 e μ(ũ)e μ(ũ) = a 2 e μ e -Ξ -1 (ν)e -ν = e µ ℓ +ν ℓ Φ(-ν) > M, because of (4.1),(4.2) and by μ + ν = µ ℓ + ν ℓ . Therefore (5.4) holds true.

Conclusions

In this paper we studied a mathematical model for the isothermal fluid flow in a pipe with a valve. The modeling of the flow through the valve has been based on the general definition of coupling Riemann solver; in turn, the specific properties of the valve impose the coupling condition and then the solver. Our aim was to understand to what extent the solver satisfies some crucial properties: coherence, consistence and continuity. Coherence, in particular, corresponds to the commuting (chatting) of the valve, a wellknown issue in real applications. In the same time we also searched for invariant domains. To the best of our knowledge, the mathematical modeling of valves has never considered these aspects. We focused on the case of a simple pressure-relief valve; the framework we proposed is however suitable to deal with other types of valves. Even in the simple case under consideration, a complete characterization of the states (density and velocity of the fluid) that share these properties is not trivial and requires a very detailed study of the solver. Nevertheless, we believe that our results are rather satisfactory.

Several issues now arise. On the one hand, we intend to test our method to other kind of valves in order to understand whether in some cases the analysis can be simplified. On the other hand, a natural question is how to circumvent these difficulties. This can be done in several ways: for instance, either by introducing a finite response time of the valve or by locating a pair of sensors sufficiently far from the valve, see [19, page 31]. A related important problem is the water-hammer effect [START_REF] Corli | A multiscale approach to liquid flows in pipes I: The single pipe[END_REF], which is due to the sudden closure of a valve. Even further, the study of flows in networks in presence of valves appears extremely appealing, see [START_REF] Gugat | Mip-based instantaneous control of mixed-integer pde-constrained gas transport problems[END_REF][START_REF] Hante | Challenges in optimal control problems for gas and fluid flow in networks of pipes and canals: From modeling to industrial applications[END_REF][START_REF] Koch | Evaluating gas network capacities[END_REF][START_REF] Ríos-Mercado | Optimization problems in natural gas transportation systems: A state-of-the-art review[END_REF] and the references therein; owing to the complexity of this subject, this is why we kept our model as simple as possible, while however catching the most important features of the valves working. A last natural step would be toward optimization problems, see [START_REF] Banda | Towards a space mapping approach to dynamic compressor optimization of gas networks[END_REF][START_REF] Gugat | Flow control in gas networks: exact controllability to a given demand[END_REF][START_REF] Herty | Modeling, simulation and optimization of gas networks with compressors[END_REF][START_REF] Herty | Adjoint calculus for optimization of gas networks[END_REF] in the case of compressors and [START_REF] Koch | Evaluating gas network capacities[END_REF] for valves. We plan to treat these topics in forthcoming papers.
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 3 Figure 3: The functions Ξ and Ξ -1 . The dashed lines are ζ → -ζ and ξ → -ξ.
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 4 Figure 4: Notation. The thin dashed lines are the sonic lines.
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 37 Consider a two-way electronic valve which is either open or closed, see Figure6. More

Figure 6 :

 6 Figure 6: A two-way electronic valve, left, and a one-way one, right.

Figure 7 :

 7 Figure 7: A two-way spring-loaded valve, left, and a one-way one, right.
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 310 Consider a one-way valve such that[START_REF] Division | Flow of Fluids Through Valves, Fittings, and Pipe[END_REF][START_REF] Amadori | Global BV solutions and relaxation limit for a system of conservation laws[END_REF][START_REF] Banda | Towards a space mapping approach to dynamic compressor optimization of gas networks[END_REF][START_REF] Banda | Coupling conditions for gas networks governed by the isothermal Euler equations[END_REF][START_REF] Banda | Gas flow in pipeline networks[END_REF][START_REF] Bressan | Hyperbolic systems of conservation laws[END_REF][START_REF] Colombo | Comparison among different notions of solution for the p-system at a junction[END_REF][START_REF] Corli | A multiscale approach to liquid flows in pipes I: The single pipe[END_REF][START_REF] Dafermos | Hyperbolic conservation laws in continuum physics[END_REF] 
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 8 Figure 8: Schematic representation of the subsets of D v = Ω 2 . The shaded area corresponds to A ∁ I .
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 9 Figure 9: The function Φ. Notice that Φ is decreasing in [ν c , ∞), with ν c < -1.
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 4310 Figure 10: The region CH ′ defined in Corollary 4.3.
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 44 We have CN ⊂ CH. Proof. It is sufficient to prove that CN O ⊂ O O because by Theorem 4.1, (I),(II), we have

