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Abstract 1 

Contemporary theories assume that semantic cognition emerges from a neural 2 

architecture in which different component processes are combined to produce 3 

aspects of conceptual thought and behaviour. In addition to the state-level, 4 

momentary variation in brain connectivity, individuals may also differ in their 5 

propensity to generate particular configurations of such components, and these 6 

trait-level differences may relate to individual differences in semantic cognition. 7 

We tested this view by exploring how variation in intrinsic brain functional 8 

connectivity between semantic nodes in fMRI was related to performance on a 9 

battery of semantic tasks in 154 healthy participants. Through simultaneous 10 

decomposition of brain functional connectivity and semantic task performance, 11 

we identified distinct components of semantic cognition at rest. In a subsequent 12 

validation step, these data-driven components demonstrated explanatory power 13 

for neural responses in an fMRI-based semantic localiser task and variation in 14 

self-generated thoughts during the resting-state scan. Our findings showed that 15 

good performance on harder semantic tasks was associated with relative 16 

segregation at rest between frontal brain regions implicated in controlled 17 

semantic retrieval and the default mode network. Poor performance on easier 18 

tasks was linked to greater coupling between the same frontal regions and the 19 

anterior temporal lobe; a pattern associated with deliberate, verbal thematic 20 

thoughts at rest. We also identified components that related to qualities of 21 

semantic cognition: relatively good performance on pictorial semantic tasks was 22 

associated with greater separation of angular gyrus from frontal control sites 23 

and greater integration with posterior cingulate and anterior temporal cortex. In 24 

contrast, good speech production was linked to the separation of angular gyrus, 25 

posterior cingulate and temporal lobe regions. Together these data show that 26 

quantitative and qualitative variation in semantic cognition across individuals 27 

emerges from variations in the interaction of nodes within distinct functional 28 

brain networks.  29 

  30 
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1. Introduction 31 

 32 

Semantic cognition allows us to understand the meaning of words, objects, 33 

places and people, and guides our thoughts and actions in a manner that suits 34 

the circumstances (Jefferies, 2013; Lambon Ralph et al., 2016; Patterson et al., 35 

2007). In addition, this type of cognition also plays a critical role in thoughts that 36 

are unconnected from the here and now, such as when we daydream about a 37 

future achievement or remember a past event (Binder et al., 2009; Smallwood et 38 

al., 2016). Contemporary accounts suggest that semantic cognition emerges from 39 

the interactions of multiple components, supported by distinct brain networks 40 

(Jefferies and Lambon Ralph, 2006; Lambon Ralph et al., 2016). Studies have 41 

recently begun to address how these between-network interactions might 42 

momentarily change, depending on task demands (Bianchi et al., 2013; Davey et 43 

al., 2016; Hallam et al., 2016; Jung and Lambon Ralph, 2016; Krieger-Redwood et 44 

al., 2016). However, relatively little is known about individual differences in 45 

semantic cognition i.e. aspects of brain connectivity that are associated with  46 

trait-level variability in semantic task performance.  47 

 48 

From the component process perspective, semantic cognition is thought to 49 

involve the interaction of semantic representations and control processes that 50 

tailor retrieval to suit the behavioural circumstances (Jefferies, 2013; Lambon 51 

Ralph et al., 2016). Evidence suggests that the semantic representations in long-52 

term memory draw on modality-specific brain regions (supporting visual and 53 

verbal features, such as our knowledge that zebras have black and white stripes, 54 

and linguistic associations, such as “zebra crossing” (Buccino et al., 2016; 55 

Fernandino et al., 2016)), as well as heteromodal areas, including the anterior 56 

temporal lobe (Lambon Ralph et al., 2016; Patterson et al., 2007). Anterior 57 

temporal cortex is argued to provide a graded “hub” supporting the convergence 58 

of diverse unimodal semantic features. This permits the extraction of deep 59 

conceptual similarity incorporating both verbal and non-verbal knowledge. In 60 

addition, since we all know a diverse range of features and associations to any 61 

given concept, conceptual retrieval must be constrained in accordance with goals 62 

and environmental conditions (Badre et al., 2005; Jefferies and Lambon Ralph, 63 
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2006; Thompson-Schill et al., 1997). Hence, semantic control processes may play 64 

a vital role in focusing retrieval on currently relevant aspects of knowledge and 65 

supressing strongly encoded but currently irrelevant information. This aspect of 66 

semantic cognition is thought to be supported by a distinct set of brain regions 67 

including domain-general executive areas (e.g. dorsal/posterior inferior frontal 68 

gyrus, pre-supplementary motor area) and areas more specifically implicated in 69 

semantic control (e.g. ventral/anterior inferior frontal gyrus, posterior middle 70 

temporal gyrus (Davey et al., 2016; Noonan et al., 2013)).  71 

 72 

In line with this interactive view, cognitive neuroscience research has provided 73 

converging evidence for multiple, interrelated components within semantic 74 

cognition. Lesion studies have revealed that selective damage to the anterior 75 

temporal lobe, left inferior frontal gyrus and/or posterior middle temporal gyrus 76 

produce dissociable impairments, compromising the integrity of conceptual 77 

representations (Bozeat et al., 2000; Patterson et al., 2007), or their use in a goal-78 

oriented manner, respectively (Jefferies and Lambon Ralph, 2006; Jefferies et al., 79 

2008; Noonan et al., 2010; Rogers et al., 2015). The functional dissociation 80 

between these brain regions is also supported by neuroimaging (Hoffman et al., 81 

2015; Humphreys et al., 2015; Noonan et al., 2013) and neurostimulation 82 

(Binney et al., 2010; Davey et al., 2015; Pobric et al., 2007; Whitney et al., 2011) 83 

investigations of semantic processing in healthy participants. 84 

 85 

Recent studies have also shown that although these brain regions act in concert 86 

to support semantic cognition (i.e., they co-activate during task fMRI), they form 87 

distinct large-scale brain networks at rest (Davey et al., 2016; Jackson et al., 88 

