Molecular Level Characterization of the Structure and Interactions in Peptide-Functionalized Metal-Organic Frameworks.
Résumé
We use density functional theory, newly parameterized molecular dynamics simulations, and last generation (15) N dynamic nuclear polarization surface enhanced solid-state NMR spectroscopy (DNP SENS) to understand graft-host interactions and effects imposed by the metal-organic framework (MOF) host on peptide conformations in a peptide-functionalized MOF. Focusing on two grafts typified by MIL-68-proline (-Pro) and MIL-68-glycine-proline (-Gly-Pro), we identified the most likely peptide conformations adopted in the functionalized hybrid frameworks. We found that hydrogen bond interactions between the graft and the surface hydroxyl groups of the MOF are essential in determining the peptides conformation(s). DNP SENS methodology shows unprecedented signal enhancements when applied to these peptide-functionalized MOFs. The calculated chemical shifts of selected MIL-68-NH-Pro and MIL-68-NH-Gly-Pro conformations are in a good agreement with the experimentally obtained (15) N NMR signals. The study shows that the conformations of peptides when grafted in a MOF host are unlikely to be freely distributed, and conformational selection is directed by strong host-guest interactions.