Proposition 4 . 5 .

 45 Let ∆ . = {(u, u) : u ∈ Ω}. Then ∆ ∩ CH = ∆ and ∆ ∩ CN = ∆ ∩ A ∁ I . Proof. By Theorem 4.1, (I),(II), it is sufficient to prove that

  and the minimal invariant domain containing {u} is I = {u}; by Proposition 4.5 we have I 2 ⊂ ∆ ∩ A ∁ I ⊂ CN. On the other hand, if (u, u) ∈ A I , then it is sufficient to observe that (u, u) ∈ CN by Proposition 4.5. Corollary 4.8. Let u ∈ Ω and I be the minimal invariant domain containing {u}. • If (u, u) ∈ A ∁ I , then I = {u} and

  hence I = {u}; moreover by Corollary 4.7 and Corollary 4.4 we have

  ) ⊆ D. By Theorem 4.1, (I), we have I 2 ⊂ A ⊂ CH. By Proposition 4.5 we have (u, u) ∈ I 2 \ CN.

5 Technical proofs 5 . 1 Figure 12 : 1 ⇔ 1 , 1 =

 5112111 Figure 12: S u * 1 ∩ S u * * 1 consists either of two points, one or none.

  to exploit the continuity of û, ǔ, σ, λ 1 and λ 2 . Hence RS v is L 1 loc -continuous in L. Assume now that (u ℓ , u r ) ∈ L ∁ .= A \ L ⊂ A I . Clearly ûℓ = ǔr and thereforeRS p [u ℓ , u r ] = RS v [u ℓ , u r ]. If (u ε ℓ , u ε r ) ∈ O converges to (u ℓ , u r ), then RS v [u ε ℓ , u ε r ] = RS p [u ε ℓ , u ε r ] converges in L 1 loc to RS p [u ℓ , u r ]and not to RS v [u ℓ , u r ] by the L 1 loc -continuity of RS p .

4 O.

 4 ℓ , u r ) ∈ O : 0 < ν ≤ ν ℓ ⊆ O O , O = (u ℓ , u r ) ∈ O : ν r ≤ ν < 0 ⊆ O O . Proof. Simple geometric arguments show that if (u ℓ , u r ) ∈ O 3 O ∪ O 4 O , then p(u + p )p(u - p ) ≥ prpℓ (5.1)and therefore (u ℓ , u r ) ∈ O O . Indeed, let (u ℓ , u r ) ∈ O 3 O , the case (u ℓ , u r ) ∈ O 4

  [START_REF] Bressan | Hyperbolic systems of conservation laws[END_REF]. Conditions (ch.0) and (cn.0) are satisfied because D p = Ω 2 . About coherence, we prove (ch.1).Fix (u ℓ , u r ) ∈ Ω 2 and ξ o ∈ R. If u p (ξ - o ) = u p (ξ + o ), then RS p [u p (ξ - o ), u p (ξ + o )] ≡ u p (ξ ± o ) since RS p [u, u] ≡ u for any u ∈ Ωand it is easy to conclude. If u p (ξ - o ) = u p (ξ + o ), namely, u p has a shock at ξ o , then either u p
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We now extend the previous corollary by constructing the minimal invariant domain containing two elements of Ω in two particular cases. Corollary 4.9. Fix u 0 , u 1 ∈ Ω and let u 2 . = û(u 1 ) and u 3 . = ǔ(u 1 ). Assume that ν 0 = 0 < ν 1 , µ 1 + ν 1 < µ 0 , (u 1 , u 1 ) ∈ A I and let I be the minimal invariant domain containing {u 0 , u 1 }. Then I 2 ⊆ CN and moreover:

) and I 2 ⊂ CH;

• if p 2p 3 = M = p 0p 2 , then I = I u 0 and I 2 ⊆ CH.