2016), depicting functional integration when participants shift from rest to 89 

semantic tasks (Krieger-Redwood et al., 2016). For example, as an important hub 90 

of semantic processing (Patterson et al., 2007), anterior temporal lobe (ATL) 91 

shows strong connectivity at rest to regions of the default mode network (DMN), 92 

including angular gyrus and posterior cingulate cortex (Jackson et al., 2016; 93 

Murphy et al., 2017). In contrast, semantic control regions such as left inferior 94 

frontal gyrus and posterior middle temporal gyrus show strong intrinsic 95 

connectivity to each other, and they connect to both default mode and fronto-96 
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parietal networks (Davey et al., 2016). Together these studies suggest that 97 

semantic cognition is an emergent property of variable interactions between not 98 

only particular brain regions, but also distributed large-scale brain networks, 99 

present at rest and in cognitive tasks (Cole et al., 2014). 100 

 101 

Although this assumption is broadly accepted, it remains unclear how individual 102 

differences in the strength of specific connections within and between these 103 

networks might relate to trait-level differences in semantic abilities. For 104 

example, the strength of particular network interactions might give rise to global 105 

differences in the efficiency of semantic retrieval across tasks, linked to the 106 

tendency to stay on task. Studies have associated both task-based semantic 107 

behaviour and off-task mind-wandering to overlapping brain regions involved in 108 

semantic processing that are allied to the DMN (Binder et al., 2009; Smallwood et 109 

al., 2016). The strength of intrinsic connectivity between these default mode 110 

regions and areas linked to task engagement might therefore determine whether 111 

individuals are generally willing or able to focus semantic retrieval on an 112 

externally-imposed goal, as opposed to conceptual associations that might have 113 

greater personal relevance. In addition, since research has revealed network 114 

differences that relate to the modality of information being retrieved (i.e., words 115 

vs. pictures) and the extent to which semantic control processes are required to 116 

shape retrieval to suit the task, we might expect individual differences in 117 

patterns of intrinsic network connectivity to relate to relative strengths and 118 

weaknesses in these varieties of semantic cognition across participants.  119 

 120 

To assess these hypotheses, we recorded task-based and resting state functional 121 

magnetic resonance imaging (fMRI) data in a large cohort of participants, who 122 

also described their thoughts while at rest inside the scanner. On a subsequent 123 

day, these participants performed a battery of semantic tasks, including 124 

relatedness, identity and feature judgements, picture naming and verbal fluency. 125 

The tasks used different types of stimuli including words and pictures, 126 

manipulated the requirement for controlled retrieval using strong and weak 127 

associations (Badre et al., 2005; Davey et al., 2016), and assessed both 128 

comprehension and production, allowing us to characterise diverse aspects of 129 
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semantic cognition. We used advanced multivariate statistics (Smith et al., 2015; 130 

Tsvetanov et al., 2016) to simultaneously decompose individual variation in 131 

brain data (resting state connectivity) and behaviour (measured outside the 132 

scanner) to identify the neurocognitive components of semantic cognition. We 133 

confirmed the validity of these components by examining their association with 134 

independent measures: the neural response to meaningful over meaningless 135 

information in task-based fMRI and subjective descriptions of self-generated 136 

thoughts during the resting-state scan (Gorgolewski et al., 2014). This allowed us 137 

to specify neurocognitive components that relate to the (i) average performance 138 

on semantic tasks and (ii) varieties of semantic cognition. Overall, these results 139 

help to elucidate the fundamental mechanisms underpinning variation in 140 

semantic cognition in healthy individuals. 141 

 142 

143 
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2. Methods 144 

 145 

2.1 Participant Demographics 146 

Ethical approval was obtained from the Department of Psychology and York 147 

Neuroimaging Centre, University of York ethics committees. A total of 165 right-148 

handed, native English speaker, undergraduate or postgraduate students with 149 

normal to corrected vision were recruited for this study. Informed consent was 150 

sought prior to taking part in the fMRI as well as the behavioural assessments. 151 

The participants received either a monetary reward of £80 or eight hours of 152 

course credit.  153 

 154 

As per the exclusion criteria, none of the participants had a history of psychiatric 155 

or neurological illness, severe claustrophobia, anticipated pregnancy or drug use 156 

that could alter cognitive functioning. In total, 11 participants were excluded 157 

from the analysis; eight due to incomplete behavioural assessment and three 158 

because of registration problems associated with the neuroimaging data. 159 

Consequently, the final group included 154 participants, who completed all the 160 

neuroimaging and behavioural assessments. The average age for this group was 161 

20.20 years (range = 18-31, SD = 2.43) with 94 females.  162 

 163 

2.2. Behavioural Assessment 164 

Following the imaging protocol, participants took part in a comprehensive set of 165 

behavioural assessments that captured different aspects of semantic cognition. 166 

The tasks were completed over three 2-hour long sessions on different days, 167 

with the order of the sessions counterbalanced across participants. Full details 168 

about the semantic tasks are provided in the supplementary materials (Table S1-169 

5). In total, there were 12 tasks that examined semantic cognition:  170 

 Two 3-alternative forced choice (3AFC) tasks required participants to 171 

identify pictures at two levels of specificity. Superordinate word-picture 172 

matching required participants to link a picture of a Dalmatian with the 173 

word “animal” (as opposed to distractors such as “vehicle; clothes”). 174 

Specific-level matching, however, involved the same probe image and 175 

specific-level names (e.g., target word “Dalmatian” with distractors 176 
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“Labrador; Corgi”). Previous research has shown that ventral and medial 177 

aspects of anterior temporal lobe show a stronger response to specific 178 

concepts (Rogers et al., 2006), while greater integration of visual 179 

information in this condition allows similar concepts to be successfully 180 

distinguished (Clarke et al., 2013). In addition, inhibitory transcranial 181 

magnetic stimulation (TMS) to angular gyrus has been shown to disrupt 182 

the retrieval of specific conceptual information using this task (Davey et 183 

al., 2015).  184 

 Two 3AFC tasks examined the effect of presentation format, contrasting 185 

verbal semantic judgements (when the probe and response options were 186 

presented as written words) with picture semantic judgements (when 187 

items were presented as pictures). Comparisons of verbal and non-verbal 188 

semantic decisions have been used to distinguish cognitive components 189 

that support amodal and abstract aspects of conceptual processing (such 190 

as ventral anterior temporal lobe), from ‘embodied’ or modality-specific 191 

aspects (Bright et al., 2004; Patterson et al., 2007; Vandenberghe et al., 192 

1996; Visser et al., 2012). 193 

 Two 3AFC tasks assessed the retrieval of strong and weak semantic 194 

associations. These judgements presented a picture probe and three 195 

response options as words (in line with the identity-matching tasks). The 196 

strength of association between the probe and target was manipulated. 197 

Previous studies focusing on the neural basis of controlled semantic 198 

retrieval have frequently used contrasts of strong versus weak 199 

associations, and have commonly reported greater activation within left 200 

inferior frontal gyrus and posterior middle temporal gyrus when the 201 

relevant link is harder to retrieve (Badre et al., 2005; Davey et al., 2016; 202 

Gold and Buckner, 2002; Krieger-Redwood et al., 2015). 203 

 A feature-matching task (presented in the form of 3AFC) assessed the 204 

ability to match probe and target words based on a specific semantic 205 

feature (e.g., colour, shape, size, texture). One of the distractors was a 206 

strong global associate that had to be ignored. This task is thought to 207 

require goal-driven selection of relevant knowledge (Badre et al., 2005) 208 

and has been shown to strongly activate dorsal aspects of the left inferior 209 
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frontal gyrus and other regions within the multiple-demand system 210 

(Davey et al., 2016; Duncan, 2010). Thus, we included tasks that tapped 211 

two potentially separable aspects of semantic control: top-down feature 212 

selection (in the feature matching task) and recovery of weakly-encoded 213 

associations in a more bottom-up fashion (Badre et al., 2005; Davey et al., 214 

2016).  215 

 A 3AFC task that required pattern matching of meaningless scrambled 216 

images was employed as a control task. It had similar decision-making 217 

and response requirements as the semantic tasks described above. 218 

 Picture naming task required participants to say aloud the most specific 219 

name possible for a set of common objects.  220 

 Three verbal fluency tasks required participants to list as many items as 221 

possible within one minute. There were four general categories (e.g. 222 

animals, fruit, vehicles, tools), two specific categories (e.g. types of birds 223 

and types of boat) and three letters (e.g. F,A,S). 224 

 225 

2.3 Neuroimaging Data Acquisition 226 

The scanning session was carried out at the York Neuroimaging Centre, York 227 

with a 3T GE HDx Excite Magnetic Resonance Imaging (MRI) scanner using an 228 

eight-channel phased array head coil. Following a T1-weighted structural scan 229 

with 3D fast spoiled gradient echo (TR = 7.8 s, TE = minimum full, flip angle= 20°, 230 

matrix size = 256 x 256, 176 slices, voxel size = 1.13 x 1.13 x 1 mm) and a FLAIR 231 

sequence, a nine-minute resting state fMRI scan was carried out using single-232 

shot 2D gradient-echo-planar imaging (TR = 3 s, TE = minimum full, flip angle = 233 

90°, matrix size = 64 x 64, 60 slices, voxel size = 3 x 3 x 3 mm3, 180 volumes). 234 

During resting state scanning, the participants were asked to focus on a fixation 235 

cross and not to think of anything in particular.  236 

 237 

Using the same scanning parameters as for the resting state scans, we also 238 

acquired a semantic localiser task in which the participants were asked to 239 

passively view meaningful (e.g., her + secrets + were + written + in + her + diary) 240 

and meaningless sequences of non-words (e.g. crark + dof + toin + mesk + int + 241 

lisal + glod + flid). A total of 10 sentences with meaningful content, based on 242 
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Rodd et al. (2005), and 10 meaningless sentences with nonsensical content, 243 

matched in word length and number of syllables, were presented in two blocks 244 

of five (i.e., a total of 4-blocks), in a pseudo-random order. While transition 245 

between blocks was denoted by a task instruction (e.g., Meaningful), a red 246 

fixation marked the end of each sentence, with a jittered duration of 4000-247 

6000ms. Each sentence was presented one word at a time (600 ms) to ensure 248 

that the speed of reading was matched across meaningful and non-meaningful 249 

stimuli, interleaved by 250 ms fixation periods. 250 

 251 

2.4 Neuroimaging Data Pre-processing 252 

All functional data were pre-processed using a standard pipeline, and analysed 253 

via FMRIB Software Library (FSL Version 6.0). The spatial pre-processing of the 254 

resting state functional data involved motion correction via MCFLIRT, slice-255 

timing correction with Fourier space time-series phase-shifting, and 256 

normalisation to the MNI-152 template space using FLIRT as well as skull-257 

stripped FLAIR and T1-weighted structural images. In addition, high-pass (sigma 258 

= 200 s) and low-pass temporal filtering (sigma = 2.8 s) was applied in order to 259 

focus on the slow-wave fluctuations. Finally, the confounding six motion 260 

parameters as well as the top 5 PCA components of the cerebrospinal fluid and 261 

white matter signal was removed using the CompCor method (Behzadi et al., 262 

2007). This eliminated the need for a global signal regression that is reported to 263 

introduce spurious anti-correlations (Chai et al., 2012; Murphy et al., 2009). No 264 

spatial smoothing was applied. The same pre-processing pipeline was also 265 

applied to the semantic localiser functional neuroimaging data, except for the 266 

low-pass temporal filtering. 267 

 268 

2.5 ROI Definitions and Functional Connectivity Matrix Construction 269 

In order to objectively identify a set of semantic regions of interest (ROIs) that 270 

formed the brain functional connectivity matrices, we selected spatial maps from 271 

the literature that covered large-scale brain networks previously implicated in 272 

semantic cognition (Fig. 1A). We started with a meta-analytic map of “semantic” 273 

processing derived from Neurosynth, and identified regions on this map that fell 274 

within two distinct networks: the default mode network (DMN – associated with 275 
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relatively easy semantic judgements and the presentation of strongly coherent 276 

conceptual combinations (Bemis and Pylkkanen, 2013; Davey et al., 2016; 277 

Humphreys et al., 2015; Price et al., 2016)) and the semantic control network 278 

(associated with harder semantic judgements and the presentation of weak 279 

conceptual combinations (Noonan et al., 2013)).  The DMN was selected from the 280 