Proof. We notice that by assumption we have µ 2 < µ 1 + ν 1 < µ 0 . By Proposition 4.5 we deduce (u 1 , u 1 ) ∈ I 2 \ CN. Clearly, see Figure 11, (u 0 , u 0 ), (u 2 , u 2 ), (u 3 , u 3 ) ∈ A N , ρ 3 < ρ 1 < ρ 2 ; moreover ρ 0 > ρ 2 and 0 < p 2p 3 ≤ M in both the considered cases. By proceeding as in the proof of Corollary 4.8 we have

• If ρ 2 < ρ 0 and p 0p 3 ≤ M , then I = D ∪ {u 0 }. This follows by observing that (D ∪ {u 0 }) 2 ⊂ A and that for any

are subsets of D ∪ {u 0 }. By Theorem 4.1, (I), we have that I 2 ⊂ A ⊂ CH.

• Assume ρ 2 < ρ 0 and p 2p 3 = M = p 0p 2 . We claim that

where I u 0 is defined by (2.7). Differently from the previous case, we have (u 0 , u 1 ), (u

where

Clearly (u 0 , u 6 ), (u 6 , u 0 ) ∈ O and

Figure 13: The dashed and solid curves are S u * i and R u * i , respectively. About consistence, it is sufficient to observe that for any

and that u p is the juxtaposition of RS p [u ℓ , ũ] and RS p [ũ, u r ].

At last, the L 1 loc -continuity in Ω 2 directly follows from the continuity of ũ, σ, λ 1 and λ 2 .

Proof of Theorem 4.1

We split the proof of Theorem 4.1 into the following propositions.

Proposition 5.1. The coherence domain of

Proof. Condition (ch v .0) holds true in Ω 2 because D v = Ω 2 ; therefore, we are left to consider (ch v .1). First, we prove that if (u ℓ , u r ) ∈ A ∪ O O , then (ch v .1) holds. Assume that (u ℓ , u r ) ∈ A. In this case u - v = ûℓ and u + v = ǔr . By (4.3) we have û(u - v ) = u - v = ûℓ and ǔ(u + v ) = u + v = ǔr ; therefore (u - v , u + v ) ∈ A, whence (ch v .1) holds true. If (u ℓ , u r ) ∈ O O , then it is sufficient to exploit the coherence of RS p .

Second, we prove that if (u ℓ , u r ) ∈ O A then (ch v .1) fails. Since (u ℓ , u r ) ∈ O, then u v ≡ u p , whence u ± v = u ± p ; since (u - p , u + p ) ∈ A, then by (pr.1) it follows

Now, if by contradiction (ch v .1) holds, then we have

It follows that u - p = û(u - p ) and u + p = ǔ(u + p ); then q p (0 ± ) = 0, whence u - p = u + p because u p cannot perform a stationary shock between states with zero flow by (2.4). Then it is not difficult to see that ũ = u p (0), whence q = 0 and therefore ûℓ = ũ = ǔr . This contradicts the assumption (u

where (B) If ρ ℓ < ρ < ρℓ and q ℓ = q, then u - p = u ℓ , u + p = ũ and μ(u + p ) = μ(ũ) ≤ μr < μℓ = μ(u - p ). (C) If ρ ℓ < ρ < ρℓ and q ℓ < q, then u ± p = u ℓ and μ(u + p ) = μℓ < μr < μℓ = μ(u - p ). (D) If ρ ℓ = ρ < ρℓ , then u ± p = u ℓ = ũ and μ(u + p ) = μℓ ≤ μr < μℓ = μ(u - p ).

By the previous lemma we have that

Hence, the following lemma completes the proof of Proposition 4.2.

Lemma 5.7. We have (5.8)