Yeo7 parcellation of whole-brain functional connectivity (Yeo et al., 2011) and 281 

downloaded from the Freesurfer website (https://surfer.nmr.mgh.harvard.edu 282 

/fswiki/CorticalParcel lation_Yeo2011), while the semantic control map was 283 

taken from the Noonan et al. (2013) meta-analysis of 53 semantic cognition 284 

studies that varied the required level of  executive control. The binarised maps of 285 

these two contrasting networks were overlaid on the false-positive discovery 286 

rate corrected, statistical co-activation map (Pterm | activation) of the “semantic” 287 

term in the Neurosynth database (accessed May 2016), and masked with the 288 

Automated Anatomical Labelling (AAL) map.  289 

 290 

Using this procedure, we identified clusters of voxels where the Neurosynth 291 

semantic map overlapped with the DMN in anterior temporal lobe, ventral 292 

angular gyrus and posterior cingulate cortex. Moreover, the Neurosynth 293 

semantic map was overlapped with regions implicated in semantic control in 294 

posterior inferior frontal gyrus, pre-supplementary motor area, posterior middle 295 

temporal gyrus and ventral-mid-middle temporal gyrus. Finally, we identified 296 

regions where the Neurosynth semantic map overlapped with both the default 297 

mode and the semantic control networks, in anterior inferior frontal gyrus, 298 

posterior middle temporal gyrus, middle temporal gyrus and dorsal angular 299 

gyrus. Brain regions in the right hemisphere were omitted to improve the 300 

interpretability of the results and to solve the limitations associated with the CCA 301 

technique. The resulting 11 regions were used to extract BOLD signal time-series 302 

based on 6 mm seed spheres placed in the centre of these regions (Fig. 1B). Z-303 

scored Pearson correlation coefficients of the signal between each of the 11 ROIs 304 

defined the functional connectivity matrices for each participant, utilised in the 305 

subsequent brain and behaviour decomposition analysis.  306 

 307 

https://surfer.nmr.mgh.harvard.edu/
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2.6 Sparse Canonical Correlation Analysis 308 

With the aim of collectively characterising patterns of brain connectivity and 309 

behavioural performance measured outside the scanner, we employed a 310 

multivariate pattern analysis technique, canonical correlation analysis (CCA). 311 

Over and above independent components analysis of neuroimaging data 312 

(Beckmann et al., 2005), CCA identifies distinct canonical components from the 313 

linear combinations of two variable spaces (behaviour and brain). Thus, this 314 

technique allowed us to test the component process hypothesis by describing the 315 

relationship between intrinsic brain functional connectivity and semantic task 316 

performance simultaneously (Hardoon et al., 2004).  317 

 318 

 319 

Figure 1 Definition of semantic ROIs. A) The seeds used for the simultaneous decomposition analysis 320 

were objectively defined as overlaps between the meta-analytic map derived for the term “semantic” from 321 

the Neurosynth database, and two large-scale brain networks previously implicated in semantic cognition: a 322 

semantic control network based on Noonan et al.’s (2013) meta-analysis of fMRI studies, plus the DMN as 323 

defined by Yeo et al.’s (2011) 7-network parcellation of whole-brain functional connectivity. ROIs were 324 

defined as being within the Neurosynth map (i.e., relevant for semantic cognition) and (i) also in the DMN; 325 

(ii) also in the semantic control map; (iii) also in both DMN and the semantic control maps. The resulting 326 

regions were masked with the AAL atlas for labelling purposes and 6 mm seeds were placed in the centre of 327 

each area of overlap, creating seed regions for the functional connectivity analysis. B) A total of 11 semantic 328 

ROIs were included in this analysis (visualised on an MNI152 glass brain). The posterior cingulate cortex 329 
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(PCC), angular gyri (AG1) and temporal pole (ATL1) fell within the DMN (green). The semantic control 330 

network included regions in the pre-supplementary motor area (pre-SMA), posterior middle temporal 331 

gyrus (posterior pMTG2), posterior inferior frontal gyrus (pIFG1) as well as mid-MTG (ATL3; orange). A few 332 

regions were common to both the default mode and the semantic control networks (anterior IFG2; anterior 333 

pMTG1; ATL2, light blue). 334 

The standardized (unit variance scaled and mean-centred) functional 335 

connectivity matrices as well as the standardized behavioural scores were fed 336 

into a reliable and robust implementation of the CCA method, using the 337 

Penalised Multivariate Analysis (PMA) R package from the CRAN repository. In 338 

order to improve the interpretability of the obtained decomposition solutions 339 

(Hastie et al., 2015), we applied an L1-penalised variant of CCA introduced by 340 

Witten et al. (2009). This is achieved by setting a maximum number of brain or 341 

behaviour variables to exactly zero, which in turn cancels their contribution to 342 

the prediction goal and increases the sparseness of the solutions. This results in 343 

a regularised version of the singular value decomposition, reducing the excess 344 

information to meaningful decompositions. In other words, this sparsity 345 

(variable selection) method considers the entire model to derive canonical 346 

components, automatically de-weighing variables as unimportant if they did not 347 

explain variation in the data. In the current analysis, the L1 penalty on resting 348 

state functional connectivity was 0.4, and 0.5 on the behavioural performance. 349 

The resulting brain and behaviour components were visualised using BrainNet 350 

Viewer on a glass MNI152 brain, in three different planes (Xia et al., 2013). In 351 

addition, circular representations were provided for better visual description of 352 

the components (Irimia et al., 2012) as implemented in Gephi (Version 0.91) 353 

(Bastian et al., 2009). 354 

 355 

2.7 Neurocognitive Pattern Description 356 

Similar to other commonly used decomposition techniques in neuroimaging (e.g. 357 

ICA or PCA), biologically meaningful number of CCA components is determined 358 

by external knowledge. In other words, the number of viable components are 359 

usually determined by the level at which the components identified from one set 360 

of data are still meaningful in a different set of data. This procedure then 361 

validates the interpretability and importance of the identified components. Thus, 362 

our aim was to describe the patterns of brain and behaviour relationships (i.e. 363 
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varieties of semantic cognition) that were identified from the CCA analysis, 364 

utilising separate datasets. For that purpose, we employed the semantic localiser 365 

task performed inside the scanner, as well as self-report measures of mind-366 

wandering at the end of the resting state scan. 367 

 368 

For assessing differential BOLD activity in the semantic localiser task, we first 369 

examined the contrast of meaningful > meaningless task blocks, and the reverse 370 

effect, and confirmed that the task activated brain regions that are expected to be 371 

involved in semantic processing (Fig. 2A). Subsequently, the participant-specific 372 

component expression (i.e. brain and behaviour component loadings from the 373 

CCA for each participant) were carried forward as covariates to the higher-level 374 

activation analysis, collectively forming a group-wise general linear model. We 375 

searched for shared associations between both the brain and the behaviour 376 

component loadings for a given CCA component and beta values from the chosen 377 

task contrast. The resulting clusters were multiple comparison corrected via 378 

Family-Wise Error (FWE) detection technique at a Z threshold greater than 2.6 379 

(p < 0.05). The unthresholded statistical maps were uploaded to the NeuroVault 380 

repository (http://neurovault.org/collections/2108/). The regions showing a 381 

significant linear relationship between the beta values of the meaningful > 382 

meaningless contrast and the participants’ CCA loadings were visualised on an 383 

MNI152 glass brain. Finally, a conjunction using the minimum statistics method 384 

(Nichols et al., 2005) was used to identify brain regions that showed a 385 

correlation with BOLD activity across all of the relevant CCA components. We 386 

then explored the seed-based functional connectivity of this conjunction region 387 

on an independent dataset, based on the intrinsic functional connectivity 388 

calculations of 1,000 subjects, publicly available on the Neurosynth website (Yeo 389 

et al., 2011). In order to provide an objective description of the multiple roles 390 

that are associated with this conjunction region, we later used the Neurosynth 391 

database (accessed May 2016) to examine the typically associated terms. 392 

 393 

http://neurovault.org/collections/2108/
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 394 

 395 

Figure 2 Description of neurocognitive components. A) The CCA components were first validated using 396 

neuroimaging data acquired during a semantic localiser task. In this paradigm, the participants were 397 

presented with sequences of words in sequences and non-words, interleaved with a baseline fixation 398 

condition. The group-level forward and reverse contrasts were cluster corrected at a threshold of Z > 2.6 (p 399 

< 0.05).  B) The components were also validated using the subjective description of the participants’ 400 

thoughts acquired at the end of the resting state scan, using a set of questions that were previously used to 401 

assess the ongoing mental experiences of participants (Smallwood et al., 2016). The principle components 402 

covering three main categories of thought – broadly corresponding to realistic, important mental time 403 

travel, intrusive thought and verbal thematic thoughts are visualised in a heat map displaying Varimax-404 

rotated component loadings.  405 

Moreover, with the aim of capturing different features of the participants’ 406 

spontaneous mental experiences, we employed a 4-choice questionnaire at the 407 

end of the resting-state scanning session that required the participants to 408 

subjectively rate their thoughts from “Not at all” to “Completely” based on a 409 

series of mind-wandering questions previously used in the literature 410 

(Gorgolewski et al., 2014; Medea et al., 2016; Ruby et al., 2013a; Ruby et al., 411 

2013b; Smallwood et al., 2016). The set of questions are provided in the 412 

supplementary material (Table S6). Subsequently, the ratings for each 413 
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participant were reduced to three factors using principal component analysis 414 

(PCA) in SPSS (Version 23), which broadly corresponded to realistic and 415 

important mental time-travel, intrusive thought, and verbal thematic thought. 416 

The component loadings were rotated using the Varimax method and the 417 

resulting factors were visualised on a heat map (Fig. 2B). Using linear 418 

regressions at p = 0.05 level of significance, these mind-wandering components 419 

were related to the average brain and behaviour component loadings obtained 420 

from the CCA analysis.  421 

422 
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3. Results 423 

The main objective of this study was to identify neurocognitive components of 424 

brain and behaviour relationships that described individual differences in 425 

semantic cognition. For that purpose, we first fed in to CCA the standardized 426 

(unit variance scaled and mean-centred) functional connectivity values between 427 

semantic regions at rest and standardized performance values in a battery of 428 

semantic tasks. The identified components were then validated through linear 429 

regressions in separate datasets, originating from the participants’ performance 430 

of a semantic localiser fMRI task inside the scanner and their mind-wandering 431 

tendencies captured at the end of the resting state scan. Such a multi-variate, 432 

multi-dataset approach enabled us to objectively assess the relationship between 433 

individual differences in brain connectivity and behaviour, in line with the 434 

component process view of semantic cognition. 435 

 436 

First, Table 1 outlines the mean performance of the participants across all the 437 

behavioural tasks used in the semantic battery. In order to ensure that the 438 

manipulations of semantic strength, semantic category and modality of 439 

presentation produced the expected results previously reported in the literature, 440 

we compared the mean efficiency score (reaction time weighted by accuracy) for 441 

the relatedness and identity-matching tasks with repeated measures paired t-442 

tests. On average, participants were faster in responding to pictures than words 443 

(t(153) = 16.282, p < 0.001), to specific (e.g. Dalmatian) than general (e.g. 444 

animal) terms (t(153) = 3.072, p = 0.003), and to strong than weak associations 445 

(t(153) = 24.675, p < 0.001).  446 

 447 

Using CCA, of the six neurocognitive components identified, four predicted either 448 

the neural activation recorded during the presentation of meaningful versus 449 

meaningless sentences in task-based fMRI, or the spontaneous thoughts 450 

reported at the end of the resting-state scan. Our findings broadly support the 451 

component process hypothesis, by showing that varieties of semantic cognition 452 

can be related to different strengths of coupling between brain regions at rest. 453 

However, the analysis does not permit us to determine the potential number of 454 

separable components. Thus, in this report we focus on the four components for 455 
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which construct validity was demonstrated through a relationship with other 456 

measures relevant to semantic cognition. The canonical correlations and the 457 

squared canonical correlated for these four components were 0.25 (p = 0.002), 458 

0.20 (p = 0.012), 0.08 (p = 0.322), 0.19 (p = 0.016) and 0.06, 0.04, 0.01, 0.04, 459 

respectively. The remaining two components are presented in the 460 

supplementary materials (Fig. S1). 461 

 462 

Table 1 Descriptive statistics for the battery of semantic tasks. For the relatedness, figure matching and 463 

feature matching tasks, the efficiency score reflected the reaction time divided by the proportion of correct 464 

responses.  For the picture naming task response accuracy was used as the performance measure, whereas 465 

for the verbal fluency tasks the correct responses per minute were recorded. 466 

SEMANTIC TASK Minimum Maximum Mean Standard 
Deviation 

Relatedness Task: Picture 
(Efficiency) 

467.55 3267.08 1335.87 345.73 

Relatedness Task: Word 
(Efficiency) 

1140.00 2833.33 1775.21 339.50 

Non-semantic Figure Matching Task 
(Efficiency) 

1222.64 4345.00 1957.59 489.16 

Semantic Feature Matching Task 
(Efficiency) 

1490.53 25740.00 2992.52 2817.89 

Word-picture matching: General 
(Efficiency) 

797.29 2661.07 1235.32 241.136 

Word-picture matching: Specific 
(Efficiency) 

769.47 2222.99 1200.05 241.065 

Relatedness Task: Strong 
(Efficiency) 

947.80 3125.45 1406.50 259.32 

Relatedness Task: Weak 
(Efficiency) 

1477.09 6654.07 2419.06 675.71 

Picture Naming Task 
(Accuracy) 

0.00 1.00 0.84 0.184 

Verbal Fluency Task: Letter 
(Correct per minute) 

6.00 25.30 14.44 3.74 

Verbal Fluency Task: Category-General 
(Correct per minute) 

10.00 30.00 18.94 3.70 

Verbal Fluency Task: Category-Specific 
(Correct per minute) 

6.75 19.50 12.59 2.60 

 467 
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 468 

 469 

Figure 3 Neurocognitive components related to global performance in semantic cognition. The brain 470 

connectivity patterns based on the identified canonical components are displayed on an MNI152 glass brain 471 

in three different planes: lateral (L), medial (M) and ventral (V), as well as in a circular representation. In 472 

both displays, the thickness of the connections between the seed ROIs corresponds to the relative 473 

component weights of the functional connections as deviation away from the mean, whereas the colours 474 

represent directionality (red-positive, blue-negative). The associated behavioural performance is illustrated 475 

on a heatmap. The scale refers to the relative component weights of both the standardized brain functional 476 

connections and the standardized behavioural scores. The higher the value (more red), the greater the 477 

connectivity and the behavioural performance were. A) The first component was characterised by reduced 478 

connectivity between the default mode and executive control regions, and was associated with better 479 

performance on difficult comprehension tasks (feature matching and weak associations). B) Participants 480 

that displayed greater component loading on this pattern of brain and behaviour association at rest showed 481 

greater activity in the meaningful vs. meaningless contrast of the semantic localiser task, centred on the pre-482 

supplementary motor area (one of the regions that showed decoupling from the default mode at rest). The 483 

reported regions were cluster-corrected at a threshold of Z > 2.6 (p < 0.05). C) Component II described a 484 

pattern of strong connectivity between executive control regions (pre-supplementary motor area, inferior 485 

frontal gyrus) and the anterior temporal lobe, related to poorer performance, primarily on easier semantic 486 

tasks (strong associations and identiry matching). D) Though this brain and behaviour pattern was not 487 

associated with activity in the semantic localiser tasks, it was linked to greater verbal, thematic, and 488 

deliberate thoughts reported at the end of the resting state scanning session (R = 0.213, p = 0.008).    489 

 490 
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The first two brain and behaviour patterns identified using CCA described 491 

general differences in semantic performance measured outside the scanner. 492 

Component I was characterized by patterns of reduced connectivity at rest for 493 

angular gyrus, posterior cingulate and anterior temporal lobe (i.e. default mode 494 

regions) with frontal areas that are linked to executive control (i.e. inferior 495 

frontal gyrus and pre-supplementary area) (Fig. 3A). Participants who strongly 496 

showed this pattern of reduced connectivity at rest showed better performance 497 

on a range of semantic tasks, particularly harder comprehension tasks thought to 498 

depend on semantic control (e.g. matching items based on specific features and 499 

ignoring global associations; identifying weak semantic associations). They also 500 

showed a stronger response in task-based fMRI for the meaningful > meaningless 501 

contrast within regions of the cingulate cortex and the pre-supplementary motor 502 

area (Fig. 3B). Thus, they showed separation at rest of one region (pre-503 

supplementary motor area) that was recruited more strongly by semantic 504 

processing. There was no significant association between this CCA and any 505 

pattern of thoughts reported at rest.  506 

 507 

Component II reflected a pattern of stronger coupling of the anterior temporal 508 

lobe with the left inferior frontal gyrus and the pre-supplementary motor area at 509 

rest (Fig. 3C). In terms of behaviour, this component was characterised by poor 510 

performance on tasks that are generally easy to perform, such as relatedness 511 

judgements for strongly associated words, and identity matching. This 512 

component did not vary with neural recruitment in task-based fMRI; however, 513 

regression of the average brain and behaviour component loadings against the 514 

thoughts reported at rest revealed an association with spontaneous cognition 515 

that was characterised as verbal, thematic and deliberate (R = 0.213, p = 0.008) 516 

(Fig. 3D). Overall, Components I and II reflected a common pattern: when 517 

regions implicated in cognitive control (inferior frontal gyrus and pre-518 

supplementary motor area) were segregated from anterior temporal lobe and 519 

angular gyrus at rest, participants showed better performance on a range of 520 

tasks measuring semantic cognition.  521 

 522 
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 523 

Figure 4 The neurocognitive components of semantic task engagement. A) Component III was 524 

characterised by reduced coupling between the angular gyrus and executive and semantic control regions, 525 

combined with stronger coupling between angular gyrus, posterior cingulate and anterior temporal lobe. 526 

This functional connectivity was associated with better performance on picture association and specific-527 

level picture identity decisions, and poorer performance on a demanding verbal feature matching task. B) 528 

This neurocognitive pattern was linked to greater activity in the pre-supplementary motor area when 529 

participants viewed meaningful over meaningless sentences. C) Component IV on the other hand, reflected 530 

reduced connectivity between the DMN regions, which were associated with poor performance on the 531 

picture association, but good performance on the picture naming tasks. D) This pattern was linked to 532 

greater activity on the pre-supplementary motor area, bilateral medial occipital cortex and right insula. 533 

In contrast, Components III and IV related to different qualities of semantic 534 

cognition, in other words, the relative strengths and weaknesses between 535 

semantic tasks. Component III reflected relatively good performance on picture 536 

association tasks (e.g. knowing that a picture of a dog goes with a picture of a 537 

bone) and identity-matching at the specific level (e.g. matching the picture of a 538 

dog with the word Dalmatian), plus poorer performance on the feature-matching 539 

task (i.e. a difficult verbal comprehension task). At rest, individuals who scored 540 

highly on this component showed separation between the angular gyrus and 541 

inferior frontal gyrus and pre-supplementary motor area, but at the same time, 542 

they showed stronger coupling between the angular gyrus, posterior cingulate 543 

and anterior temporal lobe (Fig. 4A). Unlike Component I, this segregation of 544 
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inferior frontal gyrus and pre-supplementary motor area from angular gyrus did 545 

not extend to other regions in the DMN, namely anterior temporal lobe and 546 

posterior cingulate. There was, however, additional segregation of the angular 547 

gyrus from more posterior parts of posterior middle temporal gyrus, which is 548 

also implicated in semantic control. During the online presentation of semantic 549 

information in task-based fMRI, this component was associated with increased 550 

activation of a region in the pre-supplementary area (Fig. 4B). However, it was 551 

not associated with thoughts reported during the resting state scan. 552 

 553 

Component IV described relatively good performance in two tasks involving 554 

overt speech production, picture naming and letter fluency, combined with 555 

relatively poor performance on semantic association tasks, particularly when 556 

these were presented using pictures. At rest, this component was linked to 557 

weaker coupling between nodes in the semantic system, chiefly reduced 558 

correlation between the angular gyrus and anterior temporal lobe, posterior 559 

cingulate cortex and posterior middle temporal gyrus (Fig. 4C). During the online 560 

presentation of semantic information in fMRI, this component was associated 561 

with greater activation of the pre-supplementary motor area, inferior mid-562 

cingulate cortex, bilateral medial occipital cortex and right insula (Fig. 4D). It was 563 

not associated with the reports of thoughts at rest. Thus, in both Components III 564 

and IV, strong coupling between the anterior temporal lobe and angular gyrus at 565 

rest related to better picture comprehension, while separation of these regions 566 

was associated with better verbal semantic performance. In addition, 567 

Components III and IV shared a pattern of decoupling between angular gyrus 568 

and posterior middle temporal gyrus, and segregation of these regions at rest 569 

may be crucial for the capacity to engage successfully in externally-presented 570 

semantic tasks in the absence of strong separation between posterior cingulate 571 

cortex and frontal executive regions at rest.  572 

 573 

Notably, our analysis highlighted a region of pre-supplementary motor area and 574 

dorsomedial prefrontal cortex, which showed greater activity during meaningful 575 

information in task-based fMRI for participants who had higher scores on three 576 

of the four components identified by CCA. To quantify this similarity, we 577 
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conducted a post-hoc analysis using a formal conjunction of the activation 578 

patterns related to Components I, III and IV to reveal significant co-activation in 579 

pre-supplementary motor area (Fig. 5A). To understand the functional 580 

connectivity of this region, we seeded it in an independent data set available on 581 

Neurosynth, revealing a pattern of connectivity within lateral prefrontal and 582 

parietal regions, aspects of posterior temporal cortex and the anterior insula 583 

(Fig. 5B). This pattern shares many features with the multi-demand network that 584 

is implicated in performance on demanding tasks across cognitive domains (Fig 585 

5C). This interpretation was supported by a meta-analytic decoding of the 586 

functional connectivity map using Neurosynth, which revealed that this pattern 587 

of connectivity was often associated with terms related to cognitive engagement 588 

such as “monitoring”, “difficulty” and “strategy” (Fig. 5D). 589 

 590 

 591 

Figure 5 Convergence across the neurocognitive components of semantic cognition. A) Components I, 592 

III and IV all shared online activity in the semantic localiser task centered on the pre-supplementary motor 593 

area (conjunction analysis, Z > 2.6, p < 0.05). B-C) The functional connectivity of this region with the rest of 594 

the brain revealed a large-scale brain network commonly associated with regions of the multiple demand 595 

network. D) The decoding of this region with reverse inference using the Neurosynth database revealed a 596 

number of terms such as monitoring, strategy and decision that are often associated with demands across 597 

multiple cognitive domains.  598 
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4. Discussion 599 

 600 

Our study set out to understand the relationship between emergent patterns of 601 

functional connectivity in nodes associated with semantic processing at rest and 602 

the application of semantic cognition during tasks, measured outside the 603 

scanner. We used a multivariate technique (CCA) to simultaneously decompose 604 

variability in brain and behaviour, applying an L1-penality that improved the 605 

interpretability of the neurocognitive components. The identified patterns of 606 

brain connectivity at rest successfully predicted task-based activation during 607 

sentence comprehension, or related to the spontaneous mental experiences of 608 

the participants during the resting-state scan. These findings support the view 609 

that individual differences in semantic cognition can be understood in terms of 610 

the balance of diverse network interactions. The findings of our study are highly 611 

coherent with component process accounts of semantic cognition (Lambon 612 

Ralph et al., 2016), since variability in semantic performance could be related to 613 

an interplay of different cognitive processes supported by distributed brain 614 

regions (see also Xu et al. (2016)).  615 

 616 

Better performance on relatively difficult semantic tasks was associated with 617 

greater segregation at rest between regions important for cognitive control and 618 

regions in the DMN. An association between better cognitive performance and 619 

enhanced segregation between usually anti-correlated functional networks has 620 

been observed in prior studies of both executive control (Hampson et al., 2010; 621 

Kelly et al., 2008) and language. For instance, Mollo et al. (2016) found that 622 

better letter fluency performance was associated with reduced coupling between 623 

dorsal inferior frontal gyrus and retrosplenial cortex in the DMN. Building on 624 

these previous findings, our study suggests that the broad tendency to segregate 625 

regions implicated in cognitive control from the anterior temporal lobe and 626 

default mode regions at rest may relate, in general terms, to good performance 627 

on a wide range of semantic tasks. 628 

 629 

We also found patterns of functional coupling in the brain at rest that related to 630 

each participant's relative strengths and weaknesses across the tasks in our 631 
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semantic battery. Specifically, Component III described a form of semantic 632 

cognition in which picture association judgements and picture-word identity 633 

matching for specific concepts were in opposition to verbal feature matching. 634 

This component was associated with stronger coupling between the angular 635 

gyrus and other regions in the DMN (anterior temporal lobe and posterior 636 

cingulate cortex), as well as weaker coupling between the angular gyrus and 637 

cognitive and semantic control regions (inferior frontal gyrus, pre-638 

supplementary area, posterior middle temporal gyrus). Component IV described 639 

a pattern of semantic cognition in which picture naming and letter fluency was in 640 

opposition to picture association judgements. Better performance on speech 641 

production measures was associated with relative separation of posterior 642 

cingulate, angular gyrus and anterior and posterior temporal lobe regions. While 643 

Components I and II related to overall performance on semantic tasks, 644 

Components III and IV revealed qualitative differences in semantic cognition: 645 

both aspects of variability were related to the strength of coupling between brain 646 

regions across multiple networks, in line with the component process account of 647 

semantic cognition. 648 

 649 

As well as providing evidence of the heterogeneity of semantic cognition, our 650 

study provides hypotheses about the underlying network architecture that may 651 

give rise to strengths and weaknesses on pictorial semantic tasks. Greater 652 

coupling between angular gyrus and posterior cingulate and anterior temporal 653 

cortex was associated with better relatedness judgements for pictorial stimuli in 654 

Components III and IV. This could reflect effective integration of amodal 655 

conceptual representations, thought to be formed within the anterior temporal 656 

lobe (Olson et al., 2007; Patterson et al., 2007; Zahn et al., 2007), into the core of 657 

the DMN (Andrews-Hanna et al., 2010; Bonnici et al., 2016; Yeo et al., 2011). Both 658 

posterior cingulate and angular gyrus have shown stronger responses to more 659 

imageable than concrete words in brain imaging studies (Binder et al., 2005; 660 

Sabsevitz et al., 2005; Wang et al., 2010), in contrast to other semantic and 661 

language areas such as posterior middle temporal gyrus and inferior frontal 662 

gyrus. Moreover, TMS work shows that the angular gyrus plays a critical role in 663 

specific object recognition (Davey et al., 2015) – a task that may require stronger 664 
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integration of visual features (e.g., stripes) to distinguish between similar 665 

concepts (e.g., horse and zebra). The posterior cingulate cortex is thought to be 666 

critical for the re-representation and global integration of diverse aspects of 667 

experience, including meaning, episodic/working memory and vision (Bzdok et 668 

al., 2015; Margulies et al., 2016; Smallwood et al., 2016; Vatansever et al., 2015a). 669 

The angular gyrus has also been described as an interface between multisensory 670 

aspects of experience and memory (Bonnici et al., 2016; Bzdok et al., 2016a; 671 

Seghier, 2013; Vatansever et al., 2016a), and is implicated in vivid recollection. 672 

Thus, aspects of semantic cognition that involve the simulation of sensory 673 

experiences may involve more integration between semantic representations in 674 

the anterior temporal lobe and the DMN (Xu et al., 2016). 675 

 676 

There are several limitations that should be borne in mind when considering 677 

these results. First, though our ROIs were selected from a large-scale meta-678 

analysis, there may be other regions of cortex that contribute to semantic 679 

cognition. Specifically, brain regions in the right hemisphere were omitted in this 680 

analysis. Although semantic processing is known to be strongly left-lateralised, 681 

executive control regions on the right hemisphere have been previously shown 682 

to contribute to tasks with high semantic control demands (Noonan et al., 2013). 683 

Moreover, right hemispheric brain regions has been implicated in metaphor 684 

processing (Schmidt et al., 2007) and the retrieval of broad semantic connections 685 

(Jung-Beeman et al., 2004). However, such triaging procedure was necessary to 686 

improve the interpretability of our results and to solve the limitations associated 687 

with the CCA technique. Notably, exclusion of the right-hemisphere helped us 688 

overcome the limitations on the number of seeds that could be entered into CCA, 689 

depending on the available sample size. In addition, there may be important 690 

aspects of semantic processing that we did not capture in our battery of tasks. As 691 

a consequence, our data provide evidence for brain connectivity patterns that 692 

relate to quantitative and qualitative varieties of semantic cognition, but we 693 

cannot specify the exact number of the varieties of semantic cognition in full. 694 

Furthermore, our implementation of CCA imposed orthogonality between the 695 

latent components (Witten et al., 2009). In other words, the aspects of functional 696 

connectivity and behavioural patterns that would be shared between the factors 697 



 

 27 

of variation in the population are largely collapsed into the components by the 698 

present analysis that focuses mainly on finding components that do correlate 699 

with each other only to the least possible extent. Nevertheless, it should be noted 700 

that although the optimization goal of CCA is to have components as 701 

uncorrelated as possible, this procedure does not guarantee zero correlation. 702 

This is because regularised CCA does not force strict orthogonality in order to 703 

avoid overfitting (Melzer et al., 2003). In summary, though similar 704 

decomposition methods (such as PCA) has been successfully used as models in 705 

psychological research, the existing caveats analogously also apply here to our 706 

CCA components, which will require further investigation and optimisation.  707 

 708 

Moreover, our study examined individual differences in patterns of brain 709 

connectivity solely at rest. However, it is possible that connectivity during task 710 

states will also relate to differences in semantic cognition between individuals – 711 

and these network interactions are likely to differ in substantial ways from those 712 

described here (Krieger-Redwood et al., 2016; Vatansever et al., 2015a, b). For 713 

instance, we observed more activation of pre-supplementary motor area during 714 

semantic processing in task-based fMRI both for participants who were generally 715 

good at semantic tasks (and who strongly separated default mode and executive 716 

areas at rest in general terms) and for participants who showed an uneven 717 

profile of relatively better or worse performance on different tasks (and who 718 

separated angular gyrus from a region linked to semantic control in posterior 719 

middle temporal gyrus). Thus, some degree of functional separation at rest 720 

between default mode and control regions may support the capacity to flexibly 721 

reorganise cognition to engage with a task (Vatansever et al., 2016b). The 722 

recruitment of pre-supplementary motor area could reflect general task 723 

engagement, consistent with the contribution of this region to the multiple-724 

demand network (Duncan, 2010). This prediction needs to be explored in future 725 

studies by applying a similar decomposition approach to task-based fMRI data.  726 

 727 

Our data also provides insight into the contribution of semantic processes to the 728 

generation of unconstrained thoughts at rest (Binder et al., 2009; Binder et al., 729 

2003; Smallwood et al., 2016). A pattern of strong coupling of the anterior 730 
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temporal lobe and angular gyrus with inferior frontal gyrus and pre-731 

supplementary area predicted reports of verbal, thematic and deliberate 732 

thoughts at rest (Component II). This finding is consistent with the view that 733 

self-generated thoughts rely on the same component processes as external tasks 734 

and supports a role for control processes in the coordination of some aspects of 735 

spontaneous thought (Bzdok et al., 2016b; Smallwood, 2013; Smallwood and 736 

Schooler, 2015). Participants who showed too much coupling between nodes of 737 

the DMN and the executive system may have failed to engage with our external 738 

tasks, consistent with studies showing that mind-wandering is linked to poor 739 

task performance (Mooneyham and Schooler, 2013). 740 

 741 

5. Conclusions 742 

 743 

Overall, the results of this study provide compelling evidence for the component 744 

process account of semantic cognition. The results suggest that different patterns 745 

of connectivity between large-scale brain networks show relationships to both 746 

quantitative and qualitative variability in semantic cognition. Further studies 747 

exploring the basis of these neurocognitive components will not only illuminate 748 

the underlying neural mechanisms in this domain, but will also pave the way for 749 

improving our understanding of semantic impairments in disease states. 750 

 751 